Nota técnica

THE EXISTENCE OF COMPENSATED EQUILIBRIUM
Auguste Lopezr C.

[ntrgduction

Uhe purmpose ol this note is twoefoid.  lirst and foremost, we wish to make
Arrow and Hahn's prool of the existenc e of compensated equilibrium a little less
mysteriens by expanding und elucidating uwpon the various interconnecting steps
presenterl i the text:! snd then we wish 10 present proofs of some important
theorcms in the tralme of wpology which the authors use and which, 1 presume.
the geveral reader docs not find so obvious. In paaicalar, we shall prove that: (1}
Any closed subspace of a compact space is compact: (2) Any continuaus image of
ocompact space is compact and will discuss hriefly Tychonoff’s theorem: the
praduct of any non empty class ol compact spares 35 voinpact, So as o not
interlere with our principal task these prools shall be prescoted in the Appendix,
lor the benelit of the inguisitive reader.

I'he Central Ideas
We start owl by idefimineg what we wmean by a "compensated eqguilibrionm ™
Delinition |

A price vector p*, g utilits allocation u®, a consumpuion allovation x*, and
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Lhe essentiat disund tion hetween a compeinve equiibrium (whaose existence
is (he theme of the next secuon in the wext} and a enmpensaled one, is that while in
the lirst casc we wish (0 maximize utllity subjerr to a budger constraint, in the
Litter we sel aul Lo minimize expenditures mind(ul that oue particular household's
atility does not fall below 3 erain preassigoed fevel.

Delinition II

We define the huilgetary samptus [or househod h: 51, {p.w), as the difference be-
tween that houschold’™s income and its total expcnd:tures given p and a leasible
alloeation w:
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Note: The definition giveu in the text for s {p.w) has a misprint.
The summation should not be multiplied by the vertor p.

Definttion I
I'he set of “relative utility vectors” is defined by:
Sp = v v20, Ty - 1)

Definion IV
I'he se1 ol “puuishable households' it defined by:

5 =0 i sy p,w)<< 0|

p vy

I'his latter set fixes at zero the relative utility of a household il its expenses
exceed its income, Lemma 5.9 assures us that these household's utility will in fact

he set equal Lo zero.
Definition ¥V

Vip. W) 8508y

Consider a price vector p, a relative ulility alloeation v and a leasible com-
modity allocation w; not necessarily consistent with each other. Let us locus, lor
the moment, our attention on v, the relative utility allocation. In lemmna 5.3 it has
been proved that there exists a eontinuous function u which maps v (€ Sy) into the
set uf oonnegative Pareto elficient points also known as the Pareto frontier: LU
We know; however, [rom theorem 4.4 that il u(v) is Pareto efficient there exists a
price vector p 2 0 for which the value of excess demand pz is nonnegative and
which, essencially. given a preassigned level of utility, minimmizes the household’s
expenditures, maximizes the firms’s profits and satisfies the sncial budget con-
straint, In few wonds, there exists a price vector which supports the Parelo eflicient
allocation uiv). Call this price vector P{u).

L.et us consider now the [easible commodity allocation w. Since u is Pareto
efficient {i.e. leasible and not dontinated by any orher feasible utility allocation),
surely there exists a feasible allocation, W(u) which does not dominate our original

A price vector P(u) and a feasihle allocation V:’(u,'l thus found define im-
mediately budgetary surpluses and consequently a new set of relative utilities V' (p, wi.
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We can represent the above ideas by means of the following diagram

SH

Note that the mapping so comstrucied lends itself very nicely for the use of
some sort of fixed point argument. Tha 1, we start with a relative utility allocation
and, as the above argquments show. we map back to the s¢( of relative utility alloca
tions. We will show that there exists at least one point in the set of relative utility
allocations which, together with a vector of prices and a feasiblc commedity
aliocanon, are mapped back into themselves by the above correspondence.

Deflinition V1
We define the k! domensional urue simplex:

Sk_lz{pinkk E p, =1L
=1

Lemma |

A k -1 dimensional unit simplex is a compact convex set,

Pf:
k
Letx, Xo,. o Xy o xk,be;’{)foralliand i‘il x, =1
Let x ! ={xi,‘.‘ ,x{: ) aricix(‘z:(x?,” .xE) be two elemenws in the k-]

dimensional simplex. Then, tor A€ (0,1),
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k k
z Rxd+0-Nx2]=2 Z x]+0 N T Z=x+0-n=1
i=1 1=1 i=1

S0 the k—1 dimensional unit simplex is indeed convex.

By construction it is clearly bounded since, in fact, any ponit on the asimplex
i3 no tnore than one unit away from the origin. Closure of 1the simplex foliows if
we observe that poinis on it do not get arbitrarily close to any point ourside of it.
Hence compaciness,

Important Obscrvation. The compactness of Sy; cau be established iu a different
manner. In the previous seclion it was shown that v(u) maps U’ {the Pareto Fron-
tier} into the unit simplex Sp;. Furthermore v{u} is continuous and the Pareto fron-
tier is compact. Since continuous images of compact sets are comnpact, it follows
that §; is compact. This theorem, which was used by the authors 1o show thatthe
set of feasible utility allocations is compact is proved in the Appendix (Se¢e Theo-
rem II).

The domain on whl(‘l‘l our correspondence Plu{v))X V(p. w)X W(ul(v))i»
gcfmcd ins, X S[I X W which is the cross product of two compact convex sets with
W which, by theorem 4.2, we know w be compact and convex. The statement
“Hence, the domain is compact and convex' is very, very far away from heing
obviously true. That the product of any non—empty class of compacl spaces is
compact, also known as Tychonof('s thearem, Lo use Lthe words of a famous mathe-
matician, ‘Is perhaps the most important single theorem of general topology’. (See
th e brief discussion in the Appendix, Theorem IIT).

Theorem A. The cross product of two convex sets is convex.
PF:

ret (x1.x}) and (x2, x2) be two points in X; X X

&t (x].%g) 4 1" %2 p 1% Xy
We wish 1o sh wlhata(xl xl) + (1 - }(x2 xz}f‘i X Xgy.a€{01}

9 1+%2 A R IR RS '

Now, a{x].xz) +{1 -a)(x 1"‘2} = (ax} {1 a)xf.axé + (t- a)xg].
Bui x} and x?l?arcf Xl,and sm(cXI,ls convex we know that axl + (1 - a}x € \]
Likewise x;. xg are € X2 and since Xz is convex we know Lhat axé +{1 - a} ‘g €

Xo. This implies:

9
(ull + (1 —a) xflz, .ax:l2 + (1 -- a)xg) EXI X )(2 and 10 Xl X )(2 is convex.

It then follows by induction thal the product of any finite class of convex
Lty is convex.

Tychonoff's theorem together with above theorem then jumify the state-
ment that the domain on which the comespondence is defined is compact and
convex.



Now, JeL us make a few abservations about our correspondence: P{u{v)} X
V(p, w) X Wu(v)).

{1}  Theogrem 1.6 staten that Pu) o compuet and convex for fixed u and upper
aeni epptinuous in u. Since u{v) is continuous in v [ser Nectlon 5.2} it follown that
P{uiv)} in compact and convex for fixed v and vpper semi—ontinuoun in v,

{2} ‘Theoremm 4% and Corollary 5 in the same chapter imply thai W {u{v)} is
comnpact and ronvex for fixed v and upper semi contlnous in v,

(3} vip. w) = S” M Spi where S” is compact and vonvex and 8y, in closed and
convex, Amow and Ilahn state that these properties of 5y, and 8p guarantee the
compaceness of V{p, w) (by Theorem A we know that V(p. w) is convex), To be
fully hanest and in our desire not to aceept anything wthout proof we could
attempt to show that elther: () the intersection of a compact and a closed set is
compat or (b) that SB in also bounded.

Nane of the two alternatives appeal to me. [f we could prove inatead that a
vlosed shuwpace al a compact space is compact then gince Vip, w) Sy and Vip,w)
is closed [(inerseclion of two closcd a¢ts ia closed) and 8§, is compact it would
[nllow instantly that Vip, w) is compact. This proaof is provided in the Appendix
(5¢e¢ Theorem 1),

The upper semi—contipuity of V{p, wl it provided in the text and requires o
further elucidation. We¢ nnly state that the continuity of 1, (p. w) is the crucuu
inol.

8o our comrespondence s the cross product of three sets which are compact,
coovex and upper semi—continuous. Jherefore the correspundance itself is rompact,
convex and upper semi—continuous, (I muast admit that here the reader might say:
“‘vou have not proved that the cross product of two upper cemi-—continuous se1s is
upper semi—continuovs”, True. Lacking a rigorous proof one might appeal to the
readers mathematieal muuition hy saying thar taking cross prodners is itself a
continuons operation. One siiwuld then not be surprised that such a contibuons
operation leaves undisturhed the lasic properties of the original sets; in Lhis case
their upper semni - ¢entimuity .

We now arc ready ta state o theorem which will be of fundamental impor-
tance in what remcins of (his nate:

Kakutani's Fixed Poinl Theorem, Let € a compact convex sct and g(x) and ujiper
semi--continnous romespondence deflined an € snch that gix) <. C, g{x) convex, for
cacl X in C. Then there evisrs ¥ in O such that ©* is in g{x*).

Thus Lhere rxistc a poinl (p* , v*, w*) € 5y, & S“ X W sl that

P v o wt T e P{v*) N Vp* w¥) X Win(v*})) {1

Now wrile 2* “n{v*) and rewrite (1) as:

fal
p* EPu*. v¥eVip* . w*}, w* € Wiun*),

We now proceed to show thar {p*, v*, w*} satisfies the condilions Tor a
compensated equilibrivm stated at rhe heginning of this note,
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The Conclusions

First, we know that since u* is Pareio efficient the, by theorem 4.4 there
exista a vector p with the following proprrties: (a) p > 0; (b) p z 20 for all
z € Z(u*); (c) pz =0 for all z € Z(u*). Since p* € P(u*} the above thenrem
implies that p* >0,

Furthermore since w* € ﬁ'(u‘) and W is the set of feasible allocatious it
follows that w* is feasible (i.e.z(w") %0} which implies:

-

Ty €Xyr+2Ix

N SE YT

Also, w* [leasible and p* € P{u*) suggest that parl (d) of theorem 4.4 ig
satisfied which, automatically assures that ithe third and fourth parts of defiuition
! are satisfied, That is:

{<) y§ maximizesp*y; subjectio yp€Y,

(d} x% minimizes p*x, subject lo U {xp} ;*u;;_

Likewise the social budget coustraint also holds:

e =2 [p* %, + Zdpp 0* yP] ===

Zip* K + Edhf B* y*) -p* x| = Esh (P*, w*) =0
h { h

Now,p¥x# =M, ==>My —p*x§ =0 forallh ==>s_(p*,w*) =0 forallh
We know that it is impossible for all households to incur in budgetary deficits
simultaneously since that would imply that v, =0 forall h = E\’h =0 #1.
h

Hence the only thing Lo prove is that s, {p*.w*) 20 for all h. Suppose not. Then
there exists at least one h for which it is Lroe that:

[ ¥
‘h (p‘,w“'} <0 == vh =0 :—':>uh =0,
Recall: however, that we have assumed that theee exists a possible consumption
vcctf)r. ?lth in Xh[uh} such that ihi ‘““{‘""‘hi for all i.?hj <ihi il Xpi >0, where X is
the injtial endowmnent for household h. That is, it is possible, (for h), to consume

less of good 1 than household h is eudowed with.

So ih e Xp (ul“]‘] = Xy, {0) and since xg minimizes expenditures p* LY gubject
to xp, xh [ui‘l) = Xy {0) it Follows that:

prxp s prxt < p* X, < M]::-=> M]fl—p‘ih) Q===

S, (p*. w*) 2 0 ==> contradiction,
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This then cstablishes the validity of the last condition in our definition of
compengated equilibriun, namely that:

[ ]
prxp =M.
We can then conclude:

Theorem B. Under rhe assumptions made, a compensated equilibrium e xistys,



APPENDIX

Definition (a). Let X be a topological space. A class {Gi }of open subsets of X is
said to be an “open cover™ of X il each point in X belongs to at least ane (}i; thai
15 l'(;i =X.

r
Defimition (b). A “compact” space is a fopalogical space in which every open cover
has a finite subrover,

Theorem . Anv closed suhspace ol a compact space is compacl.

Proof. Let Y be 4 close subspace of a compact space X and let the collection ol
sets {G; Ibe an open cover of Y. Note that each of the G,’s is open in (lie relative
topology of Y and is the iniersection with Y ol an open subset H,of X (See Figure
1), Ihatis G, =Y MH.. Since ¥ is closed, Y'is open and the class made up of ¥’
and I’Hi tis an open cover of X (ie. given any point in X, say x,thencitherx isin Y
Or X is in It for some i). But because X is compact this apen cover has a linite sub-
cover. If we can show thal Y occurs in this subcgver we are done. Il ¥ ocurrsin
this suhcgver we discard it. What is left in a finite class of 1[;'s whose union rontains
N This implies that the correspouding ¢;’s form a finite subcover of the ariginal
apch 4 over of ¥.

Figure |

T

Theorem 1. Any contivuous imagre ¢f a comipact space is compact.

Prool: Letl: X ~ Y be a continuous mapping of a compact space X into zn
arbitrary topological space Y, We must show that {{X} is a compact subspare of Y,




Let {G, }be an open cover of {{X). Asabove, each G. is such that G, ={X) r-H-li:
that is, it is the intersection with [{X) of an gpen subset H;ol Y. Recall now that
since f is continucus, the inverse image of H; will be an open set in X; furthermore
the set {f"! (H;) }will be an open cover of X and since X is compact it will have a
finite subcover. The unicn of the finite class of H.’s of which the sets in the finite
subcover are the inverse images clearly contains [(X}, so the class of comresponding
G:'s is a finite subcaver of the original open cover of f{X). Hence f(X) is compaci.
{See Figure 11).

Figure 11

A proof of Tychonofl’s Theorem (“The product of any non—empty class of
compact spaces is compact”} shall not be presented inasmuch as it requires two
ather difficult theorems: (1} A wopological space is compact if and only if every class
of closed sets with the finite intertection property has non—empty intersection; and
{2) A topological space is comparct if very class of subbasic clascd sets with the
finite intersection property has nonempyty intersection.

A class of subsets of a non—empty set js said to have the “finite intersection
property” if every [inite subclass has non—empty intersection.

For a proof of Tychonoff’s theorem the interest reader may conault, for
instance, G.F. Simmons' ‘Imiroduction to Topology and Modern Analysis" (Mc
Graw -Hill}, 1963,



