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SUMMARY

Bytecode instrumentation is a widely used technique to implement aspect weaving and dynamic analyses
in virtual machines such as the Java virtual machine. Aspect weavers and other instrumentations are usu-
ally developed independently and combining them often requires significant engineering effort, if at all
possible. In this article, we present polymorphic bytecode instrumentation (PBI), a simple but effective tech-
nique that allows dynamic dispatch amongst several, possibly independent instrumentations. PBI enables
complete bytecode coverage, that is, any method with a bytecode representation can be instrumented. We
illustrate further benefits of PBI with three case studies. First, we describe how PBI can be used to imple-
ment a comprehensive profiler of inter-procedural and intra-procedural control flow. Second, we provide an
implementation of execution levels for AspectJ, which avoids infinite regression and unwanted interference
between aspects. Third, we present a framework for adaptive dynamic analysis, where the analysis to be
performed can be changed at runtime by the user. We assess the overhead introduced by PBI and provide
thorough performance evaluations of PBI in all three case studies. We show that pure Java profilers like
JP2 can, thanks to PBI, produce accurate execution profiles by covering all code, including the core Java
libraries. We then demonstrate that PBI-based execution levels are much faster than control flow pointcuts to
avoid interference between aspects and that their efficient integration in a practical aspect language is possi-
ble. Finally, we report that PBI enables adaptive dynamic analysis tools that are more reactive to user inputs
than existing tools that rely on dynamic aspect-oriented programming with runtime weaving. These experi-
ments position PBI as a widely applicable and practical approach for combining bytecode instrumentations.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Virtual machines for safe languages, such as the Java virtual machine (JVM) or .NET, execute
platform-independent code – bytecode in the case of the JVM and CLI code in the case of .NET.
Many recent programming languages are compiled to virtual machines. For example, Java, Scala,
or JRuby programs are compiled to JVM bytecode, and C# programs are compiled to CLI code.
Furthermore, there are compilers for recent languages for the partitioned global address space
programming model, such as X10 [1] or Fortress [2], which target the JVM.

Instrumentation and manipulation of platform-independent code – subsequently called bytecode
instrumentation – are key techniques for the implementation of various tools and frameworks. For
example, many dynamic program analysis tools, such as profilers and data race detectors, rely on
bytecode instrumentation. Many aspect-oriented programming (AOP) languages, like AspectJ [3],
are implemented using bytecode instrumentation [4]. Because bytecode instrumentation has become
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so central for tool and framework development, modern virtual machines offer dedicated support.
For instance, the JVM supports bytecode instrumentation with the JVM tool interface [5] and with
the API in the package java.lang.instrument. In addition, there are numerous instrumenta-
tion libraries for Java bytecode, such as BCEL [6], ASM [7], or Javassist [8], as well as for other
languages [9].

Typically, tools relying on bytecode instrumentation are separately developed. Composing several
bytecode instrumentations is usually not foreseen and difficult to achieve. However, flexible compo-
sition of multiple bytecode instrumentations can enable many interesting applications. For instance,
a memory leak detector can analyze a profiler at work. Even if implemented by the same instrumen-
tation tool, interesting compositions like self-application (e.g., a race detector analyzing itself) or
adaptive dynamic analysis are often out of reach. An adaptive dynamic analysis tool allows the user
to select between different analyses for different parts of a program at runtime, thereby avoiding
excessive overhead resulting from applying all analyses at the same time for the overall program.
JFluid [10] is a good example of an adaptive profiler.

In this article, we present polymorphic bytecode instrumentation (PBI), a novel technique that
allows several, possibly independent bytecode instrumentations to coexist and to select dynamically
which instrumentation takes effect. First, different bytecode instrumentations are applied in isolation
to a program class. Afterward, a PBI framework merges the resulting instrumented classes into a
single class that holds the code for all applied bytecode instrumentations. For each method, PBI
introduces a dispatcher in order to select the desired version of the code at runtime. Because the
dispatch logic is customizable, PBI is applicable in a wide range of scenarios.

In addition, PBI also enables bytecode instrumentation of shared libraries, that is, of libraries
that are used by the base program as well as by code inserted through instrumentations. A good
example of a shared library is the core class library of the considered language, such as the Java
class library: in Java, almost any base program invokes methods in the core class library, and many
bytecode instrumentations insert code that needs to call some methods in that library. If inserted code
invokes already instrumented methods, infinite regression can easily happen. By preventing infinite
regression, PBI enables instrumentations with complete bytecode coverage; that is, any method that
has a bytecode representation is amenable to bytecode instrumentation, including methods in the
core class library. As a special case, aspect weavers implemented with PBI are capable of weaving
aspects with complete coverage; this is in contrast with mainstream weavers, such as the standard
AspectJ weaver and abc [11].

Polymorphic bytecode instrumentation is a general technique that is applicable to any intermedi-
ate language. In this article, we focus on CodeMerger, our PBI framework for Java bytecode. The
main contribution of this article is PBI, a general and widely applicable technique that eases the
development of instrumentation-based tools, such as software engineering tools for various dynamic
program analysis tasks (e.g., profiling, debugging, testing, program comprehension, and reverse
engineering) and for implementing advanced AOP frameworks. More concretely, the original,
scientific contributions of this article are as follows:

1. We present PBI, a simple and effective technique to dynamically dispatch amongst multiple
bytecode instrumentations (Section 2).

2. As a first application, we show how PBI enables instrumentation with complete bytecode
coverage without disrupting the virtual machine bootstrapping phase (Section 3).

3. We explain the implementation of CodeMerger (Section 4).
4. We describe three consequent case studies of PBI. First, we use PBI to implement JP2, a com-

prehensive profiler of inter-procedural and intra-procedural control flow (Section 5). This case
study focuses on achieving instrumentation with complete bytecode coverage with the aid
of PBI. Second, we use PBI to support execution levels [12] in AspectJ (Section 6), thereby
enabling black-box composition of dynamic analysis aspects in multiple ways. Third, we
leverage PBI to implement adaptive dynamic analysis tools, where the dynamic analysis to be
performed can be changed at runtime for different parts of the base program (Section 7).

5. We thoroughly evaluate our PBI implementation for Java (Section 8). First, we explore the
overhead introduced by PBI dispatch logic and code bloat. Afterwards, we evaluate PBI in the
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three case studies. We report on the performance of JP2 and its ability to cover execution of the
core Java libraries. Our evaluation then shows that PBI-based execution levels are much more
efficient than equivalent control flow pointcuts to avoid interference between aspects and are
generally as efficient as the standard AspectJ weaver when applying analysis aspects on the
DaCapo benchmark suite. Finally, we demonstrate that PBI enables adaptive dynamic analysis
tools that react more quickly to user inputs than existing tools that rely on dynamic AOP with
runtime weaving.

Section 9 discusses prior, ongoing, and related work. Section 10 concludes.
This article extends and refines the work initially presented in [13]. The new contents of this arti-

cle covers (1) improved deployment options for PBI and an extended discussion of technical details
(Sections 4.1 and 4.2); (2) two additional alternative implementations of PBI that solve some serious
performance issues (Section 4.4); (3) an additional case study in the profiling domain (Section 5);
(4) evaluation results for the new PBI implementations and for the new case study (Sections 8.2 and
8.3); and (5) a new evaluation of PBI-based execution levels, taking both start-up and steady-state
performance into account (Section 8.4).

2. POLYMORPHIC BYTECODE INSTRUMENTATION

Many tools make use of bytecode instrumentation to achieve different goals. PBI is a general
technique to allow these instrumentations to coexist and to select dynamically which instrumenta-
tion takes effect. The name polymorphic stems from the parallel with polymorphic method calls,
where the actual code to be executed is chosen dynamically according to some dispatch mecha-
nism. However, as opposed to typical polymorphic calls, the dispatch logic in PBI is not fixed but
customizable.

Here, a bytecode instrumentation is considered purely augmentative, meaning it may insert fields
and methods,‡ as well as modify method bodies, but it may not remove any field or method. PBI
is applicable to a wide range of bytecode instrumentations,§ which may be implemented with any
instrumentation framework, not necessarily the same. A PBI framework is in charge of integrating
these instrumentations, as explained later.

2.1. Polymorphic bytecode instrumentation overview

The PBI enables dynamic dispatch between differently instrumented versions of a method at the
granularity of individual method executions. The version of a method to be executed is decided
upon method entry. After this selection, it is not possible to switch between differently instrumented
parts of a method (e.g., it is not possible to execute a differently instrumented loop body in each
loop iteration).

Let us consider N > 1 bytecode instrumentations that are applied to a base program class
Corig. Each instrumentation produces an instrumented class, denoted C iinstr (1 6 i 6 N ). These
instrumented classes, as well as Corig, are called class versions. A PBI framework takes these class
versions and merges them into a single class denoted as Cmerged (Figure 1). There are N C 1 class
versions considered for merging, where (typically) class version 0 corresponds to Corig and class
version i corresponds to bytecode instrumentation i (1 6 i 6 N ).

At any single point in time, for a given computation step, only one code version is active. Poly-
morphism comes from dynamic dispatch between these versions. Notably, the actual dispatch logic
is not fixed by the PBI framework. Rather, it is provided as input (as a computeCV() function)
in addition to the code versions (Figure 1). The PBI framework uses this dispatch function to insert
code that selects the specific version to execute at runtime.

‡In this article ‘method’ stands for ‘method or constructor’.
§As we will explain in Section 4, PBI imposes some restrictions on bytecode instrumentations. Furthermore, PBI offers
a special mechanism for initializing inserted static fields, which is not transparent to bytecode instrumentations.
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Figure 1. Overview of polymorphic bytecode instrumentation (PBI). First, N different bytecode instrumen-
tations are applied to the original class Corig (class version 0), producing the instrumented classes C iinstr
(class versions i , 1 6 i 6 N ). The PBI framework merges the class versions into the output class Cmerged.
Each method in Cmerged has a switch to select the code version to execute; the dispatch logic is defined in the

function computeCV().

The merged class Cmerged generated by the PBI framework has all fields and methods that exist
in at least one class version. For methods that have the same signature in different class versions,
the corresponding method bodies are merged. We refer to the body of a method defined in class
version i as code version i of that method. The merged method body starts with the dispatch logic,
whose purpose is to jump to the code version to be executed. A PBI framework is free to decide how
this jump is realized and where the different code versions effectively reside.

2.2. Dynamic dispatch

Support for dynamic dispatch between code versions is at the heart of PBI. It offers the necessary
flexibility to use PBI in a wide range of scenarios, such as complete bytecode coverage (Sections 3
and 5), execution levels for AOP (Section 6), and adaptive dynamic analysis tools (Section 7).

The case studies developed here highlight two different kinds of dispatch logic, based either on
(global) state or on control flow. More precisely, both kinds of dispatch logic are typically composed.
In the former case, dispatch depends on some value that is accessible to all threads, and so, changes
between code versions are global.¶ This is used, for instance, for adaptive dynamic analysis, where
the user globally selects which variant of the analysis to apply. In the latter kind of dispatching,
thread-local state is used, thereby allowing different threads to concurrently execute different code
versions. This is needed for execution levels, among others.

Also, our case studies show that dispatch logic is typically common to all classes in a pro-
gram, although some optimizations are applicable to reduce the complexity of dispatch for certain
classes [15]. Another case study, described elsewhere [13], explores support for dynamic mixin
layers using PBI, illustrating a good scenario for class-specific dispatch.

2.3. Polymorphic bytecode instrumentation for Java: CodeMerger

Our implementation of PBI for Java bytecode is called CodeMerger. The most recent version of
CodeMerger uses ASM [7]. The developer of an instrumentation using PBI has to provide each
input class version as a pair consisting of the Java class file (represented as a byte array) and the
desired version number. The original class Corig is specially marked, allowing CodeMerger to ver-
ify whether certain constraints that will be explained later are met. Each input class must have a
unique integer version number; the numbering need not necessarily be continuous. While in many
cases, it is convenient to assign Corig version number zero, there are also some scenarios where it is
convenient to assign a different version number to Corig; an example will be given in Section 6. The
function computeCV() holding the custom dispatch logic must be provided as a static method in
a separate class file. The merged output class is a Java class file.

¶In the case of Java, the typical approach is to use fields that are public, static, and volatile, such that their states can be
altered asynchronously and the new states become visible to all threads (according to the happens–before relation for
volatile writes and reads guaranteed by the Java memory model [14]).
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Listing 1 illustrates the generated code pattern for a merged method body. Here, we assume
that Corig is assigned version number v0 and C iinstr is version number vi . CodeMerger extracts the
body of computeCV() and inlines it in the beginning of each merged method. The resulting code
version is obtained as an integer, and then, a switch statement dispatches to the appropriate code
version. All code versions of a method are simply concatenated in the merged body. Jumping to an
unknown code version raises an error at runtime.

If a method exists in more than one class version, PBI requires that its modifiers (i.e., abstract,
final, native, static, synchronized, public, protected, private, and strictfp) are the same in each
class version. When using PBI with independently developed bytecode instrumentations, it is
important to ensure that there is no undesired merging of methods with the same signature.
Typically, methods inserted by different bytecode instrumentations need to be renamed (by
the developer who implements the PBI-based switching logic) before merging so as to avoid
name clashes.

Inserted fields must have different names in each class version, so it may be necessary to rename
them to avoid name clashes. Consequently, only the fields in the original class Corig exist in all class
versions and are preserved (without any replication) in the merged class Cmerged. More details about
CodeMerger, such as field initialization, are described in Section 4.

3. COMPLETE BYTECODE COVERAGE

Many applications of bytecode instrumentation require complete bytecode coverage in order to
function properly. For instance, a profiler needs to be able to track computation occurring in
the core language libraries as well as in application code. Binder et al. proposed a solution
to this issue, albeit in an ad hoc manner [16]. The general technique of PBI subsumes this
previous approach.

Instrumentation with complete bytecode coverage implies that every method that has a bytecode
representation (i.e., every non-abstract and non-native Java method) must be amenable to bytecode
instrumentation, including methods in the Java class library and in dynamically downloaded or
generated classes. Full coverage of the Java class library is delicate because of two issues:

1. The instrumentation must not break JVM bootstrapping, for instance, by triggering premature
initialization of classes used by inserted code.

2. Code inserted by the instrumentation must not cause infinite regression when invoking
methods in the (instrumented) Java class library.

By allowing us to keep both the instrumented method bodies (class versions 1) and the original
unmodified method bodies (class versions 0) of the Java class library and dispatching amongst them
dynamically, PBI solves both of these issues, as explained hereafter.
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3.1. Bootstrap with an instrumented Java class library

Many current JVMs are very sensitive to the order in which some core classes in the Java
class library (e.g., java.lang.Object, java.lang.String, or java.lang.Thread)
are initialized. In such classes, code inserted by a bytecode instrumentation may change the class
initialization order when bootstrapping, typically causing a JVM crash.

Because the JVM specification mandates lazy class initialization (JVM Specification, Second Edi-
tion, Section 5.5 [17]), inserted code that is not executed during bootstrapping does not change the
class initialization order. Hence, we can use PBI in order to execute only the original code version
of invoked methods as long as the JVM is bootstrapping. Dispatch is therefore based on a global
state that indicates whether the JVM has completed bootstrapping. Class BootstrapState
(Listing 2) maintains that global state in a static volatile flag. The flag is toggled (by an invoca-
tion of signalEndOfBootstrap()) before the base program main class is initialized. This
can be achieved by calling signalEndOfBootstrap() in the premain(...) method of
a Java agent (package java.lang.instrument). Because the flag is volatile, all threads
are guaranteed to see the new state of the flag, thanks to the semantics of volatile field access
specified by the Java memory model [14]. This state-based dispatch can be simply defined
as follows:

That is, the instrumented code version is only used after the JVM has completed bootstrapping.
Note that our approach will cause initialization of class BootstrapState during bootstrapping.
However, that class has no static initializer, and reading the Boolean flag during bootstrapping does
not trigger any other class initialization. Our approach has been thoroughly tested on many versions
of Oracle’s HotSpot virtual machines (VM) and IBM’s J9 VM.

While in prior work [16] the access to the volatile flag upon each invocation of a method in
the Java class library introduced significant extra overhead, some recent state-of-the-art JVMs,
such as on Oracle’s HotSpot Server VM, enable us to completely eliminate that overhead. If the
JVM supports class redefinition (i.e., dynamic class redefinition with the aid of code hotswapping),
method signalEndOfBootstrap() can replace class BootstrapState with a version
where bootstrapCompleted() returns the constant true. Thanks to just-in-time compiler
optimizations, the overhead due to the check can be completely eliminated.
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3.2. Preventing infinite regression

If code inserted by an instrumentation invokes some instrumented methods in the Java class library,
infinite regression can happen, because the invoked methods would also execute some inserted code.
In order to prevent infinite regression, we can keep track of whether a thread is executing code in the
control flow (i.e., in the dynamic extent) of inserted code, and if so, dispatch to the non-instrumented
version of the code. To this end, we need to maintain Boolean control flow information for
each thread.

Class ControlFlow (Listing 3) provides access to a Boolean, thread-local flag indicating
whether the execution is in the dynamic extent of inserted code. We directly insert that flag
in class java.lang.Thread as the public, Boolean instance field pbi_cflow. The control
flow-based dispatch is as follows:

Whenever inserted code may invoke instrumented methods, such as methods in the Java class
library, it must first set the thread-local control-flow flag to true, and upon completion of
the inserted code, it must restore the previous value. That is, in general, the developer of an
instrumentation has to use the following code pattern within inserted code that may invoke
instrumented methods:

In order to ensure that a bytecode instrumentation properly implements the aforementioned code
pattern, the instrumentation may either be manually adapted, or some automated tool may be applied
to detect inserted code and to enclose it with the operations that update the control flow information.
For example, our aspect weavers MAJOR [18] and HotWave [19] generate the code pattern on code
previously woven with the standard AspectJ weaver in a fully automated way.

3.3. Composite dispatch

Each of the two issues of complete bytecode coverage, namely, JVM bootstrapping and infinite
regression, requires a specific dispatch (respectively state based and flow based). In order to support
complete bytecode coverage properly, both dispatch logics must be composed, as follows:
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In Section 5, we will present the details of our profiler JP2 that employs PBI with the composite
dispatch logic presented here, in order to achieve complete bytecode coverage.

4. CODEMERGER IMPLEMENTATION DETAILS

In this section, we describe our implementation of PBI for Java, CodeMerger. First, we explain
the overall process of applying PBI with complete bytecode coverage in Section 4.1. Next, we
discuss how CodeMerger handles the initialization of fields inserted by instrumentations; Section 4.2
addresses static fields, whereas Section 4.3 deals with instance fields. Finally, Section 4.4 considers
the issue of overlong methods resulting from merging multiple code versions.

4.1. Build-time and load-time instrumentation

CodeMerger can be used for build-time, load-time, and runtime instrumentation. Build-time instru-
mentation takes place before the instrumented application is started. Load-time instrumentation
intercepts class loading events and performs the instrumentation before a class is linked in the
JVM. Runtime instrumentation takes place when an application is already running by redefin-
ing some previously linked classes. However, class redefinition is severely restricted in some
state-of-the-art production JVMs, such as in Oracle’s HotSpot VMs. For example, class redef-
inition may only replace method bodies but must not introduce any new methods or fields.
Load-time and runtime instrumentation are supported by the JVM tool interface [5] and by the
java.lang.instrument API.

The profiling case study presented in Section 5 uses CodeMerger at load time and at runtime.
After the JVM has completed bootstrapping, the classes loaded during the bootstrapping phase are
redefined with instrumented versions. Afterwards, all other classes are instrumented at load time.

In the other case studies (Sections 6 and 7), we use CodeMerger at build time and at load time.
First, the whole Java class library is instrumented at build time. All other classes are instrumented
at load time.

4.2. Initialization of static fields

According to the code pattern illustrated in Listing 1, exactly one code version is executed upon each
invocation of a merged method. If an instrumentation inserts fields and initializes them to a value
different from the default value of the corresponding type, the code pattern in Listing 1 would result
in skipping the initialization of some inserted fields depending on the executed code version. On the
one hand, skipping initialization of inserted fields can break invariants. On the other hand, requiring
instrumentations to leave all inserted fields initialized to their default values would be too restrictive,
because many existing bytecode instrumentations initialize inserted fields, in particular static fields.
For example, the standard AspectJ weaver inserts static fields and initializes them to hold instances
of type JoinPoint.StaticPart, holding reflective information of join points [4].

CodeMerger supports the initialization of inserted static fields with the special private static void
method pbi_initClass(). If a class version needs to initialize inserted static fields, it must do
so in its pbi_initClass() method, which in turn must be invoked at the end of its static initial-
izer; the pbi_initClass() method must not be invoked from any other call site. Upon merging,
the pbi_initClass() methods and the static initializers in the class versions are treated spe-
cially by CodeMerger. First, the pbi_initClass() methods are renamed by appending the
class version number to the method name. In this way, the bodies of the pbi_initClass()
methods will not be merged. Second, in each class version, the static initializer is extended to
invoke the pbi_initClass() methods of all class versions in the end (if there is no static
initializer in a class version, it is created). Consequently, after merging of the static initializers,
the pbi_initClass() methods of all class versions will be executed, independently of the
executed code version of the merged static initializer. That is, all inserted static fields will be
properly initialized.
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Java requires static final fields to be initialized in the static initializer; it is not allowed to initialize
them in another method that is invoked by the static initializer. Hence, it is not possible to initial-
ize static final fields in pbi_initClass() methods. Consequently, static fields inserted by an
instrumentation must not be declared as final.

In Section 3, we pointed out that during JVM bootstrapping, inserted code – and therefore, also
the pbi_initClass() method – must not be executed. CodeMerger solves this issue by treating
inserted static fields and pbi_initClass() methods in the Java class library specially. For each
instrumented class C iinstr , the inserted static fields are moved into an extra class in the same package
(private visibility is replaced with package visibility), the pbi_initClass() method becomes
the extra class’ static initializer, the invocation of pbi_initClass() in the static initializer of
C iinstr is removed, and access to the inserted static fields by inserted code in methods in C iinstr is redi-
rected to the static fields in the extra class. Consequently, during JVM bootstrapping, inserted code
is not executed and the static fields in the extra classes are therefore not accessed. Because the JVM
initializes classes lazily [17], it is guaranteed that the extra classes will not be initialized during JVM
bootstrapping. Note that the introduction of extra classes is trivial for build-time instrumentation of
the Java class library (the extra classes are simply added to the archive of the instrumented Java class
library), whereas in general, it may not be possible to introduce extra classes at load time or run-
time, because custom class loaders may not be able to find or may refuse to load the extra classes.
However, for load-time and runtime instrumentation after the JVM has completed bootstrapping,
CodeMerger does not introduce any extra classes.

Note that PBI is not transparent for instrumentations that insert static fields. In order to use
CodeMerger’s pbi_initClass() feature, existing bytecode instrumentations need to be refac-
tored so as to initialize inserted static fields in the (inserted) pbi_initClass() method.
In addition, final modifiers on inserted static fields must be removed. As an alternative, post-
instrumentation transformations can be performed: for instance, in the case of the AspectJ weaver
(Section 6), we apply post-weaving bytecode transformations to move the initialization code for
inserted static fields of type JoinPoint.StaticPart from the woven static initializer into the
pbi_initClass() method.

4.3. Initialization of instance fields

CodeMerger does not support initialization of inserted instance fields in the Java class library, as
it would be impossible to guarantee that such fields are initialized during JVM bootstrapping. An
inserted instance field must be initialized to the default value of the corresponding type. When
CodeMerger is applied to AspectJ, this restriction implies that AspectJ’s static crosscutting fea-
tures cannot be fully supported. An inserted instance field can be lazily initialized by inserted code
accessing the field, although this incurs extra overhead because of the necessary checks of whether
the field has been initialized.

4.4. Dealing with long method bodies

The JVM specification [17] imposes several restrictions on class files, which can impair any appli-
cation of Java bytecode instrumentation. For instance, method bodies must not exceed 216 bytes
(because indices in exception tables, line number tables, and local variable tables are unsigned 16 bit
values). While such limitations affect any bytecode instrumentation tool, the merging of code ver-
sion into a single method body aggravates the problem. This issue can be mitigated by placing code
versions in separate private methods when the method size limit is exceeded.

CodeMerger can operate in three different modi. In the first modus, which is the default modus,
CodeMerger places multiple code versions into a single method body and does not introduce any
new method. In the second modus, CodeMerger puts each code version in a separate private method.
In the third modus, which we will call adaptive modus in this article, CodeMerger places multiple
code versions into a single method body only as long as a specified maximum method size is not
exceeded. If the merged method body exceeds that limit, CodeMerger puts the code versions into
separate private methods. Note that CodeMerger processes static initializers always in the default
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modus, as static final fields must be initialized within the body of the static initializer (and cannot
be initialized in a method invoked by the static initializer).

The default modus has the advantage that it does not introduce any structural modifications of
class files; that is, the effects of merging multiple code versions into a single method body are
not visible through the reflection API and there are no extra stack frames upon method execution.
However, the resulting method bodies can be long, which may have some negative performance
impact, for example, if the just-in-time compiler bases decisions on method inlining on the method
size (i.e., preventing inlining of long methods). The other two modi produce artifacts (i.e., extra
methods) that are visible through the reflection API. However, they help avoid creating methods with
very long bodies. In Section 8.2, we will carefully explore the overhead introduced by CodeMerger
in each modus.

5. CASE STUDY 1: COMPREHENSIVE PROFILING OF INTER-PROCEDURAL AND
INTRA-PROCEDURAL CONTROL FLOW

In this section, we present a profiler, JP2, that relies on PBI to achieve complete bytecode coverage,
as explained in Section 3. JP2 profiles both the inter-procedural and the intra-procedural control
flow of applications running in any standard JVM.

To capture the inter-procedural control flow of the profiled base program, JP2 instruments each
method so as to reify the current calling context for each thread. JP2 maintains a calling context
tree (CCT) [20] as a thread-safe data structure shared between all threads in the JVM. Within the
thread-local variable currentCCTNode, each thread keeps track of its current position in the
CCT. Upon method entry, the inserted instrumentation code accesses currentCCTNode (which
at that moment refers to the CCT node of the caller) and stores the reference in the local variable
callerCCTNode. Then it looks up the CCT node representing the callee (creating that node if it
does not yet exist) and stores the reference in the local variable calleeCCTNode as well as in the
thread-local variable currentCCTNode. Upon (normal and abnormal) method completion, the
reference stored in callerCCTNode is stored back to currentCCTNode.

The profiles generated by JP2 preserve callsite information; that is, if method m is invoked from
different callsites within the same calling context, the executions of m are represented by separate
CCT nodes, one for each callsite. Callsite awareness is achieved by storing the bytecode position of
a callsite in a dedicated thread-local variable before the call, such that the callee can access and use
that information when looking up (respectively creating) its CCT node. Note that it is not sufficient
to store the bytecode position only before method invocation bytecodes, but it must be stored also
before any bytecode that might trigger class loading or class initialization, as these activities can
result in implicit invocations of class-loader methods respectively of static initializers.

JP2 profiles the intra-procedural control flow by incrementing a counter in the beginning of each
basic block of code. That is, each CCT node maintains an array of counters, one for each basic block
in the body of the method represented by the CCT node.

JP2 uses CodeMerger both at load-time and at runtime. JP2 employs an instrumentation agent
written in pure Java that is initialized after JVM bootstrapping, before the first class of the base
program to be profiled is loaded. The JP2 agent determines the set of loaded classes and redefines
them, replacing them with instrumented versions (i.e., using PBI at runtime). Because instrumenta-
tion happens in the same JVM process that runs the instrumented base program, the instrumentation
may trigger class loading; these classes need to be instrumented as well. Therefore, the JP2 agent
repeatedly determines the set of freshly loaded classes and redefines them, until no further classes
are loaded. Then, the agent installs itself to intercept subsequent class loading events. That is, all
classes loaded by the execution of the base program will be instrumented at load time.

The instrumentation of JP2 has been carefully designed to avoid structural changes in the classes
as much as possible, as such changes would violate current constraints on class redefinition in some
production JVMs. JP2 makes only a single structural change to the class java.lang.Thread,
where it inserts the instance field pbi_cflow for control flow-based dispatch, as illustrated in
Listing 3 in Section 3.2. This trivial modification of class java.lang.Thread is carried out at
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build time (and hence will not interfere with JP2’s use of class redefinition). Because JP2 does not
insert any static fields, there is no need for using the pbi_initClass() feature of CodeMerger.

JP2 has been used for workload characterization at the bytecode level, for the comparison of
Java and Scala workloads [21]. In that work, various dynamic metrics (e.g., the number of executed
bytecodes, callsite polymorphism, and basic block hotness) are computed by cross-referencing the
profiles produced by JP2 with static information from the class files of the profiled base program.
The details of the initial design and implementation of JP2 are presented in [22, 23]; later, JP2 was
ported to use CodeMerger. JP2 is implemented in ASM [7] and available as open-source software
at http://code.google.com/p/jp2/. In Section 8.3, we will explore the overhead of complete bytecode
coverage in JP2, enabled by PBI.

6. CASE STUDY 2: EXECUTION LEVELS FOR ASPECTJ

As a second case study for PBI, we explore how the technique makes it possible to implement
execution levels [12] for AOP with AspectJ [3].

6.1. Aspects and circularity

An aspect observes the execution of a program through its pointcuts and affects it with its advice. An
advice is like a method, and therefore, its execution also produces join points. Similarly, pointcuts
as well can produce join points. For instance, in AspectJ, one can use an if pointcut designator to
specify an arbitrary Java expression that ought to be true for the pointcut to match. The evaluation
of this expression is a computation that produces join points. In higher-order aspect languages like
AspectScheme [24] and others, all pointcuts and advice are standard functions, whose application
and evaluation produce join points as well.

The fact that aspectual computation produces join points raises the crucial issue of the visibility
of these join points. In all languages, by default, aspectual computation is visible to all aspects –
including themselves. This of course opens the door to infinite regression and unwanted interfer-
ence between aspects. These issues are typically addressed with ad hoc checks (e.g., using cflow
checks in AspectJ) or primitive mechanisms (like AspectScheme’s app/prim). However, all these
approaches eventually fall short for they fail to address the fundamental problem, which is that of
conflating levels that ought to be kept separate [25].

6.2. Execution levels

In order to address this issue, a program computation is structured in levels. Computation happening
at level 0 produces join points observable at level 1. Aspects are deployed at a particular level, and
observe only join points at that level. This means that an aspect deployed at level 1 only observes join
points produced by level-0 computation. In turn, the computation of an aspect (i.e., the evaluation
of its pointcuts and advice) is reified as join points visible at the level immediately above; therefore,
the activity of an aspect standing at level 1 produces join points at level 2.

An aspect that acts around a join point can eventually invoke the original computation. For
instance, in AspectJ, this is performed by invoking proceed in the advice body. The original com-
putation ought to run at the same level at which it originated!|| In order to address this issue, it
is important to remember that when several aspects match the same join point, the corresponding
advice are chained, such that calling proceed in advice k triggers advice k C 1. Therefore, the
semantics of execution levels guarantees that the last call to proceed in a chain of advice triggers
the original computation at the lower original level.

This is shown in Figure 2. A call to a move method in the program produces a call join point
(at level 1), against which a pointcut pc is evaluated. The evaluation of pc produces join points at

||This issue is precisely why using control flow checks in AspectJ in order to discriminate advice computation is actually
flawed. See [12] for more details.
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Figure 2. Execution levels in action: pointcut and advice are evaluated at level 1, proceed goes back to
level 0. (from [12]).

level 2. If the pointcut matches, it passes context information ctx to the advice. Advice execution
produces join points at level 2, except for proceed: control goes back to level 0 to perform the
original computation, then goes back to level 1 for the after part of the advice.

6.3. Execution levels for AspectJ using PBI

Execution levels have been formulated and prototyped in aspect languages with dynamic weav-
ing [12]. In recent work, we have designed an extension of AspectJ with execution levels, tailored
to take into account the specificities of AspectJ, like static aspect weaving with partial evaluation of
pointcuts [4, 26]. The detailed motivation, design, and applications of this extension are presented
elsewhere [15]. Our previous implementation of level switching is carried out in an ad hoc manner;
here, we describe how PBI can be used for that sake. Section 8 also provides a much more detailed
performance evaluation of the implementation.

Semantically, the execution of a method produces join points. These join points may be seen by
pointcuts that may match them; if so, the corresponding pieces of advice are triggered. In aspect
languages that perform weaving statically, join point production is partially evaluated [26]: based
on the static properties of code, it is determined whether or not a given expression can produce a
join point that will be matched at runtime [4]. If so, such a join point shadow is transformed so
as to invoke advice appropriately. If it can be statically determined that the pointcut however never
matches join points corresponding to the shadow, then no transformation happens. The matching of
the pointcut may also depend on runtime information not available at compile time; in that case, the
shadow is woven together with a residue, that is, a conditional expression that guards the invocation
of the advice.
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With execution levels, the join points produced by the execution of a method vary. If base pro-
gram code, running at level 0, invokes a method, it produces join points at level 1, that may be
matched by aspects deployed at that level. If an aspect deployed at level n calls this same method,
then it produces join points at level n C 1, visible only for aspects deployed at level n C 1. We
use PBI to check the execution level upon method entry and dispatch appropriately to a partic-
ular code version. More precisely, there is one code version per execution level, and each code
version corresponds to the code with the instrumented shadows of the aspects deployed at the
level directly above it. For instance, execution at level 0 uses code version 0, which is the result
of weaving aspects deployed at level 1. Execution at level N (the highest level in the configu-
ration) uses code version N , which is set to be the original, non-instrumented code version. A
code version is obtained by invoking the standard AspectJ weaver with the aspects deployed at a
given level.

In order to track execution levels, we define a class ExecutionLevel that provides access to
a thread-local variable that indicates at which level the current thread is running (Listing 4). For
that, we insert an integer instance field pbi \ _level in class java.lang.Thread to keep track of
the current level. Method currentLevel() returns the current thread’s level, whereas methods
up() and down() increment respectively decrement it.

Level shifting is carried out upwards for the dynamic extent of both advice and pointcut residues,
following the top pattern of Listing 5. A level shift downwards occurs for around advice, when the
original computation is finally called with proceed, following a similar pattern (Listing 5, bottom).

Our PBI-based aspect weaver, MAJOR2, uses the unmodified standard AspectJ weaver and post-
processes its output to automatically insert the above pattern in each advice method and in each
method corresponding to compiled if pointcuts.

The dispatch logic given to the PBI framework simply consults the current execution level and
dispatches to the corresponding version. Finally, because execution levels generalize the solution
we presented in the previous section to avoid infinite regression, we only need to combine the levels
check with the JVM bootstrap check in order to obtain execution levels for aspects with complete
bytecode coverage:

The evaluation in Section 8.4 uses two different deployment configurations with two aspects
in order to assess the performance of the PBI-based implementation. Additional deployment
configurations are discussed in [15].
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7. CASE STUDY 3: ADAPTIVE DYNAMIC ANALYSIS

Adaptive dynamic program analysis allows the user to choose or change the dynamic analysis to
be performed at runtime. For example, in adaptive profiling, the profiler code is adapted at run-
time based on user choices, in order to restrict profiling to only part of an executing application
or to enable and disable the collection of certain dynamic metrics. Adaptive profiling helps reduce
profiling overhead, as only data of current interest are gathered.

A good example of an adaptive profiler is JFluid [10], which has been integrated in the NetBeans
Profiler [27]. JFluid measures execution time for selected methods and generates a CCT (like JP2,
Section 5) to help analyze the contributions of direct and indirect callees to the execution time of
selected methods. JFluid is an adaptive profiler: when the user selects different methods for profiling
at runtime, JFluid adapts the profiling code accordingly, using the class redefinition mechanism of
the JVM.

Runtime instrumentation and class redefinition can be very expensive, in particular if many
classes are to be instrumented and if the instrumentation is specified in a high-level programming
model, such as AOP, which requires more complex tool support (e.g., in the case of AOP, an aspect
weaver is used). For example, with the dynamic AOP framework HotWave [19], which relies on
runtime aspect weaving and on class redefinition, weaving an aspect into all modifiable classes at
runtime may take up to 60 s on a recent machine (Section 8.5).

If the set of bytecode instrumentations that may be needed is known in advance, it is not nec-
essary to resort to expensive class redefinition techniques. Instead, we can use PBI to apply all
the instrumentations and decide at runtime which code version to execute. For example, Villazón
et al. present an adaptive profiler built with HotWave that may switch between two different instru-
mentations (implemented as aspects) at runtime [19]. The default instrumentation generates a plain
CCT, whereas a second instrumentation additionally stores various dynamic metrics in the CCT
nodes. The second instrumentation introduces much higher overhead and therefore is applied at run-
time only to the classes for which the user desires detailed dynamic metrics. Instead of applying the
two different instrumentations (possibly repeatedly) at runtime by redefining the affected classes,
PBI allows us to merge the code versions for both instrumentations and to switch between them
at runtime.

Figure 3 illustrates a case of adaptive dynamic analysis with PBI: the user defines, and changes
dynamically, the scope of the profiling; profiling data are then passed to a profiling agent that renders
it. Implementation-wise, all methods have two code versions and start with a dispatch that triggers
the appropriate version, based on the current scope definition.

In the general case, computeCV() dispatches between N different instrumentations based
on asynchronous user choices. These user choices may be at the level of classes or packages.

Figure 3. Adaptive dynamic analysis with polymorphic bytecode instrumentation.
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Depending on the granularity at which the user can switch between instrumentations, we assume
there is some state (i.e., a public static volatile field) for each class or package indicating the
code version to be executed. The effect of a state change is similar to class redefinition in current
JVMs: all subsequently invoked methods will read the new state and execute the corresponding
code version, whereas methods that already executed the dispatch logic before the state change
are not affected. The computeCV() function as follows is a template where the meta-variable
selectedCodeVersion refers to the corresponding volatile field to be read:

This dispatch logic uses the bootstrapping state and the control flow information in the same way
as explained in Section 3, in order to enable instrumentation of the Java class library. Code version 0
corresponds to the original method bodies in Corig. Note that for methods in the base program,
computeCV() can be optimized as follows, assuming that the inserted code never invokes any
method of the base program:

As mentioned in Section 3, reading a volatile variable upon each method entry may introduce
significant overhead. If the user rarely changes his choice of the code version to be executed (by
writing to the meta-variable selectedCodeVersion), redefining the class that holds the volatile
variable (as explained in Section 3) helps reduce the overhead of reading the volatile variable in
state-of-the-art JVMs. Because of the de-optimization and re-optimization caused by class redefini-
tion, changing the volatile variable does introduce some temporary overhead. However, compared
with a solution based on runtime instrumentation and on possibly redefining (potentially) all previ-
ously loaded classes, this approach only redefines a single, trivial class. Furthermore, this approach
supports the atomic change of a set of instances of the meta-variable selectedCodeVersion
(e.g., atomically changing the instrumentation for a set of classes or for a set of packages).

8. EVALUATION

In this section, we thoroughly evaluate CodeMerger, our PBI implementation, in different scenar-
ios. Section 8.1 summarizes our measurement environment and evaluation settings. In Section 8.2,
we explore the performance impact of code duplication introduced by PBI, considering the three
different modi supported by CodeMerger (Section 4.4), that is, placing all code versions into a sin-
gle method body, generating a separate private method for each code version or adapting to the
method size. In Section 8.3, we investigate the performance overhead of complete bytecode cov-
erage in the profiling case study (Section 5). In Section 8.4, we evaluate MAJOR2, our PBI-based
implementation of execution levels for AspectJ (Section 6), considering both start-up and steady-
state performance. Finally, Section 8.5 presents our evaluation of an adaptive dynamic program
analysis tool (Section 7) and compares it with an alternative implementation that relies on dynamic
class redefinition.

8.1. Measurement environment

Our measurement machine is a quad-core machine (Dell Optiplex 760, 1 quad-core Intel CPU,
3.0 GHz, 8 GB RAM) running Fedora 13 and the Oracle JDK 1.6.0_18 Hotspot Server VM (64 bit
version with 4 GB maximum heap size). In Section 8.2, we additionally use the HotSpot VM in
interpreted mode, to study the base overhead introduced by PBI in a JVM both with just-in-time
compilation and with interpretation.

We use the DaCapo benchmarks (dacapo-2006-10-MR2) [28] with the default workload size.
For some evaluations, we also show the geometric mean of the measurements for all DaCapo
benchmarks.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1351–1380
DOI: 10.1002/spe



1366 W. BINDER ET AL.

8.2. Overhead of polymorphic bytecode instrumentation dynamic dispatch

In this subsection, we evaluate the base overhead introduced by PBI when two identical code
versions (without any instrumentation) are merged. We consider all three modi supported by
CodeMerger, that is, (1) merging code versions within method bodies, (2) introducing a private
method for each code version, and (3) the adaptive modus that creates extra methods only if the size
of the merged code versions (and the inserted dispatch logic) would exceed a given limit. We use the
default value of the JVM parameter -XX:FreqInlineSize as limit; this parameter indicates the
maximum size of methods that are inlined when executed frequently. The rationale of this choice
is to avoid extra methods as long as it does not prevent inlining of frequently executed methods.
Regarding dynamic dispatch, we consider three different types of computeCV() function; the first
reads a thread-local variable; the second reads a static volatile field, and the third reads a static final
field. The thread-local variable, respectively volatile or final field, always contains the value 0; that
is, always the same code version is executed for each invoked method.

Figure 4 shows that in interpreted mode and with a dispatch logic based on a thread-local variable,
extending the size of method bodies is always faster than using extra methods. The reason is that
the interpreter does not perform any inlining and the extra method calls always introduce some
overhead. The adaptive strategy performs almost as good as always merging code versions into the
same method body, because the majority of frequently executed method bodies are still smaller than
the limit of the adaptive strategy. Therefore, extra methods are not created in most cases.

Figure 4. Overhead of polymorphic bytecode instrumentation with two identical code versions;
interpreter and thread-local dispatch.

Figure 5. Overhead of polymorphic bytecode instrumentation with two identical code versions;
HotSpot server compiler and thread-local dispatch.
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Using the same dispatch logic, Figure 5 illustrates PBI overhead when the JVM uses just-in-time
compilation. For most benchmarks, the overhead is rather low in all three modi, between 5% and
20%. However, for three benchmarks (i.e., eclipse, luindex, and lusearch), always merging code
versions into the same method body introduces surprisingly high overhead between factor two and
factor four. The reason for this excessive overhead is that some frequently executed methods cannot
be inlined anymore because their size exceeds the limit imposed by the JVM. Always generating
extra methods avoids this problem but introduces slightly more overhead for some other benchmarks
(e.g., jython, hsqldb, pmd, and xalan); in comparison with interpreted mode (Figure 4), the overhead
because of extra method calls is less pronounced, as the just-in-time compiler is able to inline many
extra methods. The adaptive strategy always outperforms the use of extra methods for all code
versions; it succeeds in combining the benefits of the other two strategies.

Figure 6 shows that in the interpreted mode of Oracle’s HotSpot VM, accessing a thread-local
variable is much more expensive than accessing a static volatile field or a static final field. Because
there is no just-in-time compilation, there is no evident performance difference between accessing
a volatile respectively final field, as access to final fields is not optimized.

In contrast, Figure 7 illustrates that with just-in-time compilation (i.e., HotSpot server compiler);
access to a volatile field is more expensive than access to a thread-local variable, which in turn is
slightly more expensive than access to a final field.

In summary, we conclude that the base overhead introduced by CodeMerger is small on a mod-
ern JVM with an optimizing just-in-time compiler, whereas it may reach a factor of 2 when using

Figure 6. Overhead of polymorphic bytecode instrumentation for different computeCV() functions;
interpreter and adaptive strategy.

Figure 7. Overhead of polymorphic bytecode instrumentation for different computeCV() functions;
HotSpot server compiler and adaptive strategy.
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Figure 8. Overhead of JP2 with and without complete bytecode coverage.

Table I. Number of executed basic blocks of code and methods depending on
the coverage.

Executed basic blocks Method invocations

Application Complete Increase Application Complete Increase
only coverage factor only coverage factor

antlr 3.63E+08 6.13E+08 1.69 9.37E+07 1.63E+08 1.74
bloat 6.82E+08 2.66E+09 3.90 4.92E+08 1.05E+09 2.12
chart 4.55E+08 1.54E+09 3.38 1.60E+08 3.83E+08 2.39
eclipse 5.07E+09 6.83E+09 1.35 5.76E+08 8.99E+08 1.56
fop 4.40E+07 1.35E+08 3.07 1.45E+07 4.20E+07 2.90
hsqldb 5.33E+08 5.83E+08 1.09 1.83E+08 2.18E+08 1.19
jython 7.62E+08 1.86E+09 2.44 3.17E+08 6.81E+08 2.15
luindex 1.51E+09 1.77E+09 1.17 3.56E+08 4.25E+08 1.20
lusearch 1.15E+09 1.60E+09 1.39 3.36E+08 4.52E+08 1.35
pmd 6.45E+08 9.92E+08 1.54 2.90E+08 4.62E+08 1.59
xalan 1.06E+09 2.25E+09 2.13 2.78E+08 6.31E+08 2.27

geo.mean 1.92 1.79

an interpreter. The adaptive mode of CodeMerger achieves consistently good results for all bench-
marks, both when using just-in-time compilation and interpretation. In contrast, the default modus
may result in surprisingly high overhead in certain situation when just-in-time compilation is used.

8.3. JP2

We now evaluate the impact of complete bytecode coverage in our profiling case study (Section 5).
Figure 8 reports the profiling overhead introduced by JP2 in two different settings: (1) instrumenting
only the base program classes and (2) instrumenting all classes; only the second setting requires the
use of PBI to achieve complete bytecode coverage.

In both settings, the profiling overhead is high, ranging from a factor of 2 to a factor of 33.
The high overhead is not surprising, as JP2 performs a heavyweight instrumentation, including
callsite-aware calling-context profiling and intra-procedural profiling at the basic block level. Fur-
thermore, the profile data structure is shared between all threads, incurring additional overhead for
thread-safety, particularly for multi-threaded benchmarks such as lusearch and xalan. For a detailed
exploration of the different sources of overhead,** we refer to [22]. Here, we are only interested in
the performance impact of complete bytecode coverage as enabled by PBI.

**Note that the measurements reported in this article are not directly comparable with the measurements published in [22]
because of different measurement environments.
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Figure 8 shows that on average (geometric mean for the DaCapo benchmarks), JP2 with complete
bytecode coverage introduces almost twice as much overhead as JP2 instrumenting only classes of
the base programs. However, the bigger part of the extra overhead of instrumenting the Java class
library does not stem from code duplication by PBI (as we confirmed in Section 8.2) but from the
fact that much more code is instrumented, as explained later.

Table I summarizes the number of executed basic blocks and the number of method invocations,
both for JP2 with complete bytecode coverage and for JP2 instrumenting only the classes of the
base program. Some benchmarks (i.e., bloat, chart, fop, jython, and xalan) trigger the biggest part
of events in the Java class library (both in terms of executed basic blocks and method invocations).
It is not surprising that for these benchmarks, complete bytecode coverage can introduce more than
2.5 times the overhead of covering only base program code. The correlation coefficient between
the difference in overhead (complete bytecode coverage versus covering only base program classes)
and the difference in the number of executed basic blocks (resp. in the number of method invoca-
tions) is 0.8523 (resp. 0.8531). These results confirm that the extra overhead for complete bytecode
coverage indeed stems from the larger amount of data collected.

This study of coverage with the Dacapo benchmarks shows that computation within the Java
class library is in fact a big part of the overall activity of Java programs (almost twice as many
basic blocks are executed and almost twice as many methods are invoked). This result is especially
important in that it demonstrates that proper profilers cannot ignore the core libraries: complete
bytecode coverage is crucial, and PBI is an efficient technique to achieve it when implementing
profilers in pure Java.

8.4. Execution levels

In the following evaluation, we consider the performance impact of execution levels in AOP. First,
we describe the aspects used in our evaluation and the deployment scenarios in Section 8.4.1. Sec-
ond, we explore the overhead of execution levels in comparison with the standard AspectJ load-time
weaver in Section 8.4.2. Third, we investigate the overhead when weaving with complete bytecode
coverage in two different deployment scenarios in Section 8.4.3.

8.4.1. Profiling aspects and scenarios. Our evaluation is carried out with two bytecode instru-
mentations for dynamic program analysis implemented as aspects, the object allocation profiler
ProfAllocs and the method call profiler ProfCalls (Listing 6). The allocation profiler
collects the number of object allocations for each class, and the method call profiler collects the
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number of method calls for each method. Both profilers maintain a thread-safe mapping from
identifiers to atomic longs (methods profileAllocation(...) and profileCall(...),
which are not shown in the listing). For ProfAllocs, the identifiers are the classes rep-
resented by java.lang.Class instances, and for ProfCalls, the method identifiers are
represented by JoinPoint.StaticPart instances (from AspectJ). We use non-blocking data
structures from the java.util.concurrent package, concretely ConcurrentHashMap
and AtomicLong. We discuss the scoping pointcuts defined in ScopeProf in Section 8.4.2.

We weave the ProfAllocs and ProfCalls aspects in the DaCapo benchmarks that serve
as base programs. We use our new PBI-based re-implementation of MAJOR2 [15] that relies on
CodeMerger, which provides support for execution levels and complete bytecode coverage. Aspects
are woven with AspectJ 1.6.5 (MAJOR2 is also based on AspectJ).

We considered two scenarios for this evaluation:

1. ProfAllocs and ProfCalls are applied to the base program (i.e., both aspects are
deployed at level 1).

2. ProfCalls is applied to the base program (i.e., deployed at level 1), and ProfAllocs
is applied to ProfCalls (i.e., deployed at level 2), thus profiling object allocation in
ProfCalls.

8.4.2. Comparison with AspectJ. Our first evaluation compares the performance of code woven
with AspectJ’s load-time weaver (henceforth called ajc-ltw) versus MAJOR2. As explained in
Section 6, MAJOR2 relies on PBI to implement control flow-based dispatch based on a thread-local
field. In this comparison, we use scenario 1, as this is the only composition scenario that AspectJ
can handle. We limit the coverage of MAJOR2 to application classes in order to have comparable
settings. For each benchmark of the DaCapo suite, we report the first run for start-up performance
and we take the median of 15 runs executed in the same JVM process to evaluate steady-state
performance. We also compute the geometric mean for all benchmarks except bloat and eclipse.††

The aspects in Listing 3.2 use a scope() pointcut in order to avoid infinite regression caused
by their own computation, as well as to avoid seeing join points produced by the other aspect. Using
control flow checks for achieving this is the most robust pattern, as it ensures that all join points in
the dynamic extent of aspect executions are ignored. This pattern is well known [29] and is used in
many aspect implementations [30]. In our MAJOR2 implementation, these pointcuts are not needed
at all because execution levels already address the issues of infinite regression and mutual visibility.
Our benchmarks therefore enable us to compare the cost of these typical control flow checks and of
our implementation of execution levels.

For further comparison, we also benchmark an optimized version of the aspects with ajc-ltw,
where we skip the control flow checks and just leave the lexical aspects() condition. This hap-
pens to be safe in this particular case, because all potential sources of regression and interference are
situated lexically in the aspect definitions, no shared libraries are woven, and there are no callbacks
from the aspects to the base code.

Tables II and III show the measured execution times and overhead factors respectively for
steady-state and start-up performance. Figures 9 and 10 visualize the overhead factors reported in
the tables.

Considering steady-state performance, MAJOR2 introduces significantly less overhead than ajc-
ltw (factor 6.28 for MAJOR2 versus factor 11.79 for ajc-ltw, on average). This confirms that PBI-
based execution level dispatch can be much more efficient than the use of control flow pointcuts for
avoiding infinite regression and aspect interferences. As expected, the optimized ajc-ltw performs
better than MAJOR2, as it does not incur the PBI overhead. However, the difference is relatively
small (overhead factor 5.80 for the optimized ajc-ltw versus factor 6.28 for MAJOR2, on average).
Recall that the optimization is fragile and not generally applicable.

††We exclude bloat because it fails with ajc-ltw (in contrast to MAJOR2). We exclude eclipse because ajc-ltw fails to
weave a large number of classes because of dependencies (ajc-ltw depends on classes that are also used by the eclipse
benchmark); such a problem does not exist with MAJOR2, which makes proper use of class-loader namespaces.
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Table II. Steady-state overhead comparison between AspectJ and MAJOR2
in scenario 1; median of 15 runs. Aspects are woven only into application

classes.

Orig. ajc-ltw ajc-ltw (opt.) MAJOR2

[ms] [ms] Ovh. [ms] Ovh. [ms] Ovh.

antlr 796 13,002 16.33 5252 6.60 5510 6.92
chart 2863 26,371 9.21 10,229 3.57 10,896 3.81
fop 1106 3064 2.77 1901 1.72 1921 1.74
hsqldb 2535 28,201 11.12 11,529 4.55 11,729 4.63
jython 2393 40,584 16.96 19,908 8.32 22,330 9.33
luindex 3422 53,504 15.64 19,719 5.76 28,581 8.35
lusearch 1333 22,368 16.78 14,784 11.09 14,678 11.01
pmd 2396 37,977 15.85 22,895 9.56 23,387 9.76
xalan 1163 15,633 13.44 9246 7.95 9944 8.55

geo.mean 11.79 5.80 6.28

Table III. Start-up overhead comparison between AspectJ and MAJOR2 in
scenario 1; first run only. Aspects are woven only into application classes.

Orig. ajc-ltw ajc-ltw (opt.) MAJOR2

[ms] [ms] Ovh. [ms] Ovh. [ms] Ovh.

antlr 1839 15,839 8.61 7550 4.11 11,181 6.08
chart 5277 30,540 5.79 14,515 2.75 23,470 4.45
fop 1952 6612 3.39 5314 2.72 19,221 9.85
hsqldb 3683 29,293 7.95 14,334 3.89 18,098 4.91
jython 6886 47,142 6.85 25,189 3.66 30,603 4.44
luindex 4448 55,745 12.53 21,017 4.73 32,067 7.21
lusearch 4374 23,933 5.47 15,274 3.49 18,525 4.24
pmd 4783 41,815 8.74 27,132 5.67 38,103 7.97
xalan 4475 19,567 4.37 11,832 2.64 14,754 3.30

geo.mean 6.61 3.63 5.51

Figure 9. Steady-state overhead for scenario 1.

On average, the start-up overhead (Table III and Figure 10) is lower than the steady-state over-
head, as the baseline for comparison consumes much more execution time because of class loading.
In the ajc-ltw and ajc-ltw (optimized) settings, the start-up overhead exceeds the steady-state over-
head only in the case of fop, a benchmark with short execution time. The most notable difference
with steady-state performance is that MAJOR2 causes much more overhead than the optimized
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Figure 10. Start-up overhead for scenario 1.

Table IV. Steady-state overhead of dynamic analysis
aspects woven with MAJOR2 with complete bytecode

coverage.

Orig. Scenario 1 Scenario 2

[ms] [ms] Ovh. [ms] Ovh.

antlr 796 10,625 13.35 9644 12.12
bloat 2778 66,935 24.09 53,176 19.14
chart 2863 27,884 9.74 23,548 8.22
eclipse 16,058 85,156 5.30 91,560 5.70
fop 1106 3946 3.57 3507 3.17
hsqldb 2535 16,309 6.43 15,158 5.98
jython 2393 38,194 15.96 31,192 13.03
luindex 3422 40,065 11.71 34,789 10.17
lusearch 1333 17,751 13.32 16,631 12.48
pmd 2396 41,671 17.39 26,094 10.89
xalan 1163 21,713 18.67 20,185 17.36

geo.mean 11.08 9.61

AspectJ version. The straightforward explanation is that the code transformation performed at load
time is more expensive with MAJOR2: we call the AspectJ weaver once for each execution level,
and then, the code versions are put together in an additional step.

In summary, these results are particularly encouraging for execution levels, which provide much
more stable semantics for aspect composition [12, 15]. Our evaluation shows that their efficient
integration in a practical aspect language is possible.

8.4.3. Complete bytecode coverage. Our second evaluation measures the overhead introduced by
the two profiling aspects woven with MAJOR2 with complete bytecode coverage in both scenar-
ios. That is, the complete Java class library is also woven, as we want to evaluate the overhead of
MAJOR2 in concrete scenarios where its novel features are used. A comparison with AspectJ is not
possible, because AspectJ is unable to weave the aspects in the Java class library, and is incapable
of handling scenario 2. For each benchmark, we report the first run (start-up performance) and we
take the median of 15 runs within the same JVM process (steady-state performance). Here, the geo-
metric mean is computed for the whole benchmark suite, including bloat and eclipse, as MAJOR2
is able to handle both correctly.

Tables IV and V show the measured execution times and overhead factors respectively for
steady-state and start-up performance. Figures 11 and 12 visualize the overhead factors reported in
the tables.
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Table IV presents the results of our measurements for steady-state performance. In the first sce-
nario, the average overhead factor is 11.08, while in the second scenario it is 9.61. The overhead with
complete bytecode coverage is almost twice the overhead when weaving only application classes,
because Java applications execute large portions of code in methods in the Java class library (as was

Table V. Start-up overhead of dynamic analysis aspects
woven with MAJOR2 with complete bytecode coverage.

Orig. Scenario 1 Scenario 2

[ms] [ms] Ovh. [ms] Ovh.

antlr 1839 17,261 9.39 17,468 9.50
bloat 4593 77,118 16.79 64,457 14.03
chart 5277 49,937 9.46 48,272 9.15
eclipse 23,673 127,284 5.38 142,605 6.02
fop 1952 23,847 12.22 27,319 14.00
hsqldb 3683 24,088 6.54 23,774 6.46
jython 6886 48,430 7.03 41,101 5.97
luindex 4448 46,103 10.36 39,685 8.92
lusearch 4374 22,415 5.12 22,402 5.12
pmd 4783 58,008 12.13 45,659 9.55
xalan 4475 26,767 5.98 25,987 5.81

geo.mean 8.53 8.11

Figure 11. Steady-state overhead for scenarios 1 and 2, MAJOR2 with complete bytecode coverage.

Figure 12. Start-up overhead for scenarios 1 and 2, MAJOR2 with complete bytecode coverage.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1351–1380
DOI: 10.1002/spe



1374 W. BINDER ET AL.

Figure 13. Adaptive dynamic analysis, activating the ProfCalls aspect after three benchmark runs and
deactivating it after six runs. The dark gray areas illustrate latencies due to runtime weaving and class

redefinition with HotWave. PBI, polymorphic bytecode instrumentation.

already pointed out when discussing Table I in Section 8.3). While an overhead factor of 11 is high, it
must be considered that the applied instrumentations are computationally expensive. ProfAllocs
intercepts each object allocation, and ProfCalls intercepts each method call. Upon all these
intercepted join points, a thread-safe data structure is updated.

Table V illustrates the start-up performance. In the first scenario, the average overhead factor
is 8.53, while in the second scenario it is 8.11. As previously discussed in Section 8.4.2, the start-
up overhead is lower than the steady-state overhead, because the baseline for comparison executes
much longer because of class loading.
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This evaluation confirms that MAJOR2 allows us to create dynamic analysis tools with AOP that
have practical value, thanks to complete bytecode coverage. Depending on the concrete analysis, the
overhead introduced by complete bytecode coverage can be significant, as many Java applications
spend a big part of their execution in methods of the Java class library.

8.5. Adaptive analysis

Finally, we evaluate PBI for adaptive dynamic analysis and assess the cost of PBI-based dispatch
compared with class redefinition. Concretely, we compare CodeMerger in its default modus with
HotWave [19], a dynamic AOP framework that is based on runtime weaving and class redefinition.‡‡

We use the ProfCalls aspect introduced in Section 8.4.1 as dynamic analysis. We exclude results
for the eclipse benchmark, because HotWave excludes many benchmark classes from weaving,
similar to ajc-ltw. That is, execution time for eclipse with HotWave would be too short and therefore
misleading.

We execute nine runs of the benchmarks within a single JVM process. The first three runs execute
original code; then, we activate the dynamic analysis for all classes for three runs, and finally, we
execute again original code for the last three runs. For CodeMerger, we present two settings: PBI-V
keeps the global state in a volatile field (which is read by the computeCV() function), whereas
PBI-R uses class redefinition to change the accessor of that field to return a constant, as discussed
in Section 7.

Figure 13 shows the execution times as bars with nine segments, one for each run. White seg-
ments correspond to runs executed without analysis, and green (or light gray) segments are runs
with dynamic analysis. Dark gray areas represent the time spent in runtime weaving and class
redefinition. With HotWave runtime weaving and class redefinition may take long time, because all
modifiable classes are processed. For instance, with fop, runtime weaving and class redefinition take
more than 50% of the overall execution time. jython has the longest redefinition time of 61 s.

In contrast, with CodeMerger, the activation (and deactivation) of the analysis is almost instan-
taneous, the maximum latency being less than 100 ms in all cases. However, PBI introduces some
extra overhead when running original code (without analysis), because of the dispatch switch and
code bloat in each method, whereas HotWave introduces no overhead when executing original code.
With CodeMerger, the first run is particularly slow because of load-time weaving, which is not
needed for HotWave. For some benchmarks, particularly for luindex, the difference in execution
time with CodeMerger versus HotWave when executing original code is surprisingly high. The rea-
son is that in this case study we use CodeMerger in its default modus, which can result in high
overhead because of increased method size, as explored in Section 8.2.

Note that both HotWave and CodeMerger in the PBI-R setting make use of class redefinition.
With Oracle’s HotSpot VM, this feature may trigger de-optimization of compiled native code (e.g.,
undoing method inlining). Consequently, the run that follows class redefinition is often longer
than the subsequent runs. Because the HotSpot VM keeps information on hot methods upon class
redefinition, the de-optimized code is quickly re-optimized after class redefinition.

Comparing overall execution times for the nine benchmark runs, CodeMerger outperforms
HotWave in seven out of 10 benchmarks. For CodeMerger, the PBI-R setting outperforms the
PBI-V setting for nine out of 10 benchmarks. Note that these results depend very much on the con-
crete evaluation settings. On the one hand, if the analysis is frequently activated and deactivated,
one can expect that CodeMerger outperforms HotWave because of the dominant overhead of class
redefinition. On the other hand, if the analysis is rarely (or never) activated, HotWave may outper-
form CodeMerger, as HotWave does not incur the overhead of PBI dispatch when the analysis is
not woven.

In conclusion, our evaluation confirms that PBI is well suited for building adaptive dynamic
analysis tools. As the latency incurred when switching between different code versions is small,
adaptive tools built with CodeMerger can quickly react to user choices.

‡‡Please note that PBI and HotWave are not functionally equivalent systems. HotWave enables the runtime deployment of
instrumentations that may not be available when the base program is started. In contrast, with PBI, all instrumentations
must be known in advance.
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9. DISCUSSION

In this section, we first discuss prior and ongoing work by the authors of this article and second
compare our approach with related work by others.

9.1. Prior and ongoing work

The PBI generalizes some previously developed techniques. In this section, we give a short overview
of our prior research that finally resulted in this proposal.

The FERRARI framework [16] takes any user-defined bytecode instrumentation (which can be
implemented with any bytecode manipulation library) and augments it with support for complete
bytecode coverage. To this end, FERRARI relies on code duplication within method bodies, similar
to the approach presented in Section 3. However, as FERRARI lacks support for merging mul-
tiple independent bytecode instrumentations. While the case study presented in Section 5 – the
profiler JP2 – could also be implemented with FERRARI, the other two case studies presented
in this article may require merging of multiple instrumentations and therefore cannot be handled
by FERRARI.

Based on FERRARI, the aspect weaver MAJOR [18] supports most constructs of the AspectJ
language and enables aspect weaving with complete bytecode coverage. Thanks to MAJOR, aspect-
based dynamic analysis tools, such as profilers [31, 32] or data race detectors [30, 33], are able to
analyze all bytecode executed in a JVM. The dynamic AOP framework HotWave [19] relies on the
same implementation techniques as FERRARI in order to achieve complete bytecode coverage.

Tanter introduced the notion of execution levels as a means to structure aspect-oriented programs
so as to prevent infinite regression and unwanted interference between aspects [12]. Attracted by
the idea of having execution levels in AspectJ, we developed a first ad hoc implementation [15].
This implementation and the commonalities with the techniques used in FERRARI and MAJOR
progressively led us to the formulation of the PBI technique and the implementation of CodeMerger.
As discussed in Section 6, PBI enables a clean re-implementation of execution levels for AspectJ.
In addition, the PBI-based implementation discussed in this article enables a thorough evaluation
with the complete DaCapo benchmark suite, where various compositions of aspects are woven with
complete bytecode coverage.

The profiler JP2 used as a case study in this article was first presented in [22, 23]. It has been used
for workload characterization at the bytecode level [21]. JP2 is available as an open-source release
that includes CodeMerger.

The dynamic program analysis framework DiSL (domain-specific language for instrumenta-
tion) [34], available as open-source software (http://disl.ow2.org/), relies on PBI and CodeMerger
to ensure analysis with comprehensive bytecode coverage.

9.2. Related work

To the best of our knowledge, there is not much work that is directly related to this proposal of
PBI. Altering program semantics through bytecode transformations is a widely used technique and
has been explored and put in practice in many different flavors in Java, from low-level tools like
BIT [35], BCEL [6], and ASM [36], to higher-level frameworks like Javassist [8], Jinline [37], or
Soot [38]. Similar toolkits have also been proposed for other languages based on virtual machines
that run intermediate bytecodes, like Squeak Smalltalk [9] and .NET. PBI is a general-purpose
technique that allows to combine instrumentations possibly written with any of these tools. Thus,
it stands at a higher-level than specific instrumentation tools and cannot be directly compared. The
most recent version of CodeMerger, our PBI implementation for Java, is implemented using ASM,
although other frameworks could be used as well.

On the other hand, there is a huge body of language-level proposals for advanced dispatch, like
mixin layers [39], dynamic layer activation [40, 41], aspects [4], and predicate dispatch [42]. Each of
these has been realized using particular implementation techniques, specific to the targeted seman-
tics and the implementation trade-offs that their authors were willing to make. Here again, PBI does
not stand at the same level as these proposals: PBI is not a language-level mechanism but rather
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an implementation technique to combine various bytecode instrumentations with the possibility to
flexibly dispatch among them at runtime. It can be used to implement language-level constructs like
mixin layers [13] provided a tool is available to generate the different code versions, or to extend
aspect weaving with execution levels (Section 6), again relying on another tool for the specific
details of the implementation (in that case, the standard AspectJ weaver).

Shrike [43] is a bytecode instrumentation library that is part of the T.J. Watson Libraries for
Analysis [44]. Shrike supports composition of multiple instrumentations by preventing an instru-
mentation tool from observing the code inserted by the other tools. Similar functionality can be
achieved by using execution levels on top of PBI. As described in Section 6, analyses deployed at
the same execution level cannot observe each other’s join points, exactly as it happens with Shrike.
However, execution levels also support the deployment of analyses at different levels (e.g., to profile
the execution of another dynamic analysis tool), which is not directly supported by Shrike.

RoadRunner [45] is a framework for composing small and simple analyses for concurrent pro-
grams. Each dynamic analysis is essentially a filter over event streams, and filters can be chained.
However, it is not possible to combine arbitrary analyses. For example, two analyses that filter (e.g.,
suppress) events in an incompatible way cannot be combined.

The hyperspace approach [46] allows class fragments to be composed in a coherent whole, using
a set of composition operators [47]. The approach is therefore different from PBI because each
class version in PBI is a complete class, not a fragment of it; dynamic dispatch selects the version
that is active at a given point in time, according to any criteria. In that sense, PBI is closer to
subject-oriented programming [48] where different views of a single class can coexist; implementing
subject-oriented programming with PBI is an interesting perspective.

Several researchers discuss the advantages of allowing data passing between different analy-
ses [19, 49, 50]. While PBI does not provide any support for inter-analysis communication (as only
a single class version is active at a time), programmers may compose several analyses into a single
class version, as it happens with analyses deployed at the same execution level (Section 6). Such
composed analyses may communicate with each other through shared data structures.

Regarding instrumentation of shared libraries, the Twin Class Hierarchy [51] replicates the full
hierarchy of instrumented classes into a separate package that coexists with the original one.
However, in [52], the authors show that class replication limits the applicability of bytecode instru-
mentation in the presence of native code. Because native code is not modified, calls back into
bytecode will target methods in the unmodified class. Thus, this approach does not allow transpar-
ent instrumentation of the complete Java class library. In contrast, PBI does not duplicate any class,
but relies on code replication within method bodies.

The Arnold–Ryder profiling framework presented in [53] uses code duplication combined with
compiler-inserted, counter-based sampling. A second version of the code is introduced, which con-
tains all computationally expensive instrumentation. The original code is minimally instrumented
to allow control to transfer in and out of the duplicated code in a fine-grained manner, based on
instruction counting. This approach achieves low overhead, as most of the time the slightly instru-
mented code is executed. Similarly to PBI, this approach merges two different instrumentations.
While PBI is a general-purpose, high-level framework that can merge any number of independent
bytecode instrumentations, the Arnold–Ryder framework is specialized for sampling profiling and
implemented directly within the Jikes RVM. Whereas in PBI, the dispatch logic that determines
the code version is customizable and executed only upon method entry, the dispatch logic in the
Arnold–Ryder framework is hard coded and enables switching within method bodies depending on
the number of executed instructions.

Several approaches have been proposed to perform dynamic program analysis at the level of the
virtual machine [54, 55]. While these approaches usually benefit from lower runtime overhead and
can access VM-internal information, they require modifications to the VM that may complicate
deployment and impair portability. As confirmed in our evaluation presented in Section 8, PBI is
compatible with unmodified, production-quality JVMs, which will ease the adoption of PBI by
developers of industrial-strength program analysis tools and frameworks.
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10. CONCLUSIONS

Polymorphic bytecode instrumentation is a simple yet very effective technique to combine different
instrumentations and select among them dynamically. With PBI, third-party instrumentations of a
given class are combined into a single class, where each method uses a user-specified dispatch logic
in order to select, at runtime, the code version to execute. Therefore, a PBI framework simply merges
code versions and generates the appropriate switch.

We have shown that PBI is an effective technique by illustrating its applicability in a wide range
of scenarios: to achieve complete bytecode coverage without disrupting VM bootstrap and avoiding
infinite regression, to implement a comprehensive profiler, to implement execution levels for AOP,
and to support adaptive dynamic analyses. All case studies have been carried out with CodeMerger,
our PBI framework for Java bytecode.

A thorough performance evaluation further shows that PBI can be efficiently implemented. In
particular, the pure overhead of the dispatch added by PBI is rather low when just-in-time compila-
tion is enabled. The most efficient modus of PBI is the adaptive one, in which versions are merged
into a single body by default, and are implemented as private methods if the merged body would
become so large that it would prevent inlining. Our benchmarks of the DaCapo suite confirm that
complete bytecode coverage is really crucial for profilers, because a large part of computation hap-
pens in the core libraries. Our profiler JP2 is able to produce accurate profiles thanks to PBI. We then
demonstrate that execution levels for AOP can be efficiently implemented and are actually more
efficient than their brittle equivalent AspectJ idioms, based on control flow checks. Finally, PBI
makes it possible to implement adaptive analyses that are more reactive than other systems based on
class reloading.

We expect PBI to prove useful in many other cases, such as for implementing advanced dispatch
mechanisms and language constructs. A preliminary experience with implementing (a restricted
form of) dynamic mixin layers is discussed in [13]; extending it and exploring the implementation
of other constructs is one of the main venues for future work.
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