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Surgery rooms are among the most expensive resources in hospitals and clinics. Their scheduling is dif-
ficult because, in addition to the surgical room itself, each surgery requires a particular combination of
human resources, as well as different pieces of equipment and materials. Furthermore, after each surgery,
a post-anesthesia bed is required for the patient to recover. Finally, in addition to planned surgeries, the
scheduling must be made in such a way as to accommodate the emergency surgeries that may arrive dur-
ing each day, which must be attended within a limited time. We address the surgery scheduling problem
considering simultaneously, for the first time, the operating rooms, the post anesthesia recovery, the
resources required by the surgery and the possible arrival of emergency surgeries. We propose an integer
linear programming model that allows finding optimal solutions for small size instances, we transform it
to use constraint programming, and develop a metaheuristic based on a genetic algorithm and a con-
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structive heuristic, that solves larger size instances. Finally, we present numerical experiments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The relevance of the problem of planning and scheduling of
operating rooms (ORs) comes from the fact that ORs are among
the most expensive and fundamental resources of a hospital
(Cardoen, Demeulemeester, & Belién, 2010; Guerriero & Guido,
2011). Among other consequences, poor scheduling may generate
idle time intervals, an excess of overtime, and delays or cancella-
tions of surgeries, that are reflected in excess cost and loss of rev-
enue for the hospital.

The process of scheduling of surgeries in ORs has two main
stages: the daily assignment of patients and the appropriate
sequencing of the surgeries (Cardoen, Demeulemeester, & Belién,
2009a; Guerriero & Guido, 2011). The first stage consists of deter-
mining the set of patients that should be operated on a particular
day over a given planning horizon (Guinet & Chaabane, 2003).
Patients that are candidates for surgery are generally selected from
patient waiting lists that are generated by the hospital (Persson &
Persson, 2009). This selection is based on resource availability,
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surgery priority, and the patient’s waiting time in the waiting list.
At this point, a surgeon is assigned to the surgery. In the second
stage, the daily programming of each operating room is prepared,
which is known as the Surgical Table Programming or Operating
Table (OT). This activity determines the sequencing of the surgeries
in the ORs and is scheduled 24-48 h before the event (May,
Spangler, Strum, & Vargas, 2011). In this paper, we concentrate
on the second step of the process of surgery scheduling, that is
the sequencing of surgeries in the ORs.

The OT programmer should build the sequence taking into
account the ORs availability as well as the physical and human
resources needed to perform each surgery. At the same time, the
programmer must consider the availability of a post-anesthesia
recovery bed for the patient, thus making sure that the surgical
room is not blocked, which would impact the following surgery.
Not considering any of these physical or human resources may lead
to the cancellation of scheduled surgeries.

Normally, the OT programmer is a physician or a nurse, familiar
with the process of each of the scheduled surgeries. Nevertheless,
even though the programmer is familiar with the elements, time
and care needed to perform the surgery, achieving a good schedule
is a very difficult process when a large number of factors need to be
simultaneously addressed. In addition, every day, a number of
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emergency surgeries arrive to the hospital which must be handled
as soon as possible. Thus, even when surgeons are very skilled in
performing surgery, large amounts of idle time occur due mainly
to poor scheduling.

Our main contribution is the construction of the OT simultane-
ously considering for the first time the operating rooms, resources,
post-anesthesia recovery beds, and emergency surgeries. We pro-
pose different tools to solve the problem and assess the results
using computational tests.

The remainder of the article is organized as follows: Section 2
reviews the literature. Section 3 describes the problem. Section 4
presents the exact solution approaches and the tools proposed to
solve of the problem. Section 5 describes the heuristic. Section 6
presents and describes the computer experiments. Finally, in Sec-
tion 7 we offer conclusions and outline directions for future work.

2. Literature review

The scheduling of ORs is a broad topic. A detailed review can be
found in Cardoen et al. (2010) and Guerriero and Guido (2011).
Here, we focus on the literature that is directly related. Among
the relevant papers are Jebali, Hadj Alouane, and Ladet (2006)
and Dekhici and Belkadi (2010), in which the assignment and
sequencing of surgeries are treated as a hybrid flow shop (HFS),
without considering any of the required additional resources in
the scheduling process. Roland, di Martinelly, and Riane (2006)
and Roland, Di Martinelly, Riane, and Pochet (2010) emphasize
the importance of considering additional resources, specially
human, in the surgery scheduling process but the post-
anesthesia recovery stage is not taken into account.

In Pham and Klinkert (2008), each surgical intervention is
described as a predetermined sequence of activities with a maxi-
mum allowed waiting time between two consecutive activities,
with a set of resources being assigned to each of the activities.
The authors develop a mixed linear integer programming (MILP)
model. Vijayakumar, Parikh, Scott, Barnes, and Gallimore (2013)
consider the resources in the problem and use a dual bin-packing
problem model. Given the number of days and resources available
for the schedule, they maximize the number of surgeries to sched-
ule. They model the problem as a MILP and develop a heuristic to
solve the problem without considering the second stage (recovery).
The surgical working affinity group (group of surgeons, nurses and
personnel that usually work together) is included as a limitation in
Meskens, Duvivier, and Hanset (2013), and constraint program-
ming (CP) is used to solve the problem. Lee and Yih (2014) deter-
mine the start times of the surgeries in the operating room based
on the availability of beds in the unit Post-Anesthesia Care Unit
(PACU) and the uncertainty of the duration of tasks. The problem
is approached as a flexible job shop with fuzzy times. To solve it,
they develop a genetic algorithm that determines the order of
the surgeries and a heuristic to determine the start times.

Emergency surgeries cannot be programmed in advance, since
they may arrive at any moment of the day. However, they must
be attended promptly. To address this type of uncertainty,
Erdem, Qu, and Shi (2012) formulate a MILP model and a genetic
algorithm that allows rescheduling elective surgeries. The pro-
posed model minimizes the cost of postponing surgeries, the over-
time, and the cost of rejecting an emergency patient by deriving
her to a different hospital. Wullink et al. (2007) use simulation to
evaluate reservation of time for emergency surgeries. They evalu-
ate two traditional methodologies: (a) concentrating all reserve
capacity into an ORs dedicated exclusively to emergency surgery,
and (b) uniformly reserving capacity in all ORs dedicated to elec-
tive surgery. The performance measures are waiting time, over-
time, and OR utilization. They conclude that the second approach

is the most efficient. van Essen, Hans, Hurink, and Oversberg
(2012) study how to minimize the emergency surgery waiting
time, for which they introduce two new concepts: the “break-in-
moment” (BIM) that corresponds to the exact moment in which
an emergency surgery can be performed after the conclusion of
an elective surgery, and the “break-in-interval” (BII), defined as
the interval between two consecutive BIMs. What they look for is
distributing BIMs uniformly throughout the day, for which they
minimize the maximum BII. The authors assume that surgeries
are programmed without dead times in between. In all these
works, they use the fact, recognized in the literature, that there
exists a so-called ‘golden hour’: a one-hour period within which
care must be provided to trauma emergency patients (Fleet &
Poitras, 2011; Newgard et al., 2010).

We synthesize the main literature in the following Table 1,
summarizing the related works. The first column lists the authors,
while the second to seventh columns show the features of the
studied problem. As Table 1 shows, most of the papers partially
address the features involved in the problem. Our model covers
most of the features: programming for minimum makespan and
consideration of the waiting time of emergency surgeries, sequenc-
ing and individual assignment of all the medical staff as well as all
the resources, and consideration of the two important stages: the
OR and the recovery bed.

3. Problem description

A patient’s surgery process consists of two main stages. The first
stage makes use of the surgery room and it is divided into the OR
preparation for surgery, the surgery itself (surgical act), and the
cleaning of the OR. The second stage is the post-anesthesia recov-
ery of the patient that takes place in a recovery room.

In general, ORs have different sizes and characteristics, thus a
surgery can only be assigned to an operating room the meets the
conditions required to perform the operation. Priorities among
surgeries may also occur. For example, it may be necessary to move
towards the end of the day those surgeries that may contaminate
the room to a larger degree.

Each surgery requires a previously assigned physician or sur-
geon. The surgeon is only present during the surgery act and
requires a certain amount of time between interventions (mainly
for cleaning, change of clothes, and rest) that depends on the dura-
tion of the previously performed surgery.

During a surgery additional resources are required, often scarce.
These resources may be nurses, anesthesiologists and other profes-
sionals, or physical resources (instruments, imaging equipment,
etc.). One or more units of a particular type of resource (human
or physical) may be available. Each resource unit assigned to a sur-
gery must be available throughout the preparation and perfor-
mance of the surgery and has a fixed preparation time that
depends on the resource type.

Once the surgery is finished, the patient must be transported to
a bed of PACU. Some patients, after surgery, require special care
and must be transported to an Intensive Care Unit (ICU). Thus,
post-anesthesia recovery may require a special bed.

In addition, demand for emergency surgeries may occur at any
time and must be attended within a maximum waiting time.

The objective of the problem is to minimize the closing time of
the last operating room in use (makespan).

4. Proposed exact approaches

The problem of scheduling operating rooms, resources and post
anesthesia care units can be seen as a hybrid flow shop (HFS)
scheduling problem. This is an NP-Hard combinatorial problem
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Table 1
Summary of the main literature on OR scheduling.
Research Type of Medical Resources Stochastic Solution Criteria
problem staff type aspects method
Addis, Carello, Grosso, and Tanfani (2015) 1-2 - - 1 1 10
Augusto, Xie, and Perdomo (2010) 1 - 1-5 - 7 2
Cardoen et al. (2009a) 1 1 1-4-5 - 1-4 3-4-5-10
Cardoen, Demeulemeester, and Belién (2009b) 1 1 1-4-5 - 1-8-9 3-4-5-10
Dekhici and Belkadi (2010) 1 - 1 - 1-5 1
Dios, Molina-Pariente, Fernandez-Viagas, Andrade-Pineda, and 3 1 - - 1-4 10
Framinan (2015)

Erdem et al. (2012) 2 1-3 1-3 2 1-3 3-6-10
Fei, Chu, and Meskens (2009) 3 1 - - 1-4 3-6-7
Fei, Meskens, and Chu (2010) 1-3 1 1 - 3-4 3-6-7-9
Guinet and Chaabane (2003) 1-3 1 1-3 - 1-4 3-6-10
Guo, Wu, Li, and Rong (2014) - 2 - 1 1 6-10
Jebali et al. (2006) 1-3 1 1-3 - 1 3-6-10
Lee and Yih (2014) 1 - 1 1 3-4 2-9-10
Marcon and Dexter (2006) 1 1 1 1 4-6 7-10
Marcon et al. (2003) 1 1 1-5 - 6 4-10
Marques, Captivo, and Vaz Pato (2012) 1-3 1 - - 1 10
Marques, Captivo, and Vaz Pato (2014) 1-3 1 - - 1-3 10
Meskens et al. (2013) 1 1-2-3 1-4 - 2 1-3-10
Paoletti and Marty (2007) - 3 - 1 6 10
Perdomo, Augusto, and Xiaolan (2006) 1 - 1-5 - 1 2
Persson and Persson (2009) 1-3 1 1 - 1-6 3-6-10
Pham and Klinkert (2008) 1-2 1-2-3 1-2-3 - 1-7 1
Roland et al. (2006) 1-3 1-2-3 5 - 1-3 3-8
Roland et al. (2010) 1-3 1-2-3 5 - 1-3 3-8
van Essen, Hans, et al. (2012) 1 - - 2 1-4-6 10
van Essen, Hurink, Hartholt, and van den Akker (2012) 2 1-2-3 1-3 2-3 1 10
Vijayakumar et al. (2013) 1-3 1-2 3 - 1-4 10
Woaullink et al. (2007) - - 2 6 3-7-10
Our model 1 1-2-3 1-3-4-5 1-2 1-2-5 1

Type of problem: 1 (scheduling); 2 (rescheduling); 3 (planning). /| Medical staff: 1 (surgeons); 2 (nurses); 3 (anesthesiologists). /| Resource type: 1 (recovery beds); 2 (ICU); 3
(equipment); 4 (instruments); 5 (others) // Stochastic aspects: 1 (surgery duration); 2 (emergency surgeries); 3 (surgery cancellations). /| Solution method: 1 (Mathematical
programming model); 2 (CP); 3 (GA); 4 (other heuristics); 5 (metaheuristics); 6 (simulation); 7 (Lagrangian relaxation); 8 (Dynamic programming); 9 (Branch-and-price). //
Criteria: 1 (makespan); 2 (total completion time); 3 (overtime); 4 (number of beds); 5 (start time); 6 (cost); 7 (OR utilization); 8 (opening OR); 9 (idle time); 10 (others).

(Gupta, 1988). To learn more about the HFS see Ruiz and Vazquez-
Rodriguez (2010) and Ribas, Leisten, and Framinan (2010), as well
as the references therein.

A simple flow shop is an environment in which products, tasks,
or jobs, require processing involving more than one stage. Each
stage consists of a machine, and adds to the final result. A hybrid
flow shop has more than one (parallel) machine in at least one of
the stages, and all machines in a stage can perform either the same
task, or have different capabilities. Each machine can handle only
one product, task or job at a time, and each task is processed by
only one machine in each stage.

Our first approach is addressing the problem as a two-stage
HFS. Each job (surgery) is assigned to exactly one machine, belong-
ing to the set of parallel machines in stage 1 (ORs), and exactly to
one machine belonging to the set of parallel machines at stage 2
(beds of PACU). In both stages, there is a subset of machines that
can perform the job. Each job requires additional resources to be
processed. There are setup times that are sequence-dependent,
and a restriction of 'no wait’ to move from stage 1 to stage 2. The
objective is to minimize the makespan in stage 1.

Finally, there are urgent jobs (emergency surgeries) that can
arrive, which must be attended within a standard amount of time.
To address the emergency surgery issue, based on the results of
Waullink et al. (2007), we do not consider assigning special ORs
for such surgeries. Rather, we use the approach proposed in van
Essen, Hans, et al. (2012), consisting in minimizing the maximum
waiting time for an emergency surgery, and we transform it into
a problem constraint, whereas we limit the maximum waiting time
to a pre-determined value (60 min based on the ‘golden rule’).

Fig. 1 presents an example in which 3 surgeries (a, b, and c) are
scheduled in 2 ORs and 2 beds of PACU. Note that the start of sur-

gery c is delayed at stage 1, to have bed availability in stage 2 with-
out a waiting period. The surgeon assigned to surgery c is only
present during the surgical act, while the resource used (a nurse,
for example) is present since the preparation of the surgery starts
until it finishes. If emergency surgeries are required, they can be
performed at the beginning of the day, between surgeries or at
the end of the day. The double arrow indicates the maximum wait-
ing time for an emergency surgery (one hour). Note that this limit
is not satisfied after surgery c starts. If an emergency surgery
appears, once ¢ has begun, it must wait until total completion of
c. The completion of the cleaning after surgery b in OR 1 determi-
nes the makespan.

To solve the problem, we formulate a MILP. We transform it into
a Constraint Programming model, as this methodology has shown
to produce good quality feasible solutions with low computational
cost.

4.1. Mathematical milp model

The notation for the model is as follows.

Indexes
i, j surgeries
k ORs and beds of PACU

h stages

a surgeons

r resources

Parameters

n total number of surgeries scheduled
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Fig. 1. Scheduling of surgeries.

ph duration time (h =1 is surgical act, h =2 is post
anesthesia recovery) of surgery j
S; setup time of surgery j

L clean time of surgery j
S setup time of surgeon q, after to performing the surgery
J

Sr setup time of resource r

Emax  maximum waiting time for emergency surgery
m"  numbers of ORs/beds (h=1 is ORs, h =2 is beds)
Uy numbers of resource r

G large integer number

] set of surgeries

Kj»' set of ORs/beds (h=1 is OR, h =2 is bed) where can be
assigned to the surgery j

Jﬁ set of surgeries that can be assigned to the OR/bed k
(h=1is OR, h=2 is bed)

M set of surgeons

M, set of surgeries assigned to the surgeon a

U set of resources

U; set of resources required for surgery j

I set of surgeries that require the resource r
B set of surgeries that require priority
B; set of surgeries that cannot precede surgery j

The following are the variables of the model. These variables specify
the allocation of surgeries to operating rooms in stage 1 and post-
anesthesia beds in stage 2. Also, they allow allocating resources
and scheduling in such a way that the maximum waiting time for
emergency surgeries, Enq isS not exceeded.

xj’}( =1 if surgery j, in stage h (h=1 is OR, h=2 is bed), is
assigned to the OR or bed k, 0 otherwise.

yg- =1 if the end of surgery i precedes the end of surgery j in
stage h, 0 otherwise.

wj, = 1if the start of surgery i precedes the end of surgery j and
both surgeries require of resource r, 0 otherwise.

W,.er =1 if surgery i and surgery j are performed in parallel at an
instant of time and both surgeries require of resource r, 0
otherwise.

z}j =1 if the gap between the start of surgery i and the end of

surgery j is greater than E4, O otherwise.

251

z?j =1 if the completion of the cleaning of surgery i precedes the

completion of the cleaning of surgery j, 0 otherwise.

z;fj =1 if the parallel performing time of the surgeries i and j is

greater than E,,,, 0 otherwise.

C? = completion time of scheduled surgery i in stage h.

Cmax = closing time of the last OR.

The formulation of the model is as follows:

Min Cpnax
Subject to :

dx=1, Vh=12je]

keK}!

Ch<C+G(—yh), Vh=12jefic]i#]
Yi+yi=1, Vh=12jefic]i#]

G >S+P, Vjel

C—C >Li+S+P +G(x+x+yi—3), Vjelk
eKjsielii#]

C-C=>P+GX+x+y2-3), VjielikeKi
cfpi#j

C=C+P, vje]

Xy + Xl +y <2, Vk=1..m';jeynBiieBnJ;

Cl =P >C +S' ~ Gy}, VaeMjeMyiecM,i#j

C—P —Si>C+S-Gwj, VreUje]sieli#j

Vit Wy +wi, <2+4wy,, VreUie]sjeli#]j

dwp <u -1, VreUie],

jslr
j#
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C+L<C+Li+G(-2), Vjielie]i#j (14)
Z+zZi=1, Vjeliie]i#] (15)

Emax > (] + L) = (C} =P/ =Si) —2}'G, VjeJiie]i#]

le+5j+Lj >Emax (16)
Zi+zi<zi+1, Vielijeli#i (17)
dzp<m' =2, Vie]:P{+Si+Li>Enn (18)

Jel
JF

Cnax > G+, Vje) (19)
xh€{0,1}, Vh=12jef;keKk] (20)
yhe{0,1}, Vh=12jeliic]i#] (21)
wi, Wy, €{0,1}, VreUje];ie]i#j (22)
25,22, €{0,1}, Vjelie]i#j (23)
Ch'>0, VYh=1,2;ie] (24)
Crax = 0, (25)

The objective function (1) minimizes the closing time of the last OR
in use. Constraint (2) requires all surgeries being assigned to only
one OR and one bed of PACU. Constraint (3) states that the surgery
i precedes surgery j in stage h, if the completion time of i is lesser
than or equal to the completion time of surgery j in stage h. Con-
straint (4) requires a single predecessor for each combination of
two surgeries. Constraint (5) sets the completion time of any sur-
gery to a value greater or equal than the sum of the setup time of
the surgery plus the duration of the surgical act. Constraint (6) is
the set of constraints that determines the precedence between
surgeries that are assigned to a same OR. Constraint (7) determines
the precedence between surgeries that are assigned to a same bed
of PACU. Constraint (8) forces no waiting times to move from stage
1 to stage 2, whereas (9) enforces priorities between operations.
Constraint (10) determines the order in which each surgeon per-
forms her/his assigned surgeries. Constraint (11) forces the start
of surgery that uses a determined resource to never start before
the completion of another surgery using the same resource. Con-
straint (12) avoids surgeries using the same resource to be per-
formed at the same time or in parallel, while (13) states that the
maximum number of surgeries programmed in parallel is given
by the number of available resources. Constraint (14) determines
the precedence between the completions of the cleaning activities
after the surgeries. For each combination of surgeries, constraint
(15) states that there is only one predecessor. Constraint (16)
requires the difference between the end of surgery j and the start
of surgery i to be lesser than or equal to E,. Constraint (17) deter-
mines whether the time of the surgeries scheduled in parallel is
greater than Epg. Constraint (18) ensures that E,q is met. Con-
straint (19) indicates that Cy,4 is greater or equal to the closing time
of any ORs. Finally, Constraints (20)-(25) define the domain of the
variables.

4.2. Constraint programming model

The CP model is formulated using the same indexes, parameters
and sets described for the MILP. Additionally, it uses the following
variables:

= OR(bed) where is programmed the surgery j (h=1 is OR,
h =2 is bed).

Cfmrtj = start time of surgery j in the stage h.
C’gnd] = end time of surgery j in the stage h.

The CP uses the same objective function (1) as the MILP, and the
following are the sets of constraints:

C;tart] + P)l +Sj = C;ndjﬁ Vi€l (26)
Csztar[] +Pj2 = C?ndj’ vjel (27)
Csztart] C;ndﬁ VJ GJ (28)
if le = xi1 then C2’11dj + Lj < Cstartl \ Cendl + L C;tartﬁ VJ

cliie]i#j (29)
lf X - X then Cend] Cstam v Ctzzndt = Csztartj7 V] E.];i

eJi#j (30)
if X} =x/ then Cend] +Li < Clyni» Vi€BiicB (31)
C:ndj + Sa Csltam +5iv Cendz + Sa Csltartj + sj7 VaeM;j

EMgieMyi#j (32)

: 1 1 1 1 1
u-12 Z(lf Cstartj < Cendi +5: A Csmrti < Cendj +5: A Cendj

ieJy
i#f

<Cli then1> VreUje], (33)

m] -2 = § :<1f C:‘ndj + L C;mru > EmﬂX A Cendj end1 then 1)
ie]
i

Vje]: Pl +Tj+L > Ena (34)
Condj +Lj < Cnax, Vi €] (35)
XeKk!, Vjel;h=12 (36)
ChiartjChnaj > 0, Yh=1,2;j €] (37)

The set of constraints in (26) states that the surgery end time is its
start time plus the duration of the preparation and the surgical act
duration. Constraint (27) indicates that the completion time of sur-
gery in stage 2, is the start of the post-anesthesia recovery plus the
recovery time. Constraint (28) is the no wait constraint between
stages one and two, for any surgery. Constraint (29) indicates that,
if two operations are scheduled in the same OR, one must precede
the other. Constraint (30) is similar to (29), for the recovery phase.
Constraint (31) sets priorities between surgeries. Constraint (32)
indicates that a surgeon can only perform one surgery at a time.
Constraint (33) indicates that the number of units of a resource
used simultaneously depends on the available units for that
resource. Constraint (34) restricts the maximum waiting time for
emergency surgeries. Constraint (35) forces Cpq to be equal to
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the closing time of the latest ORs. Finally, Constraints (36), (37)
declare the domain of the decision variables.

5. Metaheuristic

Due to the complexity of the problem (it is NP Hard), a meta-
heuristic is proposed, based on a genetic algorithm (GA) and a con-
structive heuristic (CH), which finds feasible solutions to large-
scale instances within a reasonable execution time.

The main idea is as follows: the GA generates a population con-
sisting of vectors representing possible sequences in which the
surgeries could be assigned to ORs. For each sequence, the CH com-
putes the corresponding values of the starting and ending times of
all the surgeries (vector elements), assigns resources and post-
anesthesia beds to them according to availability, checks for feasi-
bility, and computes the sequence’s objective value. Each GA-
generated sequence, completed with the values computed by the
CH, is a feasible solution to the problem. In order to improve the
quality of the population, the GA replaces old solutions with new
ones, if these have a better objective value. Once the stopping con-
dition is met, the best solution is selected among all the solutions
in the population.

5.1. Genetic algorithm

The GA generates an initial population by randomly performing
permutations on a vector containing all the surgeries. Each permu-
tation or GA generated solution represents a sequence in which
surgeries can be assigned to ORs.

In each iteration, the GA randomly chooses two solutions from
the current population and crosses or combines them to generate
two new solutions. One of these new solutions is selected as a can-
didate to replace an old solution. With a low probability, the GA
applies a mutation operator to this candidate solution, consisting
of trying all exchange options between any two of its elements
(surgeries) and evaluating the objective each time. The best result-
ing solution is stored and becomes the new candidate solution. The
candidate solution replaces the worst solution in the current pop-
ulation if its objective value is better, maintaining a fixed size
population.

We use two stopping conditions: a number of consecutive iter-
ations after which there has been no improvement in the value of
the objective function and a maximum of total iterations.

The crossing between two solutions in the reproductive stage of
the GA is the linear order crossover described in Falkenauer and
Bouffouix (1991). Let vectors wect; and vect, be the solutions
selected for the crossover and vect, and vects the resulting solu-
tions after the crossover. Two cut points within vectors vect; and
vect, are selected randomly, cut1 and cut2. All elements of vect,
between these cuts are preserved in vect,, in the same positions.
The remaining elements of vect, are filled using elements of
vect,, as follows: pick the element of vect, to the right of cut2
and replace the same element of vect,, if the surgery represented
by that element has not been already included in vect,. Iterate tak-
ing each time the next element to the right in both vectors, and
when the end of the vector is reached, do the same starting from
the first element until cut1 is reached. In the example of Fig. 2,
the elements between cut1l and cut2, third and fourth elements
of vect,, are preserved in vect,. Then, starting from cut2, the value
e from wvect, should replace the same position of vect,, but since e
already belongs to vect,, the procedure moves to the next element
to the right in the origin vector vect,. In this case, there are no
more elements to the right in vect;, and the procedure jumps to
the first element of vect,, which is a. Since surgery a is already con-
tained in vect,, the next element in vect,, b, is used to fill the posi-

tion in vect,. The following elements of vect, are filled with the
next elements of vect,, c and d.

5.2. Constructive heuristic

The CH performs all the calculations required to compute the
value of the objective function for each sequence of surgeries gen-
erated by the GA. The CH consists of the following 7 steps. The first
6 steps are applied to each surgery or element of the sequence,
while the seventh step is applied once the 6 first steps have been
applied to all surgeries in the sequence:

Step 1: Starting Time of Surgery. Assign the surgery to the least
used OR. Set the starting time of the surgery.

Step 2: Availability of surgeon. Delay (if required) the starting
time of the surgery just assigned, to meet the soonest time at
which the surgeon is available.

Step 3: Availability of Resources. Delay (if required) the starting
time of the surgery to meet the soonest time at which all the
resources are available.

Step 4: Maximum waiting time. Delay (if required) the starting
time of the surgery to meet Ej;q.

Step 5: Availability of Bed in the PACU. Delay (if required) the
starting time of the surgery to meet the soonest time at which
a post-anesthesia bed is available.

Step 6: Time Allocation. Compute the occupancy time for all
resources (OR, bed, nurse, etc.).

Step 7: Compute Cpq. If there are violated priorities between
surgeries, repair the scheduling and recalculate the times.
Otherwise, compute Cpqy.

5.3. Complete metaheuristic

Fig. 3 presents the pseudo-code of the complete metaheuristic,
including GA and CH.

6. Computational experiments

The master group of surgeries shown in Table 2 was generated
randomly. The master group includes information on the clinical
specialty to which each surgery belongs, the resources required
at the time of the operation and the assigned surgeon.

The duration of the surgeries in master Table 2, shown in
Table 3, was generated randomly using a log-normal distribution,
along with the information presented in Table 3, taken from
Marcon, Kharraja, Smolski, Luquet, and Viale (2003). To generate
setup times and cleaning times, the methodology of Jebali et al.
(2006) was used. If the duration of surgery was less than 90 min,
the preparation time of the OR was set to 10 min, otherwise to
20 min. The preparation and anesthesia time of the patient was
10 min if the surgical act duration was less than 60 min, 20 min
if the surgical act lasted between 60 and 120 min, and 30 min
otherwise. If the duration of surgical act was less than 20 min,
the OR cleaning lasted 15 min, 30 min otherwise. The recovery
time post-anesthesia is generated using a log-normal distribution
with a mean equal to the duration of surgery minus 10 min, and
a standard deviation of 15 min (Jebali et al., 2006).

Furthermore, if the time of surgical act was less than 60 min, a
time of preparation of the surgeon was set to 15 min. If the time of
surgical act was between 60 and 120 min, the preparation time of
the surgeon was 30 min, and 45 min otherwise. Preparation time of
resources was generated randomly between 15 and 90 min.

All times were rounded to multiples of 5. For example, if the
random time value obtained is 33.8 min, it was rounded to
35 min. This is consistent with what is done in practice. The
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vect:[ b |c |a e |d]

vect,[e [d]a]e]b]

cutl cut2
gUECQIbIc aleld]
2
g
gV€Ctz|a|b cld]e]

vecty[e [d]a]e [b]

vects[a [ e [ [d]b |

vect3|c|b|e|d|a|

Population

New vector

Uect3|c|b|e|d|a|

New Population

Fig. 2. Example GA.

While (the stopping condition is not met) Do
Select randomly two solutions for crossover.

Supply and save the best solution obtained.

CH function:

For each surgery in the sequence
Apply step 1 to step 6.

Apply step 7.

Return the solution to GA.

Generate an initial population (set of solution vectors). Evaluate the solutions using CH function.

Apply the crossing operator to the solutions, obtaining two new solutions.

Save one of the new solutions as solution candidate. Evaluate using the CH function.

With a low probability, apply the mutation operator to all pairs of elements in the solution
candidate. Evaluate using the CH function. Save the best as solution candidate

Replace the worst solution in the population with the solution candidate if its value is better

Fig. 3. Heuristic Pseudo-code.

Table 2
Master set of surgeries to be scheduled.

Type of surgery Id. Surgery Resources Surgeon Type of surgery Id. Surgery Resources Surgeon

General 1 1 2 1 Ambulatory 21 17

2 2 22 1 10 11 13

3 2 3 3 23 8 7 14

4 1 4 24 15

5 4 5 Orthopedics 25 13 18

6 6 26 14 15 19

7 3 5 6 7 27 14 15 20

8 1 28 18

Endoscopy and radiology 9 1 8 29 6 19

10 7 8 9 Otorhino-laryngology 30 4 5 21

11 10 31 16 22

12 11 32 16 17 18 23

13 8 9 10 12 33 21

14 10 8 34 17 18 22

15 9 35 16 23

16 9 10 Ophthalmology 36 4 18 19 25

Ambulatory 17 2 11 13 37 26

18 14 38 25

19 11 7 15 39 19 26

20 12 13 16 40 19 27

number of ORs used was generated as the sum of the time of
preparation, cleaning and surgical act divided by 600 min (10 h),
ie. m!=(1/600) * ZjE](Lj+Tj+Pj1). The number of post-
anesthesia beds was generated randomly, varying in the range
m' —1 < m? < 2m'. The number of resource units was generated
randomly varying in the range 1 < u, < |/,

30 instances were generated using the surgeries in the master
set. These instances consider 15, 16, 17, 19, 21, 24, 27, 30, 35 and
40 surgeries, and for each number of surgeries, three instances
were developed. For example, for instances 1, 2 and 3, 15 surgeries

were selected randomly from Table 2, and so on. For instance 28,
29 and 30, all 40 surgeries were used.

Both MILP and CP models, including the heuristic, were pro-
grammed in C++, using Win32 Console Application of Visual Studio
2010. MILP and CP were solved with the CPLEX 12.6 package. All
the algorithms were programmed with a run limit. The MILP was
run with a time limit of 1 h (3600 s) and a limit of 8 h (28,800 s)
for each instance. The CP was run with a limit of 1h and
1,000,000 failures allowed before terminating a search. The heuris-
tic was programmed to stop after 1500 iterations without changes
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Table 3

Duration of surgeries.
Type of surgery Mean duration of Standard Range

surgery deviation
General 180 60 [30-420]
Endoscopy and 30 10 [20-120]
radiology

Ambulatory 30 10 [10-60]
Orthopedics 120 30 [45-200]
Otorhinolaryngology 45 30 [20-180]
Ophthalmology 60 15 [30-120]

in the population or a maximum of 10,000 total iterations. The
computational tests were performed on a computer with operating
system Windows 7 Professional 64-bit, a processor Intel (R) Core
(TM) i7-2600 3.40 GHz CPU @ 3.40 GHz and 16 GB RAM. All tests
were performed using only one processor core.

Table 4 shows some of the results of the computational tests
using the MILP, CP and heuristic. The first column of Table 4 shows
the number of the instance while the second shows the total num-
ber of scheduled surgeries considered in that instance. The objec-
tive value, run time and gap value obtained with the MILP, for a
time limit of 1 h, is shown in the third, fourth and fifth column.
The sixth column shows the gap between the solution of the MILP
with the one-hour limit, and the best gap available (obtained by
using MILP with a time limit of 8 h). The seventh eighth and ninth
columns show the objective value, run time and gap obtained with
the MILP when the time limit was of 8 h. The objective value, gap
(between MILP bounds and CP solutions) and the run time of CP are
shown in the tenth, eleventh and twelfth column, while the thir-
teenth column shows the type of solution obtained (feasible or
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optimal). The fourteenth, fifteenth and sixteenth columns show
the objective, gap and CP run time that were executed with a limit
value of 1 h. The values of the objective, gap (between MILP bounds
and heuristic solutions) and run times for the heuristic are shown
in the remaining columns. The MILP reached optimal values before
the time limit in 19 of the 30 instances. By comparing instances
that were stopped at the 1 and 8 h limits, an average change of
1.7% is observed in the gap, with a range of variation in the value
of the objective of 0-35 min. In general, seven additional hours
of running do not improve significantly the value of the objective,
except for instances 8, 14 and 21.

CP shows optimality in 10 instances before the limits are
reached. However, it achieves the same objective value as the MILP
whenever the MILP reaches optimality. However, in instance 19,
the objective value for both MILP and CP is 830, but only MILP
can prove optimality. When using a limit of 1,000,000 failures, an
average solution time of 1265s was required, whereas with a
one hour time limit, an average resolution time of 2400s was
obtained. If both limits are combined, an average run time of
1000 s is obtained. In all these cases, the solutions are very similar.
In only five of the instances, the objective values are different, and
even when both types of limits are imposed, the objective values
(Cmax) Never increase by more than 10 min as compared to impos-
ing only time or only failure limits. Comparing the CP with the
MILP (both executed for 1 h), MILP gets better solutions than CP
in 6 instances, while CP is better in 3 instances. The largest differ-
ence occurs in instance 8, when the CP overcomes the MILP.

The heuristic obtained very good solutions in a very short run
time. It found the optimal solution in 18 of the 19 solutions shown
to be optimal by the MILP. The heuristic even achieved better solu-
tions than MILP with a time limit of 8 h in instances 13 and 21.

Table 4
Comparison of solution methods.
Instance Number of  MILP (3600 s) MILP (28,800 s) CP (Fail Limit) CP (3600 s) Heuristic
SUTBETIEs Obj. Time Gap Gap Obj. Time Gap Obj. Time Gap Sol.  Obj. Time Gap Obj. Time Gap
(min)  (s) (%) (%) (min) (s) (%)  (min) (s) (%) (min)  (s) (%) (min) (s) (%)

1 15 570 153 0.0 414.6 Feas Limit 1.0
2 15 505  Limit 4.0 Limit 510 4549 49  Feas ' 1.7
3 15 570  Limit 263 235 Limit 235 590 3935 26.1 Feas 585 25,5 590 14 261
4 16 545  Limit 371 307 Limit 30.7 560 599.9 32,6 Feas 560 326 550 1.6 313
5 16 515  Limit 17.5 Limit 525 623.0 19.1 Feas 525 19.1 520 1.5 183
6 16 525  Limit 171 Limit 530 4440 179 Feas 530 17.9 ) 2.1 '
7 17 560  Limit 1.0 Limit 575 680.0 3.6 Feas 575 36 565 33 1.9
8 17 585  Limit 26.5 550 Limit 21.8 561 583.0 233 Feas 560 232 555 4.2 22.5
9 17 625 9.6 0.0 ' ) \ ' 4.1 Oopt 4.1 ' ‘ 14 '

10 19 685 144 0.0 1.6 Opt 1.6 13

11 19 670 6.2 0.0 2.5 Opt 2.5 1.5

12 19 565  Limit 134 Limit 575 4063 149  Feas 575 14.9 2.7

13 21 605  Limit 16.5 Limit 615 945.0 179  Feas ‘ 595 4.0 15.1

14 21 665  Limit 22.6 645 Limit 202 655 1060.5 214  Feas 655 214 650 5.0 20.8

15 21 805 3.6 0.0 0.9 Opt 0.9 1.7

16 24 770 545 0.0 1.6 Oopt 1.6 ‘ ‘ 2.5

17 24 560 120.1 0.0 8.1 Opt 8.1 34

18 24 600 58.8 0.0 6.4 Opt 6.4 6.6

19 27 830 77.0 0.0 1790.6 Feas Limit 5.1

20 27 705  507.5 0.0 2566.4 Feas Limit 720 6.4 2.1

21 27 575  Limit 40.9 408 555 Limit 387 571 1704.7 404  Feas 570 403 545 84 376

22 30 705 1432 0.0 2801.2 Feas 14.8

23 30 1165 311.6 0.0 5562.3 Feas 5.0

24 30 975 39.8 0.0 2078.4 Feas 5.7

25 35 765 3202 0.0 22.6 Opt 22.6 18.5

26 35 865 145.9 0.0 15.5 Opt 15.5 16.8

27 35 945 102.6 0.0 3450.5 Feas 9.7

28 40 815 12044 0.0 5945.3 Feas 31.0

29 40 780 4729 0.0 21.5 Opt 21.5 23.2

30 40 730 1072.0 0.0 5378.4 Feas 30.2

" Identical values to those obtained by the MILP with a time limit of 3600 s.
" Gap calculated using the MILP bounds with a time limit of 28,000 s.
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Table 5
Robustness of the solution.
Instance Number of Surgery Extra Delay in
surgeries delay waiting time  Cipax
Mean S.D. Mean S.D. Mean S.D.
3 15 13.1 303 45 160 67.0 513
9 17 194 417 15 30 495 583
17 24 234 465 09 22 655 486
22 30 23.1 52.7 0.0 05 582 532
30 40 289 534 00 05 636 57.8

For comparison purposes, the problem was solved in three
relaxed versions: without consideration of the emergency surg-
eries, i.e., without caring for having intervals of at most one hour;
without the second stage (recovery), and without resources. By not
considering emergency surgeries, 47% of the solutions violate the
Emax. When it did not consider the recovery beds, 74% of the
instances had a schedule conflict with respect to the availability
of beds. By not considering the resources, 100% of the solutions
had conflicts regarding resource demand. These relaxed solutions
show the relevance of considering all these factors together.

As the programming in our method was obtained using average
surgery times, we analyzed the robustness of the solution consid-
ering the uncertainty in the duration of the surgeries. We gener-
ated 2000 realizations of the duration of the surgeries, using a
Monte Carlo method. The arrival times of up to 4 emergency surg-
eries in a day were assumed uniformly distributed between 0 and
Cmax. The results were analyzed, keeping fixed the scheduling
obtained by the MILP, CP model or heuristics. The analysis focused
on the delay of each surgery with respect to its scheduled starting
time, the waiting time that an emergency surgery can suffer in
excess of Enq, and the delay in the closing time of the last OR
(Cinax). Table 5 shows the mean and standard deviation of the
results for five instances of different sizes.

As Table 5 shows, when considering uncertainty in surgery
times the average closing time is longer than the value obtained
deterministically in up to approximately one hour, with a standard
deviation that is also close to one hour. As the number of scheduled
surgeries increases, the delay in relation to the scheduled start
time of each surgery tends to increase. The waiting time of emer-
gency surgeries barely exceeds the maximum time E,q. This is
because the programming distributes short surgeries among the
different ORs and in time, avoiding blocking simultaneously all
ORs for too long times. Moreover, as the size of the instance grows,
so does the number of ORs, increasing the probability of having an
OR available on arrival of an emergency surgery.

7. Conclusions

Efficient scheduling of operating rooms is extremely difficult,
and any improvement in the process could mean significant sav-
ings. Usually, this problem is solved sequentially, i.e., surgeries
are assigned to ORs in a first stage. In a second stage, the equip-
ment and other resources are assigned to the surgeries and, finally,
the recovery beds are added to the programming. Solving this
problem sequentially does not allow finding the bottlenecks in
the programming until the last stage is solved and the recovery
beds assigned. In this paper we develop several tools to improve
the scheduling, that address the issue more comprehensively,
while addressing all stages at once, considering not only the
assignment of surgeries to operating rooms, but all the resources
required for each surgery (human and material), and the recovery
beds. Jointly addressing all these issues not only reduces bottle-
necks, but allows finding a truly optimal solution to the problem.
Furthermore, we include in the programming the emergency

surgeries, through a deterministic solution that considers spacing
the planned inter-surgery times by no more than one hour. This
procedure assures prompt attention to any emergency surgery that
might be required. The developed tools include a MILP model, a CP
model and an ad-hoc heuristic, whose results are compared in
run time and quality. Finally, we perform a probabilistic analysis
of the problem, by generating a number of realizations and
checking the performance of the procedure.

The CP model delivers good quality solutions in run times that
are, in general, shorter than those of the MILP. However, the
improvement is not significant. The metaheuristic, on the other
hand, delivers solutions of very good quality in short run times,
with averages of 7 s, on instances ranging from 15 to 40 surgeries
requiring scheduling. The gap between MILP solutions and heuris-
tic solutions never exceeded 3.6%, while in some instances, the
solutions found by the heuristic were better than solutions
obtained by using time-limited MILP in up to a 5.2%. With these
short run times and good results, this heuristic could also be used
for online surgery rescheduling, with small modifications.

A natural next step is explicitly including uncertainty in the
duration of the activities and arrival of emergency surgeries.
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