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Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topological
origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these topological
chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we present such
a study covering large defects of different shape and also vacancy-like defects and adatoms at the dynamical
gap at ��/2 (�� being the photon energy). Our results, based on analytical calculations as well as numerics
for full tight-binding models, show that the bound states are chiral and appear in a number which grows with
the defect size. Furthermore, while the bound states exist regardless of the type of the defect’s edge termination
(zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the bound state
quasienergies depend on the adatoms energy. The appearance of such bound states might open the door to the
presence of topological effects on the bulk transport properties of dirty graphene.
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I. INTRODUCTION

Driving a material out of equilibrium offers interesting
paths to alter and tune its electrical response. A prominent
example is the generation of light-induced topological prop-
erties [1–3], e.g., illuminating a material such as graphene
to transform it into a Floquet topological insulator (FTI).
Very much as with ordinary topological insulators (TIs) [4–7],
FTIs have a gap in their bulk (quasi)energy spectrum—
being then a bulk insulator—and their Floquet-Bloch bands
are characterized by nontrivial topological invariants [3,8,9].
In addition, and despite some important differences with
TIs [8,10], FTIs show a bulk-boundary correspondence and
hence host chiral/helical states at the sample boundaries.

The emergence of such nonequilibrium properties has been
intensively investigated in recent years in a variety of systems
including graphene [11–19] and other 2D materials [20,21],
normal insulators [2,22], coupled Rashba wires [23], photonic
crystals [24], cold atoms in optical lattices [25–31], topological
insulators [32–36], and also classical systems [37]. The
research interest has focused on many different aspects of the
problem such as the characterization of the edge states [16,17],
different signatures in magnetization and tunneling [38,39],
the proper invariants entering the bulk-boundary correspon-
dence [8,10,19,40], their statistical properties [41,42], the role
of interactions and dissipation [41,43–46], and the associated
two-terminal [47,48] and multiterminal (Hall) conductance
both in the scattering [49] and decoherence regimes [45]. So
far, however, the experimental confirmation of the presence
of such edge states has only been achieved in photonic
crystals [24]. Nonetheless, in condensed matter systems the
Floquet-induced gaps have already been observed at the
surface of a topological insulator (Bi2Se3) by using time and
angle resolved photoemission spectroscopy (tr-ARPES) [33].
More recently, effective Floquet Hamiltonians were realized
in cold-matter systems [50].

Despite the intense research on FTIs, most of the studies
address pristine samples. Besides occurring naturally in any
sample, defects will also host Floquet bound states when
the sample is illuminated. If the defects are extended, the

presence of the associated Floquet bound states might allow
for new experiments probing them. This motivates our present
study. Specifically, taking laser-illuminated graphene as a
paradigmatic example of a FTI, we study Floquet bound
states around defects in the bulk of a sample. We show that
chiral states circulate around holes or multivacancy defects
of different shapes and lattice terminations (zigzag, armchair,
or mixed) such as the ones shown in Fig. 1. The properties
of these states (quasienergies and their scaling with the
system parameters, associated probability currents, etc.) are
characterized using both numerical simulations, by means of
a tight-binding model, and analytical approaches, by solving
the appropriate low-energy Dirac Hamiltonian in a reduced
Floquet space. Quite interestingly, these bound states persist
even in the limit of a single-vacancy defect. Furthermore,
bound states are found around adatoms that sit on top of a
C atom (such as H or F, for instance).

While the presence of Floquet bound states around vacancy-
like defects or adatoms might jeopardize the experimental
observation of laser-induced gaps, they could, on the other
hand, also open the route towards the observation of interesting
topological transport phenomena in dirty bulk samples by
changing localization or percolation properties, for instance.

The rest of the paper is organized as follows. First, we
introduce our low-energy model and the associated analytical
Floquet solutions (Sec. II). Several particular cases are pre-
sented in Sec. III, namely, large holes with zigzag or armchair
edge terminations, as well as defects consisting of regions
with a staggered potential. The chiral nature of the currents
associated with the bound states is discussed in Sec. IV. In
Sec. V we compare our solutions with numerical calculations
on a tight-binding model. The case of pointlike defects such
as vacancies or adatoms is presented in Sec. VI. We finally
conclude in Sec. VII.

II. THE LOW-ENERGY MODEL AND
THE FLOQUET SOLUTION

Let us consider an irradiated graphene sample with a
single defect. Since the bound states we want to describe
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FIG. 1. Scheme of irradiated graphene with different defects on
the graphene lattice: holes, adatoms, or regions with a staggering sub-
lattice potential. The arrows indicate the chirality of the probability
currents associated with the Floquet bound states around the defects.

are topological in origin [16,17,19], the specific form or
nature of the defect (see Fig. 1) is irrelevant for probing their
existence—though the details of the quasienergy spectrum and
the particular form of the wave functions will depend on it. To
simplify the discussion we will start by assuming that the
defect potential does not mix the different graphene valleys
(Dirac cones); this assumption will be relaxed when discussing
particular examples. Hence, the low-energy behavior around
both cones can be described by a Hamiltonian given by

Ĥ(t) = vF σ ·
(

p + e

c
A(t)

)
+ V (r), (1)

if we use the isotropic representation where the K and
K ′ cones are described by the wave functions ψK (r,t) =
{ψA(r,t),ψB(r,t)}T and ψK ′ (r,t) = {−ψ ′

B(r,t),ψ ′
A(r,t)}T, re-

spectively. Here vF � 106 m/s denotes the Fermi velocity, σ =
(σx,σy) represents the Pauli matrices describing the pseudospin
degree of freedom (sites A and B of the honeycomb lattice),
e is the absolute value of the electron charge, c is the speed
of light, and A(t) = Re{A0e

i�t } is the vector potential of the
electromagnetic field (a plane wave incident perpendicularly
to the graphene sheet). The associated electric field is then
E(t) = −(1/c)∂t A(t) so that |E| = E0 = (�/c)|A0|. It is
important to emphasize that while we will refer to graphene
from hereon, our results apply to any massless Dirac fermion
system described by Eq. (1).

Since for solving the time-dependent Schrödinger equation
we will take advantage of the Floquet formalism [51,52]
used to deal with time-dependent periodic Hamiltonians, it
is instructive to briefly introduce its basic ideas (for more
extensive general reviews we refer to Refs. [53] and [54]).
The Floquet theorem guarantees the existence of a set of
solutions of the form |ψα(t)〉 = exp(−iεαt/�)|φα(t)〉 where
|φα(t)〉 has the same time periodicity as the Hamiltonian,
|φα(t + T )〉 = |φα(t)〉 with T = 2π/� [51,53]. The Floquet
states |φα〉 are the solutions of the equation

ĤF |φα(t)〉 = εα|φα(t)〉, (2)

where ĤF = Ĥ − i�∂t is the Floquet Hamiltonian and εα the
quasienergy. Using the fact that the Floquet eigenfunctions
are periodic in time, it is customary to introduce an extended
R ⊗ T space (the Floquet or Sambe space [52]), where R is

the usual Hilbert space and T is the space of periodic functions
with period T . A convenient basis of R ⊗ T can be built from
the product of an arbitrary basis of R (the eigenfunctions
|an〉 of the time-independent part of the Hamiltonian, for
instance) and the set of orthonormal functions eim�t , with
m = 0,±1,±2, . . . , that span T . Then,

|φα(t)〉 =
∞∑

m=−∞

∣∣uα
m

〉
eim�t , (3)

or, in a vector notation in R ⊗ T ,

|φα〉 = {
. . . ,

∣∣uα
1

〉
,
∣∣uα

0

〉
,
∣∣uα

−1

〉
, . . .

}T
. (4)

Here, |uα
m〉 = ∑

n Bα
mn|an〉 are linear combinations of the basis

states of R. Written in this basis, ĤF is a time-independent
infinite-matrix operator with Floquet replicas shifted by a
diagonal term m�� and coupled by the radiation field with
the condition, for pure harmonic potentials, that 
m = ±1.

In the absence of any defect, the Floquet spectrum presents
dynamical gaps at different quasienergies [1,17,19]. Here, we
will focus on the gap, of order η��, that appears at ε ∼ ��/2
and look for bound states inside it. Since we will only consider
the limit η = vF eA0/c�� � 1, it is sufficient to restrict the
Floquet Hamiltonian to the m = 0 and m = 1 subspaces (or
replicas) for the analytical calculations; the numerical results
can retain a larger number (NFR) of replicas if necessary. As
discussed in Refs. [17] and [19], this restriction is enough to
get the main features of the energy dispersion and the Floquet
states when η � 1.

The reduced Floquet Hamiltonian describing states near
ε ∼ ��/2 then corresponds to

H̃F =

⎛
⎜⎜⎜⎝

�� vF p− 0 0

vF p+ �� vF e
c

A0 0

0 vF e
c

A0 0 vF p−
0 0 vF p+ 0

⎞
⎟⎟⎟⎠, (5)

with p± = px ± ipy = −i�(∂x ± i∂y). The Floquet wave
function has the form

φ(r) = {[u1A(r),u1B(r)],[u0A(r),u0B(r)]}T. (6)

It is straightforward to see that H̃F φ(r) = εφ(r) implies that

u1A(r) = − vF

�� − ε
p−u1B(r),

(7)
u0B(r) = vF

ε
p+u0A(r),

and hence only two functions, u0A(r) and u1B(r), have to be
found. These functions satisfy(

− v2
F

�� − ε
p2 + �� − ε

)
u1B(r) = −vF e

c
A0u0A(r),

(8)(
v2

F

ε
p2 − ε

)
u0A(r) = −vF e

c
A0u1B(r),

where p2 = p+p− = p−p+.
Because we are interested in describing the effect of

a defect—which breaks the translational invariance of the
systems—it is useful to change at this point to a polar
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coordinate system, r and ϕ, centered at it. In terms of these
variables we have

p± = −ie±iϕ
�

(
∂r ± i

1

r
∂ϕ

)
,

p2 = −�
2

(
∂2
r + 1

r
∂r + 1

r2
∂2
ϕ

)
. (9)

Similarly, as in the case of local defects in ordinary TIs [55,56],
the solutions of Eq. (8) can be written as u1B(r) = eilϕf (k0r)
and u0A(r) = eilϕg(k0r) with l an integer number. This follows
from the fact that [H̃F ,L] = 0, where

L =
(

−i�∂ϕ ⊗ σ0 + �

2
σz

)
⊗ τ0 + �

2
σ0 ⊗ τz (10)

and Lφ(r) = �l φ(r), where φ(r) is given by Eq. (6). In order
to proceed further we define the adimensional parameters

μ = ε

��/2
− 1, k0 = �

2vF

, ξ = k0r. (11)

With this notation, the equations for f (ξ ) and g(ξ ) become[(
∂2
ξ + 1

ξ
∂ξ − l2

ξ 2

)
+ (1 − μ)2

]
f (ξ ) = −2η(1 − μ) g(ξ ),

[(
∂2
ξ + 1

ξ
∂ξ − l2

ξ 2

)
+ (1 + μ)2

]
g(ξ ) = 2η(1 + μ) f (ξ ).

(12)

For quasienergies inside the bulk dynamical gap, the wave
function must decay far from the defect. Hence, let us look for
a solution of the form f (ξ ) = c Kl(λξ ) and g(ξ ) = d Kl(λξ ),
where Kl(x) is the modified Bessel function of the second kind
that satisfies(

∂2
ξ + 1

ξ
∂ξ − l2

ξ 2

)
Kl(λξ ) = λ2Kl(λξ ). (13)

Introducing this into Eqs. (12) we arrive at the following
condition for λ,

[λ2 + (1 − μ)2][λ2 + (1 + μ)2] = −4η2(1 − μ2), (14)

and the relation
c

d
= − 2η(1 − μ)

λ2 + (1 − μ)2
. (15)

The equation for λ has four solutions which are complex
conjugate in pairs. The two physical solutions correspond to
Re(λ) > 0 as this guarantees an exponential decay for large r .
Let us denote these two solutions as λ+ and λ− = λ∗

+,

λ± =
√

−1 − μ2 ± 2
√

−η2 + μ2(1 + η2). (16)

The region where Re(λ) > 0 corresponds to |μ| < η/
√

1 + η2,
that is, inside the bulk dynamical gap [17], 
 =
��η/

√
1 + η2. The other components of the Floquet wave

function can be readily obtained as

u1A(r) = iei(l−1)ϕ

1 − μ

(
∂ξ + l

ξ

)
f (ξ ) = iei(l−1)ϕ

1 − μ
f̃ (ξ ),

(17)

u0B(r) = − iei(l+1)ϕ

1 + μ

(
∂ξ − l

ξ

)
g(ξ ) = − iei(l+1)ϕ

1 + μ
g̃(ξ ),

which are straightforward to evaluate since (∂ξ ∓ l
ξ
)Kl(λξ ) =

−λKl±1(λξ ). It is worth to point out that 〈u1|u0〉 = 0 so that
φ(r,t) can be normalized for any time t in this approxima-
tion [17], which allows us to calculate not only time-averaged
quantities but also their time dependence explicitly.

To proceed any further we need to specify the defect
type, which allows the setting of the appropriate boundary
conditions. In the following we present a detailed discussion
for some particular but relevant cases.

III. BOUNDARY CONDITIONS

The boundary conditions (BCs) must guarantee that the
probability current perpendicular to the defect boundary
cancels out. Here, we shall consider only three types of BCs
that represent three generic cases and serve to illustrate the
overall picture: the zigzag-like BC (ZZBC), the armchair-like
BC (ABC), and the infinite-mass BC (IMBC) [57].

Since the BC needs to be satisfied at any time, in Floquet
space the boundary condition must be imposed on each replica
separately. Therefore, the boundary problem is analogous to
the static one and we shall follow Refs. [58] and [59] and use
a matrix M to introduce the appropriate relations between the
components of the A and B sublattices and the two Dirac cones
at the boundary for the three types of BCs [59,60].

An arbitrary BC can be written in the form

�(r = R(ϕ),ϕ) = M(ϕ)�(r = R(ϕ),ϕ), (18)

where R(ϕ) defines the shape of the defect and the matrix M
(in the isotropic representation) is given by

M(ϕ) = (ν̂ · τ ) ⊗ (n̂ · σ ). (19)

Here σ refers to the sublattice pseudospin and τ to the valley
(Dirac cones) isospin. The matrix M has all the information
about the shape of the boundary via the unit vector n̂. On the
other hand, the nature of the honeycomb lattice’s termination
is related to the unit vector ν̂, which rules whether the two
Dirac cones mix or not. Namely, for a defect with a straight
boundary [59],

ZZBC → ν̂ = ẑ,n̂ = ±ẑ,

ABC → ν̂ · ẑ = 0,n̂ = ẑ × n̂B, (20)

IMBC → ν̂ = ẑ,n̂ = ẑ × n̂B,

where n̂B is an unitary vector perpendicular to the defect
boundary and pointing inwards. From the above expressions
it is clear that while the armchair BC mixes cones, zigzag
and infinite-mass BCs do not. In the following we shall be
interested in the comparison between analytical and numerical
results for simple geometries, and so we will restrict ourselves
to handle only defects with regular polygonal shapes with N

sides. The general form of MN for such cases is given in
Appendix A.

While for the honeycomb lattice, defects with well-defined
terminations can only have N = 3 or N = 6, it is useful to
discuss the limiting case of a circular defect and then compare
with the numerics. For the ABC and IMBC this corresponds
to the limit N → ∞ while for the ZZBC care is needed to
account for the change of the sublattice character of the edge
atoms (n̂ = ±ẑ depending on the sublattice).
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A. Circular defect with zigzag boundary condition

The ZZBC does not mix valleys. This is valid for arbitrary
N ; i.e., MN is diagonal in the isospin subspace. Moreover,
it is also diagonal in the pseudospin subspace. However, it
is possible, as in the hexagonal geometry, that different sides
of the polygon terminate in sites corresponding to different
sublattices. This is represented by the n̂ = ±ẑ in Eq. (20),
where the sign changes from side to side, thereby making it
cumbersome to handle analytically. Hence, for the sake of
simplicity, we will consider a “fictitious” case where the ±
sign is ignored and later compare with the exact numerical
calculation. Hereon we will refer to it as the circular ZZBC
(cZZBC). This will help us to better grasp some aspects of the
problem.

For a circular defect (of radius R) the BC implies, say, that
u1B(|r| = R) = 0 and u0B(|r| = R) = 0; this corresponds to
a honeycomb lattice that ends on A sites. To satisfy it we need
to combine the two independent bulk solutions discussed in
Sec. II. That is,

fl(ξ ) = c+Kl(λ+ξ ) + c−Kl(λ−ξ ),
(21)

gl(ξ ) = d+Kl(λ+ξ ) + d−Kl(λ−ξ ),

where we have kept the previous notation. Then we have that

fl(ξ0) = 0, g̃l(ξ0) = 0, (22)

with ξ0 = k0R. This leads to the following relations between
coefficients: |c+| = |c−| and |d+| = |d−|. By introducing them
back into Eqs. (12) we obtain, for the K cone, the following
equation for the quasienergy (μ):

Im[β+λ+Kl(λ−ξ0)Kl+1(λ+ξ0)] = 0, (23)

with

β± = −λ2
± + (1 − μ)2

2η(1 − μ)
. (24)

The solutions (μl) to this equation form a discrete set of
quasienergies inside the bulk dynamical gap. Figure 2 shows
them as a function of ξ0 (throughout this work, we shall use
η = 0.15 and �� = 0.1 t in all numerical calculations). Notice

FIG. 2. Energy levels for η = 0.15 and l = 0, ±1, ±2, ... as a
function of the size of the defect. Solid and dashed lines correspond
to the different Dirac cones. In both cases, the thicker lines correspond
to l = 0 and energy levels with l > 0 (l < 0) emerge from the top
(bottom) of the dynamical gap.

that the symmetry between l > 0 and l < 0 is broken by the
radiation field.

The symmetry of the Floquet spectrum around the center of
the gap (μ = 0) is recovered when the complementary valley
(K ′ cone) is considered. For that, we recall that the solutions
for the K ′ cone can be obtained by relabeling the Floquet wave
function as φ′(r) = {[−u′

1B(r),u′
1A(r)],[−u′

0B(r),u′
0A(r)]}T

(see Appendix B). This results in an additional set of
quasienergies that can be obtained from the condition

Im[β−λ+Kl(λ−ξ0)Kl−1(λ+ξ0)] = 0. (25)

It can be shown that the latter set of quasienergies can be
obtained from Eq. (23) by exchanging (l,μ) → (−l,−μ),
which is precisely what is needed to recover the symmetry
around μ = 0.

It is interesting to consider, for a fixed l, the limit of
very large radii, ξ0 
 ξd = k0 �vF /
 =

√
1 + η2/2η, and

approximate Kl(λξ0) by its asymptotic expansion. By doing
so, Eqs. (23) and (25) lead to

μl = ±η2 + (l ± 1/2)η

ξ
+ O(ξ−2,η2), (26)

respectively. This result can be understood in terms of the
quasienergy dispersion of the edge states in irradiated semi-
infinite graphene sheets with a zigzag termination [17]. In
that case, it was shown that, close to the center of the gap,
the quasienergy dispersion can be approximated by εk =
��/2 ± ��η2/2 + �vF ηk. Our result for μl is then reflecting
the fact that the wave vector k along the defect’s edge must be
quantized,

kl = (l ± 1/2)

R
. (27)

It is worth mentioning that in this large-radii limit the Floquet
states have roughly the same weight on the two Floquet
replicas.

B. Infinite-mass boundary condition

The IMBC was introduced by Berry and Mondragon
in Ref. [57] to study confined Dirac particles (“neutrino
billiards”). It corresponds to adding a mass term to the Dirac
equation only in a given region of space (in our case the
defect) and take the limit of such a mass going to infinity.
While this could be thought as a local staggered potential in
the honeycomb lattice, it must be kept in mind that this is
only the case for a staggered potential much smaller than the
bandwidth; this is so because if the staggered potential is too
large it behaves like an effective hole (introducing intervalley
scattering depending on the geometry of the defect). The
latter limit was not a problem in Ref. [57], because they only
considered a single unbound massless Dirac particle.

Since the IMBC does not mix valleys either, we can treat
again both Dirac cones separately. We start by using the
circular geometry, which corresponds to the N → ∞ limit
of MN . For the IMBC M∞ is no longer diagonal in the
pseudospin subspace and thus the A and B components of the
wave function are not independent anymore. In fact, Eq. (18)
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FIG. 3. Energy levels for the case of IMBC. Parameters as in
Fig. 2. The solid (dashed) line corresponds to K (K ′) cone. There is
no solution with l = 0.

requires that [57]

ujB(R,ϕ)

ujA(R,ϕ)
= −ieiϕ,

u′
jB(R,ϕ)

u′
jA(R,ϕ)

= ie−iϕ, (28)

for the K and K ′ cone, respectively, where j = 0,1 is the
Floquet subspace index; notice that limN→∞ �N (ϕ) = ie−iϕ in
the definition of the MN matrix (see Appendix A). Following
the same procedure as in the previous section, and using the
same notation, these conditions imply that

(1 − μ) fl(ξ0) = ±f̃l(ξ0),
(29)

(1 + μ) gl(ξ0) = ±g̃l(ξ0),

while the equation for the quasienergies is given by

Im[(λ2
+ + (1 − μ)2){λ+Kl+1(λ+ξ0) ∓ (1 + μ)Kl(λ+ξ0)}

{λ−Kl−1(λ−ξ0) ∓ (1 − μ)Kl(λ−ξ0)}] = 0. (30)

Here the (−) and (+) signs correspond to the K and K ′
cone, respectively. It can be shown that the above expression
remains invariant under the change (μ,l) → (−μ, − l) for
each cone separately and, therefore, unlike the cZZBC, the
Floquet spectrum for the IMBC is symmetric around μ = 0 for
each cone. Using this symmetry of Eq. (30) it is straightforward
to verify that there is no solution for l = 0 (which necessarily
corresponds to μ = 0). The IMBC Floquet spectrum is shown
in Fig. 3 as a function of ξ0. Note that the two cones have a
completely different spectrum. This could be anticipated from
the fact that the presence of both the staggered potential and
the radiation field break the valley symmetry (cf. Fig. 5 below);
it is worth mentioning that the bulk Floquet gap at k = 0 can
even present a topological phase transition depending on the
relative magnitude of the mass term and the radiation field [61].

When defects are made of regular polygons, i.e., with
finite N , the MN matrix acquires a nontrivial structure as
a function of ϕ. Thus, the states whose quantum numbers l

differ in N are coupled, thereby leading to avoided crossings.
The equations for this case are rather cumbersome (some of
them are presented in Appendix A) but can be solved in a
perturbative fashion. Some examples are presented in Sec. V
in comparison with the numerical solutions of the tight-binding
model.

C. Armchair boundary condition

The ABC is analogous to the IMBC in the pseudospin
subspace, leading to similar quasienergy spectra. The differ-
ence between both boundary conditions relies on the isospin
subspace: while the ABC mixes cones, the IMBC does not.
Thus, the ABC exhibits additional avoided crossings between
modes belonging to different cones (see numerical results in
Sec. V). Because cones are mixed, they both need to be treated
together and hence the dimension of the Floquet space is
doubled. The analytical procedure is similar to the one
presented for the other BCs, whose details are beyond the
scope of the present work. We will then limit, for this case, to
discuss the numerical results in in Sec. V.

IV. PROBABILITY CURRENT DENSITY:
CHIRAL CURRENT

So far we have mainly analyzed the spectrum of the
Floquet bound states inside the dynamical gap (around ��/2)
for a circular defect. Now we focus on their chiral nature.
The velocity operator is given by v̂ = vF σ and hence the
time-averaged (over one period) probability current density
is

J(r) = vF φ†(r)σφ(r)

= (〈σr〉1 + 〈σr〉0) r̂ + (〈σϕ〉1 + 〈σϕ〉0)ϕ̂, (31)

where 〈σα〉j = {u∗
jA,l(r),u∗

jB,l(r)}σα{ujA,l(r),ujB,l(r)}T, j =
0,1 is the same as earlier, σr = σ · r̂ , and σϕ = σ · ϕ̂. Using
the solutions found in the previous section, it can be readily
shown that

〈σr〉1 = − 2

1 − μl

Im[fl(ξ )f̃ ∗
l (ξ )],

〈σr〉0 = − 2

1 + μl

Im[gl(ξ )g̃∗
l (ξ )],

〈σϕ〉1 = − 2

1 − μl

Re[fl(ξ )f̃ ∗
l (ξ )],

〈σϕ〉0 = − 2

1 + μl

Re[gl(ξ )g̃∗
l (ξ )]. (32)

Since λ+ = λ∗
−, one can easily check that Im[fl(ξ )f̃ ∗

l (ξ )] =
Im[gl(ξ )g̃∗

l (ξ )] = 0 so that the radial component of the current
density vanishes, as expected. Therefore, we have

J l(ξ ) = −2 vF

(
fl(ξ )f̃ ∗

l (ξ )

1 − μl

+ gl(ξ )g̃∗
l (ξ )

1 + μl

)
ϕ̂. (33)

Figure 4 shows the spatial dependence of both the probability
and the current density for the K and K ′ cones and for the
two different boundary conditions analyzed in Sec. III. The
curves correspond to a defect of R = 30 acc, i.e., ξ0 = 1,
with the parameters used throughout this work. We have
only retained the Floquet wave functions with |l| = 0,1,2,
whose corresponding quasienergies can be seen from Fig. 2
and Fig. 3 for ξ0 = 1. Due to the oscillating nature of the
Floquet wave functions both probability density functions and
current densities show relative maxima and minima (with the
same or different signs in the case of current densities) as a
function of ξ . Nevertheless, all of them decay exponentially
away from the edge of the defect. This is more evident for the
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FIG. 4. Probability (top) and current (bottom) densities as a
function of the radial coordinate ξ for two different boundary
conditions studied in Sec. III. Notice the log scale on the horizontal
axis. In all cases, the defect boundary is located at ξ0 = 1 (R =
30 acc). Probabilities and current densities with |l| > 3 are several
orders of magnitude smaller than those shown in the figure and were
omitted for clarity. In the case of the IMBC, curves with l and −l are
coincident (l > 0 are shown). The spatial range shown in the figure
corresponds to the distance from the center of the defect to the end
of the samples of graphene sheets used in Sec. V for the numerical
tight-binding calculations (500 × √

3 acc).

Floquet wave functions whose quasienergies are close to the
middle of the dynamical gap as in that case the decay length is
shorter. For quasienergies close to the edges of the dynamical
gap, the decay length becomes larger and larger and the ξ−1/2

power-law decay, characteristic of the Kl Bessel functions,
with purely imaginary argument becomes apparent. In these
latter cases, however, the current amplitude becomes several
orders of magnitude smaller than in the former (see Fig. 6). For
the cZZBC, Fig. 4 shows the equivalent roles that are played
by the K and K ′ cones under the change l ↔ −l, as explained
before in Sec. III A. Unlike the cZZBC, for the IMBC the K

and K ′ cones are inequivalent. In this case, as discussed in
Sec. III B, the change l ↔ −l leads to the same probability
and current densities for each cone separately.

The lack of equivalence between the K and K ′ cones for
defects with the IMBC is also present in systems other than
circular defects. For illustrating purposes, Fig. 5 shows the
k-dependent local density of states (LDOS) for a nanoribbon
with both cZZBC and IMBC, projected on the m = 0 Floquet
replica. Notice that, unlike the cZZBC, the IMBC presents an
asymmetry (at each edge) with respect to the middle of the
dynamical gap. The symmetry is broken by the presence of
the mass term at the edges and it is only globally recovered
when both edges are considered; this is so because for zigzag
nanoribbons, as considered here, the atoms at the two edges
belong to different sublattices.

FIG. 5. Dispersion relation of a nanoribbon of ∼106 atoms
width with zigzag (top row) and infinite-mass (down row) boundary
conditions obtained numerically by decimation procedures and a
tight-binding model. All parameters such as ��, η, and mass δ are
the same as used in Sec. V.

Even when the current density oscillates as it decays away
from the defect, the total current (current densities integrated
on r) for cZZBC has the same sign for all the bound states.
This is the signature of the chirality of the Floquet states
and their sign only depends on the sign of the helicity of
the circularly polarized radiation field. Figure 6 shows the
total currents for both cZZBC and IMBC as a function
of the quantum number l for defects with ξ0 = 1,5,10,20.
Unlike the cZZBC, the IMBC only presents chiral Floquet

FIG. 6. Total current as a function of the quantum number l

for different defect sizes (ξ0 = 1,5,10,20). Open (closed) symbols
correspond to Floquet states lying in the K (K ′) cone (lines are only
guides for the eye). A curve with a larger span on l corresponds
to a larger ξ0. The dotted black line in the top panel represents the
η/(1 + η2) value expected for the current of the Floquet edge state
in a semi-infinite irradiated graphene sheet with zigzag termination.
The inset shows how this limit is reached for l = 0 when the size of
the defect increases.
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states for the K cone. Analogously, Fig. 5 shows a similar
behavior for the nanoribbon with IMBC: while the K cone
presents two chiral states at each edge, the K ′ cone has none.

Finally, it is interesting to analyze the value of the total
current of a given bound state in the limit of a large defect. As
discussed in Sec. III A for large R the quasienergy dispersion
can be related to the one corresponding to a nanoribbon as
the boundary of the defect appears (locally) as a straight line
(i.e., when the radius is much larger than the decay length).
In that case the expected velocity for each bound states is v =
�

−1∂εk/∂k � vF η, or more precisely v = vF η/(1 + η2) [17].
The inset of Fig. 6 shows the current in units of vF for Floquet
states with l = 0 (red points) as a function of the size of the de-
fects. The black dotted line represent the expected η/(1 + η2);
this is also indicated in the main figure. Clearly, there is good
agreement with the expected value. A similar behavior is
observed for states with different quantum number l as the
size of the defect increases.

V. COMPARISON WITH THE TIGHT-BINDING MODEL

In this section, we calculate the quasienergy spectra within
the dynamical gap numerically as a function of the size and
shape of the defect for all three types of boundary conditions
mentioned before, ZZBC, ABC, and IMBC, and compare with
the analytical results when possible.

In order to describe the electronic structure of irradiated
graphene sheets near the Fermi energy, we resort to the widely
used tight-binding Hamiltonian [62–64], which is written only
in terms of pz orbitals with energies εi for a given carbon
atom located at site i and hopping matrix elements γij be-
tween nearest-neighbor carbon atoms. In second-quantization
notation, this reads

H =
∑

i

εi c
†
i ci −

∑
〈i,j〉

(γij c
†
i cj + H.c.), (34)

where the operator c
†
i (ci) creates (annihilates) a pz electron

on site i. The effect of the laser is introduced through the time-
dependent phase of the hopping matrix elements [1,65,66],

γij = γ0 exp

(
i
2π

�0

∫ rj

r i

A(t) · d�

)
, (35)

where �0 is the magnetic flux quantum and γ0 ∼ 2.7 eV [67].
By using Floquet theory [54,68,69] as described before

one can compute the Floquet spectrum. Once again, one ends
up with a time-independent problem in an expanded space.
In this case one can picture it as tight-binding problem in
a multichannel system where each channel represents the
graphene sheet with different number of photons [51,66,70].
It is worth mentioning that in the tight-binding method the
time-dependent perturbation is never purely harmonic given
the exponential dependence of Eq. (35) on the radiation
field amplitude. Hence, there is a coupling among all the
replicas [66] and not just those with 
m = ±1. Nevertheless,
for η � 1, only the latter are relevant.

Because the problem in the Floquet space becomes time-
independent, one can use standard techniques to calculate the
quasienergy spectrum. In this case we used the Chebyshev
polynomial method [71] which provides an order-N method

of proven efficiency [72]. This allows us to tackle very large
system sizes so that our defect is far from the boundaries
and can be considered as a “bulk defect.” For simplicity we
only retained two Floquet replicas just like its theoretical
counterpart studied in Sec. II. This is a good approximation
whenever η � 1. The addition of more replicas would lead to
the development of a hierarchy of bound states in a similar
way as for edge states at the border of an irradiated graphene
sample [19].

Defects were introduced in graphene by defining geomet-
rical shapes—triangles, hexagons, and circles—and removing
all atoms inside it (for the ZZBC and ABC) as well as
any remaining dangling bonds. In the case of the IMBC, a
staggered potential was introduced only inside the defect—i.e.,
we added on-site energies (±δ) whose signs depend on the
sublattice index. In all calculations we used δ = γ0/2, which
is larger than ��/2 (taken to be ∼γ0/20) but not too large as
to become equivalent to a hole (δ → ∞ is equivalent to a hole
defect). Triangles and hexagons in arbitrary orientations lead to
edges with mixed zigzag and armchair terminations. However,
for specific orientations with respect to the C-C bonds, it
is possible to construct defects with only one termination
type; we will refer to them as zigzag/armchair triangular and
hexagonal defects. Circles, of course, are always a mixture of
different edge terminations and, as we will show, present some
special features. In all cases, the numerical calculations were
performed using graphene samples of 1000 × 1000 unit cells.

Figures 7 and 8 show a color map of the Floquet local
density of states (FLDOS) inside the bulk gap (projected onto
a few sites around the defect boundary, and on the m = 0
replica) as a function of the size of the defect for hole and
staggered potential defects, respectively. The shape of the
defect is indicated in the figures. Left panels correspond to
zigzag terminations and the right panels to the armchair ones.

FIG. 7. Color map of the Floquet local density of states (FLDOS)
projected on the m = 0 replica and onto sites located around the
boundary of the defects for different sizes of the defects, ξ̄0 = k0R̄

(see main text). Top and bottom panels show the case of triangular and
hexagonal holes, respectively, with zigzag (left) and armchair (right)
edge termination. The appearance of Floquet bound states inside the
bulk dynamical gap is apparent from the figure. The dashed lines in
the zigzag triangular case correspond to the analytical solution found
in Sec. III A for a “zigzag circle.”
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FIG. 8. Same as Fig. 7 but for the case of where a staggered
potential is included inside the defect region (IMBC). Dashed lines
on the bottom panels correspond to the analytical solutions calculated
for the IMBC hexagon as explained in the appendix. Notice that,
unlike the hole defects, the FLDOS for the IMBC does not depend
on the termination of the defects—except for the zigzag triangular
defect (see main text).

Dashed (black) lines correspond to the solutions obtained from
the continuum model (see discussion below). It is apparent
from the figures that discrete Floquet bound states do appear
inside the dynamical gap. Interestingly, in most cases, the
quasienergy spectrum resembles the ones obtained with the
analytical model proposed in Sec. II. This remains valid for
the triangular-shaped zigzag hole even when the analytical
solution relies on the circular symmetry of the defects. It
is worth mentioning that for a quantitative comparison an
effective radius is needed. In these cases we used R̄ =
1/(2π )

∫ 2π

0 R(ϕ) dϕ = R0a0,N (see Appendix C).
There are few points worth emphasizing:
(i) Avoided crossings are observed in most cases due to the

discrete rotational symmetry of the defect that introduces a ϕ

dependence on M, as well as of the boundary radius R(ϕ), as
discussed in Sec. III and Appendix C. These avoided crossings
occur whenever the quantum numbers of the crossing levels,
l and l′, differ in a multiple of the number of sides N . A few
particular examples are indicated in Fig. 8.

(ii) The latter picture is very particular in the case of the
zigzag triangular hole defect (top left in the Fig. 7). On the one
hand, the matrix M is independent of ϕ—note that n̂ = ẑ for
any ϕ as the edge site always belongs to the same sublattice
and the direction of ν̂ is fixed for each cone—and hence the
only dependence on ϕ appears through the boundary radius
R(ϕ). On the other hand, for each cone, the “unperturbed”
energy levels of the “zigzag circle” are never degenerated,
making the effect even weaker. As a result, the energy levels
are well described by assuming that there is no mixing between
states with different quantum number l. Notice also there is no
mixing between different cones or valleys.

(iii) The zigzag triangular defect with the staggered poten-
tial shows a shift in energy with respect to the IMBC solution.
This is related to the sublattice imbalance of the edge sites and
the fact that both sublattices have different energy inside the
defect (staggered potential). This effect is not observed for the
other geometries as they have balanced edges.

FIG. 9. Same as Fig. 7 but for a circular defect: (i) hole (top);
(ii) staggered potential (bottom).

(iv) The armchair hexagonal hole defect shows two distinct
contributions to the quasienergy spectrum: the one shown in
Fig. 7, which is very close to the analytical solution for the
IMBC [except for the anticrossings between energy levels
belonging to different cones that are only present in the
armchair case (black arrows)], and the one presented in Fig. 14,
which follow a completely different pattern. The two cases
differ in the way the atom chains that constitute each side
match at the vertices.

(v) The zigzag hexagonal hole defect presents a rather
complex spectrum quite different from the rest. This is related
to the strong mixing between states with different l imposed by
the BC that requires that alternating components of the wave
function cancel in alternating sides. A precise description of
this case is beyond the scope of the present work.

Finally, we show numerical results for circular defects in
Fig. 9. The top panel corresponds to a hole defect and the
bottom one to the staggered potential defect. Clearly, the latter
is very well described by the analytical solutions (dashed
black lines). Notice that no avoided crossings (if they exist)
are resolved in our numeric simulations, presumably because
they are very small since the actual geometry of the defect
is very close to a circle. The spectrum of the circular hole
defect is, as in the zigzag hexagonal one, very complex. Here,
however, a more regular pattern emerges for large R as the
quasienergies of the bound states are pretty much confined
to regions delimited by the analytical solution of the zigzag
circular defect (dashed lines).

One of the questions that remains is to what extent these
bound states survive in the limit of a vacancy defect or, more
generally, in the case of adatoms. This is particularly important
as the presence of bound states around such impurities
might hinder the ability to resolve the laser-induced gaps
in actual experiments or lead to percolating states in dirty
samples.
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VI. THE ADATOM AND VACANCY DEFECTS

The continuum model presented in Sec. II is not adequate
for analyzing the vacancy limit. In fact, in the R → 0 limit for
zigzag holes (the appropriate one for a vacancy defect) one
finds that there are no solutions inside the gap. Of course, this
is not the correct approach as one should introduce a spatial
cutoff to account for the finite size of the defect. In this sense,
a tight-binding model approach is more convenient and allows
for its generalization to include the adatom case.

Since we focus on the bound states within the dynamical
gap at ��/2, it is enough to consider, as before, only two
Floquet replicas, m = 0 and m = 1. While for the numerical
calculations we will use the real-space version of the tight-
binding Hamiltonian presented in the previous section, for the
discussion of the main aspects of the problem it is better to
use a k-space representation. Then, the Floquet Hamiltonian
is written as

H̃F =
∑

k

��(a†
1ka1k + b

†
1kb1k)

− t
∑

k,m=0,1

(φk a
†
mkbmk + φ∗

k b
†
mkamk)

+
∑

k

[Ak(a†
1kb0k + b

†
1ka0k) + A∗

k(b†0ka1k + a
†
0kb1k)].

(36)

Here a
†
mk and b

†
mk create an electron on the Floquet replica m

on the Bloch state with momentum k on the sublattice A and
B, respectively, φk = ∑

δj
ej k·δj , where {δi} are the relative

coordinates of the three nearest neighbor A sites of a given B

site, t = γ0J0(z), and Ak = γ0J1(z)
∑

δj
eik·δj (δjx − iδjy)/acc

with Jn(x) the nth Bessel function of the first kind and z =
2πA0acc/�0 [66].

We describe the adatom impurity with a single orbital of
energy ε bounded to the C atom at the origin. The Hamiltonian
of the impurity in the Floquet representation is

Himp = ε f
†
0 f0 + (ε + ��)f †

1 f1, (37)

and the hybridization term is

Hhyb =
∑

k,m=0,1

V [f †
mamk + a

†
mkfm]. (38)

Note that the the coupling matrix element V does not
depend on the radiation field as we are considering normal
incidence, hence the phase factor appearing in Eq. (35) is
zero. The vacancy limit can be obtained from here by taking
V → ∞.

We define the Green’s function matrix G with elements
given by Gij = 〈〈fi,f

†
j 〉〉. Using the Dyson equation it can be

written as

G(ω)=
(
ω − �� − ε − V 2G11(ω) −V 2G10(ω)

−V 2G01(ω) ω − ε − V 2G00(ω)

)−1

,

(39)

where Gnm(ω) = ∑
k Gnm(ω,k) and Gnm(ω,k) =

〈〈ank,a
†
mk〉〉. Explicit expressions for the latter propagators

are

G00(ω,k)

= ω(ω−��)[ω(ω−��)2 − ω|φk|2 − (ω−��)|Ak|2]

D(ω,k)

(40)

and

G01(ω,k) = ω(ω − ��)[(ω − ��)φk + ωφ∗
k]A∗

k

D(ω,k)
, (41)

with

D(ω,k) = [(ω2 − |φk|2)(ω − ��) − ω|Ak|2]

× [((ω − ��)2 − |φk|2)ω − (ω − ��)|Ak|2]

− [(ω − ��)φk + ωφ∗
k][ωφk+(ω−��)φ∗

k]|Ak|2.
(42)

The propagator G11(ω,k) can be obtained from G00(ω,k) by
the substitution ω ↔ (ω − ��) while Gr

10(ω,k) = Ga
01(ω,k)∗

where r and a denote retarded and advanced, respectively.
The energies of the bound states (if they exist) are

determined by the poles of the trace of Eq. (39). This can
be found numerically (as it is done below) but to grasp the
main physical ingredients it is better to analyze the problem
perturbatively. The imaginary part of the retarded self-energy
V 2Gr

00(ω) is proportional to the LDOS of the irradiated
pristine graphene projected onto the m = 0 Floquet subspace
and has a dynamical gap centered at ��/2. Its real part,
on the other hand, is nonzero inside the gap and diverges
at the gap edges with different signs on each edge. As a
consequence, to the lowest order in the impurity hybridization,
the impurity spectral density (∝ −Im[Gr

00(ω)]) has always
a pole within the dynamical gap with an energy given by
ω − ε − V 2Gr

00(ω) = 0. Assuming, for the sake of argument,
that ε = 0, it is easy to see that in the same order and in the
m = 1 Floquet subspace there is a bound state symmetrically
positioned with respect to the gap center.

FIG. 10. Local retarded Green’s functions (Gnm) for the irradiated
pristine graphene corresponding to the Floquet subspaces m,n =
0,1. These calculations were obtained numerically by decimation
procedures, projecting onto only one C atom and using the same
parameters η and �� as earlier. The black arrows show the zeros
of G00 and G11, i.e., the quasienergies of the bound states for the
vacancy (see main text).
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FIG. 11. Floquet local density of states around the center of the
dynamical gap as a function of hybridization strength, projected on
the three first neighbors of the carbon atom at which the impurity
is adsorbed. Left and right panels correspond to projections onto
m = 0 and m = 1 Floquet subspaces, respectively. The bound states
inside the dynamical gap were obtained separately for adatoms with
single-orbital energies ε0 = 0, ε1 = ��/2, and ε2 = ��. At the right
of each panel we show the vacancy limit where both the adatom
and the C atom below it are removed (red and yellow atoms in the
inset).

These results are in fact exact since G01(ω) = G10(ω) = 0
within the dynamical gap; we checked this numerically (see
Fig. 10) but it can also be obtained from Eq. (41) in the
low-energy limit where φk(Ak,D(ω,k)) is odd (even) under
the change k → −k. Therefore, there are two bound states,
belonging to the m = 0 and m = 1 Floquet replicas, whose
energies are given by the zeros of ω − ε − V 2G00(ω) and
ω − ε − �� − V 2G11(ω), respectively.

Figure 11 shows a color map of the local Floquet spectral
density (corresponding to the three sites around the adatom)
calculated using the Chebyshev method, described in Sec. V, as
a function of the hybridization matrix element V for different
values of ε. We found that while the energies of the bound
states depend on the energy of the adatom, these states are
always present regardless of the size of the hybridization. The
symmetry between replicas is broken if ε �= 0 and it is only
recovered in the limit of very large hybridization where the
problem reduces to that of a vacancy. In this vacancy limit
(V → ∞), the position of the bound states is given by the
solution of Gr

00(ω) = 0 and Gr
11(ω) = 0 (indicated by the

arrows in Fig. 10), being the spectrum within the dynamical
gap symmetric with respect to the gap center.

Interestingly, when looking at the weight of each of these
states on the adatom and the three carbon atoms around it, one
finds that they belong to a single replica. This particular result
is a consequence of the fact that the coupling between the
adatom and the layer of graphene was considered unaffected
by the radiation field; see Fig. 11.

VII. CONCLUSIONS

In summary, we have presented a detailed study of the
Floquet bound states associated with defects in graphene
illuminated by a laser. In particular, we focus on the bound

states at the dynamical gap (��/2) using both analytical and
numerical techniques applied to different defect types.

On one hand we consider large holelike defects with
different terminations. In this case, we show how the number
of bound states increases with the defect radius and that the
spectrum depends on the shape and type of lattice termination.
In the case of cZZBC we proved analytically that in the
limit of large radii the discrete bound states can be seen
as nanoribbon-like chiral states [16,17] with a quantized
linear quasimomentum, as might have been anticipated. A
staggered-like potential (infinity-mass boundary conditions)
was also discussed with similar results, except that in this case
there is a clear distinction between the two Dirac cones, and
only one of them support chiral bound states. The chiral nature
of the states was corroborated by an explicit calculation of the
probability currents around the defect in the two analytical
cases we presented.

On the other hand, we also consider pointlike defects such
as vacancies and adatoms and show that they also exhibit
bound states around them. While the bound states’ spectrum
depends on the value of the adatoms’ orbital energy (ε) in the
large hybridization or vacancy limit, it remains close to the
bottom (top) border of the gap in the m = 0 (m = 1) replica.

Following the argument presented in Ref. [19] one can
anticipate that additional bound states will also appear
inside the high-order gaps induced by high-order photon
processes. The contribution of such states to the spectral
density projected onto the m = 0 replica is parametrically
smaller provided η � 1.

For the case of graphene, as we have pointed out in previous
works (Refs. [11,16]), the most suitable laser frequencies
for the experimental observation of these effects are in the
mid-infrared range with photon energies of 100 meV and a
corresponding wavelength of about 10 microns. Hence, the
dynamical gap occurs near a Fermi energy of around 50 meV.
In this limit the long-wavelength limit is fully justified. Notice
in passing that our full tight-binding calculation is not subject
to any limitation in this respect, except by the fact that we
retain a few Floquet replicas (requiring large frequencies or
small amplitudes).

Notwithstanding the foregoing, our approach also works
for any quantum system described by an s-orbital honeycomb
lattice or, equivalently, a massless Dirac Fermion equation.
That means that a similar effect will be found in photonic or
cold-atom systems, where there are much richer experimental
possibilities in terms of the control parameters.

It remains a challenge for future work to evaluate the effect
of these bound states on the bulk transport properties of dirty
samples.
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(Argentina).

245434-10



FLOQUET BOUND STATES AROUND DEFECTS AND . . . PHYSICAL REVIEW B 93, 245434 (2016)

APPENDIX A: BOUNDARY CONDITIONS

As we already mentioned in Sec. III, an arbitrary BC can
be imposed by knowing the matrix M and its action on the
wave function evaluated at the boundary: � = M� [58]. It
can be demonstrated that boundary conditions are determined
by two unit vectors: ν̂ acting on the isospin (valleys) and n̂
acting on the pseudospin (sublattices) [59]. In the isotropic
representation M = (ν̂ · τ ) ⊗ (n̂ · σ ), where τ and σ are
the Pauli matrices belonging to the isospin and pseudospin
subspaces, respectively. In the following, we show the explicit
form of the matrix M for regular polygons, including the circle
as the limit case, and the three kinds of BCs considered in this
work.

For ZZBC and ABC/IMBC, n̂ = ±ẑ (the sign depends on
the sublattice termination) and n̂(ϕ) = ẑ × n̂B(ϕ), respectively
(see Fig. 12). In the latter expression, n̂B(ϕ) is the normal unit
vector located at the edges of the defects pointing outward
from the region of interest; for our purpose, this unit vector
points to the center of the defects. For simplicity, we introduce
the angle γp related to the pseudospin degree of freedom. Thus,
we can handle both types of boundary conditions at the same
time by writing

n̂(ϕ) = sin γp ẑ × n̂B(ϕ) + cos γp ẑ, (A1)

and chose γp = 0(π ) or γp = π/2 in order to select one or
another type of BC. It must be noted that while the z component
is exclusively related to the ZZBC, the xy components are
related to ABC and IMBC; the difference between the two
latter types of BCs resides in the isospin ν, i.e., in the details
of the lattice terminations. For a regular polygon with N sides,
the normal unit vector pointing inwards has the form

n̂B(ϕ) =
N∑

j=1

�̃j,N (ϕ){cos[αN (j − 1/2)]x̂

+ sin[αN (j − 1/2)] ŷ}, (A2)

where �̃j,N (ϕ) = �(ϕ − j αN ) − �(ϕ − (j − 1)αN ), αN =
2π/N , and �(ϕ) is the usual step function. Using Eqs. (A1)

FIG. 12. Unit vectors ν̂ and n̂ determine the boundary conditions.
Each one acts on distinct degrees of freedom: ν̂ acts on the isospin
(valleys) and n̂ acts on the pseudospin (sublattices). Unit vector n̂
depends on the number of sides N of the regular polygon via the
normal unit vector n̂B for ABC and IMBC and the alternating nature
of the sublattice terminations for ZZBC. This dependence also implies
a dependence with the polar angle ϕ. However, for a triangular defect
there is only one type of sublattice termination (all atoms belong
to the same sublattice, the A sublattice in the right scheme) and the
matrix M in Eq. (A6) becomes ϕ-independent.

and (A2), we can write

n̂ · σ =
(

cos γp �N (ϕ) sin γp

�∗
N (ϕ) sin γp − cos γp

)
, (A3)

where �N (ϕ) = ∑N
j=1 i�̃j,N (ϕ) e−iαN (j−1/2). It is useful to

rewrite this quantity as a Fourier series,

�N (ϕ) =
∞∑

m=−∞
i Am,Nei(mN−1)ϕ, (A4)

where Am,N = sinc(π/N )/(1 − mN ) and sinc(x) = sin x/x.
It is straightforward to see that for circular defects we have
limN→∞ Am,N = δm0.

Analogously, for the isospin degree of freedom, ν̂ = ẑ
and ν̂ · ẑ = 0 for the ZZBC/IMBC and ABC, respectively.
Introducing now the angle γi , we can write all three BCs in
the form

ν̂ · τ =
(

cos γi e−i� sin γi

ei� sin γi − cos γi

)
, (A5)

where γi = 0 for both ZZBC and IMBC; for these BCs K and
K ′ cones are decoupled. For the ABC however, ν̂ lies on the xy

plane, i.e., γi = π/2; the � phase is only relevant for the ABC.
However, the analytic solution of the ABC is out of the scope
of this work.

Finally, the matrix M in terms of the angles (γi,γp) is

M(ϕ) = (ν̂ · τ ) ⊗ (n̂ · σ )

=
(

cos γi e−i� sin γi

ei� sin γi − cos γi

)

⊗
(

cos γp �N (ϕ) sin γp

�∗
N (ϕ) sin γp − cos γp

)
, (A6)

and the analog to the set of conditions (20) is

ZZBC → γi = 0,γp = 0(π ),

ABC → γi = π/2,γp = π/2,

IMBC → γi = 0,γp = π/2. (A7)

The dependence of M on the polar angle ϕ relies on
the pseudospin contribution. Triangles and hexagons are the
unique regular polygons with well-defined zigzag termina-
tions. Therefore, the angle γp for the ZZBC can behave in
two different ways: it can be constant along the boundary
of the defect (triangular defects), or it can alternate between
0 and π depending on the sublattice termination (hexagonal
defects) (see Fig. 12). In order to tackle circular defects with
ZZBCs, one is tempted to define the circle case as the limit of a
polygon with an N large enough and an alternating n = ±z on
their faces, corresponding to different sublattice terminations.
However, this artificial limit is misleading because it is not
possible to construct such a defect, i.e., a regular polygon
with N > 6 whose edges were constructed exclusively of
zigzag or armchair terminations. For simplicity, throughout
this article we only work with the ZZBC for triangular
defects, in such a way that M is ϕ-independent. In this case,
introducing the first condition of the set (A7) into Eq. (A6)
leads to ψB,l(ϕ,ξ0) = ψ ′

B,l(ϕ,ξ0) = 0; we emphasize that, in
the isotropic representation, ψ = (ψA,ψB, − ψ ′

B,ψ ′
A)T must
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be used. Thus, there are two equations per cone [Eqs. (22) for
the K cone], one for each Floquet replica, which allow us to
find the relation between coefficients c+ and c−, and then the
quasienergies μl [solutions of Eqs. (23) and (25)].

On the other hand, for the ABC and the IMBC, the depen-
dence of matrix M on the polar angle ϕ cannot be avoided
whatever the number of sides of the polygon considered. Even
in the limit of circular defects, limN→∞ �N (ϕ) = ie−iϕ , unlike
for the ZZBC and the ABC, the circular defect is well defined
for the IMBC because this kind of BC does not depend on
the details of the terminations at the edges (zigzag, armchair,
or a mixture of them). As a consequence, for the IMBC the
strategy to find the quasienergies is quite different from that of
the ZZBC (see Appendix C).

APPENDIX B: SOLUTIONS FOR THE cZZBC
AND THE IMBC: CIRCULAR DEFECTS

For the K cone, the Floquet state restricted to n = 0 and
n = 1 Floquet subspaces has the form

�l(r,t) = e−iεl t

√
Nl

(
u1A,l(r) ei�t + u0A,l(r)

u1B,l(r) ei�t + u0B,l(r)

)
, (B1)

where the components are

φl(ϕ,ξ ) =

⎛
⎜⎝

u1A,l

u1B,l

u0A,l

u0B,l

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

i
1−μl

ei(l−1)ϕf̃l(ξ )

eilϕfl(ξ )

eilϕgl(ξ )
−i

1+μl
ei(l+1)ϕg̃l(ξ )

⎞
⎟⎟⎟⎟⎠. (B2)

Hence,

fl(ξ ) = c+Kl(λ+ξ ) + c−Kl(λ−ξ ),

f̃l(ξ ) = −c+λ+Kl−1(λ+ξ ) − c−λ−Kl−1(λ−ξ ),
(B3)

gl(ξ ) = d+Kl(λ+ξ ) + d−Kl(λ−ξ ),

g̃l(ξ ) = −d+λ+Kl+1(λ+ξ ) − d−λ−Kl+1(λ−ξ ),

where ξ = k0r , λ± =
√

−1 − μ2
l ± 2

√
−η2 + μ2

l (1 + η2),
β± = −[λ2

± + (1 − μl)2]/[2η(1 − μl)], and d± = β±c±. We
also notice that λ− = λ∗

+ and Kν(z∗) = K∗
ν (z).

Because cZZBC and IMBC do not mix different valleys
[see Eq. (A5)], we can impose normalization conditions for
each valley in an independent way. According to Eqs. (B1),
and the angular dependence of the components of the Floquet
state given by (B2), the normalization constant results in being
time-independent:

Nl = 2π

k2
0

∫ ∞

ξ0

(
|fl(ξ )|2 + |gl(ξ )|2

+ |f̃l(ξ )|2
(1 − μl)2

+ |g̃l(ξ )|2
(1 + μl)2

)
ξ dξ. (B4)

Defining the quantities

Pν =
∫ ∞

ξ0

Kν(zξ )Kν(z∗ξ ) ξ dξ

= ξ0

2

Im{zKν−1(zξ0)Kν(z∗ξ0)}
Re{z}Im{z} ,

Qν =
∫ ∞

ξ0

Kν(zξ )Kν(zξ ) ξ dξ

= ξ0

2z

{
2νKν−1(zξ0)Kν(zξ0)

− zξ0
[
K2

ν (zξ0) − K2
ν−1(zξ0)

]}
(B5)

[where limξ→∞ K(zξ ) = 0 was used], we can write the
normalization constant as follows:

Nl = 2π

k2
0

((1 + |β+|2)Pl + |λ+|2Pl−1 + |β+|2|λ+|2Pl+1

+ Re{eiϕ[(1 + β2
+)Ql + λ2

+Ql−1 + β2
+λ2

+Ql+1]}). (B6)

Here, different boundary conditions only modify relations
between coefficients: eiθ = c−/c+. While for the cZZBC eiθ =
−Kl(λ+ξ0)/Kl(λ−ξ0), for the IMBC eiθ = −ω+β+/(ω−β−),
with ω± = (1 + μl)Kl(λ±ξ0) + λ±Kl+1(λ±ξ0).

In order to obtain solutions belonging to the K ′ cone,
the isotropic representation requires that ψA,l → −ψ ′

B,l and
ψB,l → ψ ′

A,l . By doing these replacements, the same proce-
dure as applied in Sec. II leads to a set of equations analogous to
Eqs. (12), and their respective boundary condition ψ ′

B(ξ0) = 0,
which in principle must be solved again. However, for the
cZZBC case, the latter set of equations and their boundary
conditions can be obtained from that of belonging to the
K cone by doing the following changes: (μ,l) → (−μ,−l).
Doing so, for the K ′ cone we have

φ′
−l =

⎛
⎜⎜⎜⎝

u′
1A,−l

u′
1B,−l

u′
0A,−l

u′
0B,−l

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−e−ilϕgl(ξ )
i

1+μl
e−i(l+1)ϕg̃l(ξ )

−i
1−μl

e−i(l−1)ϕf̃l(ξ )

−e−ilϕfl(ξ )

⎞
⎟⎟⎟⎟⎠. (B7)

The time-averaged probability density current (over one
period) only has an angular component as shown in Sec. IV.
Then, the density currents for both cones are

Jl = −2 Im{eiϕ(u1A,lu
∗
1B,l + u0A,lu

∗
0B,l)}, (B8)

J ′
l = −2 Im{e−iϕ(u′

1A,lu
′∗
1B,l + u′

0A,lu
′∗
0B,l)}. (B9)

Hence, it is straightforward to see that Jl = J ′
−l .

On the other hand, there is no transformation between the K

and K ′ cones for the IMBC case which simultaneously leaves
invariant the set of differential equations and their respective
boundary condition. Therefore, the set of quasienergies for the
K ′ cone must be founded following the same procedure used
for the K cone. The isotropic representation imposes that

φ′
l =

⎛
⎜⎜⎜⎝

u′
1A,l

u′
1B,l

u′
0A,l

u′
0B,l

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

eilϕfl(ξ )
−i

1−μl
ei(l−1)ϕf̃l(ξ )

−i
1+μl

ei(l+1)ϕg̃l(ξ )

−eilϕgl(ξ )

⎞
⎟⎟⎟⎟⎠. (B10)

For the K ′ cone, the coefficients c+ and c− are related
now by the phase eiθ = ω′

+β+/(ω′
−β−), with ω′

± = (1 +
μl)Kl(λ±ξ0) − λ±Kl+1(λ±ξ0). The time-averaged probability
density currents for each cone are also given by Eqs. (B8)
and (B9). Nevertheless, there is no relation between Jl and J ′

l .
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APPENDIX C: SOLUTIONS FOR THE IMBC:
POLYGONAL DEFECTS

For simplicity, we will only tackle the IMBC, which does
not mix cones. In this case, introducing the third condition
of the set (A7) into Eq. (A6) leads to a mixing of solutions
with different l quantum numbers due to the aforementioned
dependence, i.e.,

∑
l

fl(ξ0)eilϕ ∓
∑

l′

if̃l′ (ξ0)

1 − μ
�∗

N (ϕ)ei(l′−1)ϕ = 0,

(C1)∑
l

gl(ξ0)eilϕ ±
∑

l′

ig̃l′(ξ0)

1 + μ
�N (ϕ)ei(l′+1)ϕ = 0,

where the upper (lower) sign refers to the K (K ′) cone and
components given by Eq. (B2) [Eq. (B7)] were used. We also
have to account for the dependence of the coordinates of the
edges on the polar angle ϕ, i.e., ξ0(ϕ). For regular polygons
with N sides, the points located at the edges can be written as

R(ϕ) = R0

∞∑
m=−∞

am,NeimNϕ, (C2)

where coefficients am,N are given by

am,N = N

∫ αN /2

−αN /2

e−imNφ

cos φ
dφ, (C3)

R0 is the apothem of the polygon, and R̄0 = R0 a0,N represents
the mean value of their radii. For triangles and hexagons, a0,3 =
3 ln(2 + √

3)/π and a0,6 = 3 ln 3/π , respectively. In the large-
N limit, the deviations of R(ϕ) with respect to R̄0 are small
and we can expand the modified Bessel functions of the second
kind Kν appearing in Eqs. (C1) to first order on the deviation.
That is,

Kν(λξ0(ϕ)) � Kν(λξ̄0) + ∂Kν(λξ0)

∂ξ0

∣∣∣∣
ξ̄0

[ξ0(ϕ) − ξ̄0]. (C4)

Using this approximation and Eq. (A4), the conditions given
by Eqs. (C1) can be rewritten as

fl(ξ̄0) +
∑
m�=0

ām,Nf ′
l−mN (ξ̄0)ξ̄0

= ±
∑

s

As,N

1 − μ

⎛
⎝f̃l+sN (ξ0) +

∑
n�=0

ān,N f̃ ′
l−nN+sN (ξ̄0)ξ̄0

⎞
⎠,

(C5)
gl(ξ̄0) +

∑
m�=0

ām,Ng′
l−mN (ξ̄0)ξ̄0

= ±
∑

s

As,N

1 + μ

⎛
⎝g̃l−sN (ξ0) +

∑
n�=0

ān,N g̃′
l−nN−sN (ξ̄0)ξ̄0

⎞
⎠,

where f ′ (g′) indicates the first derivative with respect to ξ

of f (g) and ām,N = am,N/a0,N . Coefficients ām,N are even
functions of m and they vanish quickly as m grows (see
Fig. 13).

It is straightforward to see that only for circular defects, the
mixing among different l quantum numbers is removed, since

FIG. 13. Relative contributions, measured by āmN,N =
amN,N/a0,N , of higher orders in the Nϕ-dependence to the zero-order
expansion in the Eq. (C2) for triangular and hexagonal defects.

limN→∞ am�=0,N = limN→∞ Am�=0,N = 0 and limN→∞ a0,N =
limN→∞ A0,N = 1.

Finally, in order to find the quasienergies, the infinite series
in Eqs. (C5) must be truncated. Doing so, it is possible to
write a system with 2d equations for d quasienergies (each
quasienergy introducing two additional coefficients: c+ and
c−), and then finding their solutions.

APPENDIX D: FLDOSS FOR HEXAGONAL
CONFIGURATIONS

Hexagonal defects with armchair terminations show only
three possible distinct configurations. Even when all these
three configurations have the same armchair terminations
along their edges, they differ in the way their sides match at
the vertices. As already mentioned in Sec. V, the FLDOSs
for staggered potential defects are independent of the mi-

FIG. 14. Same as Fig. 7 for the three possible distinct hexagonal
hole defects. The FLDOS in the top panel is the same as shown in
Fig. 7 for this kind of defect. The FLDOS for remaining configuration
is shown in the bottom panel. It depends on the microscopic details
beyond the zigzag or armchair terminations.
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croscopic details as end terminations. However, the FLDOS
for hexagonal hole defects does depend on the latter ones
showing two different behaviors. We are only interested in
those configurations whose FLDOSs can be understood in
terms of the wave functions for the low-energy model and
the boundaries conditions studied in Sec. II and Sec. III,

respectively. In the top panel of Fig. 14 we show the
FLDOS for two such configurations (see diagram at left).
The FLDOS for the remaining configuration is shown in the
bottom panel. The FLDOS for the latter one is perturbed by
microscopic details and it is beyond the scope of the present
work.
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[69] M. Moskalets and M. Büttiker, Floquet scattering theory of
quantum pumps, Phys. Rev. B 66, 205320 (2002).

[70] L. E. F. Foa Torres, S. Roche, and J. C. Charlier, Intro-
duction to Graphene-Based Nanomaterials: From Electronic
Structure to Quantum Transport (Cambridge University Press,
2014).

[71] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, The kernel
polynomial method, Rev. Mod. Phys. 78, 275 (2006).

[72] A. Lherbier, B. Biel, Y.-M. Niquet, and S. Roche, Transport
Length Scales in Disordered Graphene-Based Materials: Strong
Localization Regimes and Dimensionality Effects, Phys. Rev.
Lett. 100, 036803 (2008).

245434-15

http://dx.doi.org/10.1103/PhysRevLett.116.156803
http://dx.doi.org/10.1103/PhysRevLett.116.156803
http://dx.doi.org/10.1103/PhysRevLett.116.156803
http://dx.doi.org/10.1103/PhysRevLett.116.156803
http://dx.doi.org/10.1038/ncomms11744
http://dx.doi.org/10.1038/ncomms11744
http://dx.doi.org/10.1038/ncomms11744
http://dx.doi.org/10.1038/ncomms11744
http://dx.doi.org/10.1103/PhysRevB.90.155127
http://dx.doi.org/10.1103/PhysRevB.90.155127
http://dx.doi.org/10.1103/PhysRevB.90.155127
http://dx.doi.org/10.1103/PhysRevB.90.155127
http://dx.doi.org/10.1103/PhysRevLett.114.246802
http://dx.doi.org/10.1103/PhysRevLett.114.246802
http://dx.doi.org/10.1103/PhysRevLett.114.246802
http://dx.doi.org/10.1103/PhysRevLett.114.246802
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195419
http://dx.doi.org/10.1103/PhysRevB.90.195429
http://dx.doi.org/10.1103/PhysRevB.90.195429
http://dx.doi.org/10.1103/PhysRevB.90.195429
http://dx.doi.org/10.1103/PhysRevB.90.195429
http://dx.doi.org/10.1103/PhysRevB.91.144301
http://dx.doi.org/10.1103/PhysRevB.91.144301
http://dx.doi.org/10.1103/PhysRevB.91.144301
http://dx.doi.org/10.1103/PhysRevB.91.144301
http://dx.doi.org/10.1103/PhysRevX.5.041050
http://dx.doi.org/10.1103/PhysRevX.5.041050
http://dx.doi.org/10.1103/PhysRevX.5.041050
http://dx.doi.org/10.1103/PhysRevX.5.041050
http://dx.doi.org/10.1103/PhysRevB.91.235133
http://dx.doi.org/10.1103/PhysRevB.91.235133
http://dx.doi.org/10.1103/PhysRevB.91.235133
http://dx.doi.org/10.1103/PhysRevB.91.235133
http://dx.doi.org/10.1103/PhysRevB.92.165111
http://dx.doi.org/10.1103/PhysRevB.92.165111
http://dx.doi.org/10.1103/PhysRevB.92.165111
http://dx.doi.org/10.1103/PhysRevB.92.165111
http://dx.doi.org/10.1103/PhysRevA.92.062108
http://dx.doi.org/10.1103/PhysRevA.92.062108
http://dx.doi.org/10.1103/PhysRevA.92.062108
http://dx.doi.org/10.1103/PhysRevA.92.062108
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.113.236803
http://dx.doi.org/10.1103/PhysRevLett.113.236803
http://dx.doi.org/10.1103/PhysRevLett.113.236803
http://dx.doi.org/10.1103/PhysRevLett.113.236803
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/PhysRevA.7.2203
http://dx.doi.org/10.1103/PhysRevA.7.2203
http://dx.doi.org/10.1103/PhysRevA.7.2203
http://dx.doi.org/10.1103/PhysRevA.7.2203
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1088/1367-2630/13/10/103016
http://dx.doi.org/10.1088/1367-2630/13/10/103016
http://dx.doi.org/10.1088/1367-2630/13/10/103016
http://dx.doi.org/10.1088/1367-2630/13/10/103016
http://dx.doi.org/10.1103/PhysRevB.84.035307
http://dx.doi.org/10.1103/PhysRevB.84.035307
http://dx.doi.org/10.1103/PhysRevB.84.035307
http://dx.doi.org/10.1103/PhysRevB.84.035307
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1103/PhysRevLett.98.157003
http://dx.doi.org/10.1103/PhysRevLett.98.157003
http://dx.doi.org/10.1103/PhysRevLett.98.157003
http://dx.doi.org/10.1103/PhysRevLett.98.157003
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1103/PhysRevLett.110.026603
http://dx.doi.org/10.1103/PhysRevLett.110.026603
http://dx.doi.org/10.1103/PhysRevLett.110.026603
http://dx.doi.org/10.1103/PhysRevLett.110.026603
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1063/1.4772496
http://dx.doi.org/10.1063/1.4772496
http://dx.doi.org/10.1063/1.4772496
http://dx.doi.org/10.1063/1.4772496
http://dx.doi.org/10.1088/0953-8984/25/14/144202
http://dx.doi.org/10.1088/0953-8984/25/14/144202
http://dx.doi.org/10.1088/0953-8984/25/14/144202
http://dx.doi.org/10.1088/0953-8984/25/14/144202
http://dx.doi.org/10.1140/epjb/e2009-00327-8
http://dx.doi.org/10.1140/epjb/e2009-00327-8
http://dx.doi.org/10.1140/epjb/e2009-00327-8
http://dx.doi.org/10.1140/epjb/e2009-00327-8
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/PhysRevLett.100.036803
http://dx.doi.org/10.1103/PhysRevLett.100.036803
http://dx.doi.org/10.1103/PhysRevLett.100.036803
http://dx.doi.org/10.1103/PhysRevLett.100.036803



