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Abstract. We address economies with asymmetric information where agents are not perfectly
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2 Moreno-Garćıa and Torres-Mart́ınez

1. Introduction

The core is a cooperative solution that defines situations presenting coalitional stability, in the

sense that groups of individuals have no incentive to deviate. That is, there is no coalition that is

able to attain an outcome by itself improving all their members. Under the presence of asymmetric

information, the set of outcomes that a coalition can block depends upon the initial information and

the communication opportunities of its members. Thus, a variety of notions of core can be stated.

The different core concepts that we find in the literature consider only three possible scenarios

regarding the information that members of a coalition are able to use: they are restricted to the

common information, they keep their private information, or the information is shared. Moreover,

the criteria that specify the information for coalitions do not involve uncertainty (see Wilson, 1978,

Yannelis, 1991, Allen, 2006 and Hervés-Beloso, Meo and Moreno-Garćıa, 2014, among others).

Our aim is to provide and analyze alternative definitions of the core where, in contrast to the

aforementioned notions, the information associated to coalitions is not uniquely determined. To be

precise, when a coalition is formed, agents have beliefs about the possible informational profiles that

will be followed by the group. When these beliefs are given by a probability distribution and the

blocking mechanism considers expected utility functions over the possible informational scenarios,

we obtain the risky core. More general, when beliefs are given by a set of probability distributions

and agents are α-maxmin expected utility maximizers a la Ghirardato, Maccheroni, and Marinacci

(2004), we get the ambiguous core.

Our results include topological properties of the risky core (Proposition 1) and show that it

shrinks when agents either give larger probability to more informative scenarios (Proposition 2) or

become less risk averse (Proposition 5). The risky core may be non-empty even when the fine core is

empty and agents have access to more than their private information (Proposition 3). In addition,

we prove existence of the risky core when agents cannot obtain more than their private information

(Proposition 4) and when they are maxmin expected utility maximizers (Proposition 7).

Regarding the ambiguous core, the blocking power of coalitions depends on the parameter α,

which determines individuals’ degree of ambiguity aversion. We show that larger the ambiguity

aversion more difficult to block allocations and then larger the ambiguous core. Moreover, when α

increases the ambiguous core ranges between the intersection and the union of the associated risky

cores (Proposition 6). These results jointly with our findings for the risky core allow us to obtain

several properties for the ambiguous core (Corollaries 6.1-6.6 and Proposition 7).
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The construction of the paper is as follows. Section 2 describes the economy. Section 3 focuses

on the informational profiles that coalitions may have and on the veto mechanism. Section 4 defines

the risky core and states its properties. Section 5 is devoted to the ambiguous core. Section 6 shows

a result on the relationship between no trade and the non-emptiness of risky and ambiguous cores.

An auxiliary Lemma is stated and proved in a final Appendix.

2. The economy

Let us consider an exchange economy E with differential information and with a finite set N =

{1, . . . , n} of consumers. The economy extends over two time periods. The exogenous uncertainty

is described by a finite set of states of nature Ω that can be realized at the second period, where

consumption takes place. At the first period agents have access to a complete set of contingent

contracts.

There is a finite number ` of commodities in each state and (R`+)k is the consumption set, where

k denotes the number of elements of Ω. Each agent i ∈ N is characterized by a continuous utility

function Ui : (R`+)k → R+ and by her endowments ei = (ei(ω), ω ∈ Ω) ∈ (R`+)k. In addition, i

is partially and privately informed about the states of nature in the economy: she only knows a

partition Pi of Ω, in the sense that she is not able to distinguish those states of nature that are in

the same element of Pi. Thus, we assume that ei is Pi-measurable.1

An allocation x assigns a commodity bundle xi(ω) to each consumer i in each state ω. An

allocation is feasible if it is both physically feasible and informationally feasible. The allocation

x is physically feasible if
∑
i∈N xi(ω) ≤

∑
i∈N ei(ω), ∀ω ∈ Ω. The allocation x is informationally

feasible if it is compatible with the private information of each consumer, i.e., xi := (xi(ω);ω ∈ Ω)

is Pi-measurable for every agent i ∈ N. The set of feasible allocations is denoted by F .

Let P be the set of all partitions of Ω. An information P ′ is finer than P (equivalently, P is coarser

than P ′), and we write P ≤ P ′, if P ′(ω) ⊆ P (ω) for every ω ∈ Ω. This binary relation is reflexive,

transitive and antisymmetric. Thus, (P,≤) is a partially ordered set. The join of {Pi : i ∈ S},

denoted by P∨S =
∨
i∈S Pi, is the coarsest information that is finer than Pi for every i ∈ S. The

meet of {Pi : i ∈ S}, denoted by P∧S =
∧
i∈S Pi, is the finest information that is coarser than Pi for

every i ∈ S.

1Given a partition P of Ω, x = (x(w))w∈Ω ∈ (R`
+)k is said to be P -measurable when it is constant on the elements

of the partition P . That is, x(ω) = x(ω′) for all states ω and ω′ belonging to the same element of P.
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3. Coalitions and information

In general terms, an allocation belongs to the core if it is feasible and it is not blocked by any

coalition. Addressing differential information economies, to propose a cooperative solution concept

like the core, one has to specify the information that coalitions have. In this work, we consider that

individuals are not perfectly aware about the information that is going to be obtained when they

join a coalition. Each member of a coalition may keep her private information but this information

may also change and become finer or coarser. The finest information is attained when information

is totally shared by the individuals and the coarsest information is given when they are restricted to

the common information. Any other information that arises when they partially restrict or partially

share their private information is also considered.

Consider that an agent i in a coalition S may get either a finer or coarser information than her

private information Pi. Thus, the information structure that agent i may have belongs to Γi(S) =

F i(S) ∪ Ci(S), where F i(S) = {P ∈ P : Pi ≤ P ≤ P∨S } and Ci(S) = {P ∈ P : P∧S ≤ P ≤ Pi}.2

When the coalition S is formed a profile of information structures P = (Pi, i ∈ S) is an element of

Γ(S) =
∏
i∈S Γi(S) ⊆ P|S|, where |S| is the cardinality of S. The effects that the process of coalition

formation has on the available information is described by a correspondence γ that associates to

each coalition S the set of possible profiles of information structures γ(S) ⊆ Γ(S) that are assigned

to its members.

Within this framework, and in order to block an allocation, members of a coalition S consider

net trades for every possible profile of information structures determined by γ(S).

Definition (Family of net trades attainable for coalitions)

Given a coalition S, a vector z = (zP ,P ∈ γ(S)), where zP = (zPi , i ∈ S) ∈ R`k|S| is a family of net

trades attainable for S if the following conditions are satisfied for each P = (P ′i , i ∈ S) ∈ γ(S) :

(i) zP is physically feasible for S, i.e.,
∑
i∈S z

P
i (ω) ≤ 0 for every ω ∈ Ω.

(ii) For each i ∈ S, zPi is P ′i -measurable.

Definition (Allocations attainable for coalitions)

A vector y = (yP ,P ∈ γ(S)) is an attainable allocation for S if there exists a family of net trades z

attainable for S such that, yP = (ei + zPi , i ∈ S), for every P ∈ γ(S). Let Fγ(S) denote the set of

2Note that Γi(S) is different to {P ∈ P : P∧S ≤ P ≤ P
∨
S }. This is basically due to the fact that the order ≤ is not

complete in P. However, ≤ is a complete order restricted to Γi(S).
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attainable allocations for S.

We assume that each consumer takes into account the coalition she joins and the set of bundles

that coalitions are able to attain in each possible scenario. Therefore, when agent i is a member of

a coalition S the preference relation over the set of allocations that S could obtain is represented

by a utility function V Si :
(
R`k+
)mS → R+, where mS is the cardinality of γ(S). To be consistent,

we assume that for any a ∈ R`k+ we have V Si (a, . . . , a) = Ui(a) for every S and every i ∈ S.

A feasible allocation is in the core if it is not blocked by any coalition. A coalition S blocks

x = (xi, i ∈ N) if there exists an allocation y = (yP ,P ∈ γ(S)) attainable for S such that V Si (yi) >

Ui(xi) for every i ∈ S, where yi = (yPi ,P ∈ γ(S)).3

Remark 1. It is worth noting that well-known notions of core for asymmetric information economies

can be obtained as particular cases (see, for instance, Wilson, 1978, Yannelis, 1991, Allen, 2006 and

Hervés-Beloso, Meo and Moreno-Garćıa, 2014). To be precise, if γ(S) = {(P∧S , . . . , P∧S )} we obtain

the coarse core C∧(E); when γ(S) = {(Pi, i ∈ S)} we obtain the private core C◦(E); and when

γ(S) = {(P∨S , . . . , P∨S )} we obtain the fine core C∨(E).

Remark 2. An additional particular case is when only three possible scenarios may occur re-

garding the information that members of a coalition are able to use: they are restricted to the

common information, they keep their private information, or the information is shared, i.e., γ(S) =

{(P∧S , . . . , P∧S ), (Pi, i ∈ S), (P∨S , . . . , P
∨
S )}, ∀S ⊆ N . Within this framework a family of net trades

for a coalition S will be denoted by z = (z∧i , z
◦
i , z
∨
i ; i ∈ S)

4. The risky core

In this section, we analyze situations in which each agent has beliefs, which are determined by

probability distributions, regarding the profile of information structures that coalitions will follow.

3Following the related literature, we consider the strong veto condition requiring that every member in a block-

ing coalition becomes better off. Even with continuous and monotone utility functions, in differential information

economies the weak and strong veto are not equivalent. To show this, consider an economy with three consumers,

three states and one commodity. Private information structures are P1 = {{a, b}, {c}}, P2 = {{a, c}, {b}} and

P3 = {{a}, {b, c}}. Endowments are e1 = (1, 1, 0) e2 = (1, 0, 1), and e3 = (0, 0, 0). The expected utility functions are

U1(xa, xb, xc) = (xa + xb)/4 + xc/2, U2(xa, xb, xc) = (xa + xc)/4 + xb/2 and U3(xa, xb, xc) = (xb + xc)/4 + xa/2.

The endowment allocation is blocked in the weak sense by the big coalition via the allocation that assigns (0, 0, 1) to

agent 1, (0, 1, 0) to agent 2 and (1, 0, 0) to agent 3. However, there is no coalition that blocks the endowments in the

strong sense.
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Given a coalition S ⊆ N , let R(S) be the set of vectors (ri; i ∈ S), where ri = (rPi ,P ∈ γ(S)) is

a probability distribution on γ(S) and hence rPi can be interpreted as the probability that agent i

gives to the implementation of the profile of information P when S is formed. Let R∗(S) be the set

of vectors r ∈ R(S) that induce distributions of probability that only depend on the coalition and

not on the identity of each agent. Let R =
∏
S⊆N R(S) and R∗ =

∏
S⊆N R∗(S).

Definition (Risky core)

Given r = (r(S);S ⊆ N) ∈ R, the risky core Cr(E) is the set of feasible allocations that are not

blocked by any coalition S when for every agent i ∈ S

V Si (y) =
∑
P∈γ(S)

rPi (S) Ui(y
P
i ), ∀i ∈ S, ∀S ⊆ N,

where r(S) = (ri(S); i ∈ S) and ri(S) = (rPi (S);P ∈ γ(S)).

It is well known that C∨(E) ⊆ C◦(E) ⊆ C∧(E). Moreover, as a direct consequence of the definition,

Cr(E) ⊆ C∧(E), ∀r ∈ R. The following example shows not only that these inclusions are strict but

also allows us to conclude that the risky core concept differs from the coarse, private, and fine core.

Example 1. Consider an economy with two states of nature and one commodity. There are two

individuals, A and B, that differ only in their private information: agent A has complete information,

while B has no information about the realization of the state of nature. They have the same original

utility function, U(a, b) = ab, and the same endowments, eA = eB = (1, 1). It is not difficult to

verify that C∧(E) = C◦(E) = C∨(E) = {((1, 1), (1, 1))}

Consider that γ({A,B}) is the set given by the three informational profiles that are obtained

when both agents use the sharing information, or the private information, or the common informa-

tion. Let r ∈ R be such that the probability α associated to share information belongs to (1/4, 3/4).

Following the notation stated in Remark 2, let (yA, yB) = (y∨i , y
◦
i , y
∧
i ; i ∈ {A,B}) be the attainable

allocation given by y∧A = y◦A = y∨B = (0, 0) and y∧B = y◦B = y∨A = (2, 2). Then, VA(yA) = 4α and

VB(yB) = 4(1 − α). It follows that the coalition formed by both agents A and B blocks the initial

allocation and therefore it does not belong to the risky core Cr(E). Actually, in this economy the

risky core is empty. �
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To show topological properties of the risky core, notice that for any r ∈ R the risky core can be

written as Cr(E) = {x ∈ F : Ω(r, x) ≤ 0}, where

Ω(r, x) = max
S⊆N

max
y∈Fγ(S)

min
i∈S

 ∑
P∈γ(S)

rPi (S) Ui(y
P
i )− Ui(xi)

 .

Proposition 1

If {Ui}i∈N are continuous functions, then the following properties hold:

(a) For any (x, r) ∈ F ×R, the risky core Cr(E) and {µ ∈ R : x ∈ Cµ(E)} are closed sets.

(b) The set {r ∈ R : Cr(E) 6= ∅} is closed.

(c) For any x ∈ F and S ⊆ N , {r ∈ R : x is blocked by S} is an open set.

Furthermore, if {Ui}i∈N are concave, {r ∈ R : x is blocked by S} is convex.

Proof. (a) Under continuity of utility functions, Ω : R × F → R is continuous. Therefore, the

correspondence r ∈ R� Cr(E) has closed graph, which ensures the statement (a).

(b) Let {rm}m∈N ⊆ R be a sequence converging to r and satisfying Crm(E) 6= ∅, ∀m ∈ N. We want

to prove that Cr(E) 6= ∅. For it, take xm ∈ Crm(E). Notice that, the compactness of the set F of

feasible allocations implies that, taking a subsequence if it is necessary, {xm}m∈N converges to some

x ∈ F . If x /∈ Cr(E), then there exists a coalition S and an attainable allocation y ∈ Fγ(S) such that,

for every i ∈ S one has
∑
P∈γ(S) r

P
i (S) Ui(y

P
i ) > Ui(xi). Thus, the continuity of utility functions

implies that, for m large enough, xm /∈ Crm(E), a contradiction. Therefore, Cr(E) is non-empty.

(c) An attainable allocation x is blocked by a coalition S under a risk r if and only if there exists

y ∈ Fγ(S) such that Fi(r, yi, xi) :=
∑
P∈γ(S) r

P
i (S) Ui(y

P
i ) − Ui(xi) > 0, ∀i ∈ S. The continuity of

the functions {Fi}i∈S on r ensures that there exists ε > 0 such that Fi(r̃, yi, xi) > 0, ∀i ∈ S, ∀r̃ ∈

R : ‖r − r̃‖ < ε. That is, {r ∈ R : x is blocked by S} is an open set.

Finally, suppose that x /∈ Cr(E)∪Cr̃(E) can be blocked by a same coalition S under r and r̃. Then,

there are attainable allocations y, ỹ ∈ Fγ(S) such that, for every i ∈ S one has
∑
P∈γ(S) r

P
i (S) Ui(y

P
i ) >

Ui(xi) and
∑
P∈γ(S) r̃

P
i (S) Ui(ỹ

P
i ) > Ui(xi). Given γ ∈ (0, 1), let rγ = γr+ (1− γ)r̃. It follows from

the concavity of utility functions that for each i ∈ S we have that,

Ui(xi) < γ
∑
P∈γ(S)

rPi (S) Ui(y
P
i ) + (1− γ)

∑
P∈γ(S)

r̃Pi (S) Ui(ỹ
P
i )

≤
∑
P∈γ(S)

rPγ,i(S) Ui

(
γrPi (S)

rPγ,i(S)
yPi +

(1− γ)r̃Pi (S)

rPγ,i(S)
ỹPi

)
.
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Therefore, x /∈ Crγ (E) for any γ ∈ (0, 1). �

Definition (Totally ordered informational structure)

The correspondence γ determines a totally ordered informational structure when γ(S) is a totally

ordered subset of Γ(S), for any coalition S ⊆ N .

Definition (First-order stochastic dominance)

Given a totally ordered informational structure and r̂, r ∈ R, r̂ first-order stochastically dominates

r if the probability distribution r̂i(S) first-order stochastically dominates ri(S), for every coalition

S and for each agent i ∈ S.4

The following result shows that the risky core becomes smaller when agents assign larger proba-

bilities to more informative informational profiles.

Proposition 2

Let γ be a totally ordered informational structure and r̂, r ∈ R∗. If {Ui}i∈N are concave functions

and r̂ first-order stochastically dominates r, then Cr̂(E) ⊆ Cr(E).

Proof. Let S ⊆ N be a coalition that blocks x /∈ Cr(E). That is, there exists y ∈ Fγ(S) such

that
∑
P∈γ(S) r

P(S) Ui(y
P
i ) > Ui(xi), ∀i ∈ S. Since γ is totally ordered, we can write γ(S) =

{P1, . . . ,PmS}, where Ph = (Phi , i ∈ S) and Phi ≤ P h̃i , for every h ≤ h̃ and every i ∈ S. Furthermore,

as r̂ first-order stochastically dominates r, it follows from the Lemma in the Appendix that, for each

k ∈ {1, . . . ,m(S)} and h ∈ {1, . . . , k} there exists ak,h ≥ 0 such that,

m(S)∑
h=k

ah,k = rP
k

(S),

k∑
h=1

ak,h = r̂P
k

(S), ∀k ∈ {1, . . . ,m(S)}.

Therefore, the fact that y ∈ Fγ(S) ensures that the allocation ŷ characterized by

ŷP
k

i =

k∑
h=1

ak,h

r̂Pk(S)
yP

h

i , ∀i ∈ S, ∀k ∈ {1, . . . ,m(S)},

4Remember that the first-order stochastic dominance notion requires the support of probability distribution to be

totally ordered, which is equivalent to require that γ is totally ordered.
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is attainable for S. Furthermore, the concavity of utility functions implies that

m(S)∑
k=1

r̂P
k

(S) Ui(ŷ
Pk
i ) ≥

m(S)∑
h=1

m(S)∑
k=h

ak,h

Ui(y
Ph
i ) ≥

m(S)∑
h=1

rP
h

(S) Ui(y
Ph
i ) > Ui(xi), ∀i ∈ S.

We conclude that x /∈ Cr̂(E). �

The fine core of a differential information economy may be an empty set, because coalitions in-

crease their veto power if blocking allocations are just required to be compatible with the shared

information. The next result shows that the non-emptiness of Cr(E) requires that agents do not

assign large probabilities to the profile given by sharing information.

Proposition 3

(a) If {Ui}i∈N are concave functions, then C∨(E) ⊆ Cr(E), ∀r ∈ R∗.5

(b) If C∨(E) = ∅ and P∨S := (P∨S , . . . , P
∨
S ) ∈ γ(S) for any S ⊆ N , then there exists κ ∈ (0, 1) such

that Cr(E) = ∅ for any risk r ∈ R such that min
S⊆N

min
i∈S

r
P∨S
i (S) ≥ κ.

Proof. (a) Let S ⊆ N be a coalition that blocks x /∈ Cr(E). That is, there exists y ∈ Fγ(S) such

that
∑
P∈γ(S) r

P(S) Ui(y
P
i ) > Ui(xi), ∀i ∈ S. Notice that, for every P ∈ γ(S) and i ∈ S, yPi is P∨S -

measurable. Since the concavity of utility functions implies that Ui

(∑
P∈γ(S) r

PyPi

)
> Ui(xi),∀i ∈

S, we conclude that x /∈ C∨(E).

(b) Given S ⊆ N , let F∨S be the set of allocation (yi, i ∈ S) such that
∑
i∈S yi ≤

∑
i∈S ei and yi is∨

h∈S Ph measurable for every i ∈ S. Suppose that C∨(E) = ∅. The continuity of utility functions,

the compactness of sets {F∨S }S⊆N , and the emptiness of the fine core ensure that the continuous

mapping Φ characterized by (x, θ) ∈ F × [0, 1] −→ Φ(x, θ) := max
S⊆N

max
y∈F∨S

min
i∈S

(θUi(yi)− Ui(xi))

satisfies the following properties: (i) for any θ′, θ ∈ [0, 1], if θ′ > θ and Φ(x, θ) > 0, then Φ(x, θ′) >

Φ(x, θ); and (ii) there exists a > 0 such that Φ(x, 1) ≥ a,∀x ∈ F .6 Given x ∈ F , let Θ(x) =

{θ ∈ [0, 1] : Φ(x, θ) ≥ ā}, where ā ∈ (0, a). It is not difficult to verify that Θ is a continuous

correspondence with non-empty and compact values.7 Therefore, the Berge’s Maximum Theorem

5Example 1 shows that without the concavity of utility functions this result does not hold.
6Since C∨(E) = ∅, we have that Φ(x, 1) > 0, ∀x ∈ F . Thus, (ii) is a direct consequence of the compactness of F

and the continuity of Φ.
7For any x ∈ F , 1 ∈ Θ(x). Also, the continuity of Φ guarantees that Θ(x) is a closed subset of [0, 1]. Therefore,

Θ has non-empty and compact values. Θ is upper hemicontinuous, because has closed graph and compact codomain.
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guarantees that x ∈ F −→ min{θ : θ ∈ Θ(x)} is a continuous function and it has values strictly

lower than one. We conclude that there exists κ ∈ (0, 1) such that Φ(x, θ) > 0, ∀x ∈ F , ∀θ ∈ [κ, 1].

Given r ∈ R and x ∈ F , by definition x /∈ Cr(E) if and only if Ω(r, x) > 0. Since Ui

takes non-negative values, Ω(r, x) ≥ Φ

(
x, min
S⊆N

min
i∈S

r
P∨S
i (S)

)
. Therefore, for any r ∈ R with

min
S⊆N

min
i∈S

r
P∨S
i (S) ≥ κ, we have that Cr(E) = ∅. �

In our exchange economy with differential information a Walrasian expectation equilibrium is

given by a pair (p, x) ∈ Rlk+×Rlkn+ such that x = (xi; i ∈ N) is physically feasible and Ui(xi) ≥ Ui(y),

for each agent i and for any Pi-measurable bundle y ∈ Rlk+ such that p·y ≤ p·ei. LetW(E) be the set

of Walrasian expectation equilibrium allocations of E . The following result determines conditions

to ensure that the risky core is non-empty.

Proposition 4

Assume that agents are unable to get more than their private information.8 If utility functions

{Ui}i∈N are concave and locally non-satiated, then W(E) ⊆ C◦(E) ⊆ Cr(E), ∀r ∈ R∗.

Proof. Under continuity, concavity and locally non-satiability of utility functions, the Walrasian ex-

pectation equilibrium allocation exists and belongs to the private core. Furthermore, given r ∈ R∗

and S ⊆ N blocking x /∈ Cr(E), there exists y ∈ Fγ(S) such that
∑
P∈γ(S) r

P(S) Ui(y
P
i ) >

Ui(xi), ∀i ∈ S. Since agents are unable to get more than their private information, for every

P ∈ γ(S) and i ∈ S, yPi is Pi-measurable. Since the concavity of utility functions implies that

Ui

(∑
P∈γ(S) r

P(S)yPi

)
> Ui(xi),∀i ∈ S, we conclude that x /∈ C◦(E). �

In order to allow changes on utility functions, taking as given individuals’ endowments and private

informations, for any r ∈ R denote by Cr(U) the risky core of the economy where utility functions

are given by U = {Ui}i∈N . In this context, consider the following partial ordering on the set of

utility profiles: Ũ � U ⇐⇒ ∀i ∈ N, ∃ fi : R+ → R+ concave and increasing : Ui = fi ◦ Ũi.

Since x� Θ̇(x) := {θ ∈ [0, 1] : Φ(x, θ) > ā} has open graph, its closure is lower-hemicontinuous. In addition, given

x ∈ F and θ ∈ Θ(x)∩[0, 1), it follows from (i) that for any n ∈ N we have that Φ(x, n−1+(1−n−1)θ) > Φ(x, θ) ≥ 0.5a.

Hence {n−1 + (1−n−1)θ}n∈N ⊆ Θ̇(x) and converges to θ. This ensures that Θ(x) ⊆ Θ̇(x). We conclude that Θ = Θ̇,

which implies in the lower hemicontinuity of Θ.

8That is, for any S ⊆ N and (P ′i ; i ∈ S) ∈ γ(S) we have that P ′i ≤ Pi, i ∈ S.
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Proposition 5

If Ũ � U , then Cr(Ũ) ⊆ Cr(U) for any r ∈ R.

Proof. Given r ∈ R, let S ⊆ N be a coalition that blocks x /∈ Cr(U), i.e., there is y ∈ Fγ(S) such

that
∑
P∈γ(S) r

P
i (S) Ui(y

P
i ) > Ui(xi), ∀i ∈ S. Since Ũ � U , for each agent i there is an increasing

and concave function fi : R+ → R+ such that
∑
P∈γ(S) r

P
i (S) fi◦Ũi(yPi ) > fi◦Ũi(xi). The concavity

of fi and the monotonicity of f−1
i imply that x /∈ Cr(Ũ). �

The following example illustrates the implications of our previous results, characterizing the risky

core in differential information economies with two agents and one commodity.

Example 2. Consider an economy E with two agents and one commodity. There are three states

of nature a, b and c. Utility functions U1, U2 : R3
+ → R+ are continuous, non-decreasing, concave,

and strictly monotonic in at least one contingent commodity. Agent 1 is fully informed about the

realized state of nature, while agent 2 does not have any information, i.e., P1 = {{a}, {b}, {c}} and

P2 = {a, b, c}. Endowments (e1, e2) � 0 are measurable with respect to the private information

and determine an inefficient distribution of resources, in the sense that there is a physically feasible

allocation that improves both agents with respect to the endowments. The possible informational

profiles for the big coalition are γ({1, 2}) = (P1,P2,P3), where P1 = (P1, P1), P2 = (P2, P2) and

P3 = ({{a}, {b, c}}, P2).

In this context, it is not difficult to verify that C∨(E) = ∅ and C∧(E) = C◦(E) = {(e1, e2)}.

Therefore, as the risky core is a subset of the coarse core, for any r ∈ R we have that either

Cr(E) = ∅ or Cr(E) = {(e1, e2)}.

rP3

rP2

Figure 1
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Consider a situation where the risk about the sharing rule following by the big coalition is captured

by distributions of probability that do not depend on the identity of agents, i.e., admissible risks

are elements of R∗. Note that R∗ can be identified with {(rP2 , rP3) ∈ [0, 1]× [0, 1] : rP2 + rP3 ≤ 1}.

This set is drawing in Figure 1 above, where two regions are shaded in order to apply our previous

results. The blue zone represents the risks for which the risky core is non-empty whereas risks in

the red zone leads to empty risky cores.

Properties of the blue zone. It follows from Proposition 1(b) that the risky core is non-empty in a

closed subset of {(rP2 , rP3) ∈ [0, 1]× [0, 1] : rP2 + rP3 ≤ 1}. Moreover, since under P2 and P3 agents

get no more than their private information, Proposition 4 allows us to conclude that the risky core

is non-empty in the line segment {(rP2 , rP3) ∈ [0, 1]× [0, 1] : rP2 + rP3 = 1}.

Properties of the red zone. It follows from Proposition 1 that {r ∈ R∗ : Cr(E) = ∅} is convex.

When the probability rP2 to restrict the information to the common one is zero and the probability

rP1 to share information is positive, the concavity of the utility functions U1, U2 and the inefficiency

of endowments ensure that (e1, e2) can be blocked by the grand coalition. For this reason the red

zone includes the set {0} × [0, 1). As a consequence of Propositions 2 and 3(b), the red zone is

determined by the (relative) interior of the graph of a decreasing function and always includes a

neighborhood the point (0, 0). Finally, Proposition 5 implies that, if utility functions became more

concave, then the red zone may shrink in the direction of the origin. �

5. The ambiguous core

In this section, we provide a notion of core that reflects the circumstance that, when forming

coalitions, individuals do not take decisions considering only one distribution of probability about

the informational structures. That is, there is ambiguity about the information within coalitions

and agents behave as α-maxmin expected utility maximizers a la Ghirardato, Maccheroni, and

Marinacci (2004).

Given a coalition S ⊆ N , let A(S) be the set of vectors (ai; i ∈ S), where ai is a set of prob-

ability distributions on γ(S) that are the priors of agent i about the informational profiles that

will be implemented when S is formed. Let A∗(S) be the elements of A(S) that induce distribu-

tions of probability that only depend on the coalition and not on the identity of each agent. Let

A =
∏
S⊆N A(S) and A∗ =

∏
S⊆N A∗(S).
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Definition (Ambiguous core)

Given α ∈ [0, 1] and a = (a(S);S ⊆ N) ∈ A the ambiguous core Cαa (E) is the set of feasible

allocations that are not blocked by any coalition S when for every agent i ∈ S

V Si (y) = α inf
ri∈ai(S)

∑
P∈γ(S)

rPi (S) Ui(y
P
i ) + (1− α) sup

ri∈ai(S)

∑
P∈γ(S)

rPi (S) Ui(y
P
i ),

where a(S) = (ai(S); i ∈ S) and ri = (rPi (S);P ∈ γ(S)) ∈ ai(S).

Given a ∈ A, we use the notation r ∈ a to refer to any r ∈ R that is compatible with the priors

contained in a, i.e., for every S ⊆ N and i ∈ S we have that ri(S) ∈ ai(S). Furthermore, we say

that a ∈ A is closed when ai(S) is a closed set for any agent i ∈ S and for each coalition S ⊆ N .

Proposition 6

For any a ∈ A, we have that Cαa (E) ⊆ Cα′a (E) for any α ≤ α′ and

C0
a(E) ⊆

⋂
r∈a
Cr(E) ⊆ Cµ(E) ⊆

⋃
r∈a
Cr(E) ⊆ C1

a(E), ∀µ ∈ a.

Furthermore, if a is closed, then

C0
a(E) =

⋂
r∈a
Cr(E), and

⋃
r∈a
Cr(E) = C1

a(E) when n = 2.

Proof. Let α ≤ α′ and x /∈ Cα′a (E). Then, there is S ⊆ N and y ∈ Fγ(S) such that, for every i ∈ S,

α inf
r̃i∈ai(S)

∑
P∈γ(S)

r̃Pi (S) Ui(y
P
i ) + (1− α) sup

r̃i∈ai(S)

∑
P∈γ(S)

r̃Pi (S) Ui(y
P
i )

≥ α′ inf
r̃i∈ai(S)

∑
P∈γ(S)

r̃Pi (S) Ui(y
P
i ) + (1− α′) sup

r̃i∈ai(S)

∑
P∈γ(S)

r̃Pi (S) Ui(y
P
i ) > Ui(xi).

This implies that x /∈ Cαa (E). Analogously, if x /∈
⋂
r∈a Cr(E), then there exists r ∈ a, S ⊆ N and

y ∈ Fγ(S) such that supr̃i∈ai(S)

∑
P∈γ(S) r̃

P
i (S) Ui(y

P
i ) ≥

∑
P∈γ(S) r

P
i (S) Ui(y

P
i ) > Ui(xi), ∀i ∈ S.

Hence, x /∈ C0
a(E). This shows C0

a(E) ⊆
⋂
r∈a Cr(E). Furthermore, if x /∈ C1

a(E), then there is a coali-

tion S and y ∈ Fγ(S) such that,
∑
P∈γ(S) r

P
i (S) Ui(y

P
i ) ≥ inf r̃i∈ai(S)

∑
P∈γ(S) r̃

P
i (S) Ui(y

P
i ) >

Ui(xi), ∀r ∈ a, ∀i ∈ S and, therefore, x /∈
⋃
r∈a Cr(E). This shows

⋃
r∈a Cr(E) ⊆ C1

a(E).

Suppose that a is closed. If x /∈ C0
a(E), then there is a coalition S ⊆ N and y ∈ Fγ(S) such that

supr̃i∈ai(S)

∑
P∈γ(S) r̃

P
i (S) Ui(y

P
i ) > Ui(xi), ∀i ∈ S. Since

∑
P∈γ(S) r̃

P
i (S) Ui(y

P
i ) is a continuous

function in r̃i(S) and ai(S) is compact, the supremum is attained. This implies that there exists
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r ∈ a such that x /∈ Cr(E). Therefore,
⋂
r∈a Cr(E) ⊆ C0

a(E). The fact that C0
a(E) ⊆

⋂
r∈a Cr(E) allows

us to conclude that C0
a(E) =

⋂
r∈a Cr(E).

Assume that N = {1, 2} and x /∈
⋃
r∈a Cr(E). If x is not individually rational, i.e., there ex-

ists i ∈ N such that Ui(xi) < Ui(ei), then x /∈ C1
a(E). Otherwise x is individually rational and

for any r ∈ a there is y ∈ Fγ(N) such that
∑
P∈γ(N) r

P
i (N) Ui(y

P
i ) > Ui(xi), ∀i ∈ N.9 Since a

is closed and the functions on the left hand side of these inequalities are continuous in ri(N), we

have inf r̃i∈ai(N)

∑
P∈γ(N) r̃

P
i (N) Ui(y

P
i ) > Ui(xi), ∀i ∈ N , implying that x /∈ C1

A(E). Taking into

account that
⋃
r∈a Cr(E) ⊆ C1

a(E), we conclude that C1
a(E) =

⋃
r∈a Cr(E). �

These results allow us to characterize several properties of the ambiguous core as a direct con-

sequence of Propositions 2-5. The first of these properties, which is an immediate consequence of

Propositions 2 and 6, determines conditions that ensure the coincidence of the ambiguous core and

the risky core.

Corollary 6.1

Let γ be a totally ordered informational structure, {Ui}i∈N concave functions, and a ∈ A∗ closed.

If r̂ ∈ a first-order stochastically dominates every r ∈ a, then C0
a(E) = Cr̂(E). Moreover, if n = 2

and r̃ ∈ a is first-order stochastically dominated by every r ∈ a, then C1
a(E) = Cr̃(E).

Under concavity of utility functions, Propositions 3 and 6 guarantee that the fine core is always

contained in the ambiguous core. Furthermore, the non-emptiness of Cαa (E) requires the existence of

risk scenarios compatible with a where agents do not assign large probabilities to the profile given

by sharing information.

Corollary 6.2

If utility functions {Ui}i∈N are concave, then for any a ∈ A∗ we have that C∨(E) ⊆
⋂
r∈a Cr(E).

Furthermore, if a is also closed, then C∨(E) ⊆ Cαa (E) for all α ∈ [0, 1].

9Notice that, when n > 2 we cannot ensure that for any risk r ∈ a a same coalition blocks x.
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Corollary 6.3

If C∨(E) = ∅ and P∨S := (P∨S , . . . , P
∨
S ) ∈ γ(S) for any S ⊆ N , then there is κ ∈ (0, 1) such that the

following properties hold:

(a) C0
a(E) = ∅ for any a ∈ A such that a ∩

{
r ∈ R : min

S⊆N
min
i∈S

r
P∨S
i (S) ≥ κ

}
6= ∅

(b) C1
a(E) = ∅ for any a ∈ A such that a ⊆

{
r ∈ R : min

S⊆N
min
i∈S

r
P∨S
i (S) ≥ κ

}
and n = 2.

When agents may be unable to get more than their private information, it is possible to ensure

that the set of Walrasian expectation equilibrium allocations of E is contained in the ambiguous

core and, therefore, it is a non-empty set.

Corollary 6.4

Suppose that the utility functions {Ui}i∈N are concave and locally non-satiated. Let PS := (Pi, i ∈ S)

and a ∈ A∗ such that, for some r ∈ a,
∑

P∈γ(S):
P≤PS

rP(S) = 1, ∀S ⊆ N . Then, W(E) ⊆ C◦(E) ⊆ C1
a(E).

Corollary 6.5

Suppose that utility functions {Ui}i∈N are concave and locally non-satiated. If agents are unable to

get more than their private information, then the following properties hold for any a ∈ A∗:

(a) W(E) ⊆ C◦(E) ⊆
⋂
r∈a Cr(E).

(b) If a is closed, then W(E) ⊆ C◦(E) ⊆ Cαa (E) for all α ∈ [0, 1].

As for the risky core, Propositions 5 and 6 ensure that the ambiguous core does not shrink when

agents became more risk adverse.

Corollary 6.6

If Ũ � U , then for any a ∈ A :

(a)
⋃
r∈a Cr(Ũ) ⊆

⋃
r∈a Cr(U) and

⋂
r∈a Cr(Ũ) ⊆

⋂
r∈a Cr(U).

(b) If a is closed, then C0
a(Ũ) ⊆ C0

a(U) and, when n = 2 we have C1
a(Ũ) ⊆ C1

a(U).

Example 3. Following the economy in Example 2, the figure below illustrates different scenarios

where there exists ambiguity about the information within coalition.
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rP1

rP2

a1

Figure 2

a3

a2

It follows from Proposition 6 that, independently of the parameter α ∈ [0, 1], Cαa1(E) is an empty

set. Moreover, when the set of priors is a closed subset of the blue zone, as the yellow ellipse a2,

then Proposition 6 implies that Cαa2(E) = {(e1, e2)} for any α ∈ [0, 1]. Finally, if the ambiguity is

captured by risks belonging to a3, then the ambiguous core varies with the aversion to ambiguity

α, as C0
a3(E) = ∅ and C1

a3(E) = {(e1, e2)}. Finally, from Corollary 6.6 we deduce that the parameter

given by inf{α ∈ [0, 1] : Cαa3(E) 6= ∅} does not increase when agents become more risk averse. �

6. On the non-emptiness of risky and ambiguous cores

The existence results for the risky and ambiguous cores we have showed in the previous sections

are based on the existence of Walrasian expectation equilibrium and assume that agents do not

obtain more than their private information when forming coalitions. In this section, inspired in

Billot, Chateauneuf, Gilboa, and Tallon (2000), we show the non-emptiness of our cooperative

solutions without requiring any property on the informational profiles for coalitions.

Essentially, we prove that when agents are maxmin expected utility maximizers and endowments

are riskless, the existence of a common prior about the realization of the state of nature ensures

that non-trade is an stable outcome regarding to the blocking power of coalitions.

Proposition 7

Consider an economy with one commodity such that, for every i ∈ N ,

Ui(xi) = inf
π∈∆i

∑
ω∈Ω

π(ω)ui(xi(ω)),
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where ∆i is a non-empty set of priors,10 ui is increasing and concave, and ei = δi(1, . . . , 1) for some

δi > 0. If
⋂
i∈N ∆i 6= ∅, then (ei)i∈N ∈

⋂
r∈R∗ Cr(E).

Proof. Suppose that (ei)i∈N /∈ Cr(E) for some r ∈ R∗. That is, there exist S ⊆ N and y ∈ Fγ(S)

such that
∑
P∈γ(S) r

PUi(y
P
i ) > Ui(ei), ∀i ∈ S. Given π ∈

⋂
i∈S ∆i, the concavity of func-

tions {ui}i∈S guarantees that ui

(∑
P∈γ(S) r

P∑
ω∈Ω π(ω)yPi (ω)

)
> ui(δi), ∀i ∈ S. Therefore,∑

i∈S
∑
P∈γ(S) r

P∑
ω∈Ω π(ω)yPi (ω) >

∑
i∈S δi, which contradicts the fact that y ∈ Fγ(S). �.

A direct consequence of Propositions 6 and 7 is that, for every closed a ∈ A∗ we have that the

ambiguous core Cαa (E), with α ∈ [0, 1], contains the initial allocation (ei)i∈N .

Appendix

Lemma. Suppose that r̂ = (r̂1, . . . , r̂m) first-order stochastically dominates r = (r1, . . . , rm). Then,

for each k ∈ {1, . . . ,m} and h ∈ {1, . . . , k} there exists ak,h ≥ 0 verifying

m∑
h=k

ah,k = rk,

k∑
h=1

ak,h = r̂k, ∀k ∈ {1, . . . ,m}.

Proof. We show it by induction. When m = 1 there is no uncertainty and the result trivially holds.

Assume that the result is true for m = t and let us prove that it is also true for m = t+ 1. Notice

that r̂∗ = (r̂1, . . . , r̂t−1, r̂t + r̂t+1) first-order stochastically dominates r∗ = (r1, . . . , rt−1, rt + rt+1).

Therefore, it follows from the induction hypothesis that, for each k ∈ {1, . . . , t} and h ∈ {1, . . . , k}

there exists a∗k,h ≥ 0 verifying
∑t
h=k a

∗
h,k = rk∗ and

∑k
h=1 a

∗
k,h = r̂k∗ .

Given k ∈ {1, . . . , t+ 1} and h ∈ {1, . . . , k}, define

ak,h =



a∗k,h, h ≤ k < t;

a∗k,h − αh, h < k = t;

a∗k,h − rt+1 − αh, h = k = t;

αh, h < k = t+ 1;

rt+1, h = k = t+ 1,

where (αh)1≤h≤t ≥ 0 satisfies
∑t
h=1 αh = r̂t+1 − rt+1.

10That is, ∆i ⊆ {π ∈ RΩ
+ :

∑
ω∈Ω π(ω) = 1}.
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It follows that
∑t+1
h=k ah,k = rk and

∑k
h=1 ak,h = r̂k, for all k ∈ {1, . . . , t+ 1}. �
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[3] Hervés-Beloso, C., Meo, C., Moreno-Garćıa, E. (2014): “Information and size of coalitions,” Economic Theory,

55, 545-563.

[4] Ghirardato, P., Maccheroni, F., Marinacci, M. (2004): “Differentiating ambiguity and ambiguity attitude,”

Journal of Economic Theory, 118, 133-173.

[5] Wilson, R. (1978): “Information, efficiency and the core of an economy,” Econometrica, 46, 807–816.

[6] Yannelis, N. (1991): “The core of an economy with differential information,” Economic Theory, 1, 183–198.

Universidad de Salamanca. IME.

E-mail address: emmam @ usal.es

Department of Economics, University of Chile

E-mail address: juan.torres @ fen.uchile.cl


