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Stretching over 4300 km north to south, Chile is a special country with complicated landscapes and rich biodiver-
sity. Accurate and timely updated land cover map of Chile in detailed classification categories is highly demanded
for many applications. A conclusive land cover map integrated from multi-seasonal mapping results and a sea-
sonal dynamic map series were produced using Landsat 8 imagery mainly acquired in 2013 and 2014, supple-
mented by MODIS Enhanced Vegetation Index data, high resolution imagery on Google Earth, and Shuttle
Radar Topography Mission DEM data. The overall accuracy is 80% for the integrated map at level 1 and 73% for

K;ﬁg;&r mapping level 2 based on independent validation data. Accuracies for seasonal map series were also assessed, which is
Landsat around 70% for each season, greatly improved by integrated use of seasonal information. The importance of
Seasonal dynamics growing season imagery was proved in our analysis. The analysis of the spatial variation of accuracies among var-
Biodiversity ious ecoregions indicates that the accuracy for land cover mapping decreases gradually from central Chile to both

30m north and south. More mapping efforts for those ecoregions are needed. In addition, the training dataset includes
sample points spatially distributed in the whole country, temporally distributed throughout the year, and cate-
gorically encompassing all land cover types. This training dataset constitutes a universal sample set allowing
us to map land cover from any Landsat 8 image acquired in Chile without additional ad hoc training sample
collection.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction spatial scales, the quality of land cover maps are hardly satisfactory to

meet the needs of diverse user communities (Yu et al., 2014a). A large

Land cover information plays a key role in many Earth system stud-
ies (Yang et al., 2013). It is an important input to Earth system models
(Dai et al., 2003; Jung, Henkel, Herold, & Churkina, 2006; Liu, Chen,
Cihlar, & Park, 1997) or habitat models (Liang et al., 2010; Ozesmi &
Mitsch, 1997; Pearson, Dawson, & Liu, 2004; Yu, Shi, & Gong, 2015). It
is also essential for natural resources planning and management
(Gong, 2012; LaFontaine, Hay, Viger, Regan, & Markstrom, 2015;
Pauleit & Duhme, 2000; Zhong, Gong, & Biging, 2012). Although a
large number of efforts have been made to map land cover at various
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gap in land cover mapping is the shortage of land cover maps at the na-
tional scale for many countries in the world. Global land cover maps
cannot fully fill this gap because their land cover categories are usually
designed for specific global applications. Given the considerably im-
proved availability of medium resolution satellite data and data pro-
cessing capabilities, a critical task in producing useful land cover maps
for a particular country is adopting a land cover classification scheme
developed with the participation of users in that country. Chile is such
a country that does not have a comprehensive land cover map at medi-
um spatial resolution. This study describes our national land cover map-
ping effort for Chile.

Bounded by the Pacific on the west, the Andes on the east and the
Atacama Desert in the north, Chile is a virtual continent island
stretching over 4300 km north to south with rich biodiversity. Notably
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Table 1
Regional land cover products covering the entire Chile.
Product name Data time Resolution Sensor Scheme Reference
UMD SA 1987-1983 1 km AVHRR 16 classes Townshend et al. (1987)
LBA-ECO 1987-1991 1km AVHRR 39 classes Stone et al. (1994)
JRCSA 1995-2000 1km ATSR, VGT, OLS 10 classes (L1) Eva et al. (2004)
SERENA 2008 500 m MODIS 22 classes Blanco et al. (2013)
MERISAM2009 2009-2010 300 m MERIS 9 classes Hojas Gascon et al. (2012)
USGS SA 2010 30m TM, ETM + 5 classes Giri & Long (2014)

a high rate (about 45%) of the species are endemic, which can be attrib-
uted to its isolation (Squeo et al., 2012). The climate regions vary from
tropical desert and semi-desert in the north, Mediterranean in the mid-
dle, temperate oceanic and sub-polar oceanic in the south. Under the ef-
fects of both climate and topography, the natural vegetation types are
highly diverse. In the north lies the driest Atacama Desert, with almost
no vegetation at its heart, low scrub vegetation towards the Andes
and sparse shrub called the “Lomas” towards the coast, highly depend-
ing on coastal fog and humidity. After a transitional zone of matorral
(shrubs) and savannas southward, the vegetation changes to Mediter-
ranean sclerophyll woodlands and high shrubs. With the remarkable
presence of the typical Araucania forests and krummbholz, the deciduous
forests in central Chile transit towards temperate rain forests with high
precipitation levels. For the fjords and islands in the far south, it be-
comes moorlands or icefields and oceanic forests reappear (Moreira-
Mufioz, 2011). Chile's complicated landscape and diverse vegetation re-
quires a monitoring approach that uses multi-temporal imagery of
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sufficient spatial resolution to capture important phases in the vegeta-
tion dynamics of the landscape. For example, a series of seasonal dy-
namic land cover map of high resolution could even capture the
moment when geophytes and annuals sprout from the seemingly bare
land.

Since the 1950s, the land cover type of southern-central Chile is
dominated by fast-growing commercial plantations, mainly including
radiate pine and eucalyptus (Toro & Gessel, 1999). Forests change main-
ly occurs in this region, with a loss of more than 1 million hectares and a
concurrent gain of about the same area from 2001 to 2013, according to
Global Forest Watch (an online platform for the public to help monitor
forest change, http://www.globalforestwatch.org/), reflecting the rapid
rotations of logging and replantation of trees. With the log exports being
reduced, harvested wood is processed into primary and secondary
products, including paper, pulp, sawnwood, engineered wood products
and furniture, and 75% of the product is exported mainly to the United
States, Japan and China (Cartwright & Gaston, 2002). The carbon
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Fig. 1. Flowchart of the Chilean land cover mapping process.



172 Y. Zhao et al. /| Remote Sensing of Environment 183 (2016) 170-185

Table 2
Land cover classes in the classification scheme used in this study.
Level 1 Level 2 Level 3
100 croplands 110 rice fields
120 greenhouse farming
130 other croplands
140 orchards
150 bare croplands/fallow
200 forests 210 natural broadleaf 211 primary
212 secondary
220 natural conifer 221 primary

222 secondary
230 natural mixed
240 broadleaf plantations 241 old
plantations
242 clearcuts
251 old
plantations
252 clearcuts

250 conifer plantations

300 grasslands 310 pastures

320 other grasslands

330 withered grasslands
410 shrublands

420 shrubs and sparse trees mosaic
430 succulents

440 shrub plantations
450 withered shrublands
510 marshlands

520 mudflats

530 other wetlands

610 lakes

620 reservoirs/ponds
630 Rivers

640 ocean

400 shrublands

500 wetlands

600 water bodies

800 impervious
surfaces
900 barren lands 910 dry salt flats

920 sandy areas

930 bare exposed rocks 931 rocks
932 gravels
1000 snow and ice 1010 snow
1020 ice

1200 clouds

sequestration dynamics and carbon sink potential of plantations are also
of wide interest (Espinosa, Acufia, Cancino, Mufioz, & Perry, 2005),
which would be greatly facilitated by a long-time series of high resolu-
tion plantation maps. Another important problem related to plantation
is the concerns about ecosystem services. The diverse native forests
were replaced by single species, affecting the habitat and biodiversity,
water regulation, and soil fertility. Having a map of the plantation and
native forests makes it possible for researchers to study the balance of
economic benefits and ecosystem services (Panayotou & Ashton,
1992). Since additional stress caused by plantations comes from insect
outbreaks (Lanfranco & Dungey, 2001), risk and vulnerability analysis
is necessary, which needs the pattern of plantation and native forests
as a basic input.

Land cover mapping has long been focused in Europe, North Ameri-
ca, and even Asia, resulting in better products over many of these areas.
Except for global land cover products, a few regional land cover prod-
ucts were developed for South America (summarized in Table 1). The
first generation of specialized land cover product for South America
was 1 km resolution using AVHRR NDVI time series acquired in April
1982 to March 1983 (Townshend, Justice, & Kalb, 1987), followed by an-
other 1 km resolution product generated by visual interpretation cover-
ing 1987 to 1991 (Stone, Schlesinger, Houghton, & Woodwell, 1994),
1 km resolution product mainly derived by Joint Research Centre of
the European Commission for 2000 (Eva et al., 2004), 300 m resolution
MERISAM2009 for 2009 (Hojas Gascon, Eva, Gobron, Simonetti, & Fritz,
2012) and 500 m resolution SERENA for 2008 (Blanco et al., 2013). The

latest product for South America was 30 m resolution derived by USGS
for 2010 using mainly Landsat 5 TM and Landsat 7 ETM + images (Giri &
Long, 2014). They only used the Landsat images of growing season, but
we believe there is more information we can extract from the images
outside the growing season. They mapped 5 classes, including trees,
open water, barren, perennial snow/ice and other vegetation, but the
classification scheme lacks details for many thematic applications. The
5 classes were conclusive land cover classes, but for many applications
we need seasonal dynamics of the land cover classes. For validation,
they used 55 of the 500 validation sites (Olofsson et al., 2012) located
in South America, and there are only 4 sites in Chile, and 3 of them are
distributed in Central Chile, so the Chile part of the product has not
been fully validated. There are also a few local maps focusing on specific
scope of applications, for example, mapping a part of Araucania Region
to study native forest loss and turnover (Altamirano et al., 2013), map-
ping a part of Maule and Bio-Bio regions to study plantation change
(Nahuelhual, Carmona, Lara, Echeverra, & Gonzalez, 2012), and map-
ping an area in the Valparaiso, O'Higgins and Metropolitan regions to
study the transformation from Mediterranean vegetation to intensive
cultural landscapes (Schulz, Cayuela, Echeverria, Salas, & Benayas,
2010).

Temporal information has long been one of the most important in-
formation source for medium resolution land cover mapping (Arvor,
Jonathan, Meirelles, Dubreuil, & Durieux, 2011; Friedl et al., 2010;
Hansen, DeFries, Townshend, & Sohlberg, 2000; Tucker, Townshend,
& Goff, 1985). With better data availability of multi-temporal high res-
olution images, the use of more than one image for a single year was
proved useful on improving mapping accuracy. The most effective ap-
plication of multi-temporal images is the croplands mapping (Brisco &
Brown, 1995; Lo, Scarpace, & Lillesand, 1986; Pefia & Brenning, 2015;
Zhong, Gong, & Biging, 2014). Besides, multi-temporal images were
also useful in mapping grasslands (Guerschman, Paruelo, Bella,
Giallorenzi, & Pacin, 2003; Henebry, 1993), forests (Fagan et al.,
2015; Wolter, Mladenoff, Host, & Crow, 1995) and wetlands (Dong et
al., 2014; Munro & Touron, 1997). Most of these studies chose two to
six images of different time to combine in the feature set (Homer et
al.,, 2007; Senf, Leitdo, Pflugmacher, van der Linden, & Hostert, 2015;
Schriever & Congalton, 1995; Zhu, Woodcock, Rogan, & Kellndorfer,
2012), but the problem is we cannot ensure the same number of
high quality images covering different path/row locations for large
scale land cover mapping. Some researchers extracted some metrics
from long or short time series (for example, median and mean of
three earliest and latest observations ordered by date) and added
them to the feature set (Potapov et al., 2015). However, in this way
we can end up with same data structure for classification inputs, but
we may have information loss in this process. This study selected a
light-weight feature set, and tried our best to make full use of our
multi-seasonal training sample set, because improving training sample
is the most direct way to improve classification performance. A com-
mon model was built for the classification of every image we have,
no matter where it was, when it was acquired or how many images
for each season we have for the same area. Additionally, the study
areas in most of the previous dynamic land cover mapping studies
that dealt with both conclusive land cover types and seasonal land
cover types were limited to regional or smaller scales (Dronova,
Gong, Wang, & Zhong, 2015; Hess, Melack, Novo, Barbosa, & Gastil,
2003; Sun, Zhao, Gong, Ma, & Dai, 2014; Wang et al., 2015). This
study is the first attempt to derive a dynamic land cover product at na-
tional scale to depict the seasonal land cover variation of Chile, a coun-
try stretching over 4300 km north to south with different climate
zones and topographic conditions.

In this paper, we described a detailed land cover database of Chile for
2014, including a conclusive land cover map and a series of seasonal dy-
namic land cover maps. The land cover maps were validated using an in-
dependent sample dataset and the accuracies were reported. The spatial
variation of accuracy among different ecoregions was analyzed as well.
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Fig. 2. The spatial distribution of training (left) and validation (right) sample set.

2. Methods

Fig. 1 illustrates an overview of the process in this mapping project,
including the data collection and pre-processing, classification scheme
and sampling design, training sample collection, classification, and ac-
curacy assessment.

2.1. Data collection and pre-processing

A total of 1605 images acquired by Landsat 8 Operational Land Imag-
er (OLI) for 2013 and 2014 were downloaded from the USGS archives.
Normally, there are several scenes for each season (i.e., spring, summer,
autumn and winter in astronomic definition) at a certain Worldwide
Reference System 2 (WRS2) path/row location, but images with more
than 20% cloud cover were dropped from the mapping dataset to reduce
the computation workload, resulting in insufficient data for some spe-
cific seasons over certain locations. To ensure at least one scene for
each season at each path/row location, three scenes with the least
cloud cover were used as supplements, including some newly acquired
in 2015. All these scenes were then radiometric calibrated and atmo-
spheric corrected using the Global Mapper (GM) software package de-
veloped by our group (Gong et al., 2013). To support the sampling,
interpretation, and post-classification analysis, ancillary data includes
the time series of a 16-day composite of Moderate Resolution Imaging
Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) for the
period of the years 2011 to 2014, a vector land cover database con-
structed by Chilean Forestry Services, and high resolution imagery on
Google Earth (Zhao et al, 2014). 30 m resolution Shuttle Radar

Topography Mission (SRTM) DEM was used as well, due to the complex
topography in Chile.

2.2. Classification scheme design and sample collection

The classification scheme was designed with Chilean geographers
and biodiversity researchers, mainly based on the scheme used in the
FROM-GLC project (Gong et al., 2013). Some classes were refined to sev-
eral subclasses, driven by the application demands on biodiversity con-
servation, resource planning and land surface modelling. This
classification scheme includes 10 classes at level 1, 30 level 2 and 35
level 3 classes (see Table 2) which are potentially separable with avail-
able data. Most of the classes could be defined using the Land Cover
Classification System (LCCS) method, which is a common language for
description and characterization of land cover features, for better com-
parison and correlation of land cover classes in different classification
schemes (Di Gregorio, 2005). With additional information on canopy
coverage and height, the classes in this scheme can be cross-walked bet-
ter to others, such as FAO land cover classification system and the IGBP
land cover classification system. These detailed classes enable the land
cover maps to be used as fundamental data in applications of different
fields. For example, to provide adequate information for forest manage-
ment and protection, plantation and natural forest were separated. The
subclasses of leaf type can be used for land surface parameterization for
models. The differentiation of herbaceous croplands, orchard, and pas-
ture made it possible to conduct further agricultural analysis, such as ag-
ricultural mode and its impact on biogeochemical cycles.
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The training and validation datasets were sampled independently generalized polygons, labelled with major land cover classes. The spatial
using stratified random sampling based on the prior knowledge provid- distribution of training and validation sample set are presented in Fig. 2.
ed by the Chilean Forestry Services Database, which contains Since the training sample set should be relatively homogeneous,

MNatural

Fig. 6. Examples showing the differences of NDVI time series derived from multi-temporal Landsat images among land cover types including natural forests and plantations. The green dots
are NDVI observations of multi-temporal Landsat images, and the orange dots are MVC results for each season.
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comprehensive and representative, 160 by 160 pixel image blocks of all
phenological stages for all 2957 sampled “seed location” were extracted
for manual interpretation. One to five training sites of the land cover
type labelled for the polygon in Chilean Forestry Services Database
were selected from each image block and labelled with a time series
of land cover class according to multi-temporal Landsat images. Fig. 3
demonstrates the multi-temporal interpretation of a training sample
in central Chile as an example. Dominated by subtropical high pressure
during summer, the precipitation is limited resulting in the seasonal al-
ternation of grassland and withered grassland. The curves next to each
window of Landsat image are the spectral profiles of the center pixel.
We can see the changing shape of the spectral profiles through multi-
temporal observations. For example, from Dec. 31 to May 5, the spectral
profiles present a wilting process of green vegetation by the decreasing
red absorption and near-infrared reflection, followed by a green-up pro-
cess after May 5 showing an increasing red absorption and near-infra-
red reflection. The land cover type was interpreted dynamically for
multi-temporal Landsat images, and interpretations for different time
were all recorded in the sample set. The interpretation was also sup-
ported by MODIS EVI time series, high resolution imagery, historical im-
agery, street views and photos on Google Earth to lower uncertainty.
Beside the acquisition time of the interpreted Landsat image (DOY and
year) and the spatial size which is homogeneous around the sample
(1, 3, 8 or 17 pixels of 30 m), the disturbance of thin clouds, cloud
shadows, relief shadows and snow background are also marked in
each record of interpretation. As a result, we collected 4107 basic loca-
tions for training. For each location we interpreted multi-temporal
Landsat images, and got 40,162 temporal interpretation records (with
an average of 10 different temporal interpretation records for each loca-
tion). Each interpretation record can be spatially expanded depending
on the spatial size which is homogeneous around the sample location
(1, 3, 8 or 17 pixels of 30 m). Finally, we got 1,227,467 pixels of 30 m
in the training dataset. The validation sample set was collected two
ways: manual interpretation and field visitation. Unlike training sam-
ples which were manually selected in the stratified sampling blocks,
validation sample sites were randomly generated by stratified sampling
to ensure an objective accuracy assessment. To get a better sense of local
land cover and collect more accurate ground-based observations,
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accumulatively 4000 km of field trips were taken as far north as
Atacama and as far south as Los Lagos. Approximately one thousand
field points were carefully collected for validation.

2.3. Classification strategy

Random Forest was chosen in this study, because it is an efficient su-
pervised classifier with top-class performance among many machine
learning methods (Gong et al., 2013). Random Forest is an ensemble
machine learning method that fits a multitude of decision trees using
subsets of training samples and integrates predictions of the individual
trees to improve classification accuracy and control over-fitting. The pa-
rameters for the classifier were determined from preliminary experi-
ments. For example, we chose 100 as the number of trees in the
forest, which achieved a good balance between prediction performance
and cost in computation time. With corresponding land cover labels, all
spectral profiles extracted from images acquired at different times for
the training sites can be used to enrich the spectral diversity of the train-
ing dataset. For the same purpose, training samples can be spatially ex-
panded surrounding the center of sample locations, according to their
homogeneity.

In the past, for land cover mapping at larger scale, images were usu-
ally classified using a model trained by training samples of similar time
and space, namely Spatial Temporal Sample Search (STS) approach
(Gong et al., 2013). Unexpectedly, a common classification model for
global land cover mapping was proved to have better accuracy (Yu et
al., 2014b). Therefore, in this study we want to build a spatial and tem-
poral common model which is suitable for the classification of any
Landsat scene. In order to test the effectiveness of the combination of
multi-temporal training samples, we trained the model with only sam-
ples of each month and each season respectively, and used each model
to classify all validation samples. The accuracies were compared with
the accuracy we got when the model was trained by the combination
of multi-temporal training samples. The feature set was simplified to
only spectral bands of single image in this experiment. According to
the results (shown in Fig. 4), model trained by the combination of
multi-temporal sample set performed better than the ones trained by
the sample set of single season or single month. Generally the model
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Fig. 7. Classification accuracies of the image acquired in each month by the model trained by training samples of each month, each season, or the whole year (new feature combination

includes multi-temporal NDVI series).
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trained by the sample set of each month worked best on the classifica-
tion of images acquired around the same time, while its performance
was weak if the time gap is large. This experiment results clearly show
the advantage of the design of using multi-temporal training sample
set in this study.

Features selected for classification include not only spectral data
and NDVI (Normalized Difference Vegetation Index) as well as
NDWI (Normalized Difference Water Index) calculated from the
Landsat scene for classification, but also a multi-season NDVI series
derived from all Landsat images acquired on different dates for the
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Fig. 8. The logical rules for the correction of seasonal land cover map according to the integrated map.
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same location to help differentiate land cover classes with seasonal
variation. Synthetic data was generated by NDVI MVC (maximum
value composite) algorithm for each season to minimize cloud con-
tamination, shadow effects, aerosol and water vapor effects
(Holben, 1986). In the calculation of the multi-season NDVI MVC se-
ries for training samples, if there are several interpretation records
(different DOYs) in the same season, records without any distur-
bance would be used with high priority. Two groups of examples
were given to show the differences of NDVI time series derived
from multi-temporal Landsat images among different land cover
types. The samples in each group are very close to each other, shar-
ing similar climate conditions, but their NDVI time series are differ-
ent due to the land cover differences. In Fig. 5, the NDVI of shrubland
begins to increase in autumn and reaches to the peak in winter. The
example of grasslands is on the mountain ridge, and the NDVI main-
tained at about 2000 throughout the year. The example of barren
lands is on the flood plain of a river, with NDVI below 1000 contin-
uously. The example of croplands starts growing when spring
comes, peaks in summer and is harvested in autumn. The spectral
data maybe similar for two land cover types in one season, but
they have different signatures of NDVI time series. Similarly, Fig. 6
shows the difference clearly among three forest types in this area.
Conifer plantations have high and stable NDVI for all seasons,
while broadleaf plantations have lower NDVI in dry summer. Natu-
ral broadleaf forests turn yellow in winter, so their NDVI drop to
the lowest. Even though the calculation of MVC results in loss of in-
formation, it helps to eliminate the disturbance of clouds, and the
temporal pattern is kept basically. We tested many combinations
of features, our final selected one achieved the best accuracies
(shown in Fig. 7), mainly owing to the multi-temporal NDVI series.
The average accuracy of all months without the multi-temporal
NDVI series in the feature set was 73.8%, but this number rose to
83.5% using final selected feature set.

All Landsat images were classified, meaning that for one path/row
location, several land cover maps were produced from images acquired
at different times. The land cover maps were integrated mainly by pixel-
based majority voting, followed by the adjustment according to the
principles of “the greenest” and “the wettest”, i.e., vegetation classes
have the highest priority on deciding the integrated land cover class
(vegetation > water > impervious surfaces > barren lands > snow and
ice > clouds). “Clouds” has the lowest priority. It will be filter out if the
corresponding pixel is categorized into any land cover type which has
higher priority than “Clouds”, and be replaced by the majority type of
the highest priority as its integrated land cover type. If all images
show that this pixel is covered by clouds, it will be kept in the final re-
sults, shown as “unidentified” in the integrated map, accounting for a
very small percentage of the map.

We consider that the integrated land cover map has lower uncer-
tainty than the individual map produced by a single image acquired at
a particular time. To get the seasonal dynamic land cover maps, majority
voting and stacking of the individual maps for each season was
corrected by the logical inference from the integrated land cover map.
In Fig. 8, the logical rules to decide whether the seasonal land cover
class should be replaced by the integrated class or kept in its original
seasonal class or assigned a modified seasonal class are presented. The
vertical axis represents the land cover class on the integrated map,
while the horizontal axis represents the land cover class on the map of
a single season for the same location. Uncertainty maps are also gener-
ated for all seasonal maps using the coding system shown by the circled
numbers in Fig. 8, following the rule that the smaller the number, the
lower the uncertainty of the seasonal map. For example, the integrated
map shows 1 pixel is shrublands, but the majority voting result for this
pixel in summer is barren, then it should be withered shrublands. The
land cover change affected by life cycle of vegetation and seasonal fluc-
tuations of water supply was depicted by these seasonal dynamic land
cover maps.
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Fig. 9. The integrated land cover map of Chile displayed at the level 1 (plus some level 2
classes) generalization.

3. Results and discussions
3.1. Products and validation
An integrated land cover map for circa 2014 at 30 m spatial resolu-

tion was generated for all three levels in the classification scheme. To
display it better, the map is shown primarily at level 1, with some
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Confusion matrix for the integrated Chilean land cover map presented at level 1 (the bold data in the table represents the number of points for which the predicted label is equal to the

reference label).

Predicted Reference
Crop Forests Grass Shrub Water Impervious Barren Snow Clouds UA (%)

Croplands 50 4 9 1 0 1 0 0 0 77
Forests 2 324 5 20 2 0 0 0 0 92
Grasslands 5 11 184 33 1 0 0 0 0 79
Shrublands 8 50 59 257 4 1 92 0 0 54
Water 0 1 1 0 50 0 5 0 0 88
Impervious 0 0 0 0 0 8 3 0 0 73
Barren 0 0 6 10 0 4 441 1 0 95
Snow/ice 0 0 2 0 0 0 3 29 0 85
Clouds 0 0 0 0 0 0 0 1 0 0
PA (%) 77 83 69 80 88 57 81 94 - 80

level 2 classes like natural forests, plantations, fallow and withered veg-
etation in Fig. 9. Accuracy assessment for this map was performed and
the overall accuracy is 80% based on an independent validation dataset
containing 1688 sample sites well-distributed in the whole country.
From the confusion matrix of the map presented at level 1 (Table 3),
we could find that all classes were classified with acceptable accuracies.
Forests and barren lands have the top users accuracies among all classes,
which are 92% and 95%, respectively. Croplands, grasslands, water, snow
and ice are classified with users accuracies around or higher than 80%.
Snow and ice have the best producers accuracy which is 94%, followed
by forests and barren bands. Shrublands have relatively high producers
accuracy, but the users accuracy is quite low. Some classified shrublands
are actually barren lands. This confusion is caused by the fact that many
shrublands in the training sample are comprised of cactus and dry
bushes whose spectral profiles are similar to barren lands. The impervi-
ous surface is the worst classified class, with quite high omission error,

because the urban areas are usually mixed pixels of paved surfaces and
vegetation. In addition, the impervious surfaces sometimes look spec-
trally similar to barren lands.

The overall accuracy for level 2 classes is 73%. Among the subclasses,
herbaceous croplands (83% for users accuracy and 74% for producers ac-
curacy), native forests (85% for users accuracy and 76% for producers ac-
curacy), conifer plantations (88% for users accuracy and 77% for
producers accuracy), marshlands (76% for users accuracy and 76% for
producers accuracy), sandy and rock areas (94% for users accuracy and
80% for producers accuracy) had good classification performance. The
level 2 maps for these classes are useful for many applications such as
biodiversity conservation, plantation management, and agriculture
planning and yield estimation. The accuracies for orchards, broadleaf
plantations, pastures, natural grasslands are ranging from 60% to 70%.
However, subclasses of shrublands are poorly classified, with the users
accuracies varying from 38% to 49% and the producers from 14% to
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Fig. 10. The seasonal land cover map series of Chile displayed at the level 1 (plus some level 2 classes) generalization.
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Table 4
Overall accuracies for seasonal land cover maps at different levels.

Product level Summer (%) Autumn (%) Winter (%) Spring (%) Integrated (%)
Level 1 corrected 70 70 69 69 80

Level 1 original 49 49 68 47

Level 2 corrected 65 64 64 64 73

Level 2 original 43 44 63 43

Level 3 corrected 53 53 54 53 59

Level 3 original 34 34 53 36

79%. Shrubs and sparse trees mosaic were the worst, highly confused
with secondary native forests.

Seasonal land cover dynamics were reflected in the seasonal maps
(Fig. 10). Phenological change of grasses and shrubs, alternation of
farming and fallow, variation of water surface, accumulating and melt-
ing of snow cover can all be seen on the seasonal maps. The enlarged
map on the upper left corner of Fig. 10 shows the area in Valparaiso Re-
gion and Santiago Metropolitan Region with a Mediterranean climate. It
is obvious to see the greening up of natural vegetation from summer to
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Fig. 11. Distribution of area with seasonal land cover change and the major type of
seasonal change.

winter and its withering up from winter to summer. The seasonal land
cover map series of the north end of the Patagonian Icefield were en-
larged and shown on the lower right corner of each map in Fig. 10, pre-
senting the seasonal expanding and shrinking of snow cover. Since for
each validation sample site, dynamic land cover type for each DOY
was recorded, the seasonal land cover maps can be validated using the
validation dataset. The overall accuracies for the seasonal land cover
maps at different level are shown in Table 4, for maps before and after
correction according to the integrated map. The overall accuracies for
the integrated map are higher than the land cover maps for each season,
and much higher than the seasonal maps without the correction. Due to
the fact that a large proportion of the country has a Mediterranean cli-
mate with wet season in the winter, the accuracies of the original sea-
sonal map from winter images were higher than other seasons
without the correction. This proves that images acquired in the growing
season of vegetation are superior for land cover mapping.

Our result shows the distribution of areas with seasonal land cover
change (see Fig. 11), which accounts for 26.37% of the total area. The
major type of seasonal land cover change varies spatially. In the north,
seasonal change is mainly the sprouting of vegetation in one season
from the barren deserts of other seasons. Another important type of sea-
sonal change in the north is the alternation of salt lakes in summer and
salt flats or dry sands for other seasons. In central Chile, seasonal change
is mainly shrublands and withered shrublands determined by the win-
ter rainy season of a Mediterranean climate. The southern portion of
central Chile has a dominant type of seasonal change from croplands
to bare croplands. On the Andes, the main seasonal change comes
from the snow cover in winter, as well as the wet south.

3.2. Highlights of thematic contents

The high spatial resolution and the detailed classification scheme of
our Chilean land cover products enable users to identify many thematic
contents for their own applications. Some representative examples are
given below.

One of the most typical and important landscapes in Chile is or-
chards, which have been well-identified in our maps. Since the 1990s,
people have been seeking for potential viticulture area outside the Chil-
ean Central Valley. Due to the high evapotranspiration caused by the
abundant sunshine and limited precipitation, they developed their agri-
culture along the rivers that run down from the Andes Mountains. Fig.
12 shows an example of orchards along one of the most important riv-
ers, the Elqui River in the Region of Coquimbo. From the land cover map
in Fig. 12, the impervious surfaces on the upper left corner is La Serena
on ocean terraces. Orchards in this area extend from the Pacific coast
eastward to the Andes Mountains along the Elqui valley, where people
have access to water for irrigation to produce high-quality wine grapes,
table grapes and other fruits. Since the area is at the southern end of the
Atacama Desert, we can see shrublands and dry rocky terrain surround-
ing the river valley. The zoomed-in maps of two areas in the dashed
boxes are shown with higher resolution DigitalGlobe images. On the
left, it is clear to see that the orchards were separated from the herba-
ceous croplands. The orchards climb up to higher altitudes along the
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river valley. From the location presented on the right, the orchard valley
narrows down to the east showing the advantage of the 30 m spatial
resolution for mapping these features. Field photos taken near this
area are presented in Fig. 12.

Wetlands on the high altitude of the Andean mountains, supplied
mainly by the outcrops of groundwater, melting glaciers, and lowland
accumulated precipitation, are distinctive ecosystems in the arid high-
lands, locally known as “Bofedales”, which is still poorly understood.
These wetlands provide special natural habitats for wildlife and are vul-
nerable to climate change. Our land cover maps provide accurate and
dynamic spatial information about the wetlands, the lakes and the salt
flats. Fig. 13 shows the map and field photos for part of the Nevado
Tres Cruces National Park located in the Atacama Region. On the huge
salt flat, referred to as “Salar de Maricunga”, shown in the center of
the map, we can see the lagoons and wetlands. With the help of season-
al land cover maps on the upper right corner in Fig. 13, seasonal varia-
tion of the lagoon water surface and the phenological change of the
vegetation can be identified. The lagoons and wetlands are extremely
important for many wildlife species. For example, the Andean flamingos
shown on the field photos taken in this area, reside in such salt lakes and
wetlands during the summer, and migrate to the lower wetlands in the
winter. They are one of the rarest flamingos in the world and vulnerable
to habitat change.

Native forests and plantations were also differentiated reasonably
well. This separation is important as it can provide information for na-
tive forest conservation and plantation management. Fig. 14 shows an
example near the border of the Bio-Bio Region and the Araucania Re-
gion. This region covers the coastal range dominated by plantations on
the west and the central valley dominated by croplands and pastures
on the east. The zoomed-in map on the left demonstrates the
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discrimination of native forests from broadleaf plantations. The planta-
tions dominate on gentle slopes, while native forests only exist in the
valley between the slopes. The zoomed-in map on the right is a mix of
conifer plantation (left), broadleaf plantation (lower middle) and sec-
ondary native forests (right), and they are all mapped correctly. Field
photos presented here are pine plantations (left) and eucalyptus planta-
tions (right), mixed with some shrubs and short native forests.

3.3. Spatial variation of accuracy

Information on the spatial variation in accuracy is important because
it can indicate regions where more efforts should be spent on land cover
map improvements. The overall accuracies were calculated for the
WWEF ecoregions. Fig. 15 shows the spatial variation of accuracies for
level 1 classes, and similar patterns are found for level 2 and level 3 clas-
ses. The results indicate the overall accuracy decreases gradually from
central Chile to both the north and the south.

The highest local accuracy is in the ecoregion of Chilean Matorral
(83.4% at level 1), characterized by a Mediterranean climate. From the
very north part of this ecoregion to the immediate south of La Serana
is a semi-desert area called “Norte Chico” covered mainly by barren
lands, withered shrublands, shrublands and some croplands especially
orchards. The Mediterranean center starts from the immediate south
of La Serana to the south of the central valley, dominated by shrublands
and some sclerophyll forests on moist seaward slopes as natural vegeta-
tion, and croplands as well as grassland in the central valley as a result of
human activities. The class of shrublands occupies the biggest area in
this ecoregion, which is well-classified with a producers accuracy of
87% and a user's accuracy of 75%.
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Fig. 12. Mapping result and field photos of the orchards along the Elqui Valley.
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Fig. 13. Dynamic land cover maps and field photos of the wetlands and salt flats near Salar de Maricunga.

The land cover map is also more accurate (83.3% for level 1) for the
ecoregion of southern Andean steppe, with an altitudinal zonation of
grasslands, shrublands, withered vegetation and barren lands. The bar-
ren lands and grasslands were classified with better performance (85.3%
and 100% for producers accuracy, 98.3% and 87.5% for users accuracy, re-
spectively), but shrublands are poorly classified. The large proportion of
barren lands in this ecoregion raised the overall accuracy.

The overall accuracy for the ecoregion of Valdivian temperate forests
at level 1 is 82.9%. The dominant land cover type is forests, which are
mainly plantations along the coastal range and native forests on the
Andes Mountains. The native forest and plantations are categorized
with producers accuracies of 81.7% and 79.4%, users accuracies of
88.4% and 80.6%. The major land cover type for the central valley is pas-
tures, whose producers accuracy is 73.9% and users accuracy is 59.6%,
mainly confused with natural grasslands.

The Central Andean dry puna is a unique ecoregion located in the
Andean High plateau, which includes mainly barren lands, dry
shrublands and grasslands, and interspersed with some wetlands
along the streams. The overall accuracy is 81.4% at level 1, but the dry
shrublands are confused with barren lands in this ecoregion, due to
their similar spectral characteristics. Some salt flats were categorized

into gravels which is also a major confusion. The wetlands of this area
are well-identified whose producers and users accuracies are both
higher than 90%.

The Atacama Desert has a lower accuracy (80.3% at level 1) because
the validation dataset did not sample enough in the vast desert
completely devoid of life. There are only 51 sample units in this region,
and there is a confusion between barren lands and withered shrublands.

The Magellanic subpolar forests and Patagonian steppe have the
lowest accuracies of 64.8% and 66.7%, respectively. This is due to lack
of cloud free images over these regions. In these regions, forests are
short resulting in more confusion with shrublands.

4. Conclusions and perspectives

A 30 m spatial resolution Chilean land cover map and a seasonal land
cover map series were produced for circa 2014 primarily using Landsat
8 imagery. The classification scheme is more detailed than existing land
cover databases. The classes derived in this study are able to support
more applications in biodiversity conservation, land surface modelling,
resource management and planning. This is the first nationwide land
cover map for Chile through close international collaboration between



Y. Zhao et al. / Remote Sensing of Environment 183 (2016) 170-185 183

72°40'W

72°36'W

Croplands
Orchards
- Fallow

- Native forests

- Broadleal plantations
- Conifer plantations
b Grasslands
- Shrublands
. - Withered vegetation
B I \vetlands
- Water bodies

Salt flats
Barren

Snow and ice

I:l Unidentified

Fig. 14. Mapping result and field photos of the native forests and plantations in Bio-Bio Region.

local experts and researchers in China and the US. Field works by the in-
ternational team helped improving the scheme design, training sample
interpretation and validation. The overall accuracy reached 80% for level
1 product and 73% for level 2 thanks to the integration of multi-seasonal
data. This study is among the first ones that generate seasonal land
cover dynamics. Our previous dynamics land cover mapping efforts
with medium resolution satellite data are restricted to a lake or munic-
ipality area (Dronova et al., 2015; Wang et al., 2015). Here we extended
this capability to a whole nation. The seasonal land cover maps for Chile
are also validated. Through correction according to the integrated map,
it is possible to substantially improve accuracies of seasonal land cover
maps. The analysis of spatial variation of accuracy among the ecoregions
indicates that the accuracy for land cover mapping decreases gradually
from central Chile to both north and south, providing useful information
for directing future efforts in Chile.

Multi-temporal images play a vital role in improving our mapping
process, and they work in three ways together. Experiments showed
that mapping accuracies were improved by (1) combining multi-tem-
poral training samples collected from multi-temporal images, (2)
adding a four season NDVI series to the feature set, and (3) integrating
the classification results of many multi-temporal images.

The accuracy for land cover mapping in Chile could be further im-
proved by the inclusion of additional ancillary data. DMSP Operational
Linescan System (OLS) nighttime stable light (NTL) datasets could be
used to differentiate the urban area, which is poorly classified in the cur-
rent map. Since the urban area is always a mosaic of vegetation and im-
pervious surface, training samples of impervious surfaces are usually
not pure pixels, leading to serious confusion between impervious sur-
faces and other land cover types. Though the night light data has
lower spatial resolution, it can be used as a mask for potential urban
area, i.e. removing training samples of impervious surfaces from the

training set outside the mask, while putting more training samples of
impervious surfaces inside the mask, and merge these two layer for a
final result. In addition, microwave data might be useful over the subpo-
lar areas that are frequently covered by clouds. For example, Advanced
Land Observing Satellite (ALOS) Phased Array type L-band Synthetic
Aperture Radar (PALSAR) data has been proved effective in some re-
searches (Zhu et al., 2012).

The multi-temporal NDVI series we used now in the feature set is the
MVC result, in order to eliminate the disturbance of cloud contamina-
tion and keep the feature vector in the same length. Sometimes the
MVC result may hide some patterns in the seasonal variation. We can
take not only MVC but also other metrics for each season, for example
the upper and lower quartiles. Experiments should be designed for fea-
ture selection. The integration strategy of multi-seasonal mapping as
well as the logic rules for the seasonal map correction could also be fur-
ther refined. The post-classification strategy in our study is simple and
fast, and it can be improved by estimating the probability of all alterna-
tives and analyzing the uncertainty using more statistical methods
(McRoberts, 2010; Olofsson et al.,, 2012; Sexton et al., 2015).

The mapping result reported here is only for 1 year around 2014.
Long-term land cover dynamics are important for monitoring land
cover changes which can be used in many applications, such as studies
on fire disturbance (Carmona, Gonzalez, Nahuelhual, & Silva, 2012), re-
placement of native forest by exotic plantations (Little, Lara, McPhee, &
Urrutia, 2009), deforestation and habitat change (Echeverria et al.,
2006; Vergara, Perez-Hernandez, Hahn, & Soto, 2013). The training
dataset includes samples spatially distributed in the whole country,
temporally distributed throughout a year, and covering different land
cover types. We believe that we have a relatively exhaustive training
dataset that could be used to train a universal model for the classifica-
tion of any image newly acquired for Chile. To produce a long-term
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Fig. 15. Spatial variation of overall accuracy among different ecoregions.

dynamic product for the past, images of Landsat 5 Surface Reflectance
CDR datasets were also prepared back to the 1980s. We will test the
training sample from Landsat 8 images to classify Landsat 5 images fol-
lowing some consistency checks. We expect to produce a historical
long-term land cover dynamics multi-seasonal dataset for Chile in the
near future. The land cover data presented in this paper will be open ac-
cess on data.ess.tsinghua.edu.cn.
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