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Abstract. Consider a game with a continuum of players where only a finite number of them

are atomic. Objective functions and admissible strategies may depend on the actions chosen by

atomic players and on aggregate information about the actions chosen by non-atomic players.

Only atomic players are required to have convex sets of admissible strategies and quasi-concave

objective functions. In this context, we prove the existence of pure strategy Nash equilibria, a

result that extends Rath (1992, Theorem 2) to generalized games and gives a direct proof of a

special case of Balder (1999, Theorem 2.1). Our proof has the merit of being simple, based only

on standard fixed point arguments and finite dimensional real analysis.
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1. Introduction

In a seminal paper, Schmeidler (1973) proved that in non-convex games with a continuum of

players the set of pure strategy equilibria is non-empty provided that (i) all agents are non-atomic,

and (ii) objective functions depends only on their own strategy and on the average of the actions

chosen by the other players. Essentially, this last assumption convexify the game, because the

integral of any correspondence is a convex set (Aumann (1964)).

In this paper, we extend Schmeidler’s result to large generalized games with a finite number of

atomic players. In our framework, both objective functions and admissible strategies may depend
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e-mail: ariascos@uniandes.edu.co

Juan Pablo Torres-Mart́ınez

Department of Economics, University of Chile

Diagonal Paraguay 257 office 1604, Santiago, Chile

e-mail: juan.torres@fen.uchile.cl.



2

on the strategies of atomic players and on messages which aggregate information about strategies

chosen by non-atomic players (i.e., not necessarily on the average of these actions). By extending

the proof given by Rath (1992, Theorem 2) of Schmeidler (1973) classical result, we provide a short

and direct proof of the existence of a pure Nash equilibria in our generalized game, without need

to purify a mixed strategy equilibrium. Our theorem is a special case of Balder (1999, Theorem

2.1) but his prove use extensively functional analysis. Thus, one of the merits of our proof is its

simplicity, because it is based only on standard fixed point arguments and finite dimensional real

analysis. Furthermore, our theorem is general enough to cope with interesting applications.

A natural application of our result is to general equilibrium theory. Essentially, to prove equilib-

rium existence it is usual to find bounds on endogenous variables and search an equilibrium allocation

as an equilibrium in an abstract generalized game. In this type of generalized game, consumers and

firms maximize their objective functions taking prices as given, and there are atomic players that

determine prices, asset returns, taxes or any other endogenous variable that are taken as given by

consumers or firms. Thus, for equilibrium models where agents have non-convex choice sets or their

objective function are not necessarily quasi-concave, our main result may help researcher to find an

equilibrium.

The rest of the paper is organized as follows: in Section 2 we present our non-convex large

generalized game and we prove the existence of a pure strategy Nash equilibrium. In Section 3, we

discuss the relation to the existing literature.

2. Pure strategy equilibria in a non-convex generalized game

Let G(T, (Kt,Γt, ut)t∈T , h) be a generalized game with an infinite set of players T = T1 ∪ T2,

where T1 ⊂ R is a compact finite measure continuum set of non-atomic players with respect to

Lebesgue measure λ,1 and T2 is a finite set of atomic players. Each player t ∈ T1 has a compact

and non-empty action space Kt ⊂ K̂, where K̂ ⊂ Rn is a compact set and
⋂

t∈T1
Kt 6= ∅. On the

other hand, each player t ∈ T2 has a compact, convex and non-empty action space Kt ⊂ Rnt , with

nt ∈ N.2

A profile of actions for players in T1 is given by a function f : T1 → K̂ such that f(t) ∈ Kt, for

any t ∈ T1. Since T2 is finite, a profile of actions for the players in T2 is a vector a := (ai; i ∈ T2) ∈

Πt∈T2Rnt such that at ∈ Kt, for any t ∈ T2. Let F(Ti) be the space of all profiles of actions of agents

in Ti, with i ∈ {0, 1}. Also, given t ∈ T2, let F−t(T2) be the set of profiles a−t := (aj ; j ∈ T2 \ {t})

of actions take by players j ∈ T2 \ {t}.

1In other words, (T1,B(T1), λ) is a measure space, where B(T1) is the σ− algebra of Borel sets of T1.
2Through the article, we assume that Euclidean spaces are endowed with the topology induced by the Euclidean

norm and, therefore, a set is compact if and only it is bounded and closed in this topology.
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In G(T, (Kt,Γt, ut)t∈T , h) players do not necessarily advance the actions chosen by players in T1

or, alternatively, players do not necessarily take into account the actions of each non-atomic player

to determine an optimal response. However, players will considerate, at the moment in which they

make a decision, aggregated information of some characteristics of these actions. Formally, if agents

t ∈ T1 choose a profile of actions f ∈ F(T1), then we assume that the relevant characteristics of

this actions are coded by a continuous function h : T1 × K̂ → Rl. Furthermore, each player in

T will only take into account, for strategic purposes, aggregated information about these available

characteristics through the message m(f) =
∫
T1

h(t, f(t))dλ.

Since we want to concentrate in actions profiles for which messages are well defined, we say that

f is a strategic profile of players in T1 if both f ∈ F(T1) and h(·, f(·)) is a measurable function from

T1 to Rl.3 Measurability restrictions are not necessary over the behavior of atomic players. For this

reason, the set of strategic profiles of players in T2 coincides with the space of profiles of actions

F(T2).

The set of messages associated to strategic profiles of non-atomic players is given by

M =


∫
T1

h(t, f(t))dλ : f ∈ F(T1) ∧ h(·, f(·)) is measurable

 ⊂ Rl,

which is non-empty since
⋂

t∈T1
Kt is a non-empty set and h is a continuous function. Also, since the

sets K̂ and T1 are compact, for any profile of actions f : T1 → K̂, the function h(·, f(·)) : T1 → Rl

is bounded. Thus, if it is measurable then it is integrable. For these reason, in the definition of the

set of messages M we only require measurability of h(·, f(·)).

In our game, the messages about the strategic profiles of players in T1 jointly with the strategic

profiles of players in T2 may restrict the set of admissible strategies available for a player t ∈ T .

That is, given a vector (m, a) ∈M ×F(T2) the strategies available for a player t ∈ T1 are given by a

set Γt(m, a) ⊂ Kt, where Γt : M ×F(T2) � Kt is a continuous correspondence with non-empty and

compact values. Analogously, given (m, a−t) ∈ M × F−t(T2), the set of strategies available for a

player t ∈ T2 is Γt(m, a−t) ⊂ Kt, where Γt : M×F−t(T2) � Kt is a continuous correspondence with

non-empty, compact and convex values. We refer to correspondences (Γt; t ∈ T ) as correspondences

of admissible strategies.

Given a set A ⊂ Rk, let U(A) be the collection of continuous functions u : A → R. Assume

that U(A) is endowed with the sup norm topology. We suppose that each player t ∈ T1 has an

objective function ut ∈ U(K̂ × M × F(T2)) and each player t ∈ T2 has an objective function

ut ∈ U(M ×F(T2)) which we assume is quasi-concave in its own strategy. Finally, we assume that

3In Schmeidler (1973) and Rath (1992), players are non-atomic and take into account only the average of actions

chosen by the others players. Thus, following our notation, l = n and h(t, x) = x. Therefore, they define strategic

profiles as measurable functions from the set of players to the set of actions.
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the mapping U : T1 → U(K̂ ×M × F(T2)) defined by U(t) = ut is measurable.4

Definition. A pure strategy Nash equilibrium of the generalized game G(T, (Kt,Γt, ut)t∈T , h) is

given by strategic profiles (f∗, (a∗t ; t ∈ T2)) such that, for any non-atomic player t ∈ T1,

ut(f∗(t),m(f∗), a∗) ≥ ut(f(t),m(f∗), a∗), ∀f(t) ∈ Γt(m∗, a∗),

and for any atomic player t ∈ T2, ut(m(f∗), a∗) ≥ ut(m(f∗), at, a
∗
−t), ∀at ∈ Γt(m∗, a∗−t), where the

message m(f∗) :=
∫

T1
h(t, f∗(t))dλ belongs on the set M .

Note that, in our definition of Nash equilibrium, every agent maximize his objective function,

while in Balder (1999) and Rath (1992) in equilibrium almost everyone maximizes. However, since

objective functions are continuous and action spaces compact, given an equilibrium for any of the

games studied in these articles, it is always possible to change the allocations associated to the set of

non-atomic players that do not maximizes, give to each of them an optimal plan, without changing

the integrability of the action profile or the value of messages. Thus, Theorem 2 in Rath (1992) and

Theorem 2.1 in Balder (1999) assure the existence of Nash equilibria where each player maximize.

Theorem. Consider a generalized game G(T, (Kt,Γt, ut)t∈T , h) where,

(1) The set of players is T1∪T2, where T1 is a compact finite measure set of non-atomic players

and T2 is a finite set of atomic players.

(2) For any t ∈ T, action spaces Kt are non-empty and compact, correspondences of admissible

strategies Γt are continuous and have non-empty and compact values, and objective functions

ut are continuous.

(3) Each atomic player has a convex set of actions, a convex-valued correspondence of admissible

strategies, and an objective function which is quasi-concave on its own strategy.

(4) There exists a compact set K̂ such that, for any t ∈ T1, Kt ⊂ K̂ and ∩
t∈T1

Kt is non-empty.

(5) The function h : T1 × K̂ → Rl is continuous.

(6) The mapping U : T1 → U(K̂ ×M × F (T2)), which associates with any t ∈ T1 the objective

function ut, is measurable.

Then, there exists a pure strategy Nash equilibrium.

Proof. We divide the proof in five steps.

4Suppose that there is a finite number of types on the set of non-atomic agents, T1. That is, there is a finite

partition of T1 into Lebesgue measurable sets {I1, . . . , Ir} such that, two players t and t′ are identical if belongs into

the same element of the partition. In this case, the restriction about measurability of U is trivially satisfied.
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(1) The space of messages M ⊂ Rl is non-empty, compact and convex .

As we remark in the previous section, M is non-empty as a consequence of the fact that⋂
t∈T1

Kt 6= ∅. Essentially, if we fix k ∈
⋂

t∈T1
Kt, the function g : T1 → K̂ defined by g(t) = k for

any t ∈ T1 belongs to F(T1) and h(·, g(·)) is trivially measurable. Therefore,
∫

T1
h(t, g(t))dλ is well

defined and M is a non-empty subset of Rl.

The set M is convex because the integral of a correspondence in a non-atomic measurable space

is a convex set (see Aumann (1964)): consider the correspondence Q : T1 � Rl defined by Q(t) =

h(t,Kt), for any t ∈ T1. Then M =
∫
T1

Q(t)dλ and, therefore, M is convex.5

Let Q̃ : T1 � Rl be the correspondence defined by Q̃(t) = h(T1, K̂), for any t ∈ T1. Then

M =
∫
T1

Q(t)dλ ⊂
∫
T1

Q̃(t)dλ = convexhull(h(T1, K̂)). Therefore, since h is continuous, M is a subset

of a compact set. Thus, it remains to prove that M is closed. Let {mk}k∈N ⊂ M be a sequence

that converges to a vector m ∈ Rl. Since mk ∈ M , mk =
∫
T1

hk(t)dλ, where hk : T1 → Rl is a

mesurable function and hk = h(·, fk(·)) for some fk ∈ F(T1). For each t, {h(t, fk(t))}k∈N ⊂ Q(t),

which is a compact set. Thus, every limit point of {hk(t)}k∈N is contained in Q(t). Also, since h is

continuous, T1 is compact and ∪t∈T1Kt ⊂ K̂, it is easy to see that {hk}k∈N is uniformly bounded

by an integrable function. By Aumann (1976), it follows that the limit point of
∫
T1

hk(t)dλ belongs

to
∫
T1

Q(t)dλ. Therefore, the space of messages is compact.

(2) Best-reply correspondences are closed with non-empty and compact values.

For any t ∈ T1, define the best-reply correspondence Bt : M ×F(T2) � Kt as

Bt(m, a) = argmaxf(t)∈Γt(m,a)ut(f(t),m, a).

Analogously, for any atomic player t ∈ T2 the best-reply correspondence Bt : M ×F−t(T2) � Kt

is defined by Bt(m, a−t) = argmaxat∈Γt(m,a−t)ut(m, at, a−t).

It follows that, under conditions of item (i) in the statement of the Theorem, and as a consequence

of the Berge’s Maximum Theorem, best-reply correspondences have closed graph and non-empty

compact values.

(3) For any atomic player t ∈ T2, his best-reply correspondence has convex values.

A direct consequence of item (ii) in the statement of the Theorem.

(4) The correspondence Ω : M × F(T2) � M defined by Ω(m, a) =
∫

T1
h(t, Bt(m, a))dλ is closed

and has non-empty and convex values.

5This follow immediately from the definition of integral of a correspondence and the fact that we do not require

action profiles to be measurable.
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Given (m, a) ∈ M × F(T2), and by an identical argument to those made by Rath (1992, pages

430-431), there exists a measurable function f ∈ F(T1) such that f(t) ∈ Bt(m, a) for any t ∈ T1.

Thus, since h is continuous, h(·, f(·)) is measurable and, therefore, Ω has non-empty values.

The correspondence Ω has convex values, since for any (m, a) ∈ M × F(T2), the set Ω(m, a) is

the integral of the correspondence t � h(t, Bt(m, a)).

Since for any t ∈ T1, the best-reply correspondence Bt has closed graph, for any t ∈ T1 the

correspondence that associate to each (m, a) ∈ M × F(T2) the set h(t, Bt(m, a)) has also closed

graph (a direct consequence of the continuity of the function h and the fact that Bt(m, a) ⊂ K̂

for any (t,m, a) ∈ T1 × M × F(T2)). On the other hand, since T1 and K̂ are compact and h

continuous, there exists a bounded function v : T1 → Rl such that −v(t) ≤ h(t, f(t)) ≤ v(t), for

any t ∈ T1, f ∈ F(T1) and
∫

T1
v(t)dλ is finite. Therefore, the correspondence that associate to each

(m, a) ∈ M × F(T2) the integral on T1 of the correspondence t � h(t, Bt(m, a)) has closed graph

(a consequence of the main result in Aumann (1976)). In other words, Ω is closed.

(5) The generalized game G(T, (Kt,Γt, ut)t∈T , h) has a pure strategy Nash equilibrium.

Define the correspondence Γ : M×F(T2) � M×F(T2) by Γ(m, a) = (Ω(m, a), (Bt(m, a−t))t∈T2).

Then Γ is closed and has nonempty, convex and compact values. Therefore, applying Kakutani’s

Fixed Point Theorem, we conclude that Γ has a fixed point, i.e. there exists (m∗, a∗) ∈M ×F(T2)

such that (m∗, a∗) ∈ Γ(m∗, a∗).

Thus, for some f∗ ∈ F(T1), m∗ =
∫

T1
h(t, f∗(t))dλ and f∗(t) ∈ Bt(m∗, a∗), for any t ∈ T1. Also,

for any t ∈ T2, a∗t ∈ Bt(m∗, a∗−t). These properties assure that (f∗, a∗) constitutes a pure strategy

Nash equilibrium of the generalized game. �

3. Discussion of related literature

Rath (1992) main result on games with compact action spaces (Theorem 2, page 430) is an

elementary prove of Schmeilder (1973) classical result. On the other hand, Balder (1999, Theorem

2.1, page 212) is a generalization of Rath (1992) to generalized games. Our theorem is a special case

of Balder (1999) but it still extend Rath (1992) on some dimensions, because we consider generalized

games, in with admissible strategies and objective functions may depend on players actions and,

also, we allow for atomic players.

There are generalizations of our theorem that are quite straightforward but we think they would

obscure the elementary nature of our prove. For example, we could avoid assuming actions spaces

share a common action for every agent (i.e.,
⋂

t∈T1
Kt 6= ∅) and rather use an argument along

Remark 8 in Rath (1992, page 432). Similar arguments to Remark 6 in Rath’s article would allow

us to avoid fixing a topology in U(K̂ × M × F(T2)). On the other hand, we could also relax
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substantially the hypothesis of our coding function h. In particular, as in Balder (1999), we could

assume that h is a vector valued function of Carathéodory functions.

Finally, we should stress that the most important difference of our theorem with Balder’s Theorem

2.1 is the fact that we assume sets of strategic profiles to be integrable bounded codifications of

actions profiles (i.e., are integrable functions—obtained by the codification of actions profiles—with

respect to a finite measure space). Integrability of action profiles is something which is clearly an

ungrounded hypothesis in many applications making necessary to bound actions, prove equilibrium

existence and arguing somehow that bound are innocuous (for example, by constructing a sequence

of equilibriums for less stringent bounds and then arguing that this sequence has a convergent

subsequence that is also an equilibrium).
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