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We propose a model of delegated portfolio management special-
ized in alternative investments, i.e., those with a high-return and
high-risk profile. It is shown that in this context, as a reward for
risk-taking scheme is optimal, a counter-intuitive reward for fail-
ure can also be desirable. This property emerges because it can
be optimal to compensate extreme returns (even low ones) to
encouraging managers to shape highly innovative portfolios. It is
argued that this structure resembles compensation practices ques-
tioned in the context of the last financial crisis, such as golden
parachutes and golden coffins. Implementation via equity and
bonuses is also analyzed.
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1. Introduction

The last financial crisis has exposed executive incentive plans of investment banks and other insti-
tutional investors under a strong scrutiny, especially those compensation practices that seem to
reward managers with generous benefits even though the performance of their institutions is clearly
unsatisfactory.
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In contrast to these criticisms, this article proposes an agency model under which rewarding man-
agers for low performance may indeed be a desirable property stemming from an optimal incentive
scheme. We argue that our framework is particularly applicable to institutional investors, whose del-
egated portfolio management activity involves searching and selecting alternative investments, that is,
investments with a high risk-high expected return profile.

Although counter-intuitive, it is shown that this ‘‘reward for failure’’ property can emerge as an ele-
ment being part of a more general optimal reward for risk-taking scheme that compensates extreme
returns and punishes (in relative terms) moderate ones. As a result, the ex ante promise of a reward
to even low results may be an effective mechanism to encouraging managers to shape truly innovative
portfolios.

The model here proposed is consistent with the optimal contracting approach (Jensen and Murphy,
1990; Hermalin, 2005; Cheng et al., 2013), and thus, their conclusions should be viewed as counter-
acting the insights coming from the managerial power approach, summarized in Bebchuk and Fried
(2004). Indeed, under the latter approach, practices such as golden parachutes, generous life insurance
(golden coffins), entrenchment, and all-event bonuses are considered as evidence on weak corporate
governance, and in particular, on the lack of independence between the board of directors and top
executives (see also Bebchuk et al., 2010). Although we do not rule out that the managerial power
approach can offer useful insights in some cases, we claim that in financial activities such as private
banking (high-wealth investors), hedge funds and other alternative investments, a seemingly para-
doxical practice like a reward for failure scheme can be, at least partly, understood under the lens
of the optimal contracting approach.

Our paper is related to previous research on how other non-monotone and convex incentive
schemes motivate managers to take desirable risk levels from the principal’s standpoint, especially
option-like schedules (Carpenter, 2000; Garcia, 2001; Goetzmann et al., 2003; Ross, 2004; Kadan
and Swinkels, 2007; Feltham and Wu, 2001; Hemmer et al., 1999; Dittmann and Maug, 2007; Duan
and Wei, 2005; Bolton et al., 2010; Coles et al., 2006; Hirshleifer and Suh, 1992) and bonus payment
structures (Starks, 1987; Leisen, 2014). At first glance, the convexity involved in the payoff function of
this class of compensation schemes should incentivize risk-taking. However, a more-in-depth analysis
of these incentive plans has delivered three results that weaken such a convexity argument.

First, in the context of a delegated risk-taking environment, in general these option and bonus
schemes do not necessarily correspond to the optimal contract (see for instance, Carpenter, 2000;
Ross, 2004; Kadan and Swinkels, 2007). Second, it is not true that such schemes always induce more
managerial risk-taking, as other effects—different from convexity—may make the manager even more
risk-averse or lead him to undertake more conservative investments (Carpenter, 2000; Chen and
Pennacchi, 2009; Ross, 2004). Third, research on bonus and option plans has raised concerns about
whether their convex payoff functions may encourage managers to adopt excessive risk-taking or
risk-shifting practices (Carpenter, 2000; Green and Talmor, 1986; DeFusco et al., 1990).

Rather than to study a given incentive scheme, and in contrast to most of the above cited literature,
our main goal is to characterize what is indeed the optimal scheme when risk-taking is involved. As a
consequence, two main contributions arise from the present article. First, from the principal’s view-
point, our reward-for-risk scheme effectively induces managers to choose the proper level of innova-
tion (and risk), and thus, it is free from the concerns raised over option-like schemes as being
ambiguous mechanisms to incentivize risk-taking. Furthermore, contrary to option and bonus pay-
ment structures, our optimal contract not only involves not to penalize low performance, but also
to reward it. This property implies that, in contrast to the extant literature, we are able to provide
an economic rationale for counter-intuitive managerial reward schemes, such as golden parachutes
and other failure-compensation practices.

The present article is also related to research showing empirical evidence on how convex compen-
sation schemes mitigate the incentive risk-taking problem faced by risk-averse managers, who have to
invest in high-risk high-return projects on behalf of a risk-neutral principal. In general, this literature
supports the idea that risk incentives involved in stock options do encourage managers to increase risk
measures in profitable investments, such as exploration risk of oil and gas projects (Rajgopal and
Shevlin, 2002); asset return variance after acquisitions by mergers and divestitures (Agrawal and
Mandelker, 1987); and asset volatility in banking (Mehran and Rosenberg, 2007). In a complementary
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line, other works conclude that there is no evidence that options and bonus schemes had led execu-
tives of financial institutions to excessive risk-taking even during the last credit crisis (Fahlenbrach
and Stulz, 2011). Overall, this evidence is favorable to our model in two aspects. First, as we allow
for the possibility that more innovation (and thus more risk) in portfolios brings jointly more expected
return—technically, a no deterioration in a second-order stochastic dominance of the return distribu-
tion—, our distributional assumptions seem to be in accordance with the risk-return profile of some
real-world innovative investments. Second, as our numerical results suggest that some alternative—
although suboptimal—bonus plans can perform quite successfully relative to the optimal incentive
scheme, the insights from our theoretical model seem to be consistent with the power that convex
compensation plans have in practice to induce more aligned managerial risk-taking decisions.

This article proceeds as follows. Section 2 presents a model of executive compensation under moral
hazard and a delegated portfolio management environment. Section 3 characterizes the optimal
incentive structure, which exhibits two salient properties: (i) a scheme involving a reward for risk-
taking and a reward for failure, and (ii) a positive relationship between portfolio innovation and com-
pensation of extreme returns. Section 4 presents some numerical exercises, showing that changes in
preference and return parameters induce changes in the optimal scheme that are consistent with tra-
ditional agency models. Section 5 explores two issues related to implementing the optimal incentive
scheme: the use of financial claims and the adoption of bonus-type structures. Finally, Section 6 dis-
cusses the principal conclusions. All the proofs are collected in the Appendix.

2. The model

We adapt the corporate governance framework of Hermalin and Weisbach (2005) to the fund man-
agement activity, and also extend it by examining the role played by aversion to risk and cost of
innovation.

Consider the following agency relationship between an investor (the principal) and the portfolio
manager (the agent). This relationship is essentially a delegated fund management process, in which
the mandated task to the manager is to select an investment portfolio that maximizes expected
returns (net of his compensation fees). We model this decision through e, which represents the inno-
vation degree of the portfolio the manager chooses.

2.1. Innovation and returns

We assume that e 2 ½0;1�, so that this innovation degree can be seen as the weight the portfolio
manager assigns to alternative investments. This class of investments include, among others, innova-
tive industrial sectors (high-tech, bio-tech, nanotech), emerging markets (BRICs, MINTs), alternative
energy mutual funds, and in general, other investments with a profile of high risk and high expected
return. By contrast, ð1� eÞ can be understood as the weight put by the manager on more traditional
sectors or markets. According to the financial terminology, one can also interpret e as the degree in
which an investment strategy is ‘‘active’’, that is, if it differs from a benchmark portfolio as, for exam-
ple, a stock market index.

The degree of innovation (and so the portfolio decision) is not verifiable by the investor. However,
she is able to verify the portfolio’s return. In this context, let us define xe

i as the return yield by a port-
folio with an innovation degree e when state of nature i occurs. Similarly, we denote pe

i as the prob-
ability of observing return xe

i , with pe
i > 0 for all e 2 ð0;1� and i ¼ 1; . . . ;n. The last assumption implies

that, from observing a given xi, it cannot be ruled out a priori a given level of positive innovation e. For
simplicity, we suppose that only three states of nature are possible ðn ¼ 3Þ, so that xe

i 2 X ¼ fx1; x2; x3g
for all e, and x1 < x2 < x3.

Assumption 1 (A1). The probability distribution of x conditional on an innovation degree e (i.e. xe), is
described by1
1 Biais and Casamatta (1999) propose a distribution function close to that analyzed here, but in the context of corporate
financing and in which the agent is risk neutral. Hermalin and Weisbach (2005) and Loyola and Portilla (2010) also consider a
similar distribution function, but they do not study the effects of either attitude to risk or cost of innovation.
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pe
i � Prðx ¼ xijeÞ ¼

c1e if i ¼ 1
ðc2 � 1Þeþ 1 if i ¼ 2

c3e if i ¼ 3

8<
: ;
where ci > 0 for all i and
P3

i¼1ci ¼ 1.
Note that these restrictions on parameters c’s guarantee that @pe

i =@e > 0 for i ¼ 1 and i ¼ 3, but
@pe

i =@e < 0 for i ¼ 2. Thus, the fact that a higher innovation degree e increases the probability of
extreme events is consistent with the idea that e parametrizes the portfolio’s risk.

Also, this formulation implies that the so-called monotone likelihood ratio property (MLRP)—a classic
condition in contract theory—is not satisfied. To see that, let us define the likelihood ratio as
LRi ¼
@pe

i =@e
pe

i

for all i;
from which it is easy to verify that LR1 > LR2 despite x2 > x1.
Recall that LRi reflects how informative is the fund return xi (verifiable) with respect to a portfolio

selection decision e (unverifiable). Then, the larger LRi, the more likely that the portfolio manager had
chosen an innovation degree e. Thus, if the investor wants this innovation degree to be selected, the
compensation should be higher whenever the return xi is observed. Nevertheless, this fact does not
guarantee that the compensation scheme will always be increasing in the portfolio’s return. The last
property holds as long as the likelihood ratio is monotonically increasing in xi, that is, if the MLRP is
met. Indeed, as it is established later, the no verification of this property in our model is crucial to
attain the main result of the present work.

A comparison of the payoff distribution adopted according to assumption (A1) and that considered
by Biais and Casamatta (1999) (BC hereafter) deserves our attention. As the last paper studies two
dimensions of moral hazard, namely effort and risk-taking, such comparison works only if we restrict
the analysis exclusively to risk-taking. In that dimension, it should firstly be stressed that whereas BC
consider a binary risk-shifting decision (i.e., from a low risk to a high risk project), our model assumes
a continuous decision variable e 2 ½0;1� that parametrizes in turn a continuum of portfolios with dif-
ferent levels of innovation and risk. This allows us to explore more-in-depth how risk taking and its
associated optimal incentive schemes are affected by changes in preferences and returns parameters,
which is either not possible or much more limited in the BC’s framework. Second, BC assume a priori
that risk-shifting deteriorates the payoff distribution in a second-order stochastic dominance (SOSD)
notion, which in the context of our model would be equivalent to assume that2
c3ðx3 � x2Þ 6 c1ðx2 � x1Þ: ð1Þ
In contrast, our setting does not assume a priori that more innovation (and thus more risk) induces nec-
essarily a return distribution dominated in a SOSD sense. In fact, numerical simulations performed in
Section 4 take parameter values for which the opposite of condition (1) holds true. Interestingly, empir-
ical evidence suggests that our choice of not assuming condition (1)—unlike BC—is reasonable in the
context of risk-taking decisions made by more sophisticated fund management institutions. Indeed,
as compared to traditional portfolio managers (e.g. mutual funds or equity index funds), the empirical
return distribution of more innovative investment vehicles (e.g. hedge funds specialized in emerging
markets) exhibits in practice not only a larger second moment (variance) and four moment (more kur-
tosis or fatter tails), but also a higher first moment (mean return) (see Malkiel and Saha, 2005).3

Third, BC assume that the riskier project has a negative present value, which in the context of our
setup would be equivalent to suppose that
E xe
i

� �
� I < 0 ð2Þ
s condition ensures that @Eðxe
i Þ

@e 6 0 for all e < 1. In particular, with equality, the last condition implies that a higher level of e
a return distribution which is a mean-preserving spread of a distribution with a (marginal) lower level of innovation.

lkiel and Saha (2005), based upon one of the most comprehensive database of investment funds, report various empirical
distribution moments for the period 1995–2003. For instance, these authors document that during this period, and as
ed to the equity index S&P 500, hedge funds specialized in emerging markets presented higher annual mean return (14.19
8%), higher standard deviation (44.09 vs. 21.69%) and larger kurtosis (5.11 vs. 0.28) (see Table 1; Malkiel and Saha, 2005).
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for all e > 0, where I represents the amount of funds delegated to the portfolio manager (see an expla-
nation of this variable in the next subsection). Contrary to that, we do not assume that condition (2) is
or not verified a priori, which allows us to study a richer set of cases than that analyzed by BC. Lastly,
BC assume universal risk-neutrality and no costs of risk-taking. As a consequence, their setup is not
able to examine the role played by the risk aversion and disutility of innovation on the part of the
agent, as our model indeed does via numerical simulations in Section 4.

2.2. Preferences

As we are thinking of investors with high wealth and the ability to heavily diversify her wealth, we
assume that the investor is risk neutral and her preferences are represented by the (ex post) utility
function
4 Alth
and con

5 Thi
Bðxi;wÞ ¼ xi �w;
where w is the compensation (performance fee) paid to the portfolio manager. In turn, the manager’s
preferences are described by the following (ex post) additively separable utility function4:
Uðw; eÞ ¼ ð1� dÞw1�d � k
e2

2
;

where the first term represents the manager’s payoff coming from his compensation, and the second
term represents his disutility from choosing a level of positive innovation.

The utility function assumed to account for the manager’s compensation guarantees that his payoff
always increases with performance fee (positive marginal utility), and that he is risk averse (strictly
decreasing marginal utility). In particular, the parameter d 2 ð0;1Þ corresponds to the coefficient of
(constant) relative risk aversion.

Moreover, as a higher innovation degree requires a higher level of effort, we assume that the inno-
vation disutility function exhibits a positive and increasing marginal disutility. In this formulation,
k > 0 parametrizes the marginal cost to the manager of seeking more innovation. His reservation util-
ity corresponds to U so that U > k

2, as this assumption ensures that the optimal performance fee is a
positive real number (see Proof of Proposition 1 in the Appendix).

In addition, I corresponds to the amount of funds delegated to the portfolio manager according to a
pre-defined criterion of the investor, and thus, it constitutes an exogenous variable in the model.

Given the asymmetric information environment adopted, the optimal incentive scheme can be
contingent on returns. For simplicity, let us define wi � wðxiÞ for all i, as the performance fee paid
to the manager if return xi is observed. To guarantee a positive solution for e, we adopt the following
assumption due to Hermalin and Weisbach (2005).

Assumption 2 (A2). Under asymmetric information, the optimal investor’s choice is never to avoid
risky (innovative) portfolios. Formally, we suppose that:
X3

i¼1

pe�
i xe�

i �w�i
� �

> x2 �w�ð0Þ;
where w�ð0Þ represents the compensation related to the first-best contract that induces a null degree
of innovation, and w�i corresponds to the compensation related to the second-best contract that
induces an optimal innovation degree e� 2 ð0;1�.
2.3. An alternative interpretation5

We end this section by posing an alternative interpretation of the decision variable e. According to
this view, the manager’s decision can be interpreted as fractions ð1� eÞ and e of an investor’s wealth
ough we assume this specific functional form, our results hold without loss of generality for all utility function increasing
cave in w, and a disutility function increasing and convex in e.

s subsection is due to a suggestion of an anonymous referee.
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put into two classes of financial investments: a safe (or traditional) and a risky (or alternative) port-
folio. Thus, different values of e shape different return-risk profiles of a mixed portfolio.

More formally, let us denote the returns of the original portfolios as yi and zi for the traditional and
alternative portfolio, respectively. Whereas the first portfolio yields a return yi ¼ x2 with probability 1,
the second portfolio’s return exhibits the following probability distribution:
6 For
zi ¼
x1 with probability c1

x2 with probability c2

x3 with probability c3

8><
>: ;
where x1 < x2 < x3; ci > 0 for all i, and
P3

i¼1ci ¼ 1.
Hence, the return of the mixed portfolio, conditional on a weight e, then becomes
xe
i ¼ ð1� eÞx2 þ ezi;
so that
pe
i � Prðxe

i Þ ¼
c1 if i ¼ 1
c2 if i ¼ 2
c3 if i ¼ 3

8><
>: :
In terms of conditional expected return, this formulation is equivalent to our original presentation of
the model, as in both cases it can easily be verified that
Eðxe
i Þ ¼ c1ex1 þ ððc2 � 1Þeþ 1Þx2 þ c3ex3:
Despite this equivalence in terms of expected returns, notice that risk aversion on the part of the man-
ager implies that, whereas perhaps the qualitative properties of the optimal incentives scheme are
similar in both formulations of the model, they do not necessarily deliver the same specific optimal
contract.

In addition, this alternative interpretation requires to justify why the weight e may be unverifiable
to the investor. As for this point, it can be argued that in practice it is usual that mutual funds and
other institutional delegated fund managers send a report to their investors in which a decomposition
of their managed wealth in different classes of funds is detailed. This decomposition is however, in
most of cases, clearly insufficient to allow the investor to know the actual return-risk profile of the
ultimate investments underlying each of these funds. This occurs as it is frequent that such funds
are just presented under a generic name, which in turn, hides other collection of portfolios.

3. The optimal incentive scheme

In this section we characterize the optimal incentive scheme under the asymmetric information
environment previously described. Then, if the investor wants to implement the innovation degree
eo 2 ð0;1�, the optimal contract w0

i

� �3
i¼1 must solve the following program6:
Max
fwig3

i¼1

X3

i¼1

peo
i ðxi �wiÞ ð3Þ

s:t:

X3

i¼1

peo
i ð1� dÞw1�d

i � k
e2

o

2

� �
P U ð4Þ

eo 2 arg max
~e

X3

i¼1

p~e
i ð1� dÞw1�d

i � k
~e2

2

� �
; ð5Þ
the sake of notation, we omit in this program the superscript 0 associated to the innovation degree e0.
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where (4) and (5) corresponds to the participation constraint and the incentive compatibility constraint,
respectively.

After solving this program, we can establish the following result.

Proposition 1. Under assumptions (A1) and (A2), it is verified that
7 All
compar

8 A s
See, for
w0
3 ¼ w0

1 > w0
2 > 0;
so that
w0
1 ¼ w0

3 ¼
1

1� d
U � k

e2
o

2
þ keo

1� c2

� �� 	 1
1�d

w0
2 ¼

1
1� d

U � k
e2

o

2

� �� 	 1
1�d

:

This implies that the optimal compensation schedule is clearly non-monotone as it pays the same
fee to the portfolio manager when the observed return is low (x1) or high (x3). A risk-taking
reward thus emerges as a property of the optimal scheme. In formal terms and based on
Proposition 1, one can define Dw0, the risk-taking reward that induces an innovation degree e0,
as follows
Dw0 � w0
1 �w0

2 ¼ w0
3 �w0

2:
Then, when return x1 is observed, Dw0 represents a measure of the reward for failure. Similarly, when
x3 takes place, Dw0 can be understood as a measure of the reward for success.

Corollary 1. The risk-taking reward Dw0 is increasing with the optimal innovation level e0.

Thus, as long as the investor wants to invest in a more innovative portfolio, the optimal contract
should include a larger compensation to the portfolio manager when extreme returns (x1 or x3) are
observed, and a lower compensation when a moderate outcome is observed (x ¼ x2). In other words,
the higher the optimal innovation degree desired by the investor, the larger (smaller) the compensa-
tion of extreme (moderate) returns.7

The model here developed illustrates thus how the violation of the MLRP is a sufficient condition
for a non-monotone optimal incentive scheme to emerge. In the context of delegated portfolio man-
agement, this may occur, if for instance, an (ex post) low return is a better signal of the selection of a
more innovative portfolio than an (ex post) moderate return. In fact, it is usual that more innovation
brings together more expected returns, but also more volatility. Thus, it may be optimal for the
investor to reward the portfolio manager when extreme returns are observed (either sufficiently high
or sufficiently low), and to punish him (in relative terms) when intermediate returns take place.
Hence, it may be efficient to reward for failure, as long as low returns be sufficiently suggestive of
high effort and creativity to elaborate investment strategies with a better profile of risk and expected
return.8

Our analysis suggests that this reward-for-failure property could explain partly some executive
compensation practices commonly adopted in the financial industry, which have been highly ques-
tioned in the context of the recent subprime crisis. These practices include, among others, golden
parachutes and golden coffins.
this analysis is ceteris paribus, i.e., keeping constant the model’s parameters, especially d and k. A more complete static
ative analysis is performed in the next section, where a positive relationship between optimal e and Dw is confirmed.
imilar idea of ‘‘reward for failure’’ has also been posed to encourage processes of technological innovation and exploration.

instance, Manso (2011), and Manso and Ederer (2013).
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4. Numerical analysis on the optimal scheme

This section presents the results of a numerical analysis performed to illustrate some static com-
parative exercises on the optimal contract. In particular, we characterize how the optimal innovation
degree and its associated non-linear compensation depend on preference and portfolio parameters.9

We perform two analysis. The first one is a sensibility analysis related to the preference parameters
k and d, but keeping constant parameters c’s. The second is a sensibility analysis related to the portfolio
parameters c’s and the risk aversion coefficient d, but with a fixed value of k. In both exercises, the
space of returns is assumed to be X ¼ f0;1;3g, and the reservation utility U ¼ 0:3.

4.1. Preference parameters analysis

To this exercise, we fix c2 ¼ 0:2, and c1 ¼ c3 ¼ 0:4.10 Table 1 reveals properties of the optimal con-
tract that are consistent with more traditional agency models. First, optimal innovation e� is decreasing
with k and d. This is a quite intuitive result, as it means that when innovation is more costly for the port-
folio manager or he is more risk averse, the optimal innovation degree the principal can induce is lower.
Second, reward for risk-taking Dw� is in general decreasing with k and d.11 The latter property is espe-
cially intuitive, as it points out that if the manager is more risk averse, it is optimal to expose him to less
variability in his compensation. This is consistent with a classic result in contract theory: the power of
the incentives is smaller as the agent is more risk averse relative to the principal.

4.2. Portfolio parameters analysis.

In order to evaluate the impact of changes in the characteristics of the portfolio (those different
from the innovation degree), we compare two structures of c’s. Fixing k ¼ 0:5, this exercise yields
two portfolios with different profiles of expected return and risk:

Portfolio A. For which c2 ¼ 0:2, and c1 ¼ c3 ¼ 0:4, so that its conditional expectation is given by
E xe

i

� �
¼ 0:4eþ 1, and its conditional variance corresponds to V xe

i

� �
¼ ð2� 0:16eÞe.

Portfolio B. For which c2 ¼ 0:4, and c1 ¼ c3 ¼ 0:3, so that E xe
i

� �
¼ 0:3eþ 1 and V xe

i

� �
¼

ð1:5� 0:09eÞe.
Thus, whereas Portfolio A has a higher expected return than Portfolio B, it exhibits more variability

too.12

Table 2 compares optimal couples e� and Dw� for both portfolios. Simulations suggest that the port-
folio with more likely extreme returns (Portfolio A) demands a higher risk-taking reward than that
with more concentrated returns (Portfolio B), as the former also induces a larger degree of innovation.

5. Implementation

In this section we explore different ways of implementing the optimal incentive scheme previously
characterized. This analysis includes two kind of exercises. First, we examine theoretically a proposal
of implementing the optimal contract via already existing financial claims, such as initial equity and
potential issues of additional shares.

Second, we present numerical simulations to compare the optimal incentive scheme with two
option-like managerial compensation plans used in practice, which although suboptimal, have been
proposed by prior research as possible means to achieve more risk-taking on the part of risk-averse
managers. These plans are: (i) a pure bonus scheme, and (ii) a bonus scheme plus a fixed salary. This
9 This numerical exercise is needed as there not exist an analytical solution for the optimal contract e� and w�i
� �

.
10 The constellation of values considered for parameters k and d is so that it excludes a negative investor’s expected payoff and

corner solutions for e� , as well as it ensures that optimal fees w�i are positive real numbers.
11 There is a slight non-monotonicity when d is close to the upper bound 0.7, beyond which the investor’s expected payoff is

negative.
12 Note however that Si , the Sharpe ratio of portfolio i, is so that SA < SB . This means that an investor, with mean–variance

preferences and without delegation, would choose Portfolio B.



Table 1
Optimal scheme: innovation and risk-taking reward.

ðe�;Mw�Þ d ¼ 0:2 d ¼ 0:3 d ¼ 0:4 d ¼ 0:5 d ¼ 0:6 d ¼ 0:65

k ¼ 0:30 ð1:0000; 0:4673Þ ð0:7732; 0:4394Þ ð0:5579; 0:4106Þ ð0:3727; 0:3903Þ ð0:2153; 0:3847Þ ð0:1469; 0:3912Þ
k ¼ 0:35 ð0:8246; 0:4583Þ ð0:6375; 0:4297Þ ð0:4658; 0:4044Þ ð0:3144; 0:3867Þ ð0:1830; 0:3828Þ ð0:1253; 0:3901Þ
k ¼ 0:40 ð0:7020; 0:4511Þ ð0:5447; 0:4239Þ ð0:4005; 0:4004Þ ð0:2719; 0:3842Þ ð0:1592; 0:3815Þ ð0:1092; 0:3893Þ
k ¼ 0:45 ð0:6129; 0:4466Þ ð0:4764; 0:4201Þ ð0:3515; 0:3976Þ ð0:2397; 0:3824Þ ð0:1409; 0:3805Þ ð0:0968; 0:3886Þ
k ¼ 0:50 ð0:5447; 0:4435Þ ð0:4236; 0:4173Þ ð0:3134; 0:3955Þ ð0:2144; 0:3810Þ ð0:1263; 0:3798Þ ð0:0869; 0:3881Þ
k ¼ 0:55 ð0:4904; 0:4411Þ ð0:3816; 0:4152Þ ð0:2828; 0:3939Þ ð0:1939; 0:3799Þ ð0:1145; 0:3791Þ ð0:0789; 0:3877Þ

Table 2
Optimal scheme: innovation, reward and portfolios.

ðe�;Mw�Þ d ¼ 0:2 d ¼ 0:3 d ¼ 0:4 d ¼ 0:5 d ¼ 0:6 d ¼ 0:65

Portf :A ð0:5447; 0:4435Þ ð0:4236; 0:4173Þ ð0:3134; 0:3955Þ ð0:2144; 0:3810Þ ð0:1263; 0:3798Þ ð0:0869; 0:3881Þ
Portf :B ð0:3333; 0:3661Þ ð0:2654; 0:3512Þ ð0:2011; 0:3388Þ ð0:1403; 0:3308Þ ð0:0836; 0:3313Þ ð0:0575; 0:3375Þ
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exercise seems pertinent, as the public outrage against golden parachutes generated after the recent
crisis can make any reward-for-failure compensation practice unrealistic and unviable. Thus, those
managerial pay schemes that, despite they do not reward a low return, they do not penalize it, look
at least a priori as promising candidates to achieve innovation and investor’s payoff levels close to
the optimal ones.

5.1. Implementing via financial claims

A possible combination of financial claims replicating the optimal scheme includes giving the man-
ager an initial share (or participation) a of the fund equity. Then, if the fund yields a return xj (j ¼ 2;3),
an amount bj of additional shares (or claims) are issued and allocated to the investor, diluting thus the
initial manager’s fund stake to a

1þbj
.

Specific values of initial fund stake and potential new issues of shares are established in the next
statement.

Proposition 2. The optimal incentive scheme can be implemented by giving the manager an initial fund
stake of
a ¼ w�1
x1
;

and:

(i) if xi ¼ x2, by issuing and giving the investor an additional amount of shares equal to
b2 ¼
w�1x2

w�2x1
� 1;

(ii) if xi ¼ x3, by issuing and giving the investor an additional amount of shares equal to

b3 ¼
x3

x1
� 1:

5.2. Implementing via bonus schemes

Although suboptimal, bonus-type plans may yield innovation and investor’s payoff levels close to
those of the optimal risk-reward scheme. This conjecture is based on prior research showing that



Table 3
Bonus scheme: innovation and reward for success.

ðeb;MwbÞ d ¼ 0:2 d ¼ 0:3 d ¼ 0:4 d ¼ 0:5 d ¼ 0:6 d ¼ 0:65

k ¼ 0:30 ð1; 1:4227Þ ð1; 1:8106Þ ð1; 2:5845Þ ð1; 4:5000Þ ð1; 11:4500Þ ð1; 23:7540Þ
k ¼ 0:35 ð1; 1:5666Þ ð1; 2:0214Þ ð1; 2:9388Þ ð1; 5:2500Þ ð1; 13:8830Þ ð1; 29:6060Þ
k ¼ 0:40 ð1; 1:7029Þ ð1; 2:2237Þ ð1; 3:2847Þ ð1; 6:0000Þ ð1; 16:4050Þ ð1; 35:8280Þ
k ¼ 0:45 ð1; 1:8330Þ ð1; 2:4188Þ ð1; 3:6234Þ ð1; 6:7500Þ ð1; 19:0070Þ ð1; 42:3930Þ
k ¼ 0:50 ð1; 1:9578Þ ð1; 2:6079Þ ð1; 3:9559Þ ð1; 7:5000Þ ð1; 21:6820Þ ð1; 49:2790Þ
k ¼ 0:55 ð1; 2:0779Þ ð1; 2:7916Þ ð1; 4:2829Þ ð1; 8:2500Þ ð1; 24:4250Þ ð1; 56:4670Þ

358 G. Loyola, Y. Portilla / Finance Research Letters 11 (2014) 349–361
option-like schemes can be an effective way to incentivize risk-averse managers to undertake riskier
projects, as they do not penalize low performance. We explore two classes of such plans: (i) a pure
bonus, and (ii) a bonus plus a fixed compensation.

A comparison between both alternative schemes and the optimal risk-taking structure is per-
formed along three dimensions: (i) innovation levels, (ii) reward for risk (or success), and (iii) the
investor’s payoff. In the last case, we specifically compute the investor’s optimal expected payoff as13
13 It is
14 Thi
15 As i
16 As i
17 The

Gutiérr
governe
fixed sa
modera
EBk ¼
X3

i¼1

pek

i xi �wk
i

� �
;

where k indicates the type of incentive scheme: optimal risk-taking reward (k ¼ �), pure bonus (k ¼ b),
and bonus with fixed compensation (k ¼ bf ).

We begin our analysis with the pure bonus scheme b. An optimal scheme of this class is obtained
after imposing the additional constraint w1 ¼ w2 ¼ 0 on the problem characterized by Eqs. (3)–(5) in
Section 3. This constraint is consistent with assuming that x2 represents the return of a benchmark port-
folio or asset, so that a positive fee is only paid as the portfolio return xi exceeds this benchmark. 14 For
instance, in the case of hedge fund managers, the typical benchmark is constant like the portfolio value at
the beginning of the investment period (i.e. a zero return) or a Treasury yield (Brown et al., 1999), or it cor-
responds to the payoff of a more traditional portfolio like an index portfolio.

Table 3 reports optimal couples ðeb;DwbÞ resulting from the pure bonus scheme.15 A comparison
between this table and Table 1 shows that whereas innovation levels of the bonus schedule are higher
than those of the optimal scheme (in fact all of them are corner solutions), rewards Dwb are much more
higher as well. As a consequence, Table 4 reveals that the bonus plan exhibits a poor performance rela-
tive to the optimal scheme, as its investor’s expected payoff represents in general no more than 60% of
that attained by the optimal scheme (with the exception of the cases with very low levels of risk aver-
sion), becoming even negative for risk aversion coefficient sufficiently high (for instance with d ¼ 0:5 for
all values taken for k).

We proceed our comparative analysis with the mixed scheme that includes a bonus and a fixed
compensation, denoted by bf. An optimal scheme of this type is obtained after imposing the additional
constraint w1 ¼ w2 ¼ w on the problem characterized by Eqs. (3)–(5) in Section 3. Table 5 reports opti-
mal couples ðebf ;Dwbf Þ coming from such incentive plan.16 A comparison between Table 5 and Table 1
shows that whereas the innovation level of this mixed bonus scheme is always lower than that yield by
the optimal scheme, reward for success Dwbf is unambiguously higher than the risk-taking reward Dw�.
As a result of this phenomenon, Table 6 reveals that this mixed bonus plan exhibits a fairly good perfor-
mance relative to the optimal scheme, as its investor’s expected payoff represents in general more than
96% of that attained by the optimal scheme.17
still a ‘‘gross’’ payoff as it is computed before investment I.
s assumption is also consistent with the alternative interpretation of our model described in subSection 2.3.
n the pure bonus scheme wb

1 ¼ wb
2 ¼ 0, the term Dwb ¼ wb

3 only represents a reward for success.
n this mixed bonus scheme wbf

1 ¼ wbf
2 ¼ w, the term Dwbf ¼ wbf

3 �w also represents only a reward for success.
remarkable performance of this bonus plus fixed compensation scheme in our model is consistent with the results of

ez and Salas-Fumás (2008). In fact, this work characterizes the second-best incentive scheme when uncertain output is
d by a random process with fat tails, showing that this scheme resembles a performance-standard contract that pays a
lary plus a capped bonus. Contrary to our work, however, they assume that the incentive zone is only that characterized by
te performance and that density tails contain results that are much less informative on the effort provided.



Table 4
Optimal scheme vs. bonus.

EBb

EB�
d ¼ 0:2 d ¼ 0:3 d ¼ 0:4 d ¼ 0:5 d ¼ 0:6 d ¼ 0:65

k ¼ 0:30 0:9204 0:7876 0:4564 0a 0a 0a

k ¼ 0:35 0:8874 0:7097 0:2863 0a 0a 0a

k ¼ 0:40 0:8466 0:6260 0:1117 0a 0a 0a

k ¼ 0:45 0:8013 0:5392 0a 0a 0a 0a

k ¼ 0:50 0:7533 0:4508 0a 0a 0a 0a

k ¼ 0:55 0:7039 0:3619 0a 0a 0a 0a

a In fact, the investor’s expected payoff from the bonus scheme is zero.

Table 5
Bonus with fixed compensation scheme: Innovation and reward for success.

ðebf ;Mwbf Þ d ¼ 0:2 d ¼ 0:3 d ¼ 0:4 d ¼ 0:5 d ¼ 0:6 d ¼ 0:65

k ¼ 0:30 ð0:7927; 0:8173Þ ð0:5914; 0:7554Þ ð0:4246; 0:7071Þ ð0:2853; 0:6756Þ ð0:1680; 0:6716Þ ð0:1170; 0:6886Þ
k ¼ 0:35 ð0:6717; 0:8135Þ ð0:5014; 0:7516Þ ð0:3607; 0:7041Þ ð0:2430; 0:6735Þ ð0:1435; 0:6704Þ ð0:1000; 0:6877Þ
k ¼ 0:40 ð0:5831; 0:8108Þ ð0:4354; 0:7490Þ ð0:3136; 0:7020Þ ð0:2117; 0:6720Þ ð0:1252; 0:6694Þ ð0:0874; 0:6870Þ
k ¼ 0:45 ð0:5152; 0:8088Þ ð0:3847; 0:7471Þ ð0:2775; 0:7004Þ ð0:1875; 0:6708Þ ð0:1111; 0:6687Þ ð0:0776; 0:6865Þ
k ¼ 0:50 ð0:4616; 0:8073Þ ð0:3447; 0:7456Þ ð0:2488; 0:6991Þ ð0:1683; 0:6699Þ ð0:0998; 0:6681Þ ð0:0697; 0:6861Þ
k ¼ 0:55 ð0:4181; 0:8061Þ ð0:3122; 0:7444Þ ð0:2255; 0:6981Þ ð0:1526; 0:6692Þ ð0:0906; 0:6676Þ ð0:0633; 0:6857Þ

Table 6
Optimal scheme vs. bonus with fixed compensation.

EBbf

EB�
d ¼ 0:2 d ¼ 0:3 d ¼ 0:4 d ¼ 0:5 d ¼ 0:6 d ¼ 0:65

k ¼ 0:30 0:9690 0:9689 0:9729 0:9788 0:9848 0:9862
k ¼ 0:35 0:9751 0:9746 0:9775 0:9821 0:9870 0:9881
k ¼ 0:40 0:9791 0:9784 0:9806 0:9845 0:9887 0:9896
k ¼ 0:45 0:9819 0:9811 0:9830 0:9863 0:9899 0:9908
k ¼ 0:50 0:9840 0:9832 0:9848 0:9877 0:9910 0:9917
k ¼ 0:55 0:9856 0:9849 0:9863 0:9889 0:9918 0:9924
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6. Concluding remarks

This work studies optimal incentive schemes of institutional investors mandated to seek alterna-
tive investments, and in particular, it characterizes conditions under which these schemes allow for
a reward-for-failure property. It is shown that this property emerges when the optimal contract has
to reward extreme performance, that is, both sufficiently high and sufficiently low returns. In addition,
a numerical analysis illustrates how changes in preference and return parameters affect this optimal
scheme, revealing properties that in general are consistent with more traditional contract-theory
models.

Two ways regarding implementation of the optimal scheme are explored. First, this scheme can be
implemented by providing the manager with an initial fund stake subject to a dilution process in favor
of the investor. Also, a numerical exercise analyzes the performance of option-like schedules, showing
that a mixed structure involving a bonus plus a fixed payment, although suboptimal, achieves fairly
good results on the investor’s expected payoff.
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Appendix A

Proof of Proposition 1. In the optimal contract program, thanks to the First-Order Approach, one can
substitute constraint (5) with the FOC of the manager’s problem that solves the optimal innovation
degree. 18 This condition is given by
18 The
ð1� dÞ c1w1�d
1 � ð1� c2Þw1�d

2 þ c3w1�d
3


 �
� ke ¼ 0: ð6Þ
Moreover, at the optimal contract, the participation constraint is binding:
ð1� dÞe c1w1�d
1 � ð1� c2Þw1�d

2 þ c3w1�d
3


 �
þ ð1� dÞw1�d

2 � k
e2

2
¼ U: ð7Þ
After combining (6) and (7), we obtain that
w0
2 ¼

1
ð1� dÞ U � k

e2
o

2

� �� 	 1
1�d

; ð8Þ
which is always a positive real number given that d 2 ð0;1Þ and assumption U > k
2. After replacing (8)

into constraint (6), and some algebra, we get that
w0
3 ¼

ð1� c2Þ U � k e2
o

2

� 

� ð1� dÞc1w1�d

1 þ keo

ð1� dÞc3

2
4

3
5

1
1�d

� w3ðw1Þ: ð9Þ
Then, the program that solves the optimal contract is equivalent to
Min
w1

c1w1 þ c3w3ðw1Þ:
Using (9) in the FOC of this problem, it follows that
w0
1 ¼ w0

3 ¼
1

ð1� dÞ U � k
e2

o

2
þ keo

1� c2

� �� 	 1
1�d

; ð10Þ
which is also a positive real number given that by assumption U > k
2 and c2 < 1. A comparison

between (8) and (10) reveals finally that
w0
3 ¼ w0

1 > w0
2 > 0;
which completes the proof. �
Proof of Corollary 1. First, after taking derivative of (10) with respect to e0, we have that
sign
@w0

3

@e0
¼ sign

@w0
1

@e0
¼ sign

1
1� c2

� e0

� �
> 0; ð11Þ
where the inequality holds because by assumption e0 6 1 and c2 < 1. Second, a similar derivative of
(8) implies that
sign
@w0

2

@e0
¼ sign � keo

1� d

� �
< 0; ð12Þ
which completes the proof. �
Proof of Proposition 2. First, if xi ¼ x1, the manager receives from his initial stake in the fund a payoff
ax1, which after substituting a, becomes
ax1 ¼ w�1:
concavity of pe
i guarantees the validity of the first-order approach.
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Second, if xi ¼ x2, the dilution process implies that now the manager’s payoff is ax2
1þb2

, which after substi-
tuting a and b2, corresponds to
ax2

1þ b2
¼ w�2:
Third, if xi ¼ x3, the dilution process implies now that the manager’s payoff is ax3
1þb3

, which after substi-
tuting a and b3, becomes
ax3

1þ b3
¼ w�3;
which proves the validity of the implementation via shares. �
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