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Abstract The use of rhizobacteria to control plant para-

sitic nematodes has been widely studied. Currently, the

research focuses on bacteria-nematode interactions that can

mitigate this complex microbiome in agriculture. Various

enzymes, toxins and metabolic by-products from rhi-

zobacteria antagonize plant parasitic nematodes, and many

different modes of action have been proposed. Hydrolytic

enzymes, primarily proteases, collagenases and chitinases,

have been related to the nematicide effect in rhizobacteria,

proving to be an important factor involved in the degra-

dation of different chemical constituents of nematodes at

distinct developmental stages. Exuded metabolites may

also alter the nematode-plant recognition process or create

a hostile environment for nematodes in the rhizosphere.

Specific bacteria strains responsible for the production of

toxins, such as Cry proteins, are one of the strategies used

by rhizobacteria. Characterization of the rhizobacteria

mode of action could strengthen the development of

commercial products to control populations of plant para-

sitic nematodes. This review aims to provide an overview

of different enzymes and compounds produced by rhi-

zobacteria related to the process of antagonism to plant-

parasitic nematodes.

Keywords Biological control � Enzymes � Metabolites �
Plant-parasitic nematodes � Toxins

Introduction

Plant-parasitic nematodes (PPN) are primarily soil inhabi-

tants that damage several crops. At present, nematode

control is largely based on chemical pesticides that harm

the environment and human health. The increasing demand

for environmentally friendly products has encouraged the

exploration of biological control agents for effective and

sustainable alternatives that minimize the PPN effect. In

the global market of pesticides, approximately 2.5% are

nematicide products, which is a low proportion compared

with the high amount of agricultural losses reported due to

PPN. Losses due to PPN are estimated at USD130 billion

without considering other losses indirectly by interactions

with other pathogens (Becker 2014). Rhizobacteria have

been demonstrated to be a sustainable and environmentally

safe alternative to using chemicals.

Rhizobacteria promote the plant growth via different

mechanisms, such as solubilization of minerals, hormones

and other compounds (Santoro et al. 2011). Additionally,

rhizobacteria help suppress pests and pathogens in the soil.

Several studies describing how rhizobacteria reduce PPN

populations have been reported over the last 20 years

(Siddiqui 2000; Aballay et al. 2013; Noreen et al. 2015).

Mainly, species of Bacillus (Padgham and Sikora 2007;

Wei et al. 2014), Pseudomonas (Ali et al. 2002; Chen et al.

2015) and Serratia (Paiva et al. 2013; Almaghrabi et al.

2013) genera have been investigated the most for their

ability to antagonize nematodes. Research on the distinct

strategies used by rhizobacteria to control PPN activity

became considerably important in the last decades, con-

sidering the physiological divergence of rhizobacteria, the

structural and behavior difference between nematode spe-

cies, their life cycle, and even the environment, plant and

soil conditions. Moreover, these considerations must be
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studied when seeking to enhance the use of rhizobacteria

formulates on a commercial scale.

Different compounds of rhizobacteria have been asso-

ciated with their nematicidal effect (Tian et al. 2007b;

Padgham and Sikora 2007; Paiva et al. 2013; Castaneda-

Alvarez et al. 2016). The biochemical composition of dif-

ferent nematodes’ structures make PPN susceptible to a

broad spectrum of bacteria and fungi antagonistic activities

during various stages of its life cycle. Significant PPN

structures include collagens and lipids during mobile

stages, as well as chitin, proteins and lipids in sedentary

stages.

The different rhizobacterial compounds involved in

nematicidal activity can be divided in two groups: enzymes

that affect the external structural components in one or

more developmental stages of nematodes and metabolic

by-products that may be lethal to nematode organs, may

affect nematode behavior, or may modify the plant-parasite

recognition process. Among enzymes, the most promi-

nently studied enzymes are proteases, which are directly

evaluated on infective stages of free living nematodes and

cause significant damage to their cuticle (Huang et al.

2005; Niu et al. 2006, 2007). Collagenases and chitinases

have both been reported to affect nematode cuticles

(Millew and Sands 1977; Page et al. 2014) and eggs

(Cronin et al. 1997b; Chen et al. 2015). In the second group

of metabolic by-products include hydrogen cyanide (Sid-

diqui et al. 2003, 2006) and 2,4-diacetylphloroglucinol in

the genus Pseudomonas (Cronin et al. 1997a; Siddiqui and

Shaukat 2003; Meyer et al. 2009).

Despite advances in the recognition of many nematode

antagonistic compounds associated with rhizobacteria, the

specific modes of action for most of these compounds

remains unclear. The objective of this review is to present

how the primary rhizobacterial enzymes and compounds

control PPN and provide a perspective on their possible use

on a commercial scale.

Enzymes that affect the structural components
of nematodes

Bacteria, similar to other soil living microorganisms,

release enzymes that facilitate attacks toward a broad host

range. Several types of enzymes were considered espe-

cially interesting due to their ability to quickly degrade the

main biochemical constituents of the nematode cuticle and

eggshell (Yang et al. 2013). A decline in PPN populations

was measured using organic amended applications with

high concentrations of the main substrate compounds for

the enzyme to enhance the various enzymatic activities of

bacteria and soil microorganisms (Galper et al. 1990;

Akhtar and Malik 2000; Ahmad and Ismail 2016). Bacteria

and enzymes, part of the strategies that generate PPN

suppression effect, are summarized in Table 1, with the

nematode targets and susceptible developmental stages.

Proteases

Proteases are enzymes with the ability to hydrolyze peptide

bonds and are classified into four classes depending of their

catalytic mechanism (serine, cysteine, aspartyl and metal-

loproteases), but serine and cysteine proteases are reported

most in bacteria with nematicidal features. These enzymes

have been extensively evaluated in decades of laboratory

work on rhizobacteria involved in PPN control (Millew and

Sands 1977; Siddiqui et al. 2005; Niu et al. 2006; Cas-

taneda-Alvarez et al. 2016). Nematodes present different

types of structural protein and their proportions change

throughout their life cycles. For example, the egg stage is

comprised of a chitin/protein complex (Wharton 1983),

while the mobile stage primarily has an outermost cuticle

layer comprised of glycoproteins and lipids, also as insol-

uble proteins called cuticlin in the cortical layer (Fujimoto

and Kanayh 1973; Page et al. 2014). In studies of rhi-

zobacteria for PPN control, Bacillus spp. proteases are

reported most (Lian et al. 2007; Castaneda-Alvarez et al.

2016).

Protease effects have been verified in field trials with

application of protein sources on eggs and larval stages of

Meloidogyne javanica (Galper et al. 1990). Activity of this

particular enzyme in cuticle degradation by a rhizobacteria

extracted protease was described on mobile stages of B.

xylophilus (Paiva et al. 2013), and other free-living

nematodes (Huang et al. 2005; Niu et al. 2007; Tian et al.

2007a).

Chitinases

Chitinases are enzymes that hydrolyze N-acetyl-D-glu-

cosamine polysaccharide chains present in chitin. This

chitin polymer is composed of structures that provide

mechanical resistance during the nematode life cycle

(Gortari and Hours 2008). Studies have identified genes

encoding chitin synthesis, with differences between free-

living and plant parasites nematodes (Veronico et al. 2001).

In PPN, the highest chitin content is observed during the

egg stage (Bird and Bird 1991) and is considered the most

resistant stage of the nematode life cycle (Curtis et al.

2011). The chitin layer found in the egg shell is not

exposed; rather, it is embedded in a protein matrix

(Wharton 1983). Chitin as a constituent of larval or mobile

stages has not been found to date (Veronico et al. 2001).

However, in vitro assays with chitinases achieved 100%

control on mobile stages of Tylenchorynchus dubius after

48 h, but not on Pratylenchus penetrans (Millew and Sands
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1977). Reports with chitinases extracted from Lysobacter

capsici demonstrate decreased hatching and cause damage

to egg shells of Meloidogyne spp. (Jung et al. 2014). A

synergistic antagonic effect has been found when chitinase

of Pseudomonas aeruginosa combined with Bacillus

thuringiensis Cry proteins was able to in vitro degrade the

cuticle, shell eggs and intestines of Caenorhabditis elegans

free-living nematode (Chen et al. 2015). Additionally,

chitinases and proteases work better to prevent hatching

and causes damage in egg shells ofM. javanica (Khan et al.

2004).

Applications of organic amendments with high levels of

chitin (Ahmad and Ismail 2016), and chitosan (Tian et al.

2000; Mota and dos Santos 2016) can decrease plant par-

asitic nematode populations. Specifically, Heterodera

glycines (Tian et al. 2000), Pratylenchus spp. (Westerdahl

et al. 1992; Cretoiu et al. 2013) and Meloidogyne spp

(Westerdahl et al. 1992) populations were suppressed using

above specified amendments.

Collagenases

The cuticle is the outer layer structure of nematodes and is

the one with the highest collagen content. This structural

protein is excreted by the hypodermal cells and is contin-

uously renewed throughout the nematode life cycle, espe-

cially of migratory species. However, the proportions and

types of collagen, are distinct during nematode life cycles

and, furthermore, across different genera (Ray and Hussey

1995). Many enzymes are involved in cuticle formation

(Page et al. 2014) and more than 150 genes in the C. ele-

gans genome dedicated to collagens (Ray and Hussey

1995). Specialized enzymes that directly affect the cuticle

have been detected in natural enemies of nematodes,

leading to nematode death or increasing their susceptibility

to opportunistic infections.

In vitro studies have demonstrated Bacillus cereus can

damage the previously extracted cuticle during the second

stage of the M. javanica juvenile (Sela et al. 1998). Like-

wise, ground collagen application determined a 50%

reduction in M. javanica root galls and 90% reduction in

the number of eggs per plant. Therefore, there is a stronger

collagenase antagonistic effect on nematodes compared to

other proteases (Galper et al. 1990). Collagenases seem to

have a high PPN control potential, but there are few studies

reporting its use in nematode management.

Lipases

Lipases are enzymes that hydrolyze the glycerol esters,

preferably of long-chain fatty acids. The lipid content,

(including the reserves) of free-living and PPN is ranging

between 11 and 67% dry weight, which is higher than that

of animal parasitic nematodes (Wright and Perry 2006).

The egg stages of Heterodera glycines and H. schachtii

possess lipid layers (Perry and Trett 1986); also, low

amounts of lipids are found in the cuticle structures of the

mobile stages (Page et al. 2014).

Few studies have investigated the antagonistic effect of

lipases on nematodes, but one study on the activity of

lipases observed that Tylenchorhynchus dubius populations

were reduced up to 100% (Millew and Sands 1977). In

vitro studies on X. index showed nematode control reported

of B. thuringiensis, B. megaterium and B. amyloliquefa-

ciens (Castaneda-Alvarez et al. 2016). Additional lipases

from bacterial species that belonging to Microbacteriaceae,

Table 1 Enzymes reported on the PPN control by Rhizobacteria

Enzyme Bacteria/Source PPN Stage Reference

Proteases Brevibacillus laterosporus G4 Bursaphelenchus xylophilus Mobile stages (Huang et al. 2005)

Bacillus. nematocida Bursaphelenchus xylophilus Mobile stages (Niu et al. 2006)

Bacillus megaterium Meloidogyne graminı́cola Juvenile (Padgham and Sikora 2007)

Lysobacter capsici YS1215 Meloidogyne incognita Juvenile (Lee et al. 2013)

Chitinases Lysobacter capsici YS1215 Meloidogyne spp. Eggs (Jung et al. 2014)

Lysobacter capsici YS1215 Meloidogyne incognita Eggs (Lee et al. 2014)

Paenibacillus illinoisenis KJA-424 Meloidogyne incognita Egg hatching (Woo-Jin et al. 2002)

Stenotrophomonas M1-12 Globodera rostochiensis Egg hatching (Cronin et al. 1997b)

Serratia marcescens Meloidogyne hapla Eggs, juvenile (Mercer et al. 1992)

Lipases Rahnella aquatilis Bursaphelenchus xylophilus Juvenile (Paiva et al. 2013)

Exogenous Tylenchorhynchus dubius Mobile stages (Millew and Sands 1977)

Collagenases Bacillus cereus Meloidogyne javanica Juvenile (Sela et al. 1998)

Bacillus thuringiensis FB833T Xiphinema index Juvenile, adults (Castaneda-Alvarez et al. 2016)
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Xanthomonadaceae, Enterobacteriaceae, Burkholderiaceae

and Pseudomonadaceae families also control Bursaphe-

lencus xylophilus populations (Paiva et al. 2013).

Other enzymes

Ample spectra of rhizobacteria enzymatic activities may be

involved in the control efficacy on PPN. Glucanases, cel-

lulases and pectinases from Pseudomonas genus have been

reported to control M. incognita (Krechel et al. 2002).

Additionally, gelatinases (metalloprotease proteins)

extracted from L. capsici seem to be effective against M.

incognita juveniles (J2) (Lee et al. 2013, 2014). Never-

theless, the mode of action and PPN spectrum control

remains unknown.

Metabolites that affect the PPN behavior or host
recognition

Secondary metabolites are important in the antagonistic

action of rhizobacteria in PPN control. Although the

metabolite’s precise mode of action has not been eluci-

dated, several successful examples in PPN control are

discussed below and briefly presented in Table 2.

Hydrogen cyanide (HCN)

HCN is a gaseous organic compound produced by some

species of Pseudomonas as a result of the oxidative

decarboxylation of glycine (Blumer and Haas 2000). This

toxic compound for the aerobic organisms, may provide an

ecological advantage to bacteria in certain niches (Vining

1990). Production of this metabolite has been documented

in M. javanica control studies using P. fluorescens CHA0

under lab conditions. The effect of HCN is related to

inhibition of mitochondrial cytochrome oxidase (Blumer

and Haas 2000; Gallagher and Manoil 2001) and coincides

with low oxygen availability during in vitro assays on

juvenile and eggs hatching (Siddiqui et al. 2006).

2, 4-diacetylphloroglucinol (DAPG)

DAPG is a phenolic compound principally found in P.

fluorescens. The optimal production temperature of DAPG

is 12 �C and may be influenced by the presence of sucrose,

fructose and mannitol in the soil (Shanahan et al. 1992). Its

specific effect on nematodes has not been elucidated, but

DAPG acts as a repellent compound, stressor and nemati-

cide (Neidig et al. 2011). DAPG has nematicidal activity

on M. javanica (Siddiqui and Shaukat 2003), Globodera

rostochiensis (Cronin et al. 1997a). Additionally, DAPG

was associated to the effect of rhizobacteria filtrate on

Xiphinema americanum, M. incognita and Helicotylenchus

indicus (Khan et al. 2012). Studies of DAPG antagonistic

activity on PPN and free-living nematodes determined its

possible selective features, lethal on M. incognita and X.

americanum larvae, as well as an egg hatching stimulant on

C. elegans (Meyer et al. 2009).

Table 2 Compounds reported on the PPN control by Rhizobacteria

Compounds Bacteria/Source PPN Stage Reference

HCN Pseudomonas chlororaphis O6 Meloidogyne hapla Juvenile (Lee et al. 2011)

Pseudomonas aeruginosa Meloidogyne javanica Juvenile (Siddiqui et al. 2003)

Pseudomonas fluorescens CHA0 Meloidogyne javanica Juvenile (Siddiqui et al.2006)

Pseudomonas fluorescens Heterodera cajani Juvenile (Kumar et al. 2005)

H2S Exogenous Tylenchorhynchus martini; Juvenile (Rodriguez-Kabana et al. 1965)

Radopholus oryzae

B. amyloliquefaciens Xiphinema index Juvenile, adults (Castaneda-Alvarez et al. 2016)

DAPG Pseudomonas fluorescens CHA0 Meloidogyne javanica Juvenile (Siddiqui and Shaukat 2003)

Exogenous Meloidogyne incognita Egg hatch (Meyer et al. 2009)

Xiphinema americanun Adults

Pseudomonas fluorescens F113 Globodera rostochiensis Egg hatch, juvenile (Cronin et al. 1997a)

9H-purine Bacillus cereus and B. subtilis Meloidogyne exigua Juvenile (Oliveira et al. 2014)

Dihydrouracil Bacillus cereus and B. subtilis Meloidogyne exigua Juvenile (Oliveira et al. 2014)

Pyoluteorin Pseudomonas fluorescens CHA0 Meloidogyne javanica Juvenile (Siddiqui and Shaukat 2003)

Cry protein Bacillus thuringiensis Meloidogyne incognita Juvenile (Salehi et al. 2008)

Bacillus thuringiensis YBT-1518 Meloidogyne hapla Juvenile (Guo et al. 2008)
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Hydrogen sulfide (H2S)

Hydrogen sulfide is a gaseous metabolite produced in

animal cells and several bacterial species. This metabo-

lite’s toxic effect on PPN was demonstrated in application

from exogenous sources (Rodriguez-Kabana et al. 1965).

In addition, it has been reported to work under controlled

conditions in bacterial strains already with other nemati-

cidal features (Castaneda-Alvarez et al. 2016). Contrarily,

positives effects were observed using lower amounts of

H2S on C. elegans, which resulted in an increased lifespan

and higher temperature tolerance (Miller and Roth 2007).

Cry proteins

Cry proteins are produced by some Bacillus species and

classified into families Cry1 to Cry54 on the basis of their

amino acid sequence homology. Among these 54 families,

Cry5, Cry6, Cry12, Cry13, Cry14, Cry21 (Guo et al. 2008),

and Cry55 (Frankenhuyzen 2009) have nematicidal activ-

ity. Cry proteins cause intestinal damage of free-living

nematodes and PPN (Salehi et al. 2008; Iatsenko et al.

2014b). Likewise, it appears to display a synergistic effect

between some Cry proteins groups in their nematicidal

action (Iatsenko et al. 2014a).

Other metabolites

Predominantly using bacterial filtrates of Pseudomonas and

Bacillus genera, some other metabolites with possible

nematicidal effects have been identified. Dihydrouracil,

uracil, 9H-purine, were reported in the M. exigua mortality

without a clear mode of action (Oliveira et al. 2014).

Prodigiosin, the red pigment of Serratia marcescens effi-

ciently controls M. javanica and Radopholus similis (Rahul

et al. 2014). Furthermore, the volatile metabolites phenol,

octanol, benzaldehyde, benzene acetaldehyde, decanal,

2-nonanone, 2-decanone, cyclohexene and dimethyl disul-

fide all are toxic on Panagrellus redivivus and B. xylo-

philus (Gu et al. 2007). Similarly, volatile compounds have

been identified with high percentages of control on M.

incognita, such as 2-nonanone, 2-undecanone from B.

megaterium YFM3.25 (Huang et al. 2010).

Outlook

Rhizobacteria use has been proposed for PPN control and

also for controlling other crop pests. Bacteria products

currently hold 74% of the world market (Thakore 2006).

The development of products based on a mix of bacterial

strains with nematicide potential has been encouraged and

proven to be a good choice because of their diversity of

strategies (Burkett-Cadena et al. 2008). On the other hand,

knowledge about the rhizobacteria action mechanisms

enables their use as a powerful tool to control PPN popu-

lations (e.g. transgenic bacteria or plants, novel biochem-

ical products). In this sense, different promising transgenic

organisms were engineered to incite nematode suscepti-

bility or to combine different antagonist characters. Chiti-

nases genes isolated from Paecilomyces lilacinus

nematophagous fungus were successfully inserted into the

tomato plants genome, to control M. incognita damage

(Chan et al. 2010). Likewise, tomato plants engineered to

incorporate B. thuringiensis Cry genes were evaluated and

found to control M. incognita attack (Li et al. 2008).

Nevertheless, due to the diverse structure of nematodes, the

new control strategies must involve distinct mechanisms to

improve their activity. Besides, it is important to consider

that the application of synthetic products decreases the

levels of antagonistic soil microorganisms associated with

nematode control, and lowers hydrolytic enzyme activity in

suppressive soils (Bao et al. 2011). Therefore, the use of

synthetic pesticides should be reevaluated in PPN man-

agement approaches that include rhizobacteria. In sum-

mary, rhizobacteria is a valuable tool to explore the

biological control field, being a sustainable option against

the indiscriminate use of pesticides.
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