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tent evolution algebras, defined in terms of a nondegenerate, 
symmetric, bilinear form and some commuting, symmetric, 
diagonalizable endomorphisms relative to the form, are ex-
plicitly constructed. Both the invariants and these families 
are used to review and complete the classification of nilpo-
tent evolution algebras up to dimension five over algebraically 
closed fields.
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1. Introduction

Evolution algebras were introduced in 2006 by Tian and Vojtechovsky, in their paper 
“Mathematical concepts of evolution algebras in non-Mendelian genetics” (see [7]). Later 
on, Tian laid the foundations of evolution algebras in his monograph [8].

In some recent papers [4,5], a classification of the nilpotent evolution algebras up 
to dimension five has been given. However, there is a subtle point which has not been 
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considered. When dealing with an extension of a nilpotent evolution algebra by a trivial 
ideal, one cannot fix a natural basis of the initial algebra, because a natural basis of 
a quotient does not necessarily extend to a natural basis of the whole algebra. As a 
consequence, the classifications in these papers are not complete. This also shows how 
tricky these algebras are.

The goal of this paper is the introduction of some new techniques for the study of 
evolution algebras, as well as the construction of several noteworthy families of nilpotent 
evolution algebras defined in terms of bilinear forms and symmetric endomorphisms. 
Using these tools, the classification of the nilpotent evolution algebras up to dimension 
five, over an algebraically closed field of characteristic not two, is obtained without much 
effort, although the number of possibilities in dimension five is quite high and indicates 
the difficulty of this problem for higher dimension.

Let us first recall the basic definitions.
An evolution algebra is an algebra E containing a countable basis (as a vector space) 

B = {e1, . . . , en, . . . , } such that eiej = 0 for any 1 ≤ i �= j ≤ n. A basis with this prop-
erty is called a natural basis. By its own definition, any evolution algebra is commutative. 
In this paper we deal with finite dimensional evolution algebras. Given a natural basis 
B = {e1, . . . , en} of an evolution algebra E, e2

i =
∑n

j=1 αijej for some scalars αij ∈ F, 
1 ≤ i, j ≤ n. The matrix A =

(
αij

)
is the matrix of structural constants of the evolution 

algebra E, relative to the natural basis B.
We recall next the definition of the graph and weighted graph attached to an evolution 

algebra (see [3, Definition 2.2]). Our graphs are always directed graphs, and most of our 
algebras will be presented by means of their graphs.

Let E be an evolution algebra with a natural basis B = {e1, . . . , en} and matrix of 
structural constants A =

(
αij

)
.

• The graph Γ(E, B) = (V, E), with V = {1, . . . , n} and E = {(i, j) ∈ V ×V : αij �= 0}, 
is called the graph attached to the evolution algebra E relative to the natural basis B.

• The triple Γw(E, B) = (V, E, ω), with Γ(E, B) = (V, E) and where ω is the map 
E → F given by ω

(
(i, j)

)
= αij , is called the weighted graph attached to the evolution 

algebra E relative to the natural basis B.

The paper is organized as follows. In Section 2 we prove a general Krull–Schmidt 
Theorem for nonassociative algebras, which has its own independent interest. It shows 
that it is enough to classify indecomposable algebras. Also, using the annihilator of 
an algebra, we give some results which are useful to check the decomposability of a 
finite-dimensional algebra. See Lemma 2.4, Corollaries 2.5 and 2.6.

In Section 3 we define the upper annihilating series of an arbitrary nonassociative 
algebra, and then the type of a finite-dimensional nilpotent algebra. This allows us later 
on to split the classification of nilpotent evolution algebras according to their types.



A. Elduque, A. Labra / Linear Algebra and its Applications 505 (2016) 11–31 13
In Section 4 we study some families of nilpotent evolution algebras, defined in terms 
of a nondegenerate, symmetric, bilinear form and some commuting, symmetric, diago-
nalizable endomorphisms relative to the bilinear form.

Section 5 is devoted to the classification of the indecomposable nilpotent evolution 
algebras of dimension up to four, over an algebraically closed field of characteristic not 
two. All such algebras lie in one of the families studied in Section 4, so this classification 
is done very quickly. Our list includes two algebras not considered in [4].

Finally, in Section 6 we classify all the indecomposable nilpotent evolution algebras 
of dimension five, over an algebraically closed field of characteristic not two. About half 
of the algebras in this classification belong to one of the families in Section 4. For the 
remaining algebras, some ad hoc arguments are needed. The results in [5] miss most of 
the algebras in our classification.

2. A Krull–Schmidt Theorem for nonassociative algebras

Given a nonassociative (i.e. not necessarily associative) algebra A over a field F, its 
multiplication algebra M(A) is the subalgebra of EndF(A) generated by the left and 
right multiplications by elements in A:

M(A) := alg〈Lx, Rx : x ∈ A〉,

where Lx : y �→ xy, Rx : y �→ yx.
By its own definition, A is a left module for the associative algebra M(A) and the 

ideals of A are precisely the submodules of A as an M(A)-module.

Definition 2.1. An algebra A is said to be indecomposable (resp. decomposable) if it is so 
as an M(A)-module. That is, A is decomposable if there are nonzero ideals I and J such 
that A = I ⊕ J. Otherwise, it is indecomposable.

In [2] the word (ir)reducible is used instead of (in)decomposable. For evolution alge-
bras, indecomposability is related to connectedness (see [3, Proposition 2.8]).

Theorem 2.2. Let A be an algebra which is a module of finite length for M(A) (this is 
always the case if A is finite-dimensional). Then A decomposes as a finite direct sum of 
indecomposable ideals.

Moreover, if A = I1 ⊕ · · · ⊕ In = J1 ⊕ · · · ⊕ Jm with Ii, Jj indecomposable for all 
i = 1, . . . , n and j = 1, . . . , m, then n = m and there is a permutation σ ∈ Sn such that 
Ii is isomorphic (as an algebra) to Jσ(i) for all i = 1, . . . , n.

Proof. The version of the classical Krull–Schmidt Theorem for modules proved in 
[6, Chapter V §13] shows that A is a finite direct sum of indecomposable ideals and 
that if A = I1⊕· · ·⊕In = J1⊕· · ·⊕Jm with the I′is and J′js indecomposable ideals, then 
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n = m and, after a suitable reordering of the ideals, A = I1 ⊕ · · · ⊕ Ik ⊕ Jk+1 ⊕ · · · ⊕ Jn

for all k = 0, . . . , n.
Then, for any k = 1, . . . , n, we have both A = I1 ⊕ · · · ⊕ Ik ⊕ Jk+1 ⊕ · · · ⊕ Jn and 

A = I1 ⊕ · · · ⊕ Ik−1 ⊕ Jk ⊕ Jk+1 ⊕ · · · ⊕ Jn, so both Ik and Jk are isomorphic to the 
quotient A/(I1 ⊕ · · · ⊕ Ik−1 ⊕ Jk+1 ⊕ · · · ⊕ Jn). �
Remark 2.3. In the proof above, from the fact that Ik and Jk are isomorphic as 
M(A)-modules, it does not follow that they are isomorphic as algebras. Hence the explicit 
version of the classical Krull–Schmidt Theorem used here is essential.

For Bernstein algebras, a similar argument appears in [1].

The previous result shows that it is enough to classify indecomposable algebras. One 
has to take into account that any quotient, and hence any direct summand (as ideals), 
of an evolution algebra is itself an evolution algebra [3, Lemma 2.9].

We finish this section with some useful tricks to check decomposability. Recall that 
the annihilator of an algebra A is ann(A) := {x ∈ A : xA = Ax = 0}. Any subspace of 
ann(A) is an ideal of A.

Lemma 2.4. Let A be an algebra over a field F, dimF(A) > 1. If S is a proper subalgebra 
of A such that A = S + ann(A), then A is decomposable.

Proof. If A = S + ann(A), then A2 = S2 ⊆ S, so S is an ideal of A. Let T be a 
subspace of ann(A) such that A = S ⊕ T. Then both S and T are ideals of A, so A is 
decomposable. �
Corollary 2.5. Let A be an algebra, dimF(A) > 1. If ann(A) is not contained in A2, then 
A is decomposable.

Proof. We have that A2 � ann(A) +A2, so there is a proper subspace S such that A2 ⊆ S

and A = S + ann(A). Then S is an ideal of A and the lemma applies. �
Corollary 2.6. Let E be a finite-dimensional evolution algebra such that dimF(ann(E)) ≥
1
2 dimF(E) ≥ 1. Then E is decomposable.

Proof. Let B = {e1, . . . , en, } be a natural basis, ordered so that e2
1 = . . . = e2

r = 0
and e2

r+1, . . . , e
2
n �= 0. Then ann(E) = span {e1, . . . , er} [3, Lemma 2.7] and E2 =

span
{
e2
r+1, . . . , e

2
n

}
. Our hypotheses show that n ≤ 2r. If n < 2r, then dimF(ann(E)) =

r > n − r ≥ dimF(E2). Hence ann(E) � E2 and the previous corollary applies. 
If n = 2r and ann(E) � E2, again Corollary 2.5 applies. Finally, if n = 2r and 
ann(E) ⊆ E2, then E2 = span

{
e2
r+1, . . . , e

2
n

}
equals ann(E) by dimension count, so 

the family {e2
r+1, . . . , e

2
n, er+1, . . . , en} is another natural basis, and E is the direct sum 

of the ideals Ii = span
{
e2
r+i, er+i

}
, i = 1, . . . , r. �
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3. Upper annihilating series

Given a nonassociative algebra A, we introduce the following sequences of subspaces:

A<1> = A, A<k+1> = A<k>A;

A1 = A, Ak+1 =
k∑

i=1
AiAk+1−i.

Definition 3.1. An algebra A is called

(i) right nilpotent if there exists n ∈ N such that A<n> = 0, and the minimal such 
number is called the index of right nilpotency;

(ii) nilpotent if there exists n ∈ N such that An = 0, and the minimal such number is 
called the index of nilpotency.

Remark 3.2. A commutative algebra is right nilpotent if and only if it is nilpotent (see 
[9, Chapter 4, Proposition 1]). This applies, in particular, to evolution algebras.

Definition 3.3. Let A be an algebra. Consider the chain of ideals anni(A), i ≥ 1, where:

• ann1(A) := ann(A) := {x ∈ A : xA = Ax = 0},
• anni(A) is defined by anni(A)/ anni−1(A) := ann(A/ anni−1(A)).

The chain of ideals:

0 = ann0(A) ⊆ ann1(A) ⊆ · · · ⊆ annr(A) ⊆ · · ·

is called the upper annihilating series.

As for Lie algebras, a nonassociative algebra A is nilpotent if and only if its upper 
annihilating series reaches A. That is, if there exists r such that annr(A) = A.

Definition 3.4. Let A be a finite-dimensional nilpotent nonassociative algebra over a 
field F, and let r be the lowest natural number with annr(A) = A. The type of A is the 
sequence [n1, . . . , nr] such that for all i = 1, . . . , r, n1 + · · · + ni = dimF(anni(E)). In 
other words,

ni = dimF(ann(E/anni−1(E))) = dimF(anni(E)) − dimF(anni−1(E)),

for all i = 1, . . . , r.

If E is a nilpotent evolution algebra of type [n1, . . . , nr] and B = {e1, . . . , en} is any
natural basis, then [3, Lemma 2.7] shows that
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ann(E) = span
{
ei ∈ B : e2

i = 0
}
.

The same argument applied to E/ ann(E) shows that

ann2(E) = span
{
ei ∈ B : e2

i ∈ ann(E)
}
,

and in general, for any i,

anni(E) = span
{
ei ∈ B : e2

i ∈ anni−1(E)
}
.

Then B splits as the disjoint union

B = B1 ∪ · · · ∪Br

where Bi = {e ∈ B | e2 ∈ anni−1(E), e /∈ anni−1(E)}.
Then for all i = 1, . . . , r, B1∪· · ·∪Br is a basis of anni(E). In particular each anni(E)

is an evolution ideal (that is, it is an ideal in the usual sense, and it is an evolution 
algebra too), and it can be easily computed from any natural basis.

Let Ui := span {Bi} for all i = 1, . . . , r, so U1⊕· · ·⊕Ui = anni(E), for all i = 1, . . . , r.

Proposition 3.5. Let E be a finite-dimensional nilpotent evolution algebra. Then for 
all i = 2, . . . , r, Ui ⊕ U1 = annanni(E)(anni−1(E)), (i.e. Ui ⊕ U1 = {x ∈ anni(E) |
x anni−1(E) = 0}).

Proof. By definition of a natural basis Ui(U1⊕· · ·⊕Ui−1) = Ui anni−1(E) = 0 and Ui ⊆
annanni(E)(anni−1(E)). Hence annanni(E)(anni−1(E)) = Ui ⊕ annanni−1(E)(anni−1(E)) =
Ui ⊕ U1 where the last equality follows from the result in [3, Lemma 2.7] mentioned 
above. �

Therefore, the subspaces Ui⊕U1 are invariants of E and do not depend on the natural 
basis chosen.

Recall that, in general, there is no uniqueness of natural bases (see [3]), but for nilpo-
tent evolution algebras, Proposition 3.5 gives certain rigidity:

Corollary 3.6. Let B1 and B2 be two natural bases of a finite-dimensional nilpotent 
evolution algebra E, ordered so that the first elements are in ann(E), the next ones in 
ann2(E) \ ann(E), . . . . Then the matrix of the base change has the following block struc-
ture:

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ . . . ∗
0 ∗ 0 . . . 0
0 0 ∗ . . . 0
...

...
...

. . .
...

0 0 0 . . . ∗

⎞
⎟⎟⎟⎟⎠

.
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4. Some families of nilpotent evolution algebras

Let F be a field of characteristic not 2 and let U be a nonzero finite-dimensional vector 
space over F with dimF U = n. We will define in this section some families of nilpotent 
evolution algebras of very specific types. These will be instrumental in the classifications 
of low-dimensional nilpotent evolution algebras.

Definition 4.1. Let b : U × U −→ F be a nondegenerate, symmetric, bilinear form. We 
define the algebra E(U, b) := U × F with multiplication

(u, α)(v, β) = (0, b(u, v)),

for any u, v ∈ U and α, β ∈ F.

Proposition 4.2. E(U, b) is a nilpotent evolution algebra of type [1, n].

Proof. Let {u1, . . . , un} be an orthogonal basis of U relative to b. Then {(u1, 0), . . . ,
(un, 0), (0, 1)} is a natural basis of E = E(U, b) and ann(E) = 0 × F, ann2(E) = E. �
Definition 4.3. Let b : U × U −→ F be a nondegenerate, symmetric, bilinear form and 
let g : U −→ U be a symmetric endomorphism relative to b. Assume that g is diagonal-
izable (this is always the case if F = R and b is a definite form). We define the algebra 
E(U, b, g) := U × F × F with multiplication

(u, α, β)(v, γ, δ) = (0, b(u, v), b(g(u), v) + αγ),

for any u, v ∈ U and α, β, γ, δ ∈ F.

Proposition 4.4. E(U, b, g) is a nilpotent evolution algebra of type [1, 1, n].

Proof. Our assumptions imply that there is an orthogonal basis, relative to b, consisting 
of eigenvectors of g: {u1, . . . , un}.

Then {(u1, 0, 0), . . . , (un, 0, 0), (0, 1, 0), (0, 0, 1)} is a natural basis of E = E(U, b, g). 
Besides ann(E) = F(0, 0, 1) = 0 × 0 × F, ann2(E) = 0 × F × F, and ann3(E) = E. �
Definition 4.5. Let b : U × U −→ F be a nondegenerate, symmetric, bilinear form and 
let f, g : U −→ U be two commuting, symmetric (relative to b), diagonalizable endomor-
phisms. We define the algebra E(U, b, f, g) := U × F × F × F with multiplication

(u, α, β, γ)(v, ε, δ, η) = (0, b(u, v), b(f(u), v) + αε, b(g(u), v) + βδ),

for any u, v ∈ U and α, β, γ, ε, δ, η ∈ F.

Proposition 4.6. E(U, b, f, g) is a nilpotent evolution algebra whose type is [1, 1, 1, n].
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Proof. Our assumptions imply that there is an orthogonal basis of U, relative to b, 
consisting of common eigenvectors for f and g: {u1, . . . , un}.

Then {(u1, 0, 0, 0), . . . , (un, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} is a natural basis 
of E = E(U, b, f, g). Besides, ann(E) = 0 × 0 × 0 ×F, ann2(E) = 0 × 0 ×F ×F, ann3(E) =
0 × F × F × F, and ann4(E) = E. �

These algebras give all the nilpotent evolution algebras of types [1, n], [1, 1, n] and 
[1, 1, 1, n], up to isomorphism. The situation for type [1, 1, 1, 1, n] is more complicated, 
as shown by the classification in Section 6.

Theorem 4.7. Let E be nilpotent evolution algebra.

(i) If E is of type [1, n], then E is isomorphic to E(U, b) for some (U, b) as in Defi-
nition 4.1. Moreover, for two such pairs (U, b) and (U′, b′), E(U, b) is isomorphic 
to E(U′, b′) if and only if there is a similarity ψ : (U, b) → (U′, b′), i.e., a linear 
isomorphism ψ : U → U′ such that there is a nonzero scalar μ, called the norm 
of ψ, such that b′(ψ(u), ψ(v)) = μb(u, v) for all u, v ∈ U.

(ii) If E is of type [1, 1, n], then E is isomorphic to E(U, b, g) for some (U, b, g) as in 
Definition 4.3. Moreover, for two such triples (U, b, g) and (U′, b′, g′), E(U, b, g) is 
isomorphic to E(U′, b′, g′) if and only if there is a similarity ψ : (U, b) −→ (U′, b′)
and a scalar ν ∈ F such that ψ−1 ◦ g′ ◦ψ = μg +μ−1νid, where μ is the norm of ψ.

(iii) If E is of type [1, 1, 1, n], then E is isomorphic to E(U, b, f, g) for some (U, b, f, g) as 
in Definition 4.5. Moreover, for two such quadruples (U, b, f, g) and (U′, b′, f ′, g′), 
the corresponding algebras E(U, b, f, g) and E(U′, b′, f ′, g′) are isomorphic if and 
only if there is a similarity ψ : (U, b) −→ (U′, b′) and a scalar ν ∈ F such that 
ψ−1 ◦ f ′ ◦ ψ = μf and ψ−1 ◦ g′ ◦ ψ = μ3g + μ−1νid, where μ is the norm of ψ.

Proof. We will give the proof of (iii), because (i) and (ii) are simpler. Let E be of type 
[1, 1, 1, n], {u1, . . . , un, w, t, s} a natural basis with ann(E) = Fs, ann2(E) = Ft ⊕ Fs, 
and ann3(E) = Fw ⊕ Ft ⊕ Fs. Then there are scalars α, β, γ ∈ F, α �= 0 �= γ, such that 
w2 = αt + βs, t2 = γs. But {u1, . . . , un, w, w2, (w2)2} is another natural basis so we 
may assume, without loss of generality, that w2 = t and t2 = s. For all i = 1, . . . , n, 
u2
i = λiw + μit + νis with λi, μi, νi ∈ F, λi �= 0 because ui /∈ ann3(E).
Let U = Fu1 ⊕ · · · ⊕ Fun and define b : U × U −→ F by b(ui, uj) = 0 for i �= j,

b(ui, ui) = λi for any i = 1, . . . , n. Define f (respectively g) by f(ui) = λ−1
i μiui (respec-

tively g(ui) = λ−1
i νiui).

Then the linear map ϕ : E −→ E(U, b, f, g) such that

u �→ (u, 0, 0, 0), w �→ (0, 1, 0, 0), t �→ (0, 0, 1, 0), s �→ (0, 0, 0, 1),

is an isomorphism of algebras.
For a subalgebra S of an algebra A, ann(S) denotes the subspace {x ∈ A | xS =

Sx = 0}. If φ : E(U, b, f, g) −→ E(U′, b′, f ′, g′) is an isomorphism of algebras, then 
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since ann(ann3(E(U, b, f, g))) = ann(0 × F × F × F) = U × 0 × 0 × F, and similarly for 
E(U′, b′, f ′, g′), for any u ∈ U, φ((u, 0, 0, 0)) = (ψ(u), 0, 0, χ(u)) for a linear isomorphism 
ψ : U −→ U′, and a linear form χ : U −→ F.

Also annann3(E(U,b,f,g))(ann2(E(U, b, f, g))) = 0 × F × 0 × F, and similarly for E(U′, b′,
f ′, g′), so φ((0, 1, 0, 0)) = (0, μ, 0, ν) for some μ, ν ∈ F, μ �= 0. Then

φ((0, 0, 1, 0)) = φ((0, 1, 0, 0)2) = (0, μ, 0, ν)2 = (0, 0, μ2, 0),

φ((0, 0, 0, 1)) = φ((0, 0, 1, 0)2) = (0, 0, μ2, 0)2 = (0, 0, 0, μ4).

Now, for u, v ∈ U,

φ((u, 0, 0, 0)(v, 0, 0, 0)) = φ((0, b(u, v), b(f(u), v), b(g(u), v))

=
(
0, μb(u, v), μ2b(f(u), v), νb(u, v) + μ4b(g(u), v)

)
,

φ((u, 0, 0, 0))φ((v, 0, 0, 0)) = (ψ(u), 0, 0, χ(u))(ψ(v), 0, 0, χ(v))

=
(
0, b′(ψ(u), ψ(v)), b′(f ′(ψ(u)), ψ(v)), b′(g′(ψ(u)), ψ(v)

)
.

Therefore,

• b′(ψ(u), ψ(v)) = μb(u, v), for all u, v ∈ U, i.e. ψ is a similarity of norm μ.
• b′(f ′(ψ(u)), ψ(v)) = μ2b(f(u), v) = μb′(ψ(f(u)), ψ(v)) for all u, v ∈ U, so ψ−1 ◦

f ′ ◦ ψ = μf .
• b′(g′(ψ(u)), ψ(v)) = νb(u, v) + μ4b(g(u), v) for all u, v ∈ U, so ψ−1 ◦ g′ ◦ ψ = μ3g +

μ−1νid.

Conversely, if ψ : (U, b) −→ (U′, b′) is a similarity of norm μ such that ψ−1 ◦ f ′ ◦ ψ =
μf , and ψ−1 ◦ g′ ◦ ψ = μ3g + μ−1νid for a scalar ν, then the linear isomorphism φ :
E(U, b, f, g) −→ E(U′, b′, f ′, g′) such that (u, α, β, γ) �→ (ψ(u), μα, μ2β, μ4γ + να) is an 
isomorphism of algebras. �
Corollary 4.8. E(U, b, f, g) is isomorphic to E(U, αb, αf, α3g + βid) for any α, β ∈ F, 
α �= 0.

Definition 4.9. Let b : U × U −→ F be a nondegenerate, symmetric, bilinear form and 
0 �= u ∈ U. We define the algebra E(U, b, u) := F × U × F with multiplication

(α, x, β)(γ, y, δ) = (0, αγu, b(x, y)),

for any x, y ∈ U and α, β, γ, δ ∈ F.

Proposition 4.10. E(U, b, u) is a nilpotent evolution algebra of type [1, n, 1].
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Proof. Let {u1, . . . , un} be an orthogonal basis of U relative to b. Then {(1, 0, 0), (0, u1, 0),
. . . , (0, un, 0), (0, 0, 1)} is a natural basis of E = E(U, b, u). Besides ann(E) = 0 × 0 × F, 
ann2(E) = 0 × U × F, and ann3(E) = E. �
Theorem 4.11. Let E be nilpotent evolution algebra of type [1, n, 1]. Then E is isomorphic 
to an algebra E(U, b, u), for some (U, b, u) as in Definition 4.9. Moreover, for any two 
such triples (U, b, u) and (U′, b′, u′), the algebras E(U, b, u) and E(U′, b′, u′) are isomorphic 
if and only if there is a similarity ψ : (U, b) −→ (U′, b′) such that ψ(u) = u′.

Proof. Let E be of type [1, n, 1], B = {a, u1, . . . , un, s} a natural basis of E with 
ann(E) = Fs, ann2(E) = Fu1 ⊕· · ·⊕Fun⊕Fs, and ann3(E) = E. Then, s2 = 0, u2

i = λis, 
with 0 �= λi ∈ F, for all i = 1, . . . , n, and a2 = α1u1+· · ·+αnun+αs for α1, . . . , αn, α ∈ F, 
and αi �= 0 for at least one i = 1, . . . , n. Then {a, u1, . . . , ui−1, ui+α−1

i αs, ui+1, . . . , un, s}
is another natural basis. Hence we may assume that a2 = α1u1 + · · · + αnun.

Let U = Fu1⊕· · ·⊕Fun, u = α1u1+· · ·+αnun, and b : U ×U −→ F the nondegenerate, 
symmetric, bilinear form given by b(ui, uj) = 0 for i �= j, b(ui, ui) = λi for i = 1, . . . , n.

The linear map ϕ : E −→ E(U, b, u) such that a �→ (1, 0, 0), ui �→ (0, ui, 0), i = 1, . . . , n, 
s �→ (0, 0, 1) is then an isomorphism of algebras.

If φ : E(U, b, u) −→ E(U′, b′, u′) is an isomorphism of algebras, then since 
ann(ann2(E(U, b, u))) = F ×0 ×F, it follows that φ((1, 0, 0)) = (μ, 0, ν) for some μ, ν ∈ F, 
μ �= 0. Also φ restricts to an isomorphism ann2(E(U, b, u)) −→ ann2(E(U′, b′, u′)), and 
these latter algebras are of type [1, n]. Hence there exists a similarity ψ : (U, b) −→ (U′, b′)
and a linear form χ : U −→ F such that φ(0, x, 0) = (0, ψ(x), χ(x)) for all x ∈ U. Then

φ((0, u, 0)) = φ((1, 0, 0)2) = φ((1, 0, 0))2 = (μ, 0, ν)2 = (0, μ2u′, 0),

so ψ(u) = μ2u′. The similarity ψ̄ = μ−2ψ satisfies ψ̄(u) = u′.
Conversely, if ψ : (U, b) −→ (U′, b′) is a similarity with ψ(u) = u′, then the linear map 

φ : E(U, b, u) −→ E(U′, b′, u′), (α, x, β) �→ (α, ψ(x), μβ), where μ is the norm of ψ, is an 
isomorphism of algebras. �
Corollary 4.12. If F is algebraically closed and n ≥ 2, there are, up to isomorphism, 
exactly two nilpotent evolution algebras of type [1, n, 1], namely

E
(
Fn, bn, (1, 0, · · · , 0)

)
and E

(
Fn, bn, (1, i, 0 . . . , 0)

)

where bn((α1, . . . , αn), (β1, . . . , βn)) = α1β1 + · · · + αnβn, and i is a fixed square root 
of −1.

Proof. Any pair (U, b) where dimF(U) = n and b is a nondegenerate, symmetric, bilinear 
form on U, is isometric to (Fn, bn). Now, any nonisotropic vector in Fn lies in the orbit of 
(1, 0, . . . , 0) under the group of similarities of (Fn, bn), while any nonzero isotropic vector 
lies in the orbit of (1, i, 0 . . . , 0). The result then follows from the previous theorem. �
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Table 1
dimE ≤ 3.

dimE Type of E Graph

1 [1]

2 [1,1]

3 [1,2]

3 [1,1,1]

5. Classification of nilpotent evolution algebras up to dimension four

By Theorem 2.2 it is enough to classify indecomposable algebras. Up to dimension 
four, everything follows from the previous results easily. The algebras in the classification 
list will be given by describing their weighted graphs Γw(E, B) in a suitable natural basis. 
If no weight is assigned to an edge of this graph, it will be understood that the weight 
is 1.

Theorem 5.1. Let E be an indecomposable nilpotent evolution algebra, of dimension at 
most four, over an algebraically closed field of characteristic not two. Then E is isomor-
phic to one and only one of the algebras whose graphs are in Tables 1 and 2.

Proof. If dim(E) = 1 this is trivial. For dimension 2 or 3, by Corollary 2.6, we 
have dim(ann(E)) = 1 (otherwise E would be decomposable), so the possible types 
are [1, 1], [1, 2] or [1, 1, 1], and the result follows from Theorem 4.7. If dim(E) = 4, 
then dim(ann(E)) = 1 by Corollary 2.6. The possible types are (ordered lexicograph-
ically) [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1], and the result follows from Theorems 4.7
and 4.11. �
Remark 5.2. The algebras with graphs

i

and

are missing in [4].
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Table 2
dimE = 4.

dimE Type of E Graph Properties

4 [1,3]

4 [1,2,1] ((U3 ⊕ U1)2)2 �= 0

4 [1,2,1]
i

((U3 ⊕ U1)2)2 = 0

4 [1,1,2] dim(U3 ⊕ U1)2 = 1

4 [1,1,2] dim(U3 ⊕ U1)2 = 2

4 [1,1,1,1] (U4 ⊕ U1)2 ⊆ U3 ⊕ U1

4 [1,1,1,1] (U4 ⊕ U1)2 � U3 ⊕ U1

6. Classification of five-dimensional nilpotent evolution algebras

First we will classify the indecomposable, five-dimensional, nilpotent, evolution alge-
bras E with dim(ann(E)) > 1.

Theorem 6.1. Let E be an indecomposable, five-dimensional, nilpotent, evolution algebra, 
over an algebraically closed field of characteristic not two. Then:
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Table 3
dimE = 5, dim(ann(E)) = 2.

Type of E Graph

[2,3]

[2,2,1]

[2,1,2]

(i) The dimension of ann(E) is 1 or 2.
(ii) If the dimension of ann(E) is 2, then E is isomorphic to one and only one of the 

algebras with graph in Table 3.

Proof. The first assertion follows from Corollary 2.6. Assume that E is an indecom-
posable, five-dimensional, nilpotent, evolution algebra, with two-dimensional annihila-
tor. The possible types of E, ordered lexicographically, are [2, 3], [2, 2, 1], [2, 1, 2], and 
[2, 1, 1, 1].

• If the type is [2, 3], let {x, y, z, u, v} be a natural basis with u2 = v2 = 0 (that 
is, ann(E) = span {u, v}). Besides, by Corollary 2.5, ann(E) = E2 = span

{
x2,

y2, z2} and hence we may assume that x2 and z2 are linearly independent. Then 
{x, y, z, u′ = x2, v′ = z2} is another natural basis and y2 = αu′ + βv′ for α, β ∈ F, 
(α, β) �= (0, 0) because y /∈ ann(E). If α = 0, then E = span {x, u′} ⊕ span {y, z, v′}
would be decomposable. The same happens if β = 0. Hence α �= 0 �= β and the graph 
in the natural basis {√αx, y, 

√
βz, αu′, βv′} is

Notice that for any p �= q in a natural basis with p, q /∈ ann(E), p2 and q2 are linearly 
independent, so E is not a direct sum of ideals with graphs

and

It follows that E is indeed indecomposable.
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• If the type is [2, 2, 1], and {x, a, b, u, v} is a natural basis with ann(E) = span {u, v}
and ann2(E) = span {a, b, u, v}, then x2 = αa + βb + p, a2 = q, b2 = r, with 
α, β ∈ F, (α, β) �= (0, 0), p, q, r ∈ ann(E). Since ann(E) is contained in E2 because 
of Corollary 2.5, and E2 = span

{
x2, a2, b2

}
, it follows that a2 and b2 are linearly 

independent. Assume, without loss of generality, that α �= 0.
If β = 0, then E = span

{
x, αa + p, a2}⊕span

{
b, b2

}
would be decomposable. Hence 

β �= 0 and the graph in the natural basis {x, αa + p, βb, α2a2, β2b2} is

Observe that this algebra is indecomposable because dim
(
ann(U3 +U1)2

)
= 3, while 

this dimension is 4 for the only five-dimensional decomposable nilpotent evolution 
algebra with the same type and same dimE2 (which equals 3).

• If the type is [2, 1, 2], there is a natural basis {x, y, a, u, v} with ann(E) = span {u, v}, 
ann2(E) = span {a, u, v}. As x2 ∈ ann2(E) \ann(E), {x, y, x2, u, v} is another natural 
basis. Also y2 ∈ ann2(E) \ ann(E), so after scaling y we may assume y2 = x2 + u′

with u′ ∈ ann(E). Then E2 = span
{
x2, u′, (x2)2

}
and E2 contains ann(E) by inde-

composability (Corollary 2.5). Hence u′ and (x2)2 form a basis of ann(E). The graph 
in the natural basis {x, y, x2, (x2)2, u′} is

Note that ann(E) is contained in E2 and this is not valid for the only decomposable 
nilpotent evolution algebra of type [2, 1, 2].

• Finally, if the type is [2, 1, 1, 1], and {x, y, z, u, v} is a natural basis with ann(E) =
span {u, v}, ann2(E) = span {z, u, v}, and ann3(E) = span {y, z, u, v}, then

x[2] := x2 = αy + βz + p,

with α, β ∈ F, α �= 0, p ∈ ann(E),

x[3] := (x2)2 = α2y2 + q = μz + q′,

with 0 �= μ ∈ F and q, q′ ∈ ann(E), and

0 �= x[4] := (x[3])2 ∈ ann(E).

Thus xx[r] = 0 for r = 2, 3, 4, x[2]x[3] ∈ Fz2 = Fx[4], and hence S = span
{
x, x[2],

x[3], x[4]} is a subalgebra of E with E = S +ann(E), a contradiction with Lemma 2.4. 
Therefore, there are no indecomposable algebras with this type. �
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Remark 6.2. Only the algebra of type [2, 1, 2] appears in the classification in [5]. It is 
denoted there as E4,29. Also, the argument used in the proof above and Corollary 2.5
show that a nilpotent evolution algebra of type [n, 1, m] is indecomposable if and only if 
ann(E) ⊆ E2.

Remark 6.3. The argument in the proof above, to show that any nilpotent evolution 
algebra of type [2, 1, 1, 1] is decomposable, can be adjusted to prove that any nilpotent 
evolution algebra of dimension n and type [n1, . . . , nr], with r ≥ 3 and 2n1 > n −r+2, is 
decomposable. Indeed, any x ∈ E \ annr−1(E) satisfies that the elements x[2], . . . , x[r−1]

belong to E2 and are linearly independent modulo ann(E). Hence, if E were indecompos-
able, then ann(E) would be contained in E2 (Corollary 2.5) and we would get:

n1 + r − 2 = dimF

(
ann(E) + span

{
x[2], . . . , x[r−1]

})
≤ dimF(E2)

≤ dimF(E) − dimF
(
ann(E)

)
= n− n1,

so 2n1 ≤ n − r + 2, a contradiction.

We are left with the classification of the five-dimensional, nilpotent, evolution alge-
bras E, with dim(ann(E)) = 1. This condition already implies E to be indecomposable. 
The possible types of E, ordered lexicographically, are [1, 4], [1, 3, 1], [1, 2, 2], [1, 2, 1, 1], 
[1, 1, 3], [1, 1, 2, 1], [1, 1, 1, 2], and [1, 1, 1, 1, 1].

We will classify first those algebras isomorphic to the algebras in Theorems 4.7
and 4.11.

In what follows, a dashed edge with weight α ∈ F

α

will indicate that there is no such edge if α = 0, and that the edge is an usual edge with 
weight α, if α �= 0. As before, if no weight is attached to an edge, it means that the 
weight is 1.

Theorem 6.4. Let E be an indecomposable, five-dimensional, nilpotent, evolution algebra, 
over an algebraically closed field of characteristic not two.

(i) If the type is [1, 4], then E is isomorphic to the algebra with graph

.

(ii) If the type is [1, 3, 1], then E is isomorphic to one and only one of the algebras with 
the following graphs
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,
i

.

(iii) If the type is [1, 1, 3], then E is isomorphic to one of the algebras with the following 
graphs

, , α α �= 0, 1.

Algebras with different graphs are not isomorphic, and two algebras with the third 
graph and parameters α, α′ are isomorphic if and only if α′ ∈ {α, α−1, 1 −α, 1 −α−1,

(1 − α)−1, (1 − α−1)−1}.
(iv) If the type is [1, 1, 1, 2], then E is isomorphic to an algebra with one of the following 

graphs

, , γ , γ

β

.

Algebras with different graphs are not isomorphic. Algebras with the third graph 
and different values of the parameter are not isomorphic. Finally, algebras with 
the fourth graph and parameters (β, γ) and (β′, γ′) are isomorphic if and only if 
(β′, γ′) = (β, γ) or (β′, γ′) = (β−1, −β−3γ).

Proof. Type [1, 4] is covered by Theorem 4.7(i) and type [1, 3, 1] by Corollary 4.12.
Any algebra of type [1, 1, 3] is isomorphic to an algebra E(U, b, g), with dim(U) = 3, 

as in Theorem 4.7(ii), and we may change the symmetric endomorphism g by μg + νid
for μ, ν ∈ F, μ �= 0.

There are then three possibilities which give nonisomorphic algebras:

• g has a unique eigenvalue ν with multiplicity 3. In this case, replacing g by g − νid, 
we may assume g = 0 and get the first graph in item (iii).

• g has two eigenvalues, one with multiplicity 2. Then we may assume that the eigen-
values are 0, with multiplicity 2, and 1, and we get the second graph in item (iii).

• g has three different eigenvalues, which we may assume to be 0, 1, α, α ∈ F \ {0, 1}. 
The algebras with parameters α, α′ ∈ F \ {0, 1} are isomorphic if and only if there 
are scalars μ, ν ∈ F, μ �= 0, such that {ν, μ + ν, μα+ ν} = {0, 1, α′} and the result in 
item (iii) follows.

Finally, any algebra of type [1, 1, 1, 2] is isomorphic to an algebra E(U, b, f, g) as in 
Theorem 4.7(iii). We may change (f, g) by (μf, μ3g + νid), with μ, ν ∈ F, μ �= 0.
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If f = 0 we get the first two possibilities, according to g having only one eigenvalue 
(with multiplicity 2), or two different eigenvalues.

If f �= 0 but one of its eigenvalues is 0, then we get the third possibility, as we 
can assume that the nonzero eigenvalue is 1. Finally, if 0 is not an eigenvalue of f , we 
may assume that the eigenvalues are 1, β, with 0 �= β ∈ F. Then we may take g with 
corresponding eigenvalues γ and 0. Two such algebras with parameters (β, γ) and (β′, γ′)
are isomorphic if and only if there are scalars μ, ν ∈ F, μ �= 0, such that either (1, β′) =
μ(1, β) and (γ′, 0) = μ3(γ, 0) + ν(1, 1) or (1, β′) = μ(β, 1) and (γ′, 0) = μ3(0, γ) + ν(1, 1), 
whence the result. �

The remaining types: [1, 2, 2], [1, 2, 1, 1], [1, 1, 2, 1] and [1, 1, 1, 1, 1], will be treated 
separately.

Without further mention, the following fact will be used. Given a nilpotent evolution 
algebra of type [n1, . . . , nr] and a natural basis B = {x1, . . . , xn} of E with x1, . . . , xnr

∈
annr(E) \ annr−1(E), and xnr+1, . . . , xn ∈ annr−1(E), then if we pick any other natural 
basis of annr−1(E): {ynr+1, . . . , yn}, the new basis {x1, . . . , xnr

, ynr+1, . . . , yn} is again 
a natural basis of E.

Theorem 6.5. Let E be a nilpotent evolution algebra of type [1, 2, 2], over an algebraically 
closed field of characteristic not two. Then E is isomorphic to an algebra with one of the 
following graphs:

α

, , ,

i
i

,

i
i

,

i −i

.

Algebras with different graphs are not isomorphic, and two algebras with the first graph 
and parameters α, α′ are isomorphic if and only if α′ = α or α′ = −α.

Proof. Let {x, y, u, v, s} be a natural basis with ann(E) = Fs and ann2(E) = span{u,
v, s}. Since ann2(E) is of type [1, 2] we may assume that u2 = v2 = s. Let us consider, 
as in Section 3, the subspaces U1 = Fs, U2 = Fu ⊕ Fv, and U3 = Fx ⊕ Fy. Now,

x2 = a + μs, y2 = b + νs, (6.1)

with 0 �= a, b ∈ U2 and μ, ν ∈ F. Then, either a2 = b2 = 0 (that is, (x2)2 = (y2)2 = 0), 
or we may assume that a2 �= 0.

In the latter case: a2 �= 0, we may change u by a + μs and v by an element in 
U2 orthogonal to a. Thus, we may assume that x2 = u and y2 = αu + βv + γs with 
(α, β) �= (0, 0).

If β �= 0, the dimension of E2 is 3 and changing v by v + β−1γs, and scaling y, we 
may assume y2 = αu + v, thus getting the graph
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α

.

If this algebra were isomorphic to an algebra with the same graph but with parame-
ter α′, there would be another natural basis {x′, y′, u′, v′, s′} with (see Corollary 3.6):

x′ = μ11x + μ12y + ν1s, y′ = μ21x + μ22y + ν2s

u′ = (x′)2, v′ = (y′)2 − α′u′, s′ = (u′)2 = (v′)2

From x′y′ = 0 we get μ11μ21 + μ12μ22 = 0 = μ12μ21, so either μ12 = 0 or μ21 = 0.
If μ12 = 0 we get μ11 �= 0 �= μ22 and μ21 = 0. From u′v′ = 0 we quickly check that 

(α′)2 = α2, and the same happens if μ22 = 0.
If β = 0 then dim(E2) = 2 and, after scaling y, we get the graph

γ .

If γ �= 0, in the new natural basis {
√
γ−1x, 

√
γ−1y, γ−1u, γ−1v, γ−2s} we get the graph 

above with γ = 1. Note that for γ = 0, dim(U3 ⊕ U1)2 = 1, and for γ = 1, dim(U3 ⊕
U1)2 = 2, so we obtain nonisomorphic algebras.

Finally, if a2 = b2 = 0 in (6.1), then we may assume x2 = u + iv, with i2 = −1, and 
y2 = εu + δv+γs, with ε, δ �= 0, ε2 + δ2 = 0. Scaling y we may assume ε = 1 and δ = ±i.

If δ = i, dim(U3 ⊕U1)2 = 1 for γ = 0 and we obtain the fourth graph, and dim(U3 ⊕
U1)2 = 2 if γ �= 0. In the latest case it is easy to get a new natural basis with γ = 1, and 
we obtain the fifth graph. Here dimE2 = 2 holds.

If δ = −i, changing u by u + 1
2γs and v by v + i

2γs we may assume γ = 0, thus 
obtaining the last graph. In this case dimE2 = 3. �
Theorem 6.6. Let E be a nilpotent evolution algebra of type [1, 2, 1, 1], over an algebraically 
closed field of characteristic not two. Then E is isomorphic to an algebra with one of the 
following graphs:

, ,
β

,

i
,

i
,

i

i ,

−i

i .
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Algebras with different graphs are not isomorphic, and two algebras with the third graph, 
and parameters β, β′ ∈ F, are isomorphic if and only if either β′ = β or β′ = −β.

Proof. We have two possibilities, depending on ann3(E), which is of type [1, 2, 1] and 
hence isomorphic (Theorem 5.1) to an algebra with one of these graphs

or
i

. (6.2)

Assume first that ann3(E) is of the first class in (6.2). Then there is a natural basis 
{x, y, u, v, s} with graph

x

y

u v

s

βα

.

If {x′, y′, u′, v′, s′} is another natural basis with the same graph but with parameters 
α′, β′, then (see Corollary 3.6) there are scalars ε1, ε2, ν1, ν2 ∈ F, ε1 �= 0 �= ε2, such that 
x′ = ε1x + ν1s, y′ = ε2y + ν2s, and then u′ = (y′)2 = ε22u. Also u′v′ = 0, so uv′ = 0 and 
hence v′ = ε3v + ν3s, with ε3, ν3 ∈ F, ε3 �= 0.

Now s′ = (u′)2 = (v′)2, so ε42 = ε23 and ε3 = ±ε22.
From (x′)2 = y′+α′u′+β′v′ we get ε2 = ε21, ε21α = ε22α

′, ε21β = ε3β
′, and ν2+β′ν3 = 0. 

We conclude that α = ε2α
′ and β = ±ε2β

′. Therefore, the parameters (α, β) can be taken 
to be (0, 0), (0, 1), or (1, β) with β ∈ F, and the algebras with parameters (1, β) and (1, β′)
are isomorphic if and only if β′ ∈ {β, −β}.

Now assume that ann3(E) is of the second class in (6.2). Then there is a natural basis 
{x, y, u, v, s} of E with graph

βα

i .

That is, x2 = y + αu + βv, y2 = u + iv, u2 = v2 = s.
The case α = β = 0 happens if and only if (U4 ⊕ U1)2 ⊆ U3 ⊕ U1.
If α �= 0 we may take the new natural basis {√αx, αy, α2u, α2v, α4s} and hence 

assume that α = 1. Similarly, if β �= 0, we may take the new natural basis {
√
βx, βy,

β2iv, −β2iu, −β4s} and again assume that α = 1.
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Therefore, either α = β = 0 or there is a natural basis {x, y, u, v, s} with graph

β

i .

The natural linear map ann2(E) ↪→ ann3(E) −→ ann3(E)/(U3 ⊕ U1) induces a linear 
isomorphism φ : ann2(E)/ ann1(E) −→ ann3(E)/(U3 ⊕ U1).

Consider too the map ϕ : U4 ⊕ U1 −→ ann3(E)/(U3 ⊕ U1), z �→ z2 + (U3 ⊕ U1), 
and the map ψ : ann2(E)/ ann1(E) −→ ann1(E), z + ann1(E) �→ z2. The composition 
Φ = ψ ◦ φ−1 ◦ ϕ is given by Φ : U4 ⊕ U1 −→ U1, εx + δs �→ (ε2(u + βv))2 = ε4(1 + β2)s.

Thus Φ �= 0 if and only if β = ±i. Also E2 ∩ (U3 ⊕ U1) has dimension 2 if and only 
if β = i. This shows that the algebras with parameter β equal to i and −i are not 
isomorphic, and they are not isomorphic to any algebra with parameter β �= ±i.

Finally, if β �= ±i, take μ = (1 + iβ)(
√

1 + β2)−1, then the new natural basis 
{
√

μ−1x, μ−1y, μ−1(u + βv), μ−1(−βu + v), μ−2(1 + β2)s} has the above graph with 
β = 0. �

The proof of the classification for types [1, 1, 2, 1] and [1, 1, 1, 1, 1] follows similar ar-
guments and will be omitted.

Theorem 6.7. Let E be a nilpotent evolution algebra of type [1, 1, 2, 1], over an algebraically 
closed field of characteristic not two. Then E is isomorphic to an algebra with one of the 
following graphs

, ,

i

,

i

,
α

,

β

γ

.

Algebras with different graphs are not isomorphic. Two algebras with the fifth graph and 
parameters α, α′ are isomorphic if and only if α′ = α or α′ = −α. Two algebras with the 
sixth graph and parameters (β, γ) and (β′, γ′) are isomorphic if and only if β′ ∈ {β, −β}
and γ′ ∈ {γ, −γ}, or ββ′ ∈ {1, −1} and γ′ ∈ {iβ−1γ, −iβ−1γ}.

Theorem 6.8. Let E be a nilpotent evolution algebra of type [1, 1, 1, 1, 1], over an alge-
braically closed field of characteristic not two. Then E is isomorphic to an algebra with 
one of the following graphs

, ,
α

,
β

α



A. Elduque, A. Labra / Linear Algebra and its Applications 505 (2016) 11–31 31
Algebras with different graphs are not isomorphic. Two algebras with the third graph 
and different values of the parameter are not isomorphic. Two algebras with the fourth 
graph and parameters (α, β) and (α′, β′) are isomorphic if and only if (α′, β′) = (α, β)
or (α′, β′) = (−α, −β).

The results in this section show that the classification in [5] misses most of the possi-
bilities.
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