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Abstract

When infinite-lived agents trade long-lived assets secured by durable
goods, equilibrium exists without any additional debt constraints or
uniform impatience conditions on agents' characteristics. Also,
regardless of whether assets' net supply is positive or zero, price
bubbles are absent when physical endowments are uniformly bounded
away from zero. Otherwise, bubbles may occur, even for assets in
persistently positive net supply and for deflators yielding finite present
values of aggregate wealth.
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LONG-LIVED COLLATERALIZED ASSETS AND BUBBLES

ALOISIO ARAUJO, MARIO R. PASCOA, AND JUAN PABLO TORRES-MARTINEZ

ABSTRACT. When infinite-lived agents trade long-lived assets secured by durable goods, equilib-
rium exists without any additional debt constraints or uniform impatience conditions on agents’
characteristics. Also, regardless of whether assets’ net supply is positive or zero, price bubbles
are absent when physical endowments are uniformly bounded away from zero. Otherwise, bub-
bles may occur, even for assets in persistently positive net supply and for deflators yielding finite

present values of aggregate wealth.

KEYwWORDS. Collateralized assets, Existence of equilibrium, Asset pricing bubbles.
JEL CLASSIFICATION. D50, D52.

1. INTRODUCTION

Sequential economies with infinite-lived assets have been studied for quite a long time in finance
and in macroeconomics. The pioneering models were of two kinds: the overlapping generations
models by Samuelson (1958) and Gale (1973) and the infinite-lived agents model by Bewley (1980).
The latter inspired a general equilibrium literature that focused on two subtle issues: existence
of equilibrium and occurrence of asset price bubbles (see, for instance, Magill and Quinzii (1996),
Hernandez and Santos (1996), and Santos and Woodford (1997)).

The previous literature addressed the case of default-free unsecured assets. Generic existence of
equilibrium was established under debt-constraints (Magill and Quinzii (1996) and Hernandez and
Santos (1996)). For nicely behaved deflators yielding finite present values of wealth, speculation
in assets in positive net supply was ruled out when markets were complete or when agents were
uniformly impatient, but bubbles with real effects might occur in the case of assets in zero net
supply (see Santos and Woodford (1997) and Magill and Quinzii (1996)).

When default is allowed but short-sales are secured by durable goods, the optimization problem
of infinite lived agents gains a very nice structure that allows us to approach existence of equilibrium
and speculation in a new way. In fact, the returns from past actions (namely from the joint operation
of collateralizing and short-selling) are always non-negative and, therefore, as in positive dynamic
programming, Fuler and transversality conditions are not just necessary but also sufficient for
individual optimality. Moreover, endowments are no longer required to be bounded away from zero,

due to the durability of previous endowments.
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2 ALOISIO ARAUJO, MARIO R. PASCOA, AND JUAN PABLO TORRES-MARTINEZ

From the sufficiency of the optimality conditions we establish existence of equilibrium, without
imposing debt constraints or uniform impatience requirements. It also gives us an easy way to
construct examples of equilibrium: we just need to check Euler, transversality and market clearing
conditions. That is, as in the case of short-lived assets (see Araujo, Pdscoa and Torres-Martinez
(2002) or Kubler and Schmedders (2003)), collateral avoids Ponzi schemes. Note that, these schemes
were not the only possible reason for non-existence of equilibrium with long-lived assets. In fact,
in economies with default-free long-lived assets, where those debt requirements were imposed, equi-
librium still failed to exist and only generic existence was guaranteed (see Hernandez and Santos
(1996) or Magill and Quinzii (1996)). Two difficulties came up: (i) there were no endogenous upper
bounds on short-sales, as the rank of returns matrices became dependent on asset prices; and (ii)
finite asset prices might be incompatible with non-arbitrage conditions, as the return matrices of
zero-net supply assets could be unbounded along the event-tree (see Hernandez and Santos (1996,
Example 3.9)). Collateral avoids also these two additional difficulties, since the scarcity of physical
goods assures that collateralized short-sales are bounded (overcoming (i)) and, by non-arbitrage
(see below), bounded collateral coefficients end up bounding asset prices (overcoming (ii)).

From the necessity of the optimality conditions we establish the properties that commodity and
asset prices should satisfy and find out that asset prices are always bounded by the collateral
cost. We use this result and focus on deflators that are compatible with the optimality conditions
(and, therefore, known to yield finite present values of wealth). First, we show that mortgages,
whose collateral does not have margin calls, are free of price bubbles unless the durable good
serving as collateral (or being part of the real payments) has a price bubble itself. Secondly, for
more general collateral requirements, speculation is ruled out if endowments are uniformly bounded
away from zero, irrespective of whether the net supply of the asset is positive or zero. However,
having dispensed with uniform impatience, for equilibrium purposes, endowments do not need to
be uniformly bounded away from zero and, therefore, it becomes possible to construct examples of
incomplete markets equilibrium with a positive price for an asset yielding no dividends, even when
present values of wealth are finite. In these examples, collateral constraints are not binding and,
therefore, the positive price is not due to a positive fundamental value consisting of shadow prices,
but is rather due to a bubble. It is the diversity of individual deflators that allows for the positive
net supply of the asset changes hands in such a way that the asset has a limiting positive price even
if no one holds limiting long positions (as required by the transversality conditions).

Also, when individuals’ inter-temporal marginal rates of substitution coincide, we prove that
assets in persistently positive net supply are free of price bubbles. However, as a consequence of
collateral seizure, the asset net supply is endogenous in our model and we may have bubbles if the
net supply is asymptotically zero as a result of collateral seizure.

Finally, note that uniform impatience had played a crucial role in default-free economies when
it came to show that debt constraints turned out to be equivalent to imposing the transversality
requirements that the optimal plan should verify. That is, under uniform impatience, the chosen
default-free plan was optimal among the debt-constrained or transversality-constrained plans that

satisfied the budget constraints. In our model, the chosen plan is optimal among all bugdet feasible
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plans and we can do without uniform impatience, which is far from being a trivial assumption.
Even for separable utility functions and endowments that are uniformly bounded away from zero,
the assumption may fail if inter-temporal discounting is not stationary.

The rest of the paper is organized as follows. The next two sections present the model. In Section
4 we discuss a crucial property of the default model: a consumption and portfolio plan is individually
optimal if and only if it satisfies Euler inequalities and a transversality condition on its cost. The
necessity part is used to characterize asset prices. The sufficiency part, which is the novel result,
is used to establish existence of equilibrium without uniform impatience requirements (in Section
5). Our asset pricing characterization (which is analogous to the non-arbitrage valuation studied by
Araujo, Fajardo and Pdscoa (2005)) is the basis for the definitions of fundamental values and for
the results on absence of price bubbles (in Section 6). We close the paper with examples (Section

7) of asset price bubbles.

2. INFINITE HORIZON COLLATERALIZED ASSET MARKETS

Uncertainty. We consider a discrete time economy with infinite horizon. A date is an element
t € {0,1,...}. There is no uncertainty at t = 0 and given a history of realization of the states of
nature for the first ¢ dates, with ¢ > 1, 5; = (sg,...,8t—1), there is a finite set S(5;) of states of
nature that may occur at date ¢.

A vector £ = (t,5,s), where t > 1 and s € S(5;), is called a node of the economy. There is only
one node at ¢ = 0, that is denoted by &y. Given & = (¢,35, s) and p = (¥, 35y, s'), we say that pu is a
successor of £, and write p > &, if both ¢/ > ¢ and (S, 8') = (5, 8,...). We write p > £ to say that
w > & but u # £ The set of nodes, called the event-tree, is denoted by D.

Let t(€) be the date associated withanode £ € D. Let T :={pu e D : (un > &) A (t(u) = t(§)+1)}.
The (unique) predecessor of &, with t(£) > 1, is denoted by £~ and D(§) = {u € D : pu > £} is the
subtree with root . The family of nodes with date T in D(&) is denoted by Dr(§). Finally, given
T > 1, let DT(€) := Uf:t@ Dy (€), DT := DT(&) and Dy := Dp(&).

Physical markets. At each node there is a finite ordered set of commodities, L, which can be traded
and may suffer transformations at the immediate successors nodes. We allow for goods that are
perishable or perfectly durable and also for transformation of some commodities into others.

More formally, for any n € D, there is a matrix with non-negative entries Y, = (Y,(I,1")) 11)erx 1
such that, if one unit of good [ € L is consumed at a node &, then at each p € £ remain Y,,(1,1)
units of [ and we obtain Y},(I’, ) units of each commodity I’ # . For convenience of notations, given
a history of nodes {&1,...,&,}, with &4 € §j+, we define Y, ¢ as equal to Y¢, Ye | ---Ye,, when
n > 1; and equal to the identity matrix when n = 1.

Spot markets for commodity trade are available at each node. Denote by ps = (pe; : l € L) € ]Rf_
the row vector of spot prices at £ € D and by p = (p¢ : £ € D) the process of commodity prices.
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Financial markets. There is a finite ordered set J of different types of infinite-lived securities. Assets
may suffer default but are protected by physical collateral requirements.! Assets of a given type
have the same promises of real deliveries and the same collateral requirements. Thus, in the absence
of default, assets of the same type can be treated as being the same security. However, when an asset
issued at & defaults at a successor node p > £, it converts into the respective garnishable collateral.
For this reason, we suppose that, at every node, an asset of each type j € J can be issued. In this
way, we assure that agents can constitute, at any node, new long or short positions on assets of any
type. For the sake of simplicity, whenever there is no possible confusion, we will refer to an asset of
type j simply as asset j.

The net supply of j € J at t =01is e; > 0. At any £ > &, real promises are given by a bundle
A(&,j) € RE. Let (Cej;6€ € D) € RiXD be the plan of asset’ j unitary collateral requirements.

We denote by g¢ = (g¢,j, j € J) € R the row vector of asset prices at £ € D, and by ¢ = (g¢, € €
D) a plan of asset prices in the event-tree.

Note that, holders of asset endowments are not required to constitute collateral when selling these
endowments. However, when assets are short-sold, borrowers have to constitute collateral. Now,
when purchasing an unit of an asset it is not possible to distinguish whether this unit was short-sold
or is part of someone’s endowment. Thus, the price and the return from this purchase will be the
same in both cases.?

In case of default, the depreciated collateral will be seized. Also, others goods delivered by the
collateral bundle may also be garnishable. That is, we assume that, in case of default on asset
7 at node & > &y, markets seize the garnishable collateral, which is given by a bundle @,j that
satisfies, Ye(1,1)Ce- j; < Ceju < Ye(l,)Ce- ;, VI € L. Note that, if Y¢ is a diagonal matrix (as
in Araujo, Péscoa and Torres-Martinez (2002)), then Ce ; coincides with Y¢C¢- ;. However, when
collateral is durable but delivers also perishable commodities at the next nodes, those deliveries
might also be or not be seized in case of default. Hence, borrowers will pay and lenders expect to
receive the minimum between the value of the garnishable collateral and the market value of the
original debt. Thus, the (unitary) nominal payment made by asset j at node £ > &y is given by
De j(p, q) := min{pe A(&, 5) + qe.j, peCe ;}. To shorten notations, let De(p,q) := (De j(p,q), 5 € J).

Finally, we want to show two simple and important examples of collateral requirements processes
contemplated by our framework. First, if for any { € D, C¢ ; = C € Ri, then, as collateral guaran-
tees may depreciate along the event-tree, borrowers may need to buy additional physical resources
in order to maintain their original short-positions. In some sense, it is similar to the well known
market practice of margin calls. Secondly, the case of mortgage loans, where C¢ ; < YeCe- ;, for
any & > &y. In this case, short-positions can be maintained without need to update the amount of

physical guarantees.

IWe could have allowed for price dependent collateral requirements and for financial collateral as long as we ruled
out self-collateralization (the possibility that an asset ends of securing itself though a chain of other assets). For more

details see Araujo, Pdscoa and Torres-Martinez (2005)

2In other words, a holder of an asset endowment holds units of the tradeable asset subject to default and not of

the underlying primitive asset free of default with promises (A(&, 5); € > £o), which is not tradable.
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Households. There is a finite set, H, of infinite-lived agents that consume commodities and trade
assets along the event-tree. Each agent h € H has financial endowments e = (6?)3‘61 € Ri at
t = 0, which satisfy e/ = D oheH e?. Physical endowment processes are given by w” = (w? ;£eD)e
REXL. At each & € D, any agent h can choose a plan zé‘ = (x’g, o, 902) > 0, where xé‘ = (3521 ;lel)
is the autonomous consumption bundle (that is, her consumption in excess of required physical
collateral) and (9?, @2) = ((9?,3' ,@?,j );j € J) denotes, respectively, her long- and short-positions
at £&. Agent h consumption at a node £ is given by %g = mg + ZjeJ Ce gogj.

Given prices (p, q), the objective of consumer h is to maximize her utility function U”" : ]Rf xL_,
Ry U {+00} over the plans 2", by choosing a plan 2" = (2", 0", p") € E := RP?*F x RP*7 x RP*/

which satisfies the following budget constraints,?

) 9, (28, 2¢- 112 @) = Peo (T, — wE,) + ae, (02, — @&, —€") <0,

and for all £ > &,

(2)  gi(zl, 2t 5pq) = pe(TE — wf — YeBE ) + e (0F — @) — De(p,q) (921 — @Zf) <0,

where 2z := (xg, , 92,,(,02,) = 0. The budget set of agent h at prices (p,q), denoted by B"(p,q),
0 0 0

h

&
is the collection of plans (z,6,¢) € E such that inequalities (1) and (2) hold. Moreover, without
loss of generality, we restrict the price set to P := {(pe, ge)een : (De, ge) € Af“]_l, V¢ € D}, where

A"M"" denotes the (n — 1)-dimensional simplex in R’}

Market clearing. Real returns from asset endowments have to be taken into account in the market
clearing conditions. When an asset does not default, the real returns from asset endowments coincide
with the promised real returns. In this first case, the asset will remain with the same positive net
supply that it had at the preceding node. However, in the case of default, real returns generated
by assets’ endowments will be determined by garnishable collateral coefficients. In this second case,
the asset can be traded again, as long as the collateral requirements are again satisfied, but the
positive net financial supply disappears. In fact, the previous positive net supply has been entirely
converted into a supply of garnished collateral.

In the borderline case, when borrowers are indifferent between surrendering the garnishable collat-
eral and honoring the promise, in value terms it does not matter whether the collateral is garnished
or the promise is payed, but, for the purposes of market clearing, this choice becomes relevant. This
choice will determine also whether the asset’s net supply will decrease or not.

Given (p,q) € P, we introduce, at each § # &g, delivery rates A\¢ ; € [0,1], which are equal to
one when the promise is lower than the value of the garnishable collateral, equal to zero when the

opposite strict inequality holds, but may take a value between zero and one in case of equality.*

3Note that, the non-negativity condition on the autonomous consumption represents the physical collateral con-
straint. In fact, the later requires ?c? > zje] Ce.j ‘P?,p which is equivalent to $g > 0.

4Since the promise and the garnishable collateral coefficients are impersonal, the delivery rates may vary across
agents but there is no rationale for such differences. Hence, we can concentrate our attention on outcomes where, in
the case of indifference between paying the promise and surrendering the garnishable collateral, all agents choose the

same combination of these two, that is, the same delivery rates.
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Using the delivery rates A\¢ = (X¢j) e, the effective nominal return of an asset j in positive
net supply, D¢ ;(p,q), can be seen as the value of a real component plus the value of a financial
position, D¢ ;(p,q) = pe <>‘£7j A7)+ (11— Aej) é&,j) +ge A¢ j, where the real component is either

the promised physical delivery or the garnishable collateral or a combination of the two.

DEFINITION 1. An equilibrium for our economy is given by prices (p,q) € P, individual plans
((xh,eh, <ph))h€H € EY and delivery rates \ € [0,1)P\M&D*7 " guch that
A. For each h € H, (z",0" o) € Argmax {UM(Z), (x,0,9) € B"(p,q)}.

B. At each node & # &, De j(p,q) = Ae,j (PeA(S, 5) + Ge ) + (1 = Ae j)peCe 5, Vi € J.
C. Asset markets are cleared. That is, for each j € J,

Z (9207.7' - 90]510,]') = €5,

heH
SO -t = Aead (0 -vl). VA&
heH heH

D. Physical markets are cleared.

~h __ h .
Z Leo = Z Weos
heH heH
and, at each & # &,

o= (wk+ Ve )+ 3 (Mea A ) + (1= 2e)Cei) D (01, — b= ,).-

heH heH JjeJ heH

3. ASSUMPTIONS ON AGENTS’ CHARACTERISTICS

As commodities can be durable goods, the traditional assumption that individual endowments of
commodities are interior points can be replaced by the weaker assumption that requires only indi-
vidual accumulated resources to be interior points. Moreover, to assure the existence of equilibrium,
we do not need to impose any uniform lower bound in the aggregate cumulated resources. Thus we

allow for durable commodities whose aggregate resources converge to zero.

ASSUMPTION A. For each (h,§) € H x D, given the history of realization of states of nature up
to node &, Fe¢ := {&o,...,§,¢&}, we have that Wgh = Zung Y, ¢ wZ > 0. Moreover, for each
(&,5) e DxJ, Ce; #0.

The aggregated resources up to a node £ need to take into account the streams of real resources

generated by the financial endowments. Thus, an upper bound for the bundle of aggregate physical
‘e o . h j i

resources up to a node § is given by We := %, We' + ZALEF{ Y. ¢ ZjeJ bl,ej, where bgo =0 and

bl = (b] )ier, with b} , = max {éw; A(g,j)l} , for each & > &.

AsSUuMPTION B. The wutility function of each h € H is separable in time and in states of nature,
in the sense that UN(Z) = Y ¢ep u?(f({)), where functions u? : RY — Ry are strictly concave,

continuous, and strictly increasing. Also, Y ¢ u?(Wg) < +o0.
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Under hypotheses above, uniform impatience conditions imposed by Hernandez and Santos (1996,
Assumption C.3), Magill and Quinzzi (1996, Assumptions B2 and B4) and Santos and Woodford
(1997, Assumption A.2) do not necessarily hold.® For example, given any u : Rf_ — R, strictly
concave, continuous, and strictly increasing, consider the function U(Z) := > . p Bie)p(§)u(T(§)),
where (8;)i>0 € RY, p(&) = 1 and, for each £ € D, p(¢) = > uce+ P(1). Then, when physical
resources are uniformly bounded along the event-tree and )_,., f; is finite, Assumption B holds.
If in addition individual endowments are uniformly boundediaway from zero, Assumption A is
satisfied. However, in this context, the function U may fail to satisfy uniform impatience condition
when inter-temporal discount factors are not stationary. Santos and Woodford (1997, example 4.5)

gave an example that illustrates this possibility.

4. INDIVIDUAL OPTIMALITY

In this section we present necessary and sufficient conditions for individual optimality. As in
positive dynamic programming theory, we will show that the default structure gives inter-temporal
Lagrangian functions a sign property under which Euler inequalities jointly with a transversality
condition are not just necessary but also sufficient to guarantee the optimality of a consumption-
portfolio plan.

Let Z := Rl x R” x R’. Given prices (p,q) € P, it follows from the arguments of the previous

section that the objective of the agent h is to find a plan (zg‘)gep € ZP in order to solve

max Y. vg (z¢)

h £eD
iz . 9t (2e,2¢-3pq) < 0, VEED,
s.t.
2 = (w¢,0¢,0¢) = 0, YE€D, 2z =0.
where v? :Z — RU{—o0} is defined at any z¢ = (¢, 8¢, 0¢) € Z by
v?(zf) = u? (955 + ZjEJ Ce.j 905*]') ifze + Zje] Cejpe; 20
-0 in other case.

For each real number v > 0, let £2(~,’y;p, q) : Z x Z — R be the Lagrangian function associated

to consumer problem at node &, which is defined by

(3) E?(Zg, Ze-, 305 q) = v?(z@ — vgg(zg, 2e-1D,q)-

Since under Assumption B the function /.’,2(~, ~; D, q) is concave, we can consider its super-differential

set at any point (z¢,2¢-) € Z X Z, 8£g(z5,z£7,'y;p, q), which is defined as the set of vectors

S5For instance, using the notation of Assumption B, in a context where aggregated physical endowments were
exogenously fixed and given by the plan (W¢)e¢ep, Hernandez and Santos (1996) imposed the following assumption
of uniform impatience: There exists o x K € [0,1) x R4 such that, for any plan of consumption (Z¢)¢ep for which
Zg < We, V€ € D, we have that

ul (@ + KWe) + Y ufi(08,) > Y uli(@u), Yh e H.
> n>€
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(L%, Le o) € Z x Z such that, for all pair (z¢, 2;-) € Z X Z,

(4) LE (26 2, 730:0) — LE (2, 2,70, 0) < (L1, L) - ((Zéa%—) - (Zsazsf)> -
Essentially, the above vectors [,'571 and 5272 are partial super-gradients with respect to the current

and past decision variables, respectively.

DEFINITION 2. Given (p,q) € P, (’Y?)fep € RP., is a plan of Kuhn-Tucker multipliers associated
with (Zg)geD € ZP if there is (L% 1, Le2)eep € [eep 86?(2?, z?,ﬁg;n q) such that, for any £ € D,
'ygg?(z?, z?,;p, q) = 0 and the following transversality and Fuler conditions hold,

(TC) TEIJIrloo Z ‘cu 1 zu -
HEDT(&0)
(EE) bt > L, <0, Leiy+ Y Lh,|2t=0, VveeD.
HEET pegt

PROPOSITION 1. Suppose that Assumptions A and B hold. Given (p,q) € P, take a plan (Z?)gep =
(z2,08, ¢M)eep € B"(p,q).
(i) If (z?)gep gives a finite optimum to P(’; g then there is a plan of Kuhn-Tucker multipliers
associated with (z?)gep.
(ii) Reciprocally, the plan (Z?)geD solves Ph @) when there are Kuhn-Tucker multipliers associ-
ated with it. Also, if x? < We, for each § € D, then the optimum value is finite.
(iil) Given Kuhn-Tucker multipliers , (75 )eep, associated with (z5 )eéeDs Deep 'yg pgwg < 00.

The proof that existence of Kuhn-Tucker multipliers implies individual optimality depends cru-
cially on the following sign property of Lagrangian functions, which holds at any £ € D: Given
prices (p,q) € P and a plan (2¢)eep € ZP,

VyeR 1 VE>E&: ( /5717 /5,2) € aﬁ?('z&azgﬂ’ﬁpa q) = 1:/5,2 > 0.

This property is very specific to our model. In fact, as for each j € J effective returns D¢ ;(p, q)
are not greater than the respective garnishable collateral values, the joint returns from actions taken

at immediately preceding nodes are non-negative (for more details, see Appendix A).

Condition (TC) is not a constraint that is imposed together with the budget restrictions (as was
the case in Hernandez and Santos (1996) or Magill and Quinzii (1996)), it is rather a property that
optimal plans should satisfy. Moreover, as the deflated value of endowments is summable (item (iii)
of Proposition 1) condition (TC) can be rewritten as requiring that, as time tends to infinity, the
deflated cost of the autonomous consumption goes to zero,

(TCx) lim Y fpexg = 0;

T—+oco
£eDr(8o)
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jointly with the cost of the joint operation of constituting collateral and short-selling,

. h h h
(TC,,) P> ¢ ped Cegvly—acee | = 0
£eDr(éo) JjeJ

and the cost of asset purchases,
(TCo) lim Y Afectd = 0,

T—+oco
£eDr(&o)

where zg = (xé‘ﬁh, go’g) (see Appendix A).

We end this section with a characterization of commodity and asset prices.

COROLLARY 1. (ASSET PRICING CONDITIONS) Suppose that Assumptions A and B hold. Fiz
prices (p,q) € P such that, for some h € H, P&m has a finite optimum. Then, there exist, for any
& € D, strictly positive deflators e and non-pecuniary returns oe = (0 1)ier € R{;+ such that, for
each (1,5) € L x J,

(5) YePed = > WbVl 1) + o
peET

(6) Yete; = > WuDpui(pa);
REET

(7) YePeCej—aes) = > W (PuYuCej — Dy j(p:0)) + aeCe ;.
peEt

Moreover, for any (§,7) € D x J, conditions (6) or (7) are strict inequalities only when inequality
(5) is strict for some l € L for which Cg¢ j; > 0.

This result is a direct consequence of the existence of Kuhn-Tucker multipliers associated with
agent h optimal problem. Indeed, as we prove in Appendix A, conditions (5)-(7) are essentially
equal to the Euler conditions. Clearly, there may exist deflators (v¢)eep satisfying (5)-(7) that
are not compatible with the transversality condition (TC) and, therefore, do not coincide with a
plan of Kuhn-Tucker multipliers. In fact, that broader set of deflators satisfying (5), (6) and (7),
can be obtained by a non-arbitrage argument, as in the two dates model by Araujo, Fajardo and
Péscoa (2005). However, if we pick agent h Kuhn-Tucker multipliers, it follows that non-linearities
on asset prices can only arise as a consequence of binding collateral constraints (or, in other words,
binding sign constraints on the autonomous consumption, determining positive shadow prices that
are responsible for the strict inequality in (5)).

Under monotonicity of preferences, inequalities (6) and (7) are financial non-arbitrage conditions.
Thus, by analogy to Magill and Quinzzi (1996) or Santos and Woodford (1997), for some readers
it might seem natural to use these two conditions only to analyze the existence of rational asset
pricing bubbles. However, since in our model assets are real and commodities may be infinitely
durable, we need to understand the asymptotic behavior of commodity prices. To do this, we must
also consider inequality (5). Note that in this condition the non-pecuniary returns, (ae ;)icr, are not

vague concepts and can actually be related to marginal utility gains of some agent (by Proposition
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1 (i)).

DEFINITION 3. A plan I' := (v¢)eep € RY, is a process of valuation coefficients at prices (p,q) € P
if there is, for each £ € D, a vector (o) € RY, such that inequalities (5)-(7) hold.

Thus, any plan of Kuhn-Tucker multipliers of an agent h, denoted by I'* = (’Y?)&e D, is a process
of valuation coefficients.

For convenience of future notations, given any process I' of valuation coefficients, for each £ € D,
let 77(1—‘?5) = (nw(ra§7 Z)a n@(ragaj); ntp(rag?j))(l,j)GLXJ be the vector defined by

ne(T,60) = yeper— > Wb Yul 1) — acs
HEET
no(T,6,5) = Yedes— O WuDpi(pq);
peEt
No(0,6,3) = Y%PeCej—aei) — D W (0uYuCej — Dpui(p,q)) — aeC.
peET

Note that, when I' = T'", for some agent h € H, n(I'", &) is the vector of shadow prices associated
with the collateral constraints and the sign constraints on long and short positions, respectively.

Finally, it is important to remark that equation (7) and Assumption B imply that, at each £ € D,

(8) peCe i > qe i, VjeJ

Thus, the collateral cost must exceed the asset price. This condition will be crucial in relating the

occurrence of asset price bubbles to the asymptotic behavior of commodity prices.

5. EQUILIBRIUM EXISTENCE

As we point out earlier, when assets live more than one period and agents are infinite lived,
three difficulties came up in the literature on equilibrium in default-free economies that made the
authors assert only the generic existence of equilibrium and for debt-constrained (or transversality
constrained) portfolio plans (as in Hernandez and Santos (1996) or Magill and Quinzii (1996)).°
First, when assets live several periods, the rank of the returns matrix will depend on asset prices
and, therefore, unless short-sales are bounded, equilibrium existed, in the default-free model, only for
a generic set of economies. Second, Ponzi schemes could occur, if debt or transversality restrictions
were not imposed. Third, as Hernandez and Santos (1996) pointed out, when asset return matrices
are not bounded along the event-tree, equilibria might not exist when infinite-lived real assets are
in zero net supply.”

However, when assets are collateralized, these difficulties are avoided.

6Hernandez and Santos (1996) were also able to show the existence of equilibrium in the special case where the

asset structure consists of a single infinite lived real asset in positive net supply.

"In fact, the asset price can be shown to be the series of discounted real returns and would be unbounded, unless
marginal rates of substitution tend to zero quickly enough (which would be the case if the asset’s net supply were

positive, inducing unbounded additional resources).
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THEOREM 1. Under Assumptions A and B there exists an equilibrium.

Note that, even in the case of single period assets (see Geanakoplos and Zame (2002)), collateral
circumvented the problems associated to the price-dependence of the rank of the return matrices. In
fact, collateral is scarce in equilibrium and, therefore, we will have a natural (endogenous) short-sales
constraint. Moreover, collateral rules out Ponzi schemes, as it did in the case of single-period assets
(see Araujo, Pédscoa and Torres-Martinez (2002)). Finally, the existence of collateral guarantees
dispenses with any uniform bounds on assets’ promised returns, as the asset price is bounded by
the discounted value of the depreciated collateral at the next date, plus perhaps some shadow price

of the collateral constraint.

6. SPECULATIVE BUBBLES IN PRICES

As in Magill and Quinzii (1996) and Santos and Woodford (1997), speculation is defined as a
deviation of the equilibrium price from the fundamental value of the asset, which is the deflated
value of future payments and services that the asset yields. We define fundamental values as a
function of the chosen vector of valuation coefficients.

To simplify our analysis, we suppose that, if a commodity consumed at £ is transforming itself

into other goods at the immediate successors nodes of £, then these goods are one-period perishable.

AsSUMPTION C. Gwen (u,1) € (D\{&o}) x L, if there is I’ # 1 such that Y,,(I',1) # 0, then at p the
commodity ' is one-period perishable, in the sense that Y, (-,I') =0, Vn € p*.

Essentially, this restriction guarantees that fundamental values of commodities may be easily de-
fined in terms of future payments and rental services. Otherwise, the value of payments generated
by a good may include speculative terms, induced by the transformation of the good into a durable

commodity that has a price bubble.

Speculation in durable goods. The fundamental value at £ € D of any commodity | € L takes into
account both the rental services that will be generated in D(£) jointly with the payments that will
be delivered when [ is transformed into another goods.

More formally, given prices (p,q) € P and a process of valuation coefficients T', the rental services
that a units of commodity [ generate at a node u € D(£) are given by (pu,l — ZV€M+ %:/ .Y, (-, l)) a.
On the other hand, the payments that an agent that holds b units of commodity [ at ;= receives at
node p > & are given by >y puu Y, (', 1) b.

As commodities only deliver perishable goods (see Assumption C), one unit of good I € L at

¢ € D is transforming into a;(&, p) units of the same commodity at a node p € D(€), where

1 otherwise.

a(§,p) = { [Lech<, Ya(l,D) ifp>¢,
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Therefore, under Assumption C and for a process of valuation coefficients I', the fundamental value

of commodity | at node & is defined by

F‘l(&pa%r) = Z 77;1 Pu,i — Z %puyu('al glu +ny“ Zpul' l lal(£ 1% )

reD(E) e vept ' u>£ 1'#1

Furthermore, for each T' > t(£),

Del = Z T DPu,l — %PuYu(',l) ar (&, p) + Z W ZPM’ (', Dar(&,17)

pent(e) ¢ veut peDT(ENE} ¢ 1Al
v _
+ > Yl Daé o),
HEDT1(§) ¢

Since, independently of T', the last term on the right hand side of the equation above is non-
negative, it follows that, for any choice of I' the fundamental value of commodity [ is well defined

and less than or equal to the unitary price. Also, taking the limit as T' goes to infinity, we conclude

thatv Pel = Fl(fapv q, F) + 11mT~>+00 Z,LLEDT(&) Ye plt ( )al(gu )

DEFINITION 3. Given a process I' of valuation coefficients, we say that the price of commodity l € L
has a T'-bubble at node & when pe; > Fi(€,p,q,T).

CHARACTERIZATION OF BUBBLES ON COMMODITY PRICES.
There is a I'-bubble on commodity l € L price at node & € D if and only if

. Vu _
TEIEOO Z p,u /L ) )al(€7.u ) > 0.
wneDT (5)

A commodity [ has finite durability at a node £ if there exists N > 0 such that a;(&, ) = 0 for
all € D(€)\ DN (€). It follows from the characterization above that, under Assumption C, com-
modities with finite durability at & are free of bubbles.® For commodities with infinite durability,

sufficient conditions for the absence of bubbles are given by the next result.

THEOREM 2. Given equilibrium prices (p,q) € P, suppose that Assumptions A, B and C hold. A
sufficient condition for commodities to be free of T'-bubbles in D () is that,

(9) SheH, > Epwh< i
reD(E)
Given h € H, commodities are free of T -bubbles in D(&) if any of the following conditions hold,

(i) At any node, agent h receives at least a fraction k € (0,1) of aggregated endowments. That
is, /sz’} < wZ for all p € D(§).
(i) Cumulated depreciation factors Y, are uniformly bounded by above in D() and new en-

dowments, (wZ)#ED(@, are uniformly bounded away from zero in D(§).

8When Assumption C is not satisfied, even commodities with finite durability may have bubbles, as may transform

into other goods with infinite durability whose prices have bubbles.
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(i) Individuals’ inter-temporal marginal rates of substitution coincide along the event-tree, i.e.,

given h' € H there is m > 0 such that, (W’y?)gep is a plan of Kuhn-Tucker multipliers for h'.

PROOF. Fix n > ¢ and I € L. Assume that condition (9) holds. It follows by Assumption A that,
for each T > t(n),

7, - 1 7,
lpuyp«('v l)al(naﬂ ) < W7h Z lqu[}~

neDT(n) T M e Dr(n)

Taking the limit as T goes to infinity, we conclude that p,,; is free of I'-bubbles.

Given h € H, if (i) holds, it follows from item (iii) of Proposition 1 that condition (9) is satisfied,
that concludes the proof. Also, if (ii) is satisfied, item (iii) of Proposition 1 assure that bubbles are
ruled out. Finally, suppose that equilibrium individual marginal rates of substitution coincide along
the event-tree. Then, transversality conditions (TC,), (TC,) and (TCy) hold, for all agents under

a same deflator. Adding up these three conditions across all agents, we get condition (9) above. O

Condition (iii) in the above theorem requires the processes of individuals’ Kuhn-Tucker multi-
pliers to be collinear. It is well known that in unrestricted financial markets, this condition is a
characteristic property of complete markets and, therefore, equivalent to the property that the rank
of the matrix of returns of non-redundant assets should be equal to the number of immediate succes-
sor nodes. However, in the presence of binding financial constraints this equivalence may no longer
hold. Giménez (2003) made this point in the context of short-sales constraints and gave examples
of equilibrium where the above returns matrix had full rank but the presence of a shadow price for
these constraints led to multiplicity of multipliers for each agent and non-collinear multipliers across
agents. The markets illustrated in those examples were referred by Giménez (2003) as technically
incomplete, along the lines of an earlier discussion done by Santos and Woodford (1992, 1996). In
our context, the collateral constraint might be binding as well and if the respective shadow price
were non-zero, the uniqueness of the Kuhn-Tucker multipliers process would no longer be guaranteed
by a full-rank property of the returns matrix. Hence, our condition (iii) requires more than just
that full-rank property, it requires completeness in the stricter sense proposed by Giménez (2003)

for asset-constrained economies.

Asset Pricing Bubbles. The fundamental value of an asset is the present value of its future yields and
services. Future yields are the perishable goods directly or indirectly delivered by the asset. Real
payments of perishable commodities are the yields directly delivered. Indirect delivered yields are
the perishable commodities obtained by the transformations of real payments into other goods, or by
the transformation of these goods into others and so on. Future services include the shadow prices
of the financial constraints and the rental values of the delivered durable goods. These goods are
received as an original promise or as a collateral garnishment, and are unambiguously anticipated
except in the borderline case, when the value of the promise equals the garnishable collateral value.
Thus, the fundamental value will depend not just on the process of valuation coefficients but also

on the believed delivery rates for the borderline nodes.
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Also, there is no reason to pick the equilibrium delivery rates instead of any other rates that may
treat differently the deliveries only in the borderline case. That is, for purposes of valuation, antic-
ipating that agents pay the promise or anticipating that they surrender the garnishable collateral
(or a convex combination of the two) are equally perfectly acceptable when agents are indifferent
between these two actions. Recall that each agent does not care about this choice and does not
know what are the other agents’ choices.

Given equilibrium prices (p,q) we define fundamental values in terms of any believed delivery
rates compatible with individual rationality, that is, any process T = (7¢ ;) € [0, 1](D Méob)x7 such
that,

e, = 1 if peA(€,5) + qe; < peCe
! 0 if peA(&,7) + ge; > peCe ;.

Under delivery rates 7, the physical bundle that one unit of asset j negotiated at node £ delivers
at p € &, namely PD,, ;(7), consists of the part of the promises A4, ; that are effectively delivered
and also of the physical deliveries made by the garnished collateral. More precisely, PD,, ;(1) =
Tug Ay + (1= 75)Ce 5.

Thus, we have that, D, ;(p,q) = puPD,, ;j(T) + Ty, qu,;- Using inequality (6) we obtain that,

Y 7o (L', €, 4)
qej = Z = (PuPDy (1) + Tujqu,j) + ———=
Ye
neet
7. ne(T, 1™, 5) : 7.
= Z H Tn,j (fpuPDu,j(T)Jr,yi +T£Too Z ,TMQAL,J' H Tn,j -
p>€ \ €<n<p ¢ ¢ neDT (&) ¢ E<n<p

Under (T', 7), the fundamental value of an asset j € J at a node &, F;(&,p,q,I',7), is defined by

7, no(p™,J
10)  FEpnarn) =S | T l S Filit,,0,T) PD () + 22|
w>E E<n<p e leL e

It follows that, independently of (I',7), the fundamental value at £ is always well defined and less

than or equal to the unitary asset price, g ;.

DEFINITION 4. Given equilibrium prices (p,q) € P, we say that the price of asset j € J has a
(', 7)-bubble at a node & when q¢ ; > F;(&,p,q, T, 7).

By definition, a bubble on asset j may be a consequence of a bubble in a commodity—used as
collateral or that is part of the real promises— or may be generated by asymptotically positive asset
prices. As assets are backed by physical collateral, the non-arbitrage condition given by equation
(8) allows us to find a relationship between the asymptotic value of asset prices and the asymptotic
value of collateral bundles. For this reason, and differently from what happens in models without
default, the existence of bubbles in financial markets is strongly related to the existence of specula-

tion in physical markets.
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THEOREM 3. Given equilibrium prices (p,q) € P, suppose that Assumptions A, B and C hold. The
price of asset j € J is free of (T, 7)-bubbles in D(§) if the following conditions hold,

Jhe H: Z ’y—#p#W[f<+oo, and THT Z ’y—#q#]——o
pen(e) '€ > uepr(e) ¢

Given h € H, asset j’s price is free of (", 7)-bubbles in D(&) if any of the following conditions
hold,

(i) Commodities are free of I'-bubbles in D(E) and asset j is a mortgage loan in D(§), i.e.,
Cuj < YeuCej, for any (p,1) € (D(§) \ {€}) x L.

(ii) Collateral requirements (C,, ;)ep(e) are uniformly bounded, cumulated depreciation factors
Ye . are uniformly bounded by above in D(§) and (w )ueD(E) is uniformly bounded away
from zero in D(§).

(iii) Net supply of asset j is persistently positive and there are Kuhn-Tucker multipliers for the

other agents in H which are collinear with T™.

PROOF. Under the conditions of item (i), asset j has a (I',7)-bubble at a node n > & only if
lmr oo Y, €D () 1—"’ gu,; > 0. This is incompatible with the absence of commodity bubbles in
D(¢). In fact, using the non-arbitrage condition (8), Assumption C together with the particular
collateral structure of the mortgage imply that g, ; < p,Cu; <> e PuaYu( Dar(n™,&)Ce j1-
Assume that the hypotheses of item (ii) holds. It follows from Theorem 2 that commodities
are free of bubbles in D(§). Since (wZ) u>¢ is uniformly bounded away from zero, it follows from

item (iii) in Proposition 1 that, for any n € D(£), > e llpulls < +o0. Thus, independently of

€D
T, assets are free of (I'",7)—bubbles due that collate?"al r;qulrements are uniformly bounded and
condition (8) holds.

Under the conditions of item (iii), let e{t be the aggregate net supply of an asset j at node
w > & It follows from (TCy), using the financial feasibility condition that, for each n > &,

limy_ 4o EueDT(n) 7*‘ > jesuje), = 0. Therefore, as (€J,)uzn is bounded away from zero in

D(n), we have that limr— 1o >_ e py () v’l qu ; = 0. Also, commodities do not have bubbles in

D(n) (see item (iii) of Theorem 2). Therefore, asset j is free of bubbles at n € D(£). O

It follows from item (i) above that, a bubble in a mortgage loan is always a consequence of a
bubble in a commodity that is used as collateral or is part of the real promises. On the other
hand, when commodities neither appreciate nor transform into other goods along the event-tree,
it follows from item (ii) that, under bounded unitary collateral requirements, well behaved initial
endowments assure the absence of price bubbles. In fact, assets will not have a positive price at
infinity if the sequence of deflated asset prices is summable, but as this sequence is dominated by the
sequence of deflated collateral costs (by non-arbitrage), we just need to have collateral coeflicients
to be uniformly bounded and deflated commodity prices to be summable (which follows by what is

assumed on endowments and depreciation matrices).



16 ALOISIO ARAUJO, MARIO R. PASCOA, AND JUAN PABLO TORRES-MARTINEZ

In a straightforward extension of our model, we could have allowed for finite-lived assets and
show that price bubbles would occur if the commodities serving as collateral are priced at infinity.
Indeed, the price of a finitely-lived asset will have a bubble if the asset pays in durable goods whose
prices have bubbles or if the asset defaults and the surrendered physical collateral is subject to price
bubbles.

7. EXAMPLES OF BUBBLES

In our first example, the single asset is persistently in positive net supply, but it has a price bub-
ble under Kuhn-Tucker deflators, which yield finite present values of wealth. Essentially, differently

from the conditions in item (iii) of Theorem 3, individuals’ Kuhn-Tucker deflators are not collinear.

EXAMPLE 1. Each ¢ € D has two successors: &t = {¢% ¢4}, There are two commodities and
a single infinite-lived asset. The first commodity is a perishable good x; and the second one is a
durable good x5, which is subject to a constant rate of depreciation x € (0,1). Commodity prices
at node & are denoted by (pe,1,pe,2). The asset, money, pays no dividend and its short-sales have to
be collateralized with coefficients C¢ = (0,2). Thus, at any node &, the asset’s effective payments
become min{ge, 2kpe 2}, where g¢ denotes the price of money at &.

There are two agents h € H = {1,2}. Each h € H has physical endowments (wgl, wg2)§€D,
receives financial endowments e” > 0 only at the first node, and has preferences represented by
the utility function UM@) = Yo p B ©p"(€) (Te + /Te2) , where § € (0,1) and p"(€) € (0,1)
satisfies p(&) = 1, p"(€) = p"(¢%) + p"(€*), V€ € D.

The depreciation factor is such that x < § := 32 and, for any & € D,

ME) = g © € = (1- ) £,

Let D be the set of nodes attained after going down followed by up, that is, D™ = {n € D :
3¢, tn) =€) +2 An= (69" } and let DY be the set of nodes reached by going up and then
down, that is, D" = {ne D: 3¢, t(n) =t +2 An= (£ }.

Agent h = 1 is the only one endowed with the asset, i.e. (el,e?) = (e, 0). Physical endowments
at initial node are w?0,1 = w20,2 = 1. Moreover, for each £ # &, define ng = 048 — k§H =1 and

wg | =1+ df, where

dl — g(f_e,ﬁ)ﬂit(g) ,  if¢é e D 2 - Q(T_eﬁ)ﬂ*t(i) . if¢ € {&d} U D,
¢ 0, otherwise. ¢

0, otherwise.

Notice that the cumulated endowments of the durable good are tending to zero at the rate 32
and, therefore, given the specific form of the marginal utility, the scarcity of this commodity tends
to offset the discount factor and, in equilibrium, each agent should consume the own cumulated
endowment. But the shocks on endowments of the perishable good create an opportunity to use
money as a way to transfer wealth to states that are more valuable.

Since agents receive positive shocks in states that are assigned low probabilities, there is an
incentive to use these positive shocks to buy money and sell it later in states with higher probabilities.

Thus, we will look for an equilibrium where agent h = 1, the one that starts endowed with money,
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gets rid of it when going down (to which she attaches a higher conditional probability), but, if
afterwards she goes up, she will use the positive perishable endowment shock to buy back money
(and be back in a financial position analogous to the one she had at the original node). Clearly,
each agent should end up consuming the other agent’s positive shock.

Let (pe1,Pe,2:qe)eep = (2(1 — &) BHE | 1, k)eep. For these prices, default never occurs (as g <
2Kkpe 2) and effective asset payments are given by ge. Suppose that (./fgl, 55’52) =1+ dgl, 549,
where h # h'. Thus, it follows from budget constraints that, at each £, the portfolio of agent A must
satisfy zé‘ =215 ﬂt(ﬁ)(dg — dgl) + zg_, where z?o_ = el

Consumption allocations above jointly with the portfolios (z{,, 2., zgd) = (e, ¢, 0) and (2f)¢eep =
(e— Zé)ge p are budget feasible. As there are no short sales, collateral constraints are never binding.
Moreover, physical and financial market clearing hold.

Finally, if we choose, for each (h,§) € H x D, 'y? = p(¢) ﬁ,

transversality conditions hold and they are sufficient for individual optimality (see Proposition 1),

the following Euler and

’ngg,z = u/&z(l_‘_dlg , 525(5))

R

Ve Veuqen + Vagea

Z %}; (Pn,x f:;@ +QZ’2) + Z %';qn@f, —0, as T — +o0.
neDr ne€Dr

In equilibrium, money has an unambiguous bubble, since collateral constraints never bind (which
implies that shadow prices of financial constraints are zero) and, therefore, the fundamental value
of money is zero. Also, both agents perceive finite present values of aggregate wealth. Indeed,
aggregated endowments up to node ¢ are We = W + W2 = (24 Y, df, 26'®)) and, therefore,
given £ € D, for each h € {1,2},

h
Y 1 11—k 1
Z%pMWHS h(f) 41*6—’—21*5—’—’%6 Z ph(M) )
u>e g p je DuaoDanU{ed}y
where
P AMEESSY > P (1)
pEDuIy D t>0 pEDiyoN(DudUDw)
1 1 1 1 . 5
=2 2 <2t+1 (1 - 2t+2) T 52 (1 - 2t+1)> pu) < 3
t>0 peD,

It is important to understand why the above bubble in the price of an asset in positive net supply
is compatible with the transversality conditions that are necessary for individual optimality. The
point is that agents do not agree in not lending at infinity under a same process of multipliers
(’Yg)ge p. For instance, agent h = 1 is a lender at infinity when the future is discounted using agent
2’s Kuhn-Tucker multipliers,

2 a1 s ke 1 Ke
Z ’)/776177977 = Ke Z Ty = m <1 - 2T) ——T—+o00 m O
neDr {n€Dr:n=(m")*}
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Our second example illustrates the endogenous reduction (due to collateral seizure) in the net

supply of an asset. In this example, the asset is again money and it has also a positive price.

EXAMPLE 2. Consider a deterministic economy with two infinite lived agents, h € {1,2}, one
durable good and one long lived asset, money. There are asset endowments, e, only at the original

date. Physical endowments are given by w!. Let 2! be the consumption choices of agent h. Agents

preferences are given by U"(Zo,T1,...) = ;08 Bt\/Z;, where 8 € (0,1). We take the commodity
as the numeraire. The physical collateral coefficient at date ¢ is Cy = 1, and the commodity

depreciation rate is also constant, given by x € (0,1). Now, let § = 3% and take x € (g, d). Suppose

that individual endowments are given by,

wh = 1+ (=1)" ks,

wl = 8= kT = ka(l—a) e+ (1)), V>0,
where, for non-negativity of endowments, we require that

0—K 0—K 0—K
ae( 1, 0>1—aq, S0 < — maxe”, el < .
K KQ h Ko

Take, for example, (3,4, k, @, s, e}, €?) = (§7 %, %, %, %, %, )

Denote agent h portfolio by z'. At each date t > 0, the asset’s effective nominal return is
R; = min{q;,x}. We can write R, = (1 — \;) kK + A q, where the delivery rate satisfies Ay = 1 if
k>q and \y =01if Kk < g4.

The collateral constraint can be written as 7 > —z! and the budget constraints, for a non-

negative plan (Z});>0, are given by,
~h h h h
Ty +qozg = Wy + qoeys
gt = wh4 szt + RN, fort>o0.

Market clearing conditions are as defined in Section 2.

We look for an equilibrium without default (that is, where ¢; < k, for all ¢ > 0) and with
non-binding collateral constraints. By Proposition 1, a budget feasible plan (Z7, zf)tzo is optimal
for agent h if there exist non-negative multipliers 4/ such that, the following Euler equations and

transversality conditions hold,” for each t > 0,

(11) Vf(Jt = Vth+1Qt+17
(12) o= R+ BN E
(13) 0 = lim 7T + ).

An equilibrium. Let, for all t > 0, yh = ﬁ

are given by zI' = ¢ and 2J' = (1 — a)! ((—1)"*1s¢ + €”). Collateral constraints are not binding.

and ¢; = k (hence R; = k). Individual optimal plans

Note that the asset is in the borderline case for each ¢ > 1 and, if we take the delivery rate A\; to be

9Notice that the Euler equations with respect to Z* and z!*, conditions (11) and (12), imply the Euler conditions
with respect to (x?, Gth, go?)
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equal to 1 — «, then all market clearing conditions hold at each date.

Now, commodity prices do not have bubbles, since at each date ¢ > 0, limy_, ;o %pth,T =0.
Moreover, as collateral constraints are not binding, the respective shadow prices are zero and,
therefore, if agents believe that in the borderline case the asset pays the original promise, it follows
that the fundamental value of money at date ¢ is zero and, as ¢; > 0, money has a bubble at each
date.

As argued in the previous section, the above belief about the deliveries may diverge from the
equilibrium delivery rates. When an agent evaluates whether there is speculation or not in an
asset, the agent is concerned with values and therefore it is perfectly reasonable to anticipate full
delivery in borderline situations. But other beliefs should also be allowed and the above monetary
equilibrium may be reinterpreted as a positive fundamental value (or even as a situation where
bubbles and positive fundamental values coexist).

In fact, under delivery beliefs (7;);>1 € [0, 1], the fundamental value of money is given by,

F(t,p,q,T,7) ﬂzﬁ (KIS_L, TS> l1-m)e=k|1 TEIEOOKET T |,
which implies that the asset has a bubble at date t, i.e. ¢ = k& > F(t,p,q,T,7), if and only if
[I;cs<p Ts converges to a strictly positive limit as 7" goes to infinity.

If t_he limit above is strictly positive and less than one, the asset has a bubble and at the same
time the fundamental value is positive. If the delivery expectations are zero at some node (so that
the above limit is trivially zero), then the monetary equilibrium reduces to a positive fundamental
value induced by the fundamental value of the commodities that serve as collateral. In this case,
the price of money would consist of a positive fundamental value even though shadow prices of the
collateral constraints are zero. (]

The examples above show that collateral allows for price bubbles in assets in positive net supply.
This class of assets is quite important, as it includes equity contracts and money. Our examples
focus precisely on the latter and in a context without any liquidity frictions. Hence, bubbles have
the intriguing feature of assigning a positive price to an asset having no dividends and also providing
no services.

Contrary to other approaches where the positive price of money is due to a positive fundamental
value that adds up the shadow prices of binding liquidity constraints (see Santos (2006)) or short-
sales constraints (see Gimenez (2007)), in our examples there are no binding collateral constraints
and the monetary equilibria are either (i) unambiguous money bubbles (Example 1) or (ii) bubbles
that can be reinterpreted as positive fundamental values due to collateral seizure (Example 2).

The latter occur under an endogenous reduction in assets’ net supply, as the collateral takes the
place of the promise, and are a new instance for the long standing view on the efficiency properties
resulting from a vanishing money supply (see Friedman (1969), Grandmont and Younés (1972, 1973)
or Woodford (1994), among others). The former are compatible with persistent money supply, but
can only occur in the case in which individuals’ marginal rates of substitution of wealth do not

coincide, by taking advantage of the diversity in agents’ personalized deflators.
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APPENDIX A

Following the notation of Section 4, given (p,q) € P, let 81}?(25) be the super-differential set of the
function vé‘ at the point z¢. Note that, a vector (L% ,L; ) € 8[:? (2¢,2¢—,7; p,q) if and only there ex-
ists v € Ovf(z¢) such that both £, = vi — v V1gf(p,q) and L;, = —7 V2 g (p,q), where Vigt(p,q) =
(Pe, 4, peCe,s — qe ) and Vag¢ (p,q)) = — (peYe, De(p,q), (peYeCe- ; — Dej(p, q))je) - Therefore, for any
(Cé’l,ﬁ'&g) S 3£2(25,z§7,7; D, q), we have £'§72 > 0.

PROOF OF PROPOSITION 1. (i) For any T' € N, consider the truncated optimization problem,

max Y vf(z)
¢enT

h,T
Pl . 92 (2¢,2¢-3p,q) < 0, ¥EeD”,
s.t.
ze = (2,06, 0¢) > 0, V&€ DT, 2 =0.
0
Note that, there exists a solution for P[;‘Z) if and only if there is a solution for,
max Y. vf(z)
¢en”T
PhT 9¢ (2e,2¢-3p.q¢) < 0, V&€ DT,
p.a
s.t. ze = (z¢,0e,0¢) > 0, VEE€ DT, Zeo = 0,
O ; = 0, V(&4) € DT7! x J such that ¢ ; = 0.

Indeed, it follows from the existence of an optimal plan for the consumer problem, giving finite utility, that
if g¢; = 0, for some (£,5) € D x J, then D,, ;(p,q) = 0 for each u € £€7. Thus, long positions on assets with
zero prices do not induce any gains. On the other hand, by Assumption B, commodity prices need to be
strictly positive, because we have a finite optimum of individual problem. Also, for any pair (¢,j) € D x J,
peCe j—qe,; > 0, because otherwise individuals may increase their utilities by increasing their loans (detailed
arguments, for the case of short-lived assets, are in Araujo, Pdscoa and Torres-Martinez (2002, Proposition
1)). Thus, the set of admissible strategies in 15(};’5) is compact and, therefore, by the continuity of the utility
function we conclude that there is a solution for ]5{;’5).

Therefore, for any T' € N, the problem P{;’:‘g) has a solution, (zg’T)EeDT = (w?’T,OZ’T,wg’T)EGD. It is
immediate that > .. pr v?(zZ’T + e Cg,jnpg‘jT) < UM((af + dies Ce it ;)eep). Thus, there are non-
negative multipliers (’y?’T)geDT such that, for each nonnegative plan (2¢)¢cpr € ZDT, the following saddle
point property is satisfied (see Rockafellar (1997), Theorem 28.3),

(A.2) > LE(ze, 2,00 pq) SUM(aE + ) Ceypk 1)een),
¢eDT JjeJ

: h, T h, T _h,T, _
with ’75 g? (Zg azg— Py q) =0.

CLAIM Al. For each £ € D, the sequence (fyg’T)TZt(@ is bounded.

PROOF. Given D C D, consider the function x5 : D — {0,1} defined by x5(€) = 1 if and only if £ € D.

Given t < T and evaluating inequality (A.2) in z = (2,),cpr, Where 2, = (W},0,0)xpe—1(1), we obtain

ne
ZueDt 'yZ’Tquﬁ < U™@"). Also, Assumptions A and B imply that, for any x € D, both min;cy, W:’l

and ||py||x are strictly positive. Thus, the result follows. X
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CrAamM A2. Foreach 0 <t < T,

(A.3) 0< =3 AW Vaglpa) 2l < Y, wE(zh),
¢eDy ¢eD\Dt-1

PROOF. Given t < T, if we evaluate (A.2) in z = (2¢)¢epr, With 2z = z¢ xpt-1(€), by budget feasibility of

allocation (2{)¢cp, we have

h, h h h, h h/_h
= W IVagl ) 2+ Y e Tpews <Y v (ad)
£€Dy ¢eDT\Dt—1 ¢eD\Dt—1

which implies,

=3 A TVagk(pg) 2 <Y vE (=),

£EDy ceD\Dt-1

This concludes the proof, as the left hand side term in the inequality above is non-negative. X

CrAM A3. For each ¢ € DT\ Dy and for any plan y > 0, we have
(A.4) vE(y) — v (2) < | WTVigE ) + D W Vagi(pd) | w—2)+ D vz
peet neD\DT

PROOF. It follows from (A.2) that, given £ € DT \ Dy, for each y > 0, we can choose a plan z = (2u) yepT
with z, = 2! (1 — x(¢} (1)) + ¥ X1¢} (1), in order to guarantee that,

(A.5) VW) =79 W z-im ) — > gz yip ) SVE(E) + Y ()
pegt neD\DT

Now, as the function g?(-;p, q) is affine and the plan (ZQ)EED € B"(p, q), we have that,

gt (.2t ip,0) = Vigh(p, @)y — pewt + Vagl (p,9)zt- < Vige (p,Q)y — Vige (b, q) 2L,
and, for each node p € €7,

9u(zuip,0) = Vigu(p, @)z — puwy + Vagu(p, )y < —V2g,(p,a)z¢ + Vag,(p,q)y.
Substituting the right hand side of inequalities above in equation (A.5) we conclude the proof. X

As the event-tree is countable, Tychonoff Theorem and Claim Al assure the existence of a common

subsequence (Tk)ren C N and non-negative multipliers (v¢)¢ep such that, for each ¢ € D, fyg’T’“ — koo Ve

and
(A.6) Vgt q, 28, 2-) = 0;
. h h h
(A7) Jim > ¢ Vage(pg)z- = 0,
£€Dy

where (A.6) follows from the strictly monotonicity of u?, and equation (A.7) is a consequence of Claim A2
(taking first, the limit as T goes to infinity in (A.3) and, afterwards, the limit in ¢). Moreover, taking the
limit as T goes to infinity in (A.4) we obtain that,

(A-8) vE(y) —ve(28) < | ¥VIgE(P @) + Y V200, 0) | (w—2E), Wy =0
peet
Therefore, ¥ V192 (p,q) + 3 cet Vi Vag)i(p, @) € 0T v (22), where

(A.9) 8+v2(z) ={v; €Z: v?(y) — Ug(z) <wvi-(y—z), Vy>0}
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That is, 0Tvf(:) is the super-differential of the function v{(-) + &(-,RY), where §(z,R}) = 0, when z > 0
and §(z,RY) = —oc0, in other case. Notice that, for each z > 0, x € 8(2) < 0 < k(y — 2), Vy > 0. Thus,
by Theorem 23.8 in Rockafellar (1997), for all z > 0, if v; € O vf(2) then there exists ¥ € Ovg(z) such
that both v; > o and (v — ¥¢) - z = 0. Thus, it follows from (A.8) that there exists, for each £ € D, a
super-gradient 7y € 9v{(z{) such that,

VVige (P @) + D> wVagn(pg) = O,
peet
h h h h h ~/ _h
E3 Vlgf (pa q) + Z VMVZQ/,L (pa q) R = Uézﬁ .
peet

By definition, (172 — ’ygvlg?(p, q), —’y?Vgg?(p, q)) € 6[,? (zg, z?ﬂ’ygh;p, q). Therefore, there exists, for each
€ € D, a vector (L¢, Lio) € Eg(zg,zg_,'yg;p, q) satisfying Euler conditions. Furthermore, the transver-

sality condition is a direct consequence of equation (A.7) jointly with Euler conditions. Indeed,

h h h h h
Z Liqize =— Z Liozi— = Z Ye Vagé (9, @) 26— —t—to0 0.
§€Dy 1 §€Dy £€Dy
On the other hand, it follows from Euler equations, using the sign property of the Lagrangian, that
f)é - 7£V1g£ (p,q) < 0. As utility functions u}g are strictly increasing in the first argument, we know that ﬁg
has a strictly positive first coordinate. Thus, we have that fyg pe,1 > 0, which implies that the multipliers
'yg are strictly positive, for each & € D.

Therefore, there is a plan of Kuhn-Tucker multipliers associated with (z?)ge D.

(ii) It follows from (EE) that, for each T" > 0,
h h hi h _h _h h
(Alo) Z [:5 (257 Ze—5>Yes Py q) - Z [’£ (Z§ ) 35—7%; b, Q) < Z ‘c/ﬁ,l(zﬁ - ¢ )
¢eDpT £eDT €€Dy
Since, at any node £ € D we have that 'yggg(zg, zg, :p,q) =0, each (z¢)eep € B"(p,q) must satisfy
h/~
Z’U{(mg)f Zug xg Z£§1 zsfz'g)
¢eDpT ¢eDT €Dy

Using the condition (TC) we have that U"(z) — U"(z") < limsupy_, , o Yeeny Len ze
Also, Euler conditions imply that }°. ., Leize < — ZHEDT“
follows from the sign property L), » > 0, satisfied at each node of the event-tree. Thus, Uh@) < ut@h),

L, z,~ < 0, where the last inequality

which guarantees that the allocation (2{)ecp solves P(pﬁq). Moreover, when z{ + Yies Ce it ; < We, for

each £ € D, Assumption B assures that the optimum value is finite.

(iii) As we pointed out in inequality (A.10), the existence of Kuhn-Tucker multipliers (7£)¢ep implies that,
for any T > 0, > . pr C?(0,0,vg;p, q) — D¢epT C?(z?,z?,,’y?;p, a) < =2 epy Ly z?, and, therefore,
> cepT Yepewe < UME") — > teny Ly, z¢. Using the transversality condition (TC), we conclude that
ZEGD ’yghpgw? < +o0. O

PROOF OF CLAIMS AFTER PROPOSITION 1. Budget feasibility and Assumption B implies that

. h h h . h h h
= lim Y i Vegi(p,a) zi- = lim Y 9 Viga(pa) 2 = Jim Y yipuw)
neEDT nEDT #EDT
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Therefore, as deflated endowments are summable, using Euler conditions we assure that our transversality

condition is equivalent to limzr— 400 3, .. ViV 195 (P, q) 2t = 0. 0

PROOF OF COROLLARY 1. Since under prices (p,q) € P agent h’s problem has a finite optimum, denote by
M= (Z?)geD the optimal plan of agent h at prices (p,q). It follows from Proposition 1-(i) that there is a
plan of Kuhn-Tucker multipliers associated with z".

Thus, there are (L¢ 1, L¢ 5)eep € [lecp ALY (22, zg,,'yg;p, q) such that, forany £ € D, Le 1+ e+ Lu2 <
0. Using the characterization of (L¢ 1, L¢2)ecp at the beginning of this Appendix and the fact that vi €
g (2¢) if and only if there is ae € Ouf(z¢) such that vi = (e, 0, (a¢Ct,;)jes), we obtain inequalities
(5)-(7), as the super gradients of ug are vectors with strictly positive entries.

On the other hand, fix (§,j) € D x J. Using the notation introduced after Definition 3, inequalities
(5)-(7) imply that, n,(T,&,5) = >icp 1:(T,€,1)Ce 510 — 1o(T, €, 7). Therefore, if for each I € L for which
Ce ;1 # 0 inequality (5) holds as equality, then no(T', &, j) = (T, &, j) = 0, which implies that inequalities
(6) and (7) holds as equalities. O

APPENDIX B. TRANSVERSALITY CONDITIONS OF EXAMPLE 1.

Transversality condition in long positions,

1

11 Loy L .
Z TGty = lie2(1_ﬁ Z P(n)75€2(1_ﬁ)2T—>07
ne€Dp {n€Dr:n=(n")u}
Z’qu 0, = He# Z 2():ne#i—>0
% 201 — p 2(1 — k) 2T ‘
n€Dr {n€Dr:n=(n")4}
Tranversality condition in consumption,
h ~h T h ' T Ke h
Z Yo PnaZpy = B Z prmA+dy)=08" + 20—n) Z p"(n)
n€DT n€D {n€Dy:dh’ #0}

Ke 1 1
= 5T+m2ﬁ(1*27> >, A — 0

neDp_o

2 hpn y/\h 9 57 1 0
’ ’ 2(1 — H)
neDp

APPENDIX C. PROOF OF THEOREM 1.

An equilibrium for the infinite horizon economy will be found as a limit of equilibria of truncated

economies, when the time horizon goes to infinity.

Equilibria in truncated economies. Define, for each T € N, a truncated economy, £T, in which agents
are restricted to consume and trade assets in the event-tree D”. Thus, given prices (p, ¢) in PT := {(p,q) =

(e, qe)ecpr € (RY x R‘_{_)DT . |lpells + llgells = 1, V€ € DT}, each agent h € H has the objective to

choose, at each £ € DT, a vector z?’T = (xg’T, OQ’T, wg’T) € Z in order to solve the (truncated) individual

problem P{;‘P‘Z) defined at the beginning of proof of Proposition 1. Now, let Bh‘T(p, q) be the truncated

budget set of agent h in £7. That is, the set of plans (2¢)¢e pr that satisfy the restrictions of problem P(};’f).

An equilibrium for E7 is given by prices (p7,¢") € PT jointly with delivery rates )\g = ()\gj), for each
¢ € DT\ {&}, and individual plans z?’T = (IZ’T, GZ’T, go?’T)EGDT such that: (1) 27 is an optimal solution
for P(};’;r Ty (2) physical and financial market clear node by node in DT, in the sense of Definition 1; and
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(3) for each & € D™\ {&}, delivery rates A\{ ; satisfy condition B of Definition 1.

Note that, market feasible allocations, that is, the non-negative allocations (m?,&?,p?)waeHxDT that
satisfy market clearing conditions C and D of Definition 1, are bounded in D7 .'° Therefore, departing from
ET we can define a compact economy ET (KT) by restricting the space of plans of each h € H to the convex
and compact set K7 := {z = (2,0, ¢) € RiXDT X RiXDT xRiXDT . ||z]|le <€ 2YT}, which has in its interior
the vector YT that is defined as an upper bound for the feasible allocations in DT.

An equilibrium for £(K7T) is given by prices (p”,¢") € PT, delivery rates )\ET = ()\ETJ-), for each node
¢ € DT\ {&}, and allocations (zg’T)EeDT = (mQ’T,GQ’T,@Q’T)EeDT, compatible with conditions B, C and
D of Definition 1, such that, for each agent h, the plan (zg’T)EeDT solves,

max Y vf ()
(Pt oy (KT)) ¢eDT
s.t. (2¢)¢ept € BT (p",¢")nKT.

If we assure the existence of equilibrium for £7 (K ™), the economy £ has also an equilibrium, given that

optimal allocation of ET(K T) will be, by construction, interior points of set KT, budget sets are convex and

utility functions are concave under Assumption B.

Generalized Games. To prove the existence of equilibrium in ST(K T) we introduce a game GT, where
each h € H takes prices (p,q) € PT as given and solves the compact truncated problem above. Moreover,
associated with each (&, ) € (DT \ {¢0}) x J, there is one fictitious player that, given prices (p,q) € P, will
be choose a real number ¢ ; € [0,1] in order to solve the problem,

(C.1) min [ ApeA(E,9) + de.) + (1= NpeCe

Finally, associated to each node in DT there is an auctioneer who, given plans (Z?)(h7§)eHXDT €Ilnen KT

and delivery rates A ; € [0, 1] has the objective to find prices (pe,ge) € AXT/ 7" in order to maximize the

function,
h h h h h
(C.2) pe Y (l"s +) Cejpl; —wi —Yewg- —Yey Cg,jﬂos,j)
heH JjEJ jed
h h h h
+> e Y (6’5,3' —Pej — e (Ggm‘ - %ﬂj))
jeJ heH
—pe Y (As,jA(&j) +(1- As,j)Cs,j) (99—,]- - @2—,]-) ,
(h,j)eH X J

h oh

where, zg = (w?, 9?, @Q) and, for convenience of notations, for each (h, j) € H xJ we put (mgo,, e Apgﬂ, J_) =

(0,¢",0) and (ago,j,Y§0) =(0,0), for all j € J

2y Cgo

A vector [(pT, q7); (z?’T)heg; /\g} - that solves simultaneously the problems above is called a (Cournot-
¢eD

Nash) equilibrium of gT.

0Indeed, autonomous consumption allocations, (mg)(h,g)eHxDT are bounded by above, node by node, by the
aggregated physical endowments. The short-sales (‘ng)(h,g)eHxDT are bounded, at each ¢ € DT, by Yer We
divided by the positive number ||C¢ ;||s. Thus, long positions (92].)(]175>€H><DT are also bounded, because are less

than or equal to the aggregate short sales plus the initial positive net supply.
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LeEMMA C1. For each T € N there is an equilibrium for G7.

PROOF. The objective function of each participant in the game is continuous and quasi-concave in the own
strategy. For fictitious players and auctioneers, the correspondences of admissible strategies are continuous,
with non-empty, convex and compact values. Also, the budget restriction correspondence of each agent,
(p,q) - B"™T(p,q) N KT, has non-empty, convex and compact values. Therefore, in order to find an
equilibrium of the generalized game (as a fixed point of the set function given by the product of optimal
strategies correspondences), it is sufficient to prove that budget set correspondences are continuous.

The upper hemi-continuity follows from compact values and closed graph properties, that are a di-
rect consequence of continuity of functions gg”, Thus, the main difficulty resides in showing the lower
hemi-continuity property. Now, as for each price (p,q) € PT the set B"T(p,q) N KT is convex and com-
pact, it is sufficient to assure that the (relative) interior correspondence (p,q) — int(B"7*(p,q)) N KT
has non-empty values. But this last property follows from Assumption A. In fact, cumulated endow-

ments are such that Wgh > 0, for each h € H, and, therefore, given any plan of prices (p,q) € P7,

“h. Fh. wi
the plan (xg;eg;gog)geDT = (ﬁ = ies Cejel; 0; 55(1,1,...,1)) L where for each & € D7,
£eD

ho_ s W, ) Wil : :
€ =MiNg )erxet {Qt(gwg(szeJ(Ow)l) RO (145, 0y Yul)Ceg) [ 7 1° budget feasible and belongs to
the relative interior of the set B (p,q) N K. ]

LEMMA C2. For each T' € N there is an equilibrium for £7(K™).

PROOF. We know that there exists an equilibrium for GT, namely [(pT,qT); (zg’T)heH;)\ET] cepr’ By

definition, the payment rates )\QJT satisfy condition B of Definition 1 and each agent h € H solves problem
PRT(KT) by choosing the plan (zg’T)geDT. Thus, it is sufficient to verify, for each node ¢ € DT, the
validity of conditions C and D of Definition 1.

Now, it follows from players’ objective functions that, for each node & > &, the effective payments
satisfy, De ;(p",q") = A, (p A&, 5) +ad ;) + (1= XE;)pé Ct ;. Therefore, as budget feasibility implies that
Y oheH gg( hT z?,T, pT,q") < 0, the optimal value of auctioneers objective functions is less than or equal
to zero. This implies that conditions C and D of Definition 1 are satisfied as inequalities. That is, there
does not exist excess demand in physical and financial markets.

Thus, as the individual demands for commodities or assets are bounded by the aggregate supply of
resources, the optimal bundles that were chosen by the agents are interior points of K7. Therefore, mono-
tonicity of utility function implies that, for each ¢ € DT D oneH gg( hT 2 g_T,pT, ¢") = 0. In other words,
Walras’ law holds.

The existence of an optimal solution for Ph‘T(KT) in the interior of the set K7 implies that pgT >0
and, therefore, condition C of Definition 1 holds, as a direct consequence of Walras’ law, strictly positive
commodity prices and the absence of excess demand in physical markets. By analogous arguments, condition
D of Definition 1 holds, at a node ¢ € DT, for those assets j € J which have a strictly positive price qéTj > 0.

Given ¢ € DT, denote by J¢ C J the set of assets with zero price at ¢ and let A(0§ , )5 j be the excess
Qh T ghT
- 13
previous arguments that A(OET,GgT_ e, < 0). If j € J¢, then optimality of agents’ allocations assures that

demand of asset j at node &, associated with long positions (95 ,9§T,) ( )heH (it follows from

the asset does not deliver any payment at the successor nodes p € £ (if this nodes are in DT). Therefore,

nh,T h,T
ot — g

if we change the portfolio allocation (HZ’T);LGH to #1HA(95 795 )¢,j, we assure that, at node
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&, and for asset j, condition D holds. Moreover, the new allocation is budget feasible, optimal, and we do
not lose the market clearing condition in physical markets at node pu € £*.

However, the total supply of asset j at nodes 1 € €7 can change. Therefore, in order to apply the trick
above, node by node, asset by asset, to obtain an optimal allocation that satisfies Condition D for each
asset, it is sufficient to prove that, after changing portfolios at a node &, the new excess demand, at nodes
peEt, AW, ég)u,j is still less than or equal to zero and that A(6], ég)u,j can be negative only for assets
in ju-

Fix j € Je. It follows by the definition of 07" that, at any u € &%, A(0],07 ), < A(0),60¢)4,;. Now,
as at each pu € €7, D, ;(p*,q") = 0 then asset j defaults at nodes u € €. Therefore, ()\‘Thj)“egr =0 and
(A0), 9~§T)u,j)”€§4r = (A(0,,6¢,)1u.5) uce+» which concludes the proof. O

In the previous lemma we found an equilibrium for £7'(K7). It is not difficult to verify that this equilib-

rium constitutes also an equilibrium for £7.

Asymptotic equilibria. For each T € N, fix an equilibrium [(pT,qT); (zg’T)heH;)\gT . of ET. We
¢eD

know that there exist non-negative multipliers (’y?’T)EeDT such that, vg’ng (zQ’T, zg’_T;p, q) = 0, and the
following saddle point property is satisfied, for each nonnegative plan (z¢)ccpr (see Rockafellar (1997),

Section 28, Theorem 28.3),

(C.3) Do Lélzeze- i d") < Y0 v,
¢eDT ¢eD”T
As v (ng) < uf(We), analogously to Claim Al in Appendix A, for each £ € D and for all T > ¢(&),
h
W
(C.4) 0<pt < %
TATAL

where wg = mine, WE > 0.
LeEmMMA C3. For each £ € D, there is a strictly positive lower bound for (||p¢ ||s)7>e(e)-

PrROOF. Given £ € D and T > t(&), optimality of z™7 in Pg;’qu implies that p Ce,; > q¢ ;, for each

)
j € J. Thus, for each j € J, there is e ; > 0 such that, ¢/ ; < T j||p¢ ||=. Adding in j, we obtain

that [|¢f ||= < |[p¢ ||= > s Me,;. Finally, as llg¢ [[s =1 —||pf ||s, at each node & € D, independently of T,
T 1
||p§ ||E 2 1+ZJEJE§,j > 0. O

Therefore, the sequence [(pg,qg); (zg ’T,'y? ’T) is bounded. Applying Tychonoff Theo-

f]
T>t(§)
rem we find, as in the proof of Proposition 1, a subsequence (Tx)ren C N such that, for each £ € D,

T
heH; A

[(pETk , quk ); (ngk , ,ngTk)heH; ,\gk] I converges, as k goes to infinity, to an allocation [@E’ 65); (52, Vg)heH; Xg] .

Moreover, the limit allocations [(Eg) are budget feasible at prices (p,q) € P, and satisfy market

feD] heH

feasibility conditions at each node in the event-tree. Thus, in order to assure that [(ﬁg, e ); (?2 , Wg)he H; Xg] cen
is an equilibrium we just need, by the results of Section 4, to verify that, for each agent h € H, (E?,W?)ggp

satisfies Euler and transversality conditions.

LEMMA C4. For each t > 0 we have that,

(C.5) 0< =Y FVogtBD) -7t < Y. vE(E),

§eDy ¢eD\Dt-1
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Moreover, for each £ € D and for all plan y > 0, we have that

(C.6) ve(y) —vE(EE) < | TeVige @) + Y AnVagh(3.9) | - (v — 7).
pegt

PRrROOF. The proof is analogous to those made in Claims A2 and A3 (Appendix A), changing prices (p, q)
by (p”,q"), and taking the limit as T goes to infinity. O

Thus, since Y . p\ pr—1 vp(zE) < > ¢ep\pt-1 ug (W), we have limy— 4o > cen, VQVQQQ(@E)E?, = 0.
Moreover, (ﬁgvlg‘? (0, 0) + 2 et VZVQgZ(p, q)) c a+vh(z§). By the same arguments made in the proof
of Proposition 1-(i) (see Appendix A) we conclude that Euler equations and transversality conditions hold.
Therefore, it follows from Proposition 1-(ii) that the allocation (E}g )eep is optimal for agent h € H, which

concludes the proof of the Theorem 1.
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