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Abstract
This article presents a novel impact identification algorithm that uses a linear approximation
handled by a statistical inference model based on the maximum-entropy principle, termed linear
approximation with maximum entropy (LME). Unlike other regression algorithms as artificial
neural networks (ANNs) and support vector machines, the proposed algorithm requires only
parameter to be selected and the impact is identified after solving a convex optimization problem
that has a unique solution. In addition, with LME data is processed in a period of time that is
comparable to the one of other algorithms. The performance of the proposed methodology is
validated by considering an experimental aluminum plate. Time varying strain data is measured
using four piezoceramic sensors bonded to the plate. To demonstrate the potential of the
proposed approach over existing ones, results obtained via LME are compared with those of
ANN and least square support vector machines. The results demonstrate that with a low number
of sensors it is possible to accurately locate and quantify impacts on a structure and that LME
outperforms other impact identification algorithms.

Keywords: impact identification, damage assessment, maximum entropy, linear approximation,
structural health monitoring

(Some figures may appear in colour only in the online journal)

1. Introduction

Detecting, locating and quantifying incipient damage on a
structure generates a wide interest in the mechanical,
aeronautical, aerospace and civil engineering fields.
Structural damage assessment guarantees the integrity of
the structure, which has a tremendous potential for life-
safety and/or economic benefits. Damage due to an
external impact is a concern in structural design. For
example, aircraft are susceptible to impacts from collisions
of birds, runway stones and tools dropped during main-
tenance. To avoid catastrophic failures it is of critical
importance to detect the presence of an impact damage as
soon as it occurs. However, this type of damage, known as
barely visible impact damage (BVID), is usually internal
and there are no visible indications of its presence on the
surface.

BVID can be detected by non-destructive testing (NDT)
techniques such as x-ray, c-scan or visual inspections.
Nevertheless, these techniques are time-consuming, require
access to the portion of the structure being inspected and can
only be performed when the system is out of service, which
can be impractical in some cases. Impact identification
methodologies have been proposed as a complement to NDT.
These methodologies would continuously monitor the struc-
ture, detecting, locating and quantifying impacts as they
occur. For impact damage, its extend is correlated with the
impact energy. Therefore, by locating and quantifying
impacts over a structure it is feasible to predict possible
damage locations, which allows to schedule inspections only
when they are necessary and to perform a localized search,
saving inspection time.

Impact identification methodologies can be divided into
two groups: model-based [1, 2] and data-driven [3–13]
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algorithms. Model-based impact identification involves the
solution of a nonlinear inverse problem that requires to
evaluate the numerical model several times, which can be
exceedingly slow for real-time applications. In addition,
model-based algorithms rely on the precision of the numerical
model, and any error in the numerical model will be inter-
preted as an impact identification error. Within data-driven
algorithms, methodologies based on classification, pattern
recognition and regression have been proposed, being artifi-
cial neural networks (ANNs) the most frequently used.
Worden and Staszewski [3] and Staszewski et al [14] used
two feed-forward multi-layer perceptron (MLP) networks to
identify impacts on a composite plate. The first network was
trained to detect the impact location, whereas the second
network quantifies the impact magnitude. Haywood et al [5]
investigated two approaches to locate impacts in a composite
panel with embedded piezoceramic sensors: MLP network
and GA-based triangulation. They concluded that both
approaches provide a similar degree of accuracy. LeClerc
et al [6] applied a two-step impact detection algorithm to an
aircraft component. First, a classification network finds the
region of the impact and afterwards another network localizes
its position. With this methodology the researchers were able
to obtain better results than those of a single neural network.
Sharif-Khodaei et al [8] trained a neural network to detect
impacts location on a composite stiffened panel. The network
was trained and tested with data obtained from a finite ele-
ment model of the structure and the numerical model was
validated with experimental data.

Although ANN can process data very quickly, the slow
learning speed and the large number of parameters that need
to be tuned within the training stage are drawbacks in their
application. In the parametric study performed by Sharif-
Khodaei et al [8] it was demonstrated that the performance of
a neural network for impact localization strongly depends on
the network architecture (number of layers and number of
hidden nodes) and network properties (transfer functions and
training algorithm). In addition, ANN have the disadvantage
of over-fitting and getting stuck in local minimum. An
alternative are support vector machines (SVMs), which
exhibit the advantage of global optimization and higher
generalization capabilities than ANN. Least squares support
vector machines (LSSVMs) further simplifies the regression
to a problem that can be solved from a set of linear equations
[15]. Xu [13] implemented a LSSVM to locate and quantify
impacts in an aluminum plate and the results are compared
with those of an ANN approach, demonstrating that LSSVM
reaches more accurate results. Fu and Xu [9] proposed a two-
layer SVM to predict the location of impacts on an aluminum
plate structure. Input data is obtained from a principal
component analysis (PCA) of the strain time signal of
piezoelectric sensors located over the plate. The results are
compared with those of an ANN, concluding that SVM are
capable of accomplishing better impact localization accuracy
than ANN. To overcome the slow learning speed of ANN,
Huang et al [16] proposed a new learning algorithm called the
extreme learning machine (ELM), which is suitable for sin-
gle-layer feed-forward networks. This algorithm provides

good generalization at fast learning speeds, and the only
parameter that needs to be tuned is the number of hidden
nodes. Since it was first introduced in 2004, the ELM algo-
rithm has attracted the attention of increasing number of
researchers [17]. Xu [12] compared the algorithm perfor-
mance among a basic ELM, kernel-ELM and LSSVM to
localize impacts in an aluminum plate. Xu concluded that
kernel-ELM is as precise as LSSVM with lower training and
evaluation times. Fu et al [11] implemented a kernel-ELM for
impact localization using PCA to extract features. Results in
accuracy are similar to those of the SVM, but the kernel-ELM
is faster, making it suitable for real-time applications. The
time-reversal approach as been presented as a precise alter-
native for impact localization [18–21]. This a one-class
nearest neighbor algorithm, in which the correlation between
different impacts is measured by the signals convolution.

A new non-parametric method for supervised learning
was presented by Gupta et al [22, 23]. This method gen-
eralized linear approximation by using the maximum-entropy
(max-ent) principle for statistical inference [24]. Meruane
et al [25, 26] demonstrated the applicability of the linear
approximation with maximum entropy (LME) method in
structural damage identification. They showed that LME
achieves more accurate results than ANN at a similar eva-
luation speed. Herein, we demonstrate the applicability of
LME to the impact identification problem.

The primary contribution of this research is the devel-
opment of a novel impact identification algorithm that uses a
linear approximation method. The linear approximation is
handled by a statistical inference model based on the max-ent
principle [24]. The merits of this approach are threefold: only
one parameter needs to be selected, the impact is identified
after solving a convex optimization problem that has a unique
solution and data is processed in a period of time that is
comparable to the one of other regression algorithms such as
ANN and SVM. In addition, LME does not require classical
training in which the algorithm is trained once and then the
training data is discarded, but performs a linear interpolation
using the training data to estimate the impact. The main
advantage is that new data can be easily incorporated to the
training database with no need of re-training the algorithm as
in the case of ANN and SVM. The performance of the pro-
posed methodology is validated by considering an exper-
imental aluminum plate. To demonstrate the potential of the
proposed approach over existing ones, results obtained via
LME are compared with those of an ANN and a
LSSVM [13].

In general, with an appropriate number of sensors dis-
tributed over the structure it is possible to accurately locate
and quantify impacts. Nevertheless, the objective of an impact
identification algorithm is to locate and quantify impacts with
precision using the minimum number of sensors possible,
thus minimizing the instrumentation cost and avoiding
unnecessary wiring. Here, time varying strain data is mea-
sured using only four piezoceramic sensors bonded to the
plate.

The remainder of this work is structured as follows:
section 2 presents the proposed impact identification

2

Smart Mater. Struct. 25 (2016) 095050 N Sanchez et al



methodology. Section 3 describes the experimental setup.
Section 4 presents the impact identification results using three
approaches: LME, ANN and LSSVM. Finally, conclusions
and forthcoming work are presented in section 5.

2. Impact identification methodology

2.1. Signal processing and feature extraction

The principle of an impact identification algorithm is to
detect, locate and quantify an impact force, with the use of a
passive system consisting of sensors distributed over the
structure. Figure 1 illustrates a typical experimental setup for
impact identification, where piezoelectric sensors bonded to
the structure detect surface stress waves generated by the
impact.

Figure 2 presents an example of a strain–time signal
obtained from an impact test. It also shows the frequency
spectrum computed from the Fourier transform and the signal
envelope obtained through the Hilbert transform [27].

The amount of strain–time data collected by the sensors
is too large to be used directly in a classification or regression
algorithm. Therefore, preprocessing of the data is necessary to
extract characteristics features. In the literature, different
features extracted from the signals in the time or frequency
domain have been studied. Some example are [5]:

• Maximum and minimum signal amplitude.
• Times at maximum and minimum amplitude.
• Real and imaginary parts of each spectrum integrated
over frequency.

• Maximum and minimum of signal envelope.
• Times at maximum and minimum of signal envelope.
• Times of beginning and end of signal envelope.

Various studies have shown that the best features for
impact identification are the time and magnitude of the
maximum, and the time of arrival measured as the time the
signal exceeds a certain threshold [3, 5, 8]. In the present
investigation, after testing different combinations, it was
concluded that the best results are obtained when the fol-
lowing features are used:

(i) Maximum of signal envelope.

(ii) Time of arrival of signal envelope. The threshold value
was defined as a 10% of the maximum signal
amplitude. This time is computed as the elapse time
between the arrival of the first strain signal (among all
sensors) and the arrival of the current signal.

(iii) Time of the first peak. Defined as the time of the first
peak with an amplitude equal or higher than 50% the
maximum of the signal envelope, a peak is defined as a
local maxima in the signal envelope. This time is
computed as the elapse time between the arrival of the
first strain signal (among all sensors) and the time of the
first peak in the current signal.

As an example, figure 3 illustrates the identification of
the time of the first peak and time of arrival in two different
signals. The horizontal red line indicates 50% of the max-
imum amplitude in the signal, and a red cross shows the first
peak that exceeds the threshold impose by the red line. The
horizontal blue line indicates 10% of the maximum amplitude
and a blue cross shows the first time the signal reaches this
value. It should be noted that the time of arrival and the time
of the first peak are defined relative to the time of the first
strain signal, which depends on the sensors and impact
location. An absolute reference would be the time of the
impact or a fixed reference sensor, but in a real application the
impact is not measured and the only information available is
the signal given by the sensors. On the other hand, using
always the same sensor as reference would result in negative
arrival times.

2.2. Linear approximation with maximum entropy

Let define the observation vector { } = ÎY Y YY , ,j j j j
1 2 3

3

representing the jth impact to a structure, where Y Y,j j
1 2

are the x and y coordinates of the force location and
Y3
j is the force magnitude. Let the feature vector

{ } = ¼ ÎX X XX , , ,j j j
n
j n

1 2 represent a set of characteristics
response parameters associated to the impact Yj. In the pre-
sent case, the structure has four piezoelectric sensors, and
three features are extracted from the signal envelope of each
sensor, as described in the previous section. Therefore, the
feature vector Xj contains 12 parameters.

Assuming that a database with a set of N impact is
constructed ( ) ( )X Y X Y, , ,1 1 2 2 ( )¼ X Y, , ,N N , then the central
problem in impact identification is: given a certain feature X,
estimate the corresponding impact Y. The nearest neighbor
regression estimate of Y is given by

ˆ ( ) ( )å=
=

wY X Y , 1
j

k

j
j

1

where ¼Y Y Y, , , k1 2 are the observation vectors associated to
the k closest neighbors to the test vector X, and

( ) ( ) ( )¼w w wX X X, , , k1 2 are weighting functions. The k
nearest neighbor (k-NN) algorithm weights each neighbor
equally, thus ( ) =w kX 1i , for i=1 to k. Whereas, a kernel
nearest neighbor algorithm base weightings on the distance
from the test vector X to each vector in the database [28].

Figure 1. Scheme of an experimental setup for impact identification.
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On the other hand, linear interpolation takes the N feature
vectors in the database and uses a linear combination of them
to represent X as [29]

( ) ( ) ( )å å= =
= =

w wX X X X, 1, 2
j

N

j
j

j

N

j
1 1

where ¼X X X, , , N1 2 are the feature vectors in the database
set. Once the weighting functions are determined, then Y is
estimated from (1) with k=N. Typically equation (2) is
undetermined, and its solution can be tackled via an
unconstrained optimization technique of the family of least-
squares. However, these methods produce some negative
weights, which lacks physical meaning. An alternative that

Figure 2. Example of a strain time signal along with its frequency spectrum and envelope.

Figure 3. Identification of the first peak and time of arrival.
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produces positive weights is obtained via the max-ent
variational principle [24].

The notion of entropy in information theory was intro-
duced by Shannon as a measure of uncertainity [30]. Later on
using the Shannon entropy, Jaynes [24] postulated the max-
ent principle as a rationale means for least-biased statistical
inference when insufficient information is available. The
max-ent principle is suitable to find the least-biased prob-
ability distribution when there are fewer constraints than
unknowns and is posed as follows:

Consider a set of N discrete events { }¼x x, , N1 . The
possibility of each event is ( ) [ ]= Îp p x 0, 1i i with uncer-
tainty- pln i. The Shannon entropy ( ) = -å =H p pp lni

N
i i1 is

the amount of uncertainty represented by the distribution
{ }¼p p, , N1 . The least-biased probability distribution and the
one that has the most likelihood to occur is obtained via the
solution of the following optimization problem (max-ent
principle):

( ) ( ) ( )


å= -
Î =+

⎡
⎣⎢

⎤
⎦⎥H p p apmax ln , 3

i

N

i i
p 1

N

subject to the constraints:

( ) ( ) ( )å å= = á ñ
= =

p p g x g x b1, , 3
i

N

i
i

N

i r i r
1 1

where +
N is the non-negative orthant and ( )á ñg xr is the

known expected value of functions gr(x) ( = ¼r m0, 1, , ),
with ( ) =g x 10 being the normalizing condition.

The optimization problem(3) assigns probabilities to
every xi in the set. Now, assume that the probability pi has an
initial guess mi known as a prior, which reduces its uncer-
tainty to ( )- + = -p m p mln ln lni i i i . An alternative pro-
blem can be formulated by using this prior in(2) [31]:

( ) ( )


å= -
Î =+

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥H p

p

m
apmax ln , 4

i

N

i
i

ip 1
n

subject to the constraints:

( ) ( ) ( )å å= = á ñ
= =

p p g x g x b1, . 4
i

n

i
i

n

i r i r
1 1

In(4), the variational principle associated with

( )å = p lni
N

i
p

m1
i

i
is known as the principle of minimum relative

(cross) entropy [32, 33]. Depending upon the prior employed,
the optimization problem(4) will favor some xi in the set by
assigning more probability to them, and eventually, assigning
non-zero probability ( >p 0i ) to a selected number of xi
( <i N ) in the set. It can be easily seen that if the prior is
constant, the Shannon–Jaynes entropy functional(3) is
recovered as a particular case.

Because of its general character and flexibility, we adopt
the relative entropy approach for our problem, where the
probability pi and the discrete event xi is replaced with the
weighting function wi and the feature vector Xi of the linear

approximation problem posed in(2), respectively. This reads:

( ) ( ) ( )
( )

( )


å= -
Î =+

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥H w

w

m
aw X

X
X

max ln , 5
i

N

i
i

iw 1
N

subject to the constraints:

( ) ˜ ( ) ( )å å= =
= =

w w bX X X0, 1, 5
i

N

i
i

i

N

i
1 1

where ˜ = -X X Xi i has been introduced as a shifted measure
for stability purposes. Different prior distributions can be
used, typical ones are: Gaussian, cubic spline, quartic spline
or constant [34]. Here we tested the four distributions and the
best performance was obtained with a smooth Gaussian

( ) ( ˜ ) ( ) b= -m X Xexp , 6i i
i 2

where b g= h ;i i
2 γ is a parameter that controls the support of

the Gaussian prior at Xi, and therefore its associated weight
function; and hi is a characteristic n-dimensional Euclidean
distance between neighbors that can be distinct for each Xi. In
view of the optimization problem posed in (5) for supervised
learning, maximizing the entropy chooses the weight solution
that commits the least to any one in the database samples [23].

The solution of the max-ent optimization problem is
handled by using the procedure of Lagrange multipliers,
which yields [31]:

( ) ( )
( )

( ) ( ) ( · ˜ )

( )

*
*

* *
l
l

l l= = -w
Z

Z
Z mX

X
X

X X X
;

;
, ; exp ,

7

i
i

i i
i

where ( ) ( )* *l l= åZ ZX X; ;j j , ˜ [ ˜ ˜ ]= ¼X XXi i
N
i

1
T

and [ ]* * *l l l= ¼ N1
T.

In(7), the Lagrange multiplier vector *l is the minimizer
of the dual optimization problem posed in(5) [31]:

( ) ( )*


l l=
lÎ

Z Xarg min ln ; , 8
N

which gives rise to the following system of nonlinear
equations:

( ) ( ) ( ) ˜ ( )ål l=  = - =l Z wf X X 0ln , 9
i

N

i
i

where l stands for the gradient with respect to λ. Once the
converged *l is found, the weight functions are computed
from(6) and the impact force is estimated from(1) with
k=N. It should be noted that if the relationship between the
vectors Xj and Yj is linear, then (1) gives the exact solution
for Y. In any other case, Ŷ is a linear approximation of the
vector Y. The quality of this approximation depends on the
topology of the relationship between the vectors Xj and Yj,
and on the distance among the neighbors vectors. Here we
will study the proposed approximation using neighbors with
two different distances between them, and the results will be
compared with other algorithms such as ANN and LSSVM.
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3. Experimental application

Figure 4 presents the experimental setup, which corresponds
to an aluminum plate with dimensions 490 mm × 390 mm ×
2.5 mm that is simply supported by four screws. The plate is
excited by an instrumented impact hammer and the response
is captured by four piezoelectric discs of 20 mm diameter and
0.42 mm thickness bonded to the surface. Data from the four
sensors and impact hammer is recorded with a sampling rate
of 24 kHz. The hammer is used as trigger and 1000 data
points before the impact and 9000 data points after the impact
are recorder.

The impact hammer has three interchangeable tips
made of steel, aluminum and plastic. Figure 5 presents
examples of impacts in the time and frequency domain
obtained with the different tips. The main difference
between impact with different hammer tips is their width
and frequency content.

Six sets of impact data are acquired, two for training, one
to set up the parameters of the identification algorithms and
three to evaluate. The training sets consist of a uniform grid of

117 and 36 points respectively, as shown in figures 6(a) and
6(b). In the first training set the spacial distance between
impact point is 40 mm in the x-direction and 30 mm in the y-
direction, whereas for the second training set the distance is
80 mm in the x-direction and 60 mm in the y-direction. In both
cases, each point is impacted once using the plastic tip. The
third set consists of 20 random impacts distributed over the
plate as shown in figure 6(c), each point is impacted once
using the plastic tip. The fourth, fifth and sixth sets consist of
35 random impacts distributed over the plate as shown in
figure 6(d), each point is impacted once using the plastic,
aluminum and steel tips, respectively.

The structure is linear, and in consequence the
response is proportional to the magnitude of the force.
Therefore, the response to impacts of different magnitudes
can be determined by simply multiplying the measured
response by scaling factors. With this methodology the
initial training sets of 117 and 36 impacts are expanded to
two sets of 1521 and 468 impacts with magnitudes between
5 and 250 N.

Figure 4. Experimental setup.

Figure 5. Examples of impacts obtained with different hammer tips.
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4. Results and discussions

Three regression algorithms for impact identification have
been evaluated: LME, LSSVM and ANN. To quantify the
performance of the algorithms, the following error functions
are defined:

∣ ˆ ∣ ( )å= -
=

E
n

Y Y
1

, 10x
j

n
j j

1
1 1

∣ ˆ ∣ ( )å= -
=

E
n

Y Y
1

, 11y
j

n
j j

1
2 2

∣ ˆ ∣
( )å=

-
´

=

E
n

Y Y

Y

1
100, 12

j

n j j

jF
1

3 3

3

∣ ˆ ∣ ∣ ˆ ∣
( )

å å

=
´

´

=
- -

´= =

E
E E

A

n A

Y Y Y Y

100

100,

13

x y

j

n j j
j

n j j

A

1 1 1 1 2 2

2

where n is the number of elements in the testing database; A is
the area of the plate; Ex and Ey are the mean errors in the
estimation of the force in the x and y coordinates; EF is the
percentage error in the estimation of the force magnitude, and
EA is the percentage area localization error. The results for
each algorithm are presented next.

4.1. LME

The procedure to identify impacts using LME is implemented
as follows:

(i) Perform an experimental impact test on the plate and
construct the feature vector X.

(ii) Read the feature vectors in the database.
(iii) Select the parameter bi in the Gaussian prior (6), so that

k neighbors contribute to the solution.
(iv) Solve the system of nonlinear equations presented

in (9).
(v) Compute the weight functions from (7).
(vi) Read the observation vectors in the database and

estimate the experimental impact from (1).

Figure 6. Location of the experimental impacts applied to the plate.
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The only parameter that needs to be selected is the number of
neighbors that contribute to the solution. To select this
parameter, the algorithm performance was evaluated with
different number of neighbors using the setting up database.
Figures 7 and 8 present the results for EF and EA as a function
of the number of neighbors for the two training databases. To
minimize the area error while keeping a low force error, 260
neighbors were selected in both cases. Figures 9–11 show the

impact identification results using both training databases and
the three evaluation databases.

4.2. LSSVM

The LSSVM was implemented in Matlab using the toolbox
developed by Brabanter et al [35]. Since the LSSVM is a
single-output variable algorithm, three LSSVM were trained:

Figure 7. Force and area error as a function of the number of neighbors in the LME algorithm for the first training database.

Figure 8. Force and area error as a function of the number of neighbors in the LME algorithm for the second training database.

Figure 9. LME results for the testing database with a plastic tip.
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the first to identify the force magnitude, and the second and
third are trained to locate the force in the x and y coordinates.
The three algorithms have twelve input parameters corresp-
onding to the feature vector and one output. As selected in
[13], the kernel function is a radial basis function.

Two parameters need to be selected, the regularization
parameter, γ, and the kernel parameter, σ. To select them, the
performance of the three LSSVM trained with different
combinations of γ and σ were evaluated using the setting up
database. The results for the area and force errors are

Figure 10. LME results for the testing database with an aluminum tip.

Figure 11. LME results for the testing database with a steel tip.

Figure 12. Area and force error as a function of the parameters σ and γ in the LSSVM algorithm for the first training database.
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presented in figures 12 and 13. For the first training database,
the minimum area error is obtained for g = 1.2 and s = 3
and the force error is minimized with g = 0.9 and s = 15.5.
Therefore, in this case the first LSSVM algorithm uses

g = 0.9 and s = 15.5, and the second and third LSSVM
algorithms use g = 1.2 and s = 3.

For the second training database, the minimum area error
is obtained for g = 0.3 and s = 10.5 and the force error is

Figure 13. Area and force error as a function of the parameters σ and γ in the LSSVM algorithm for the second training database.

Figure 14. LSSVM results for the testing database with a plastic tip.

Figure 15. LSSVM results for the testing database with an aluminum tip.
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minimized with g = 0.5 and s = 16.5. Therefore, in this case
the first LSSVM algorithm uses g = 0.5 and s = 16.5, and
the second and third LSSVM algorithms use g = 0.3 and
s = 10.5. Figures 14–16 show the impact identification
results using both training databases and the three evaluation
databases.

4.3. ANN

The ANN used in the current investigation has the same
parameters and architecture than the one used by Xu [13].
Therefore, a three-layer ANN is trained using the Levenberg–
Marquardt algorithm. The training sets are used to train the
network, during training these sets are divided into two sub-
sets of 80% for training and 20% for validating. The algo-
rithm trains the network using the early stopping technique,
this is, when the validation error increases for a number
iterations, the algorithm stops the training. The weights of the
network at the minimum validation error become the final
weights. The transfer function in the hidden layer is hyper-
bolic tangent sigmoid and the transfer function in the output
layer is linear.

The network has twelve input neurons corresponding to
the parameters of the feature vector, and three output neurons
corresponding to the force coordinates and magnitude. The
number of hidden neurons is selected after a sensitivity

analysis; the network is trained with different number of
hidden neurons and the performance is evaluated with the
setting up database. The results for both training databases are
illustrated in figures 17 and 18, the minimum force and area
errors are obtained with six hidden neurons for the first
training database and with three hidden neurons for the sec-
ond training database. Figures 19–21 show the impact iden-
tification results using both training databases and the three
evaluation databases.

4.4. Discussions

Tables 1 and 2 summarize the testing results for the three
evaluated algorithms.

As expected, the accuracy of the impact identification
algorithms dismisses when the testing database is build with a
different type of impacts (different hammer tip) than those of
the training database. This is because the features selected to
identify impact are affected by the frequency content of the
signal, and by modifying the hammer tip the frequency
content of the impact and response signals changes.

In addition, the best results are obtained when the dis-
tance between impacts in the database is smaller (training
database 1). This is further studied in table 3, where the
localization error (Ex and EY) is compared with the spatial
distance between training impacts (Dx and Dy). It can be

Figure 16. LSSVM results for the testing database with a steel tip.

Figure 17. Area and force error as a function of the number of neighbors in the ANN algorithm for the first training database.
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concluded that the localization error is directly related to the
distance between training impacts, and that the ratio between
the LME localization error and this distance is in the range
0.3–0.5 when the same hammer tip is used in the training and
testing databases.

In general, the best results are obtained for the LME and
LSSVM algorithms. Looking at the average results for the fist
training database in table 1, the area error of LME is 48%
lower than the error of LSSVM and 65% lower than the error
of ANN, whereas the force error of LME is 11% lower than

the error of LSSVM and 2% higher than the error of ANN.
On the other hand, for the second training database, in
average, the area error of LME is 20% lower than the error of
LSSVM and 55% lower than the error of ANN, whereas the
force error of LME is 14% higher than the error of LSSVM
and 1% lower than the error of ANN. It can be concluded that
the LME algorithm provides a lower area error and that the
force error is similar for the three algorithms.

Table 4 compares the results of LME with those of other
algorithms available in the literature for similar structures

Figure 18. Area and force error as a function of the number of neighbors in the ANN algorithm for the second training database.

Figure 19. ANN results for the testing database with a plastic tip.

Figure 20. ANN results for the testing database with an aluminum tip.
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(composite or aluminum plates). In this case, the results of the
testing database with a plastic tip are presented, since other
works in the literature use the same tip in the training and
testing databases. Among these algorithms, LME reaches the
lowest combination of force and area error. The work of Fu
and Xu [9] has a similar area error with the same number of
sensor and less training impact points, and the time-reversal
algorithm [18] has a lower area error under the same cir-
cumstances. However, these methods can only locate an
impact and does not quantify it. It should be noted that to
assess possible damage in the structure, it is important to
estimate the magnitude of the impact. In this context, the
proposed methodology is more accurate than other algorithms
available, with a force error 64% lower than that of the best
algorithm in table 2.

5. Conclusions

This article presented a new regression algorithm for impact
identification that uses a linear approximation handled by a
statistical inference model based on the max-ent principle,
termed LME. The performance of the proposed methodology
was validated by considering an experimental aluminum
plate. Time varying strain data was measured using four
piezoceramic sensors bonded to the plate.

To demonstrate the potential of the proposed approach
over existing ones, results obtained via LME were compared
with those of ANNs and LSSVMs. In terms of force locali-
zation (area error), the best performance is obtained with
LME followed by LSSVM and last is ANN. Regarding force
quantification, the results of the three algorithms are similar.

The comparison with other impact identification algo-
rithms available in literature shows that the impact localiza-
tion can be improved by using the time-reversal approach. A
subject of future research is to create a hybrid approach that
combines times reversal with LME.

Although the structure under investigation was a simple
metallic plate, the results demonstrated that with a low
number of sensors it is possible to accurately locate and
quantify impacts and that LME outperforms others impact

Figure 21. ANN results for the testing database with a steel tip.

Table 1. Performance of the three impact identification algorithms
for the first training database.

Identification algorithm

Testing
database LME LSSVM ANN

Plastic Area error (%) 0.12 0.18 0.32
Force

error (%)
7.18 6.87 8.65

Aluminum Area error (%) 0.52 0.90 1.40
Force

error (%)
15.02 16.70 11.1

Steel Area error (%) 0.70 1.50 2.10
Force

error (%)
17.30 20.90 19.10

Average Area error (%) 0.45 0.86 1.27
Force

error (%)
13.17 14.82 12.95

Table 2. Performance of the three impact identification algorithms
for the second training database.

Identification algorithm

Testing
database LME LSSVM ANN

Plastic Area error (%) 0.38 0.46 0.48
Force
error (%)

10.26 10.40 12.60

Aluminum Area error (%) 0.97 0.89 1.40
Force
error (%)

15.28 12.20 8.41

Steel Area error (%) 1.00 1.60 3.40
Force
error (%)

16.57 16.40 14.80

Average Area error (%) 0.78 0.98 1.76
Force
error (%)

11.85 10.42 11.94
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identification algorithms. Nonetheless, it is necessary to study
the performance in composite materials and in structures with
more complex geometries than a plate.
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