UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS QUÍMICAS Y FARMACÉUTICAS

OPTIMIZACIÓN DEL PROCESO DE ACIDÓLISIS ENZIMÁTICA EN DIÓXIDO DE CARBONO SUPERCRÍTICO DE ACEITE DE CANOLA (Brassica napus L.) CON CONCENTRADO DE ÁCIDOS GRASOS POLIINSATURADOS DE CADENA LARGA: EFECTO SOBRE LA RELACIÓN n-6/n-3

Tesis presentada a la Universidad de Chile para optar al grado de Magíster en Alimentos mención Gestión, Calidad e Inocuidad de los Alimentos por:

JOSÉ MANUEL CEDANO ROMERO

Director de Tesis: Alicia Rodríguez Melis, IA, MSc

Nalda Romero Palacios, QF, MSc Santiago Aubourg Martínez, Q, PhD

Santiago-CHILE Junio 2015

ÍNDICE GENERAL

DEDICATORIA	iii		
GRADECIMIENTOSiv			
ABLA DE CONTENIDOS			
NDICE DE ANEXOS.			
NDICE DE FIGURAS	ix		
NDICE DE TABLAS	x		
RESUMEN	хi		
ABSTRACT	χij		
CAPÍTULO I: INTRODUCCIÓN	1		
CAPÍTULO II: REVISIÓN BIBLIOGRÁFICA	3		
2.1 Lípidos.	3		
2.2 EPA y DHA	4		
2.3 Concentrados de AGPI.	7		
2.4 Triacilglicéridos estructurados.	7		
2.5 Biocatalizadores.	8		
2.6 Fluidos supercríticos (SCF)	11		
2.7 Aceite de canola	12		
2.8 Importancia de la relación ácido graso n-6/n-3	15		
2.9 Metodología de superficie respuesta (MSR)	16		
2.10 Nutracéuticos, alimentos funcionales y suplementos dietéticos	16		
CAPÍTULO III: HIPÓTESIS Y OBJETIVOS	18		

3.1 HIPÓTESIS	18
3.2 OBJETIVO GENERAL	19
3.3 OBJETIVOS ESPECÍFICOS.	19
CAPÍTULO IV: MATERIALES YMÉTODOS	20
4.1 MATERIALES	20
4.2 METODOLOGÍA	21
4.2.1 Caracterización mediante análisis físico-químicos del aceite crudo de salmón comercial y el aceite de canola (<i>Brassica napus</i> L.)	
4.2.2 Obtención de un concentrado ácido graso poliinsaturado de cadena larga (AGPICL), a partir de aceite crudo de salmón	
4.2.2.1 Preparación de ácidos grasos libres mediante hidrólisis básica	21
4.2.2.2 Concentración de ácidos grasos poliinsaturados de cadena larga por inclusión en cristales de urea	
4.2.2.3 Caracterización de los perfiles de ácidos grasos	22
4.2.3 Determinación del efecto de las variables del proceso de acidólisis enzimática sobre la relación de ácidos grasos n-6/n-3 en los triacilglicéridos estructurados purificados, utilizando lipasa B inespecífica de Candida antarctica inmovilizada bajo dióxido de carbono supercrítico (SCCO ₂)	
4.2.3.1 Diseño experimental	23
4.2.3.2 Acidólisis enzimática en CO₂ supercrítico	24
4.2.3.3 Purificación de los triacilglicéridos estructurados	25
4.2.3.4 Análisis de los productos de la reacción	25
4.2.3.5 Caracterización de los perfiles de ácidos grasos	25

de	Obtención de modelos matemáticos a partir de la metodología de superficie e respuesta que permitan predecir el efecto de las variables de proceso sobre relación de AG n-6/n-3 de los TAGs purificados	26
	Caracterización de los perfiles de ácidos grasos de los triacilglicéridos structurados óptimos y la relación de AG <i>n</i> -6/ <i>n</i> -3	26
	5.1 Purificación de los triacilglicéridos estructurados y análisis de los productos de la reacción	26
4.2.	5.2 Composición de ácidos grasos	26
CAPİTUL	O V: RESULTADOS Y DISCUSIÓN	27
	acterización mediante análisis físico-químicos del aceite crudo de salmón ercial y el aceite de canola (<i>Brassica napus</i> L.)	27
	ención de un concentrado ácido graso poliinsaturado de cadena larga PICL), a partir de aceite crudo de salmón	29
sobre	erminación del efecto de las variables del proceso de acidólisis enzimática e la relación de ácidos grasos <i>n-6/n-</i> 3, utilizando lipasa B inespecífica de dida antarctica inmovilizada bajo SCCO ₂	34
respu	ención de modelos matemáticos a partir de la metodología de superficie de uesta que permitan predecir el efecto de las variables y minimizar la relación cidos grasos <i>n-6/n-</i> 3 de los TAGs purificados	43
	racterización de los perfiles de ácidos grasos de los triacilglicéridos acturados óptimos y la relación de AG n-6/n-3	47
CAPITUL	O VI: CONCLUSIONES	54
CAPÍTUL	O VII: BIBLIOGRAFÍA	56
ANEYO	•	63

ÍNDICE DE ANEXOS

ANEXO 1. Productos existentes en mercado	63
ANEXO 2. Rendimientos de los TAGs purificados para los ensayos de la acidólisis enzimática en dióxido de carbono supercrítico de aceite de canola y del concentrado AGPICL	67
ANEXO 3. Composición de ácidos grasos (AG) y grupos de ácidos grasos de los	
30 ensayos (expresados en g/100 g AGT)	68

ÍNDICE DE FIGURAS

Figura 1. Reacciones catalizadas por lipasas (Hayes, 2004)	9
Figura 2. Cromatogramas de los ésteres metílicos de ácidos grasos,	
correspondientes a aceite de canola (Brassica napus L.) (A), aceite crudo de	
salmón (B) y concentrado de ácidos grasos poliinsaturados de cadena larga	
(AGPICL) (C)	34
Figura 3. Análisis de Cromatografía en Capa Fina de aceite de canola y de	
concentrado AGPICL, considerados ambos antes del proceso de acidólisis	
enzimática, muestras sin purificar (SP) y purificadas (P) después del proceso de	
acidólisis enzimática: (A) muestras 1 a la 5, (B) muestras 6 a la 10, (C) muestras	
11 a la 15 (D) muestras 16 a la 20, (E) muestras 21 a la 25, (F) muestras 26 a la	
30. Fase móvil empleada: cloroformo/acetona/metanol (95:4,5:0,5, v/v/v)	37
Figura 4. Gráficos de Pareto y el efecto estandarizado lineal, cuadrático y de la	
interacción de las variables respuestas (A) Total AG n-6 y (B) Total AG n-3	39
Figura 5. Superficies de respuesta para los principales efectos en el contenido total	
de AG n-6 (g/100 g AGT) (A) y en el contenido total de AG n-3 (g/100 g AGT) en el	
proceso de acidólisis enzimática (B)	40
Figura 6. Combinación de niveles de factores que maximizan la función deseabilidad	
al minimizar el contenido AG n-6 y maximizar el contenido de AG n-3: (A) superficie	
de respuesta estimada; (B) superficie de contorno de respuesta estimada	42
Figura 7. Análisis de Cromatografía en Capa Fina (TLC Silica gel 60 – Merck Millipore)	
del aceite de canola, del concentrado AGPI y del triacilglicérido estructurado	
óptimo, sin purificar (SP) y purificado (P) después del proceso de acidólisis	
enzimática. Fase móvil empelada: cloroformo/acetona/metanol (95:4,5:0,5 v/v/v)	48
Figura 8. Cromatogramas de los ésteres metílicos de ácidos grasos,	
correspondientes a aceite de canola (Brassica napus L.) (A), al concentrado	
AGPCL (B) y al TAGs óptimo (C)	51