

CABI is a trading name of CAB International

CABI Head Office Nosworthy Way Wallingford Oxfordshire OX10 8DE UK

Tel: +44 (0)1491 832111 Fax: +44 (0)1491 833508 E-mail: cabi@cabi.org Website: www.cabi.org CABI North American Office 875 Massachusetts Avenue 7th Floor Cambridge, MA 02139 USA

Tel: +1 617 395 4056 Fax: +1 617 354 6875 E-mail: cabi-nao@cabi.org

©CAB International 2007. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners.

A catalogue record for this book is available from the British Library, London, UK.

A catalogue record for this book is available from the Library of Congress, Washington, DC.

ISBN-13: 9781 84593 2961

Typeset by SPi, Pondicherry, India. Printed and bound in the UK by Biddles Press, King's Lynn.

5

Approaches to Assessing Gene Flow

A.R. Kapuscinski, J.J. Hard, K.M. Paulson, R. Neira, A. Ponniah, W. Kamonrat, W. Mwanja, I.A. Fleming, J. Gallardo, R.H. Devlin and J. Trisak

Introduction

Potential gene flow from transgenic individuals to wild relatives is a major pathway through which transgenic fish might affect natural populations. Introgression of transgenes into wild populations has the potential to depress adaptation, alter (and likely reduce) genetic diversity within and between wild populations and consequently reduce their probability of continued existence. Environmental risk assessment should thus assess the probability and consequences of gene flow whenever a transgenic fish line has relatives in accessible aquatic ecosystems. However, gene flow is not a prerequisite for potential environmental effects resulting from escapes of transgenic fish. Chapter 6 addresses additional processes through which escaping transgenic fish can alter natural aquatic ecosystems.

This chapter focuses on ways to assess the likelihood of gene flow before approved use and actual entry of transgenic fish into the environment. (Chapter 9, this volume, addresses methods of monitoring gene flow after approval of a specific use or environmental entry of transgenic fish.) This chapter is relevant for proposed uses of transgenic fish that could lead to accidental escape from an aquaculture operation, ornamental fish aquarium, other confined systems or live fish markets. Assessing gene flow would also be needed to evaluate proposals for purposeful release of transgenic fish into natural water bodies, which is being contemplated as a novel way to control invasive fish species (Thresher et al., 1999; Kapuscinski and Patronski, 2005).

In this chapter, the term 'relative' refers to any fish with which the transgenic fish can interbreed, and use of this term applies to cases in which wild relatives are either a native or non-native species that have established a feral population in the aquatic ecosystem. Wild relatives could belong to the same species as the transgenic fish, or to a closely related species. It is important to note that, although the chapter focuses on gene flow from transgenic fish, its assessment approach, and much of the supporting scientific knowledge, also applies to assessing gene flow from selectively bred farmed fish to wild relatives.