TABLA DE CONTENIDO

CAPÍTU	JLO 1 INTRODUCCIÓN	1
1.1	Presentación del tema	1
1.2	Problemática	2
1.3	Alcances	4
1.4	Objetivo	5
1.4	.1 Objetivo general	5
1.4	.2 Objetivos específicos	5
CAPÍTU	JLO 2 ANTECEDENTES	6
2.1	Descripción de la faena	6
2.1	.1 Minera Centinela	6
2.1	.2 Ubicación geográfica	6
2.1	.3 Sistema de explotación y ritmo de producción anual	7
2.1	.4 Métodos de procesamiento de minerales	7
2.2	Proyecto Esperanza Sur	9
2.2	2.2 Yacimiento	9
2.3	Caracterización de muestras del yacimiento	15
2.3	.1 Análisis hiperespectral	15
2.3	.2 Análisis mediante QEMSCAN	22
2.3	.3 Análisis elemental	23
2.4	Indicador	25
2.4	.1 Construcción del indicador	26
CAPÍTU	JLO 3 METODOLOGÍA	29
3.1	Estudio exploratorio de datos	31
3.1	.1 Identificación de las muestras	31
3.1	.2 Análisis mineralógico	32
3.1	.3 Análisis elemental	36
3.1	.4 Estadísticas básicas	37
3.2	Estudio de continuidad y correlación	39
3.2	.1 Estudio de continuidad espacial	39
3.2.	2.2 Estudio de correlación entre variables	41
3.3	Procesamiento de la información	47
3.3	.1 Enmascarado	47

3.3.2	Mineralogía hiperespectral	49
3.3.3	Análisis de firma espectral y creación de escalares	55
3.3.4	Comparación del conjunto de escalares vía mineralogía QEMSCAN	63
3.4 Agr	upamiento de la información	65
3.5 Apl	icación del Teorema de Bayes	67
3.5.1	Programa	67
3.6 Infl	uencias de minerales en el indicador	69
3.6.1	Metodología de cálculo de influencias por mineral	69
3.7 Val	idación	70
3.7.1	Validación cruzada	70
3.8 Téo	nica de agrupación de las probabilidades puntuales	71
3.8.1	Alternativas de agrupación	72
3.8.2	Suma de errores acumulados	72
CAPÍTULO	4 RESULTADOS Y ANÁLISIS	73
4.1 Agr	upación de la información	73
4.1.1	Ley de molibdeno	73
4.1.2	Alteraciones	74
4.1.3	Escalares	75
4.2 Apl	icación del Teorema de Bayes	79
4.2.1	Archivo de conteo de muestras dadas las condiciones	79
4.2.2	Archivo de conteo de muestras sobre la ley de corte	80
4.2.3	Archivo de cálculo de probabilidades	80
4.2.4	Asignación de probabilidades	81
4.2.5	Comentarios	81
4.3 Red	clasificación de muestras	82
4.3.1	Determinación de probabilidades de mineralización	82
4.3.2	Aplicación	82
4.3.3	Resultados por alteración	84
4.3.4	Análisis	88
4.3.5	Comentarios	90
4.4 Infl	uencia de minerales en el indicador	91
4.4.1	Análisis	91
4.4.2	Comentarios	92

4.5 Validación	92
4.5.1 Aplicación de la técnica	92
4.5.2 Resultados obtenidos	93
4.5.3 Comentarios	94
4.6 Técnica de agrupación de las probabilidades puntuales	95
4.6.1 Resultados	95
CAPÍTULO 5 CONCLUSIÓN	98
CAPÍTULO 6 BIBLIOGRAFÍA	100
CAPÍTULO 7 ANEXOS	103
Anexo A: Firmas espectrales por mineral	103
Anexo B: Polinomios para caraterísticas de la firma espectral por mineral	110
Anexo C: Comparación reflectancia escalar con análisis QEMSCAN	134
Anexo D: Escalar representativo con análisis QEMSCAN	158
Anexo E: Escalar representativo con ley de Molibdeno	168
Anexo F: Curvas de densidad sobre la ley de corte de Molibdeno	174
Anexo G: Programa	184

ÍNDICE DE TABLAS

Tabla 3.1 Muestras según largo de compósito	.31
Tabla 3.2 Información por muestra	.31
Tabla 3.3 Resultados análisis QEMSCAN KBT	.33
Tabla 3.4 Resultados análisis QEMSCAN SC	.34
Tabla 3.5 Resultados análisis QEMSCAN	.35
Tabla 3.6 Resultados análisis ICP-OES para KBT	.36
Tabla 3.7 Resultados análisis ICP-OES para SC	.37
Tabla 3.8 Resultados análisis ICP-OES	.37
Tabla 3.9 Estadísticas básicas de la ley de molibdeno en las muestras	.38
Tabla 3.10 Separación entre muestras	.40
Tabla 3.11 Minerales que explican la variación por componentes en la alteración KBT	[.] 44
Tabla 3.12 Minerales que explican la variación por componentes en la alteración SC.	.46
Tabla 3.13 Minerales identificados en las muestras en el rango TIR	.52
Tabla 3.14 Minerales identificados en las muestras en el rango SWIR	.53
Tabla 3.15 Minerales considerados para el estudio	.57
Tabla 3.16 Resumen de escalares representativos por mineral	.62
Tabla 3.17 Valorización sobre las condiciones de pertenencia a las zonas de alta ley.	.69
Tabla 4.1 Extracto de resultados de la cuenta de muestras	.80
Tabla 4.2 Extracto de resultados de la cuenta de muestras sobre la ley de corte	.80
Tabla 4.3 Extracto de resultados del cálculo de probabilidad	.81

Tabla 4.4 Extracto de resultados asignación de probabilidades a las muestras	81
Tabla 4.5 Análisis por cuadrante en resultados de alteración KBT	86
Tabla 4.6 Análisis por cuadrante en resultados de alteración SC	87
Tabla 4.7 Análisis por cuadrante de los resultados comparando las dos metodolo	gías 90
Tabla 4.8 Influencia de minerales en el indicador según alteración	91
Tabla 4.9 RMSE de las diez iteraciones	93
Tabla 4.10 RMSE acumulado de las diez iteraciones	94

ÍNDICE DE ILUSTRACIONES

Figura 2.1 Ubicación Minera Centinela (Minera Centinela, 2014)7
Figura 2.2 Procesos productivos Minera Centinela (Minera Centinela, 2014)
Figura 2.3 Geología de superficie de la zona aledaña al yacimiento Telégrafo
(Münchmeyer & Valenzuela, 2009)10
Figura 2.4 Sección 7.456.620 N del Yacimiento Telégrafo indicando litología y sentido
de desplazamiento de la falla Telégrafo. TDS: techo de sulfuro (Münchmeyer &
Valenzuela, 2009)
Figura 2.5 Sección 7.456.170 N, indicando litología, techo de sulfuros (TDS) y pit final
del proyecto (Geología del yacimiento esperanza, 2012)
Figura 2.6 Alteración, sección 7.456.170 N (Geología del yacimiento esperanza, 2012)
Figura 2.7 Zona de óxidos (verde) y mixto (mostaza) (Geología del yacimiento
esperanza, 2012)
Figura 2.8 Zona de sulfuros (morado) (Geología del yacimiento esperanza, 2012)13
Figura 2.9 Bloques de leyes de molibdeno mayores a 80 [ppm] (Geología del yacimiento
esperanza, 2012)
Figura 2.10 Bloques de leyes de molibdeno mayores a 200 [ppm] (Geología del
yacimiento esperanza, 2012)14
Figura 2.11 Leyenda: leyes de molibdeno [ppm] (Geología del yacimiento esperanza,
2012)
Figura 2.12 Sección del modelo de bloques de leyes de molibdeno mayores a 200 [ppm]
(Geología del yacimiento esperanza, 2012)14
Figura 2.13 Distribución de bloques CuT>=0.2% en sulfuros (Geología del yacimiento
esperanza, 2012)
Figura 2.14 Distribución de bloques CuT>=0.5% en sulfuros (Geología del yacimiento
esperanza, 2012)
Figura 2.15 Leyenda: leyes de CuT (Geología del yacimiento esperanza, 2012)14
Figura 2.16 Esquema del fenómeno de espectroscopía de reflectancia (Laukamp 2012).
Figura 2.17 Ejemplo de minerales resultantes de la espectroscopia de reflectancia
(Hylogger-3) (Laukamp 2012)
Figura 2.18 Sistema Hylogger-3 (CSIRO CHILE-AMIC, Proyecto 4.2 Caracterización
Mineralogica Avanzada, 2016)

Figura 2.19 Tecnologías espectrales en el mercado (CSIRO CHILE-AMTC, Proyecto 4.2 Caracterización Mineralógica Avanzada, 2016)19 Figura 2.20 Rango de detección de grupos de minerales en silicatos (Harris, 2014).....20 Figura 2.21 Rango de detección de grupos de minerales para no silicatos (Harris, 2014). Figura 2.22 Visualización de imagen digital junto a espectro de una muestra (Huntington, 2013)......21 Figura 2.23 Interfaz general TSG, resumen estadísticas totales (Huntington, 2013).22 Figura 2.24 Diagrama de funcionamiento del QEMSCAN (Ayling et al., 2012)......23 Figura 2.26 Ejemplo de la relación entre la información hiperespectral y el mineral de oro en Kanowna Belle (Quigley, et al., 2013)......26 Figura 2.27 Ejemplo de datos geoquímicos en un indicador de oro (Hill et al., 2014)....28 Figura 3.1 Esquema de la metodología de trabajo......29 Figura 3.2 Sección de 200 [m] de grosor del perfil 7.456.170 N de modelo de Figura 3.7 Semivariograma de molibdeno, caso Chuguicamata (Carrasco, 2010)40 Figura 3.8 Semivariograma de molibdeno en vacimiento Esperanza Sur, según alteraciones (García, 2015)......41 Figura 3.10 Diez primeras componentes del ACP para la alteración SC45 Figura 3.12 Comparación firma espectral de una muestra cualquiera, en relación a una Figura 3.14 Grupos minerales detectados por el TSA. a) Grupos minerales en el rango SWIR. b) Grupos minerales en el rango TIR......50 Figura 3.15 Grupos minerales detectados por el TSA en la alteración KBT. a) Grupos Figura 3.16 Grupos minerales detectados por el TSA en la alteración SC. a) Grupos minerales en el rango SWIR. b) Grupos minerales en el rango TIR......52 Figura 3.18 Minerales identificados en el rango TIR53 Figura 3.19 Minerales identificados en el rango SWIR, alteración KBT54 Figura 3.21 Minerales identificados en el rango TIR, alteración KBT......55 Figura 3.23 Información generada por bandeja, ejemplo muestra 18756

Figura 3.25 Ejemplo de ajuste polinomial de sexto grado para la característica 2212D Figura 3.26 Comparación concentración QEMSCAN de yeso en relación al escalar 2212D......60 Figura 3.27 Comparación concentración QEMSCAN de yeso en relación al escalar Figura 3.28 Comparación escalares y composición de cuarzo según QEMSCAN.......63 Figura 3.29 Comparación escalares y composición de cuarzo según QEMSCAN en alteración KBT......64 Figura 3.30 Comparación escalares y composición de cuarzo según QEMSCAN en alteración SC......64 Figura 3.31 Representación gráfica general de discretizar la información en dos categorías con dos grupos cada una65 Figura 3.32 Representación gráfica llevada al caso de estudio de separar la información en dos categorías con dos grupos cada una......65 Figura 3.33 Representación gráfica de la generalización de discretizar la información en Figura 3.34 Representación gráfica de discretizar la información en tres categorías con Figura 4.1 KDE de leyes de molibdeno muestreadas, con la intersección de una recta roja y azul se muestra el punto de cambio de pendiente y I determinación de la ley de Figura 4.2 Nube de puntos del escalar de longitud de onda 8263W y reflectancia del escalar 8623D para el cuarzo en la alteración KBT76 Figura 4.3 Nube de puntos del escalar de longitud de onda 8263W y reflectancia del escalar 8623D para el cuarzo en la alteración KBT, junto a la ley de molibdeno en Figura 4.5 Gráfico de KDE superpuesto a la nube de puntos para escalares de cuarzo en KBT con una ley de corte de molibdeno de 150 [ppm]......78 Figura 4.6 KDE sobre resultados de probabilidades en alteración KBT......83 Figura 4.8 Resultados de probabilidad KBT......85 Figura 4.11 Comparación de metodologías. a) Gráfico sin separar muestras por alteración. b) Gráfico separando muestras por alteración, en color verde la alteración Figura 4.13 Aplicación de sumas acumuladas96 Figura 7.2 Firma espectral de referencia de anortoclasa con valles identificados......104

Figura 7.4 Firma espectral de referencia de caolinita con valles identificados	105
Figura 7.5 Firma espectral de referencia de cuarzo con valles identificados	105
Figura 7.6 Firma espectral de referencia de fengita con valles identificados	106
Figura 7.7 Firma espectral de referencia de flogopita con valles identificados	106
Figura 7.8 Firma espectral de referencia de labradorita con valles identificados	107
Figura 7.9 Firma espectral de referencia de montmorillonita con valles identificados.	107
Figura 7.10 Firma espectral de referencia de muscovita con valles identificados	108
Figura 7.11 Firma espectral de referencia de oligoclasa con valles identificados	108
Figura 7.12 Firma espectral de referencia de yeso con valles identificados	109
Figura 7.13 Polinomio ajustado a los 9040 [nm]	110
Figura 7.14 Polinomio ajustado a los 8350 [nm]	110
Figura 7.15 Polinomio ajustado a los 9620 [nm]	111
Figura 7.16 Polinomio ajustado a los 9920 [nm]	111
Figura 7.17 Polinomio ajustado a los 13830 [nm]	112
Figura 7.18 Polinomio ajustado a los 9080 [nm]	112
Figura 7.19 Polinomio ajustado a los 9600 [nm]	113
Figura 7.20 Polinomio ajustado a los 8725 [nm]	113
Figura 7.21 Polinomio ajustado a los 2250 [nm]	114
Figura 7.22 Polinomio ajustado a los 2360 [nm]	114
Figura 7.23 Polinomio ajustado a los 1916 [nm]	115
Figura 7.24 Polinomio ajustado a los 1400 [nm]	115
Figura 7.25 Polinomio ajustado a los 1915 [nm]	116
Figura 7.26 Polinomio ajustado a los 2207 [nm]	116
Figura 7.27 Polinomio ajustado a los 8623 [nm]	117
Figura 7.28 Polinomio ajustado a los 12300 [nm]	117
Figura 7.29 Polinomio ajustado a los 8490 [nm]	118
Figura 7.30 Polinomio ajustado a los 12800 [nm]	118
Figura 7.31 Polinomio ajustado a los 12500 [nm]	119
Figura 7.32 Polinomio ajustado a los 9275 [nm]	119
Figura 7.33 Polinomio ajustado a los 1412 [nm]	120
Figura 7.34 Polinomio ajustado a los 1915 [nm]	120
Figura 7.35 Polinomio ajustado a los 2212 [nm]	121
Figura 7.36 Polinomio ajustado a los 2440 [nm]	121
Figura 7.37 Polinomio ajustado a los 1914 [nm]	122
Figura 7.38 Polinomio ajustado a los 2246 [nm]	122
Figura 7.39 Polinomio ajustado a los 2324 [nm]	123
Figura 7.40 Polinomio ajustado a los 8500 [nm]	123
Figura 7.41 Polinomio ajustado a los 8750 [nm]	124
Figura 7.42 Polinomio ajustado a los 9940 [nm]	124
Figura 7.43 Polinomio ajustado a los 1415 [nm]	125
Figura 7.44 Polinomio ajustado a los 2212 [nm]	125
Figura 7.45 Polinomio ajustado a los 1910 [nm]	126
Figura 7.46 Polinomio ajustado a los 2200 [nm]	126
Figura 7.47 Polinomio ajustado a los 1915 [nm]	127

Figura 7.48 Polinomio ajustado a los 2348 [nm]	.127
Figura 7.49 Polinomio ajustado a los 1412 [nm]	.128
Figura 7.50 Polinomio ajustado a los 8350 [nm]	.128
Figura 7.51 Polinomio ajustado a los 8750 [nm]	129
Figura 7.52 Polinomio ajustado a los 9650 [nm]	129
Figura 7.53 Polinomio ajustado a los 9990 [nm]	130
Figura 7.54 Polinomio ajustado a los 1940 [nm]	130
Figura 7.55 Polinomio ajustado a los 1748 [nm]	131
Figura 7.56 Polinomio ajustado a los 1448 [nm]	131
Figura 7.57 Polinomio ajustado a los 1536 [nm]	132
Figura 7.58 Polinomio ajustado a los 2412 [nm]	132
Figura 7.59 Polinomio ajustado a los 2112 [nm]	133
Figura 7.60 Comparación escalar 8450H	134
Figura 7.61 Comparación escalar 9040D	.134
Figura 7.62 Comparación escalar 9620H	135
Figura 7.63 Comparación escalar 9920H	135
Figura 7.64 Comparación escalar 13830H	.136
Figura 7.65 Comparación escalar 8725H	136
Figura 7.66 Comparación escalar 9600D	.137
Figura 7.67 Comparación escalar 9080D	.137
Figura 7.68 Comparación escalar 1916D	.138
Figura 7.69 Comparación escalar 2250D	138
Figura 7.70 Comparación escalar 2360D	139
Figura 7.71 Comparación escalar 1400D	139
Figura 7.72 Comparación escalar 1915D	.140
Figura 7.73 Comparación escalar 2207D	140
Figura 7.74 Comparación escalar 8490H	141
Figura 7.75 Comparación escalar 8623D	141
Figura 7.76 Comparación escalar 12300D	142
Figura 7.77 Comparación escalar 12500H	142
Figura 7.78 Comparación escalar 12800H	143
Figura 7.79 Comparación escalar 9275H	143
Figura 7.80 Comparación escalar 1412D	144
Figura 7.81 Comparación escalar 1915D	144
Figura 7.82 Comparación escalar 2212D	145
Figura 7.83 Comparación escalar 2440D	.145
Figura 7.84 Comparación escalar 1914D	.146
Figura 7.85 Comparación escalar 2246D	.146
Figura 7.86 Comparación escalar 2324D	.147
Figura 7.87 Comparación escalar 8500H	.147
Figura 7.88 Comparación escalar 8750H	148
Figura 7.89 Comparación escalar 9170D	148
Figura 7.90 Comparación escalar 9940H	149
Figura 7.91 Comparación escalar 1415D	149

Figura 7.92 Comparación escalar 2212D	150
Figura 7.93 Comparación escalar 1910D	150
Figura 7.94 Comparación escalar 1412D	151
Figura 7.95 Comparación escalar 1915D	151
Figura 7.96 Comparación escalar 2200D	152
Figura 7.97 Comparación escalar 2348D	152
Figura 7.98 Comparación escalar 8350H	153
Figura 7.99 Comparación escalar 8750H	153
Figura 7.100 Comparación escalar 9650H	154
Figura 7.101 Comparación escalar 9900H	154
Figura 7.102 Comparación escalar 1448D	155
Figura 7.103 Comparación escalar 1536D	155
Figura 7.104 Comparación escalar 1748D	156
Figura 7.105 Comparación escalar 1940D	156
Figura 7.106 Comparación escalar 2212D	157
Figura 7.107 Comparación escalar 2412D	157
Figura 7.108 Escalar de albita en alteración KBT, en color concentración del m	ineral
según QEMSCAN	158
Figura 7.109 Escalar de albita en alteración SC, en color concentración del m	ineral
según QEMSCAN	158
Figura 7.110 Escalar de anortoclasa en alteración KBT, en color concentració	n del
mineral según QEMSCAN	159
Figura 7.111 Escalar de anortoclasa en alteración SC, en color concentració	n del
mineral según QEMSCAN	159
Figura 7.112 Escalar de caolinita en alteración KBT, en color concentración del m	ineral
según QEMSCAN	160
Figura 7.113 Escalar de caolinita en alteración SC, en color concentración del m	ineral
según QEMSCAN	160
Figura 7.114 Escalar de cuarzo en alteración KBT, en color concentración del m	ineral
según QEMSCAN	161
Figura 7.115 Escalar de cuarzo en alteración SC, en color concentración del m	ineral
según QEMSCAN	161
Figura 7.116 Escalar de labradorita en alteración KBT, en color concentració	n del
mineral según QEMSCAN	162
Figura 7.117 Escalar de labradorita en alteración SC. en color concentración del m	ineral
según QEMSCAN	162
Figura 7.118 Escalar de mica blanca en alteración KBT, en color concentració	n del
mineral según QEMSCAN	
Figura 7,119 Escalar de mica blanca en alteración SC, en color concentració	n del
mineral según QEMSCAN	163
Figura 7.120 Escalar de mica negra en alteración KBT, en color concentració	n del
mineral según QEMSCAN	
Figura 7.121 Escalar de mica negra en alteración SC en color concentració	n del
mineral según QEMSCAN	164

Figura 7.122 Escalar de montmorillonita en alteración KBT, en color concentración del Figura 7.123 Escalar de montmorillonita en alteración SC, en color concentración del mineral según QEMSCAN......165 Figura 7.124 Escalar de oligoclasa en alteración KBT, en color concentración del Figura 7.125 Escalar de oligoclasa en alteración SC, en color concentración del mineral Figura 7.126 Escalar de yeso en alteración KBT, en color concentración del mineral Figura 7.127 Escalar de yeso en alteración SC, en color concentración del mineral Figura 7.128 Escalares de albita, en color concentración de Molibdeno......168 Figura 7.133 Escalares de micas blancas, en color concentración de Molibdeno......171 Figura 7.134 Escalares de micas negras, en color concentración de Molibdeno171 Figura 7.135 Escalares de montmorillonita, en color concentración de Molibdeno172 Figura 7.137 Escalares de yeso, en color concentración de Molibdeno......173 Figura 7.138 Curvas de densidad de escalares de albita para alteración SC sobre la ley de corte de Molibdeno......174 Figura 7.139 Curvas de densidad de escalares de albita para alteración KBT sobre la Figura 7.140 Curvas de densidad de escalares de anortoclasa para alteración SC sobre la ley de corte de Molibdeno......175 Figura 7.141 Curvas de densidad de escalares de anortoclasa para alteración KBT sobre la ley de corte de Molibdeno.....175 Figura 7.142 Curvas de densidad de escalares de caolinita para alteración SC sobre la Figura 7.143 Curvas de densidad de escalares de caolinita para alteración KBT sobre la Figura 7.144 Curvas de densidad de escalares de cuarzo para alteración SC sobre la Figura 7.145 Curvas de densidad de escalares de cuarzo para alteración KBT sobre la ley de corte de Molibdeno177 Figura 7.146 Curvas de densidad de escalares de labradorita para alteración SC sobre Figura 7.147 Curvas de densidad de escalares de labradorita para alteración KBT sobre la ley de corte de Molibdeno......178 Figura 7.148 Curvas de densidad de escalares de micas blancas para alteración SC sobre la ley de corte de Molibdeno......179

ÍNDICE DE ECUACIONES

Ecuación 2.1 Teorema de Bayes	27
Ecuación 3.1 Semivariograma teórico univariable	39
Ecuación 3.2 Semivariograma experimental univariable	39
Ecuación 3.3 Teorema de Bayes	68
Ecuación 3.4 Aplicación Teorema de Bayes	68
Ecuación 3.5 Posibles valores para los minerales según los escalares	68
Ecuación 3.6 Minerales considerados	68
Ecuación 3.7 Componentes para definir pertenencia al área	68
Ecuación 3.8 Aplicación del Teorema de Bayes con la definición de Laplace	68
Ecuación 3.9 Simplificación	68
Ecuación 3.10 Cuenta final del algoritmo	69
Ecuación 3.11 CUSUM	72
Ecuación 4.1 RMSE para cada grupo	92
Ecuación 4.2 RMSE para j grupos	93