UNIVERSIDAD DE CHILE

Facultad de Ciencias Químicas y Farmacéuticas

"Síntesis y caracterización del efecto antiproliferativo *in vitro* frente a cáncer de mama triple negativo de sales de fosfonio derivadas de 5,8dihidroxi-4,4-dimetilnaftalen-1(4H)-ona."

Tesis presentada a la Universidad de Chile para optar al grado de Magíster en Química área de especialización Tópicos de Química Medicinal y Memoria para optar al Título de Químico Farmacéutico. por:

Felipe Andrés Muñoz Córdova

Directores de Tesis:

Dr. Ramiro Araya Maturana

Dr. Julio César Cárdenas Matus

Santiago-Chile

Abril de 2017

Tabla de contenido.

	Financiamiento.	iii	
	Tabla de Figuras	vi	
	Abreviaciones	vii	
	Resumen	.viii	
	Summary	ix	
	Resumen gráfico.	X	
1.	. Introducción	1	
	1.1 Epidemiología del cáncer en Chile		
	1.2 La mitocondria como blanco farmacológico en el cáncer		
	Compuestos que incorporan sales de trifenilfosfónio: una opción selectora desarrollo de fármacos antitumorales		
	1.4 El Cáncer de mama triple-negativo	5	
	1.5 La Idea	6	
2.	. Hipótesis	7	
3.	Objetivo General		
4.	Objetivos específicos	7	
5.	Métodos	8	
	5.1 Análisis de espectros y caracterización de los productos de síntesis		
	5.2 Métodos parte biológica		
	5.2.1 Cultivos celulares		
	5.2.2 Ensayo de MTT		
	5.2.3 Determinación de la muerte celular		
	5.2.4 Mediciones del metabolismo celular en tiempo real		
	5.2.5 Determinación de los niveles intracelulares de ATP		
	5.2.6 Medición de ΔΨm		
	5.2.7 Medición de proporción TMRM/NAO		
	5.2.8 Análisis de la progresión del ciclo celular		
	5.3 Expresión de resultados y análisis estadístico		
6			
	6.1 Resultados Parte I: Síntesis y caracterización química de los nuevos productos	. 13	
	6.1.1 Optimización de la síntesis de bromoacilhidroquinonas utilizando		

	6.1.2 bromoacilbio	Obtención de las hidroquinonas bicíclicas, a partir de las droquinonas	15
	6.1.3	Obtención de sales de fosfonio de las hidroquinonas bicíclicas oondas.	
	6.1.4	Procedimientos experimentales químicos	18
	6.2 Re	sultados parte II: Evaluación biológica de los productos sintetizado	os.30
	6.2.1 proliferación	Tamizado de los compuestos sintetizados según su efecto sob celular	
	6.2.2 Ca	aracterización del efecto anti proliferativo del compuesto D ₄	32
	6.2.3 C	aracterización del efecto de D ₄ sobre la bioenergética celular	39
7	Discusión		47
8	Conclusion	es	52
10	Bibliografía		54

Tabla de Figuras

Figura 1. Figura 2.	Resumen gráfico del efecto biológico del compuesto D ₄ x Parámetros medidos de la respiración mitocondrial10
Figura 3.	Valores de IS para cada molécula estudiada
Figura 4.	El efecto del compuesto D ₄ sobre la proliferación de células tumorales MDA-MB-468 es una propiedad emergente de la molécula32
	El compuesto D₄ afecta selectivamente la distribución del ciclo celular ales MDA-MB-321 y MDA-MB-468, aumentando el peak sub-G1 y ención del ciclo celular en la fase G133
Figura 6. MDA-MB-468, y mama MCF10A.	El compuesto D ₄ induce apoptosis en células de cáncer de mama MDA-MB-231; sin efectos significativos sobre células normales de35
	A) Datos representativos del experimento de doble marcaje AnexinV- abcam para 48hrs de estímulo con compuesto D ₄ en células normales
	Las células de cáncer de mama MDA-MB-231 y MDA-MB-468 tienen N/NAO más alta que las células normales MCF10A38
	El compuesto D ₄ afecta la respiración asociada a la síntesis de ATP ales MCF10A, sin afectar los niveles de ATP intracelular ni el potencial itocondrial40
Figura 10. síntesis de ATP de ATP, afectano	El compuesto D ₄ aumenta el consumo de oxigeno no asociado a la y disminuye fuertemente el consumo de oxigeno asociado a la síntesis do también los niveles intracelulares de ATP y el potencial de condrial en células MDA-MB-23141
Figura 11. síntesis de ATP de ATP, afectano	El compuesto D ₄ aumenta el consumo de oxigeno no asociado a la y disminuye fuertemente el consumo de oxigeno asociado a la síntesis do también los niveles intracelulares de ATP y el potencial de condrial en células MDA-MB-46842
Figura 12. extracelular en c Figura 13. del compuesto D	El compuesto D ₄ aumenta la tasa de acidificación (ECAR) del medio élulas MCF10A, MDA-MB-231 y MDA-MB-468, a tiempo de 6 horas44 La reprogramación metabólica hacia la OXPHOS acentúa el efecto 0 ₄ sobre la respiración celular y acentúa también el efecto sobre la
promeración de (células MDA-MB-23146