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Tanto los software de Diseño Asistido por Computadora (CAD) como las herramientas de
análisis por medio del Método de Elementos Finitos (FEM) han tenido un enorme impacto
en la actividad ingenieril en las últimas décadas. Aun así, tienen la desventaja de que las
geometrías CAD no son directamente compatibles con las geometrías utilizas en FEM, lo cual
resulta en la necesidad de re-mallar la geometría varias veces durante un ciclo de soluciones
FEM. Para solucionar esto, el Análisis Isogeométrico (IGA) ha sido propuesto como una
metodología capaz de generar un vínculo directo entre el diseño mediante CAD y el análisis
FEM. La principal idea dentro de IGA es sustituir las funciones de forma utilizadas en FEM
por las funciones de base que utiliza el software CAD, conocidas como NURBS.

Por otro lado, los problemas de mecánica de fractura presentan dificultades extras para
los métodos numéricos debido a las irregularidades que presenta la geometría de la grieta
y el campo de esfuerzos singular que se origina alrededor de la punta de la grieta. Para
solucionar esto, una nueva generación de métodos numéricos ha sido desarrollada, la cual
incluye el renombrado XFEM.

La misma idea del XFEM ha sido formulada dentro del contexto de IGA, conocido como
Análisis Isogeométrico Extendido (XIGA) y ha sido aplicado exitosamente en grietas rectas
y curvas en problemas de elasticidad 2-D. Sin embargo, los trabajos publicados en este tema
se han limitado a problemas simples.

El objetivo de este trabajo es aplicar el XIGA en problemas de mecánica de fractura con
grietas en geometrías complejas dadas por curvas CAD. El trabajo consiste en implementar
la metodología de enriquecimiento del XFEM dentro de un código IGA para solucionar
problemas de mecánica de fractura 2D.

La primera simulación consiste en el problema de una placa infinita con una grieta recta.
Esta es resuelta utilizando enriquecimiento Heaviside y Heaviside con punta de grieta. La
segunda simulación consiste en emplear NURBS cuadráticos y cúbicos para resolver el prob-
lema de un agujero circular con una grieta. En ambas simulaciones se calculan las normas
de error L2, H1 y energética, y el factor de intensidad de esfuerzos (SIF) KI para evaluar los
resultados.

Ambos problemas exhiben convergencia sub-óptima al momento de refinar la malla y el
KI está en concordancia con la solución analítica.
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Abstract

Both the CAD software and FEM software have a huge impact on engineering nowadays.
Even though both are powerful tools for design and analysis, the main drawback is that CAD
geometries and Finite Element models do not completely match, which results in the necessity
to re-parametrize the geometry many times during the solution cycle in FEM. Isogeometric
Analysis (IGA) was proposed to fulfill this gap and create the direct link between the CAD
design and FEM analysis. The main idea of IGA is to substitute the shape functions used in
FEM by the shape functions used in the CAD software.

Nevertheless, fracture mechanics problems present difficulty for any numerical method due
to the irregularity in the crack domain and the singularity of the stress field in the vicinity of
the crack tip. To overcome this difficulty, a new generation of numerical methods has been
developed, which includes the so-called Extended Finite Element Method (XFEM).

The same idea was implemented within the IGA (XIGA) and applied successfully for
straight and curved cracks in two-dimensional elasticity. However, the published work is
limited to simple crack configurations.

The objective of this work is to investigate the applicability and efficiency of the XIGA for
cracks of complex geometries given by CAD curves. The work consists in implementing the
enrichment method of the XFEM into the in-house IGA code and in verifying the approach
on a number of benchmark problems.

Heaviside and Heaviside + crack tip enrichment has been implemented for a benchmark
problem of an edge crack and the results are shown to be in excellent agreement with the
analytic solution. The comparison of the results is done in L2, H1 and Energy norm of the
error, which exhibit the sub-optimal convergence rates, when the mesh size tends to zero.

Quadratic and Cubic NURBS were employed to solve the benchmark problem of an edge
crack in a circular hole and the results are shown to be in agreement with the analytic
solution, despite the complicity of the geometry.

The stress intensity factor (SIF) KI is computed and in both benchmark problems it is in
agreement with their theoretical value.
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Chapter 1

Introduction

Damage tolerant design and nondestructive inspections represent a key task for ensuring that
structures operate safely for extended periods of service. Damage tolerance is the ability to
resist fracture from pre-existent cracks through a given period of time and is an essential
attribute of components whose failure could result in a catastrophic loss of life or property
[1].

Many industries are in need of simple and accurate tools to study crack propagation and
assess the damage tolerance of various structures. Examples range from the aeronautical
industry to the automotive industry. The approach to engineering design to account for
damage tolerance is based on the assumption that flaws can exist in any structure and such
flaws might propagate with usage.

The Finite Element Method (FEM) is highly popular among different engineering disci-
plines due to its ability to find an approximate solution to boundary value problems (such
as loads and forces, vibrations, fluid flow dynamics, heat transfer and other physical phe-
nomenons). It is used widespread in different engineering disciplines and many commercial
programs are available, e.g. Abaqus, Adina, Ansys, Comsol, Nastran, etc. Unfortunately,
it presents drawbacks when dealing with crack propagation in fracture mechanics: problems
such as re-meshing during crack growth makes FEM time/resources expensive.

To overcome these difficulties, different methods have been developed such as Embedded
Elements (EFEM) [2], Element free Galerkin methods (EFG) [3], Extended Finite Element
Method (XFEM) [4], among others. Between them, the XFEM has earned world-wide ac-
ceptance as an effective tool for crack propagation problems.

On the other hand, another difficulty presented by FEM is having to work with complex
geometries. The Computer Aided Design (CAD) software, such as AutoCAD, Inventor, Solid-
Works, NX among others, are a powerful tool that allows design engineers to use computers
in order to create, modify, analyze, optimize and visualize a design. CAD software mostly
uses NURBS (Non Uniform Ration B-splines) based curves and geometries. FEM software
receives CAD geometry and converts it to a FEM model by discretizing it. This process is
known as meshing. The main drawback is that for complex geometries, the mesh does not
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match properly with the geometry and there is a loss in accuracy of the solution (especially
in stress concentration zones). Figure 1.1 shows a CAD model and different meshes. As seen
in the highlighted zone, the complex meshing process must be done in order to approximate
the geometry.

Figure 1.1: Differences between CAD model and mesh.
Source: [5].

To overcome this difficulty, Hughes et al. [6] proposed the Isogeometric Analysis (IGA)
as an alternative to merge both FEM and CAD.

IGA is a recently developed computational approach that fills the gap the between CAD
and FEM by using the conventional NURBS functions of the CAD design tools into the
FEM method. The main idea of IGA is to use the same basis functions (splines) for both:
parametrization of the geometry (computational domain) and approximation of the unknown
field (see Figure 1.2). Due to a number of advantages offered by the spline basis functions
over the standard finite element methods (such as higher continuity and exact representation
of the geometry), IGA has transformed in the past years into one of the most efficient tools
for numerical analysis and has found many applications in various areas in mechanics.

(a) IGA imput: CAD geometry (b) IGA output: Distribution of stresses

Figure 1.2: Basic idea of IGA.
Source: [7].

Luycker et al. [8] and Ghorashi et al. [9, 10] employed the enrichment criteria of the
XFEM method in the isogeometric formulation to solve linear fracture mechanical problems.
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This new formulation is known as the Extended Isogeometric Analysis (XIGA) and has been
applied successfully for straight [8, 9] and curved cracks [10]. However, the method has only
been applied to both simple domain geometries and simple geometries of cracks.

In this work we are going to investigate the accuracy and efficiency of the XIGA for
cracks with complex geometries given by CAD curves, with special emphasis on the follow
two novelties:

a. The crack is also modelled by a NURBS curve.

b. Cut elements are treated with trimmed NURBS methods [11, 12].

The work will consist in implementing the enrichment method of the XFEM into the in-house
IGA code and in verifying the approach on a number of benchmark problems.

1.1 Motivation

Nowadays, engineers mostly design using CAD software and perform analyses by using FEM
commercial software. The typical situation in an engineering practice is the one where designs
are encapsulated in CAD systems, meshes are generated from CAD data and FEM are
performed over the meshes. This allows a totally different geometric description for analysis,
which is only approximate. In some instances, mesh generation can be done automatically but
in most circumstances it can be done at best semi-automatically. There are still situations in
major industries where drawings are made of CAD designs and meshes are built from them.
It is estimated that about 80% of overall analysis time is devoted to mesh generation in the
automotive, aerospace, and ship building industries [6].

To close the gap between the FEM and CAD, Hughes et al. [6] proposed Isogeometric
Analysis (IGA) as a method to use the original CAD geometry and the corresponding NURBS
functions to approximate solution in the FEM.

Besides that, fracture mechanical problems present a challenge for the FEM due to irreg-
ularity of the crack domain and stress singularity near the crack tip. The challenge becomes
even greater when modelling crack propagation because not only the mesh is complex, but
the geometry itself changes, leading to a bad convergence of the solution near the crack. Over
the years, the principal focus was to update the mesh every time the crack grows, so that
the FEM can match the geometry and continue to solve the problem.

The following methods have been proposed in order to accomplish this: Embedded El-
ements (EFEM) [2], Element free Galerkin methods (EFG) [3], Extended Finite Element
Method (XFEM) [4], and others.

Moës et al. [4] proposed the XFEM in order to solve crack growth problems by using
the concept of enrichment nodes in the solution. By doing this, they avoided the re-meshing
process every time the crack tip would move.
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The Extended Isogeometric Analysis (XIGA) [8] is the merge of IGA with the enrichment
philosophy of the XFEM. This approach benefits from the advantages of its roots, XFEM and
IGA, and is capable of analyzing crack growth problems without any re-meshing. Complex
geometries can be modeled with few elements and higher order inter-element continuities
are satisfied. XIGA has been successfully applied for the analysis of straight cracks in both
parametric and physical spaces [8, 9]. It has also been applied to curved cracks on the
parametric space [10].

In view of the above, the main purpose of this project work is to extend the study of XIGA
by solving complex crack/geometry problems with XIGA by including the parametrization
of the crack as a NURBS curve and using the concept of trimmed NURBS.

1.2 Objectives and Scope

1.2.1 General Objectives

The main objective of this project work is to develop a methodology for the numerical analysis
of fracture mechanical problems, based on the XIGA method.

1.2.2 Specific Objectives

The specific objectives of this project work are:

• Formulate of the XFEM in the Framework of IGA.
• Implement Enrichment of the solution into IGA code to make it suitable for fracture.
• Implement the evaluation of J-Integrals for the Stress Intensity Factors.
• Verify the results on a set of benchmark problems.

1.2.3 Scope

The scope of this work are:

• The XIGA code solves two dimensional (2D) problems.
• The XIGA code is tested on specific 2D benchmark problems.
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Chapter 2

Methodology

The methodology in this project work is based on the implementation of an Extended Isoge-
ometric Analysis routine for the resolution of 2D crack propagation problems. Therefore the
main steps are as follows:

a. Literature Review: The first step consists in performing a literature review of the
principal topics that cover this project: Fracture Mechanics, Isogeometric Analysis
(IGA), Extended Finite Element Method (XFEM) and Extended Isogeometric (XIGA).

b. IGA code: This step involves coding in C++ language a routine capable of performing
IGA over a 2D domain for elasticity problems.

c. Enrichment of the IGA code (XIGA): This next step consists in programming the
functions required in order to enrich both in intrinsic and extrinsic ways (analogously
to XFEM). This part includes the following functions:

i. Crack-Element identification: A routine capable of identifying the elements which
are cut by the crack, enabling it to generate a list of elements enriched by Heaviside
or crack tip criteria.

ii. Integration: A routine capable of integrating elements which are cut by the crack
or contain a crack tip inside.

iii. Enrichment Assembly: A routine capable of performing a new assembly for the
stiffness matrix considering the crack tip and Heaviside enrichment. The functions
used for the enrichment in the crack tip will be obtained by the formulation of the
stress fields using stress intensity factors for each benchmark problem.

iv. Post-processing: A routine capable of calculating the final deformation of the
problem, the stress field, the J1 integral, L2 norm of the error, H1 norm of the
error and Energy norm of the error.

d. Testing of benchmark problems: This fourth step consists of testing the XIGA code
with a set of benchmark problems in order to verify the implementation.
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e. Result Analysis: After obtaining the results from the XIGA code the last step is to
analyze those results and compare them with the analytical and numerical solutions
obtained by other methods, which are available in the literature.

The methodology is illustrated in Figure 2.1.

Figure 2.1: Methodology flow-sheet.

2.1 Resources

The resources for this project are related to the software employed for this project. For all the
IGA and XIGA routines, the cross platform Code Blocks will be used, which is a free C++
IDE available for Windows, OS X and Linux operating systems. For all the post-processing
and generation of graphics the software Matlab will be used, which is a numerical computing
software available for Windows, OS X and Linux operating systems.
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Chapter 3

Literature Review and Theoretical
Background

The purpose of this chapter is to give a brief look at the literature of Isogeometric Analysis,
Extended Finite Element Method and Extended Isogeometric analysis and later proceed to
expose the theoretical background in which this project work is based.

3.1 Literature Review

Hughes et al. [6] proposed the Isogeometric Analysis as an alternative to FEM. It is inspired
by NURBS functions, which is the standard technology employed in CAD. The main purpose
of IGA is to have a direct link between both the designer’s and engineer’s work.

The root idea behind the Isogeometric Analysis is that the basis functions used to ex-
actly model the geometry will also serve as the basis functions for the solution space of the
numerical method.

This concept is a very well know idea in Finite Element Analysis (FEA). The main dif-
ference is that in FEA, the basis chosen to approximate the unknown solution is the same
one used to approximate the geometry, on the other hand, the IGA uses a basis capable of
exactly representing the known geometry, also to approximate the unknown solution.

A primary goal in IGA is to be geometrically exact no matter how coarse the discretization
is. Another goal is to simplify mesh refinement by eliminating the need for communication
with the CAD geometry once the initial mesh is constructed (avoiding the pre-process of
meshing, which takes more time than actually solving the FEM problem). Yet another goal
is to weave more tightly the mesh generation process within CAD.

There has been plenty of research on IGA. Bazilevs et al. [13] and Da Veiga et al. [14]
worked on error estimates and stability analysis on IGA. Several works have been done in
computer science of fast and efficient implementations of IGA [15, 16, 17]. Applications of
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IGA are widely spread in mechanics: from structural vibrations [18], fluid-structures dynam-
ics [19], Reissner-Mindlin shell analysis [20], cohesive zone modeling [21] to gradient damage
modeling [22] and also in non-mechanical areas such as shape sensitivity analysis [23] and
optimization [24].

Several methods have been proposed using the philosophy of IGA, for example, NURBS
Enhanced finite element method (NEFEM) [25], NURBS Enhanced Extended finite element
method (NEXFEM) [26], Isogeometric BEM (IGABEM) [27] and Extended Isogeometric
Analysis (XIGA) [8, 9]. IGA has also been formulated using other types of basis functions,
for example, T-Splines (which are a generalization of NURBS that allows local refinement)
[28, 29], Polynomial Hierarchical T-Splines (PHT-Splines) [30, 31] and Rational Hierarchical
T-Splines (RHT-Splines) [32].

The XIGA is the merge between IGA and XFEM. It has the advantages of IGA and the
enrichment procedures of the XFEM. XIGA has been successfully applied to cases of straight
cracks [8, 9], curved cracks [10] and plates with cracks and multiple holes [33]. It has also
been formulated for T-splines [34] and even for crack identification methods [35].

The lasted applications of XIGA include fracture mechanics analysis of piezoelectric ma-
terials [36], thermal buckling analysis of functionally graded plates with internal defects [37]
and buckling and vibration analysis of imperfect graded Reissner-Mindlin plates with internal
defects [38] among others.

3.2 Theoretical Background

3.2.1 Fracture Mechanics

Experimental observations have shown that brittle materials tend to fracture when loaded
beyond their critical stress level.

Kirsch and Kolosoff (1898) analyzed the problem of an infinite plate with a circular hole
under uniform tensile stress and solved it finding out that the stress near the hole was three
times the tensile stress (see Figure 3.1).

Both kolosov (1909) and Inglis (1913) solved the problem of an infinite plate with a
elliptical hole subject to uniform tensile stress (Figure 3.2). A solution for a sharp cracked
problem can then be obtained by degenerating the elliptical hole into a straightly lined crack.

Griffith (1921,1924) related the fact that there are some materials with less strength
resistance compared to their theoretical values, to the presence of inner cracks and flaws.
Based on the previous works of Kirsh, Kolosoff, Kolosov and Inglis, Griffith found a relation
between the semi-length a of a crack and the tensile stress σF by means of the total change
in energy as the cracking took place.

Irwin (1957) extended Griffith’s work by incorporating the crack tip’s yield strength,

8



Figure 3.1: Infinite plate plate with a hole under uniform stress.
Source: [39].

Figure 3.2: Infinite plate plate with an elliptical hole under uniform stress.
Source: [40]

introducing the concept of stress intensity factor K (SIF) as a measure of the strength of the
singularity.

Then Rice (1968) introduced the concept of the J integral defined as a independent path
contour integral equal to the rate of change of the potential energy for an elastic nonlinear
solid during a unit crack extension.

Stern (1976) and Wen (1995) went further by extending the idea to arbitrary mixed mode
loading. The importance of those J integrals lies in the fact that they can be related to the
Stress Intensity Factors, which are used to formulate crack growth models.

Stress Intensity Factor (SIF) K

The Stress Intensity Factor K was introduced by Irwin as a measure of the strength of the
singularity. In a general way, Irwin illustrated that any stress σij in a small vicinity of a
crack front can be written using the polar coordinates r and θ (see Figure 3.3) in terms of
three Stress Intensity Factor KI , KII and KIII :
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Figure 3.3: Example of crack tip with Cartesian (x, y) and polar coordinates (r, θ).
Source: [41].

σij =
KI · f Iij(θ) +KII · f IIij (θ) +KIII · f IIIij (θ)

√
r

(3.1)

whereKI , KII andKIII are the SIFs related to three independent crack modes of propagation
(Figure 3.4), f Iij, f IIij and f IIIij are functions of θ.

Figure 3.4: Crack modes I, II and III related to KI , KII and KIII , respectively.
Source: [41].

J Integrals

The Jk Integrals are a path independent contour integral equal to the rate of change of the
potential energy for an elastic non-linear solid during a unit crack extension. The Jk integral
can be taken over any path not including the crack tip, but usually, due to simplicity, a set
of circles is used as shown in Figure 3.5.

The Jk-Integral is defined as:
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Figure 3.5: Contour for Jk integral.
Source: [42].

Jk =

∮
Γ′

(
Wsdy − t

∂u

∂x

)
dΓ (3.2)

where Γ′ = ΓC+ + ΓC− + Γε + Γ is a path that encloses the crack tip, t = σ · n and Ws is the
strain energy density, defined by:

Ws =
1

2
σijεij (3.3)

In a general case the Jk integrals are path depended, and in the particular case of Mode I
type problems, the J1 integral (known as J-integral) is independent to the path [43]. It can
also be shown that when J is calculated along a contour around a crack tip, it represents
the change in potential energy for a virtual crack extension da. The total potential energy
of a two-dimensional domain including a traction free crack that is surrounded by a contour
curve Γ under quasi-static conditions and in the absence of body forces can be defined as (for
further details see [41]):

Π =

∫
Ω

WsdΩ−
∫

Γ

tiuidΓ (3.4)

For a virtual crack extension da, the change in potential energy is:

dΠ

da
=

∫
Ω

dWs

da
dΩ−

∮
Γ

(
dti
da
ui +

dui
da

ti)dΓ (3.5)

The following can be proved by applying the divergence theorem:

J = −dΠ

da
(3.6)
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where −dΠ
da

is the definition of fracture energy release for linear elastic materials: G = −dΠ
da
,

and the strain energy release rate G is related to each crack mode with the follow equations:

J1 = (K2
I +K2

II)

(
1− ν2

E

)
(3.7)

J2 = −2K2
IK

2
II

(
1− ν2

E

)
(3.8)

where E is Young’s modulus and ν is Poisson’s ratio of the material.

Li et al. [44] proposed a method for computing the J-Integral using the area inside the
contour Γ′ by introducing a q function, which is a smooth function that takes the value of 1
in Γε and 0 in Γ. Using the Divergence theorem, it can be proof that the J-Integral is equal
to

J =

∫
A

[
σij
∂ui
∂x
−Wδ1i

]
∂q1

∂xj
dA (3.9)

In FEM, usually the inner contour Γε is often taken as the crack tip, and so A natu-
rally corresponds to the area inside Γ. The boundary Γ should also coincide with element
boundaries to facilitate numerical calculations.

3.2.2 Problem Formulation for FEM

This section briefly discusses the strong and weak formulation for a 2-D crack propagation
problem.

Strong Form

Consider a Body Ω with a boundary Γ as in Figure 3.6. The boundary Γ is composed of Γū,
Γt̄ and ΓC such that Γ = ΓC +Γu+Γt. Γū is the boundary with Dirichlet Conditions (Known
displacement ū), Γt̄ is the boundary with Neumann Conditions (Known traction t̄) and Γc is
the crack surface (which is traction-free), composed by two faces: Γc+ and Γc− .

The strong form of the elastostatics equation in the absence of body forces is:

5 ·σ = 0 (3.10)

with the following boundary conditions:

σ · n = t̄ on Γt̄ (3.11)
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Figure 3.6: Problem formulation.
Source: adapted from [42].

σ · n = 0 on Γc+ (3.12)

σ · n = 0 on Γc− (3.13)

u = ū on Γū (3.14)

where n is the unit outward normal, σ is the stress tensor and u is the displacement vector.

The relation between the strain tensor ε and displacement vector is given by:

ε(u) =
1

2
[5u+ (5u)T ] (3.15)

while the relation between the stress tensor and strain tensor is given by Hooke’s law:

σ(u) = C : ε(u) (3.16)

where C is the Hooke’s tensor (4th order) and : is the double dot product. Equation (3.16)
can be written in index notation as:

σij = Cijklεkl (3.17)

In 2D, the stresses and strains component of σ and ε can we written as:
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σ =


σx
σy
σxy

 (3.18)

ε =


εx
εy
εxy

 (3.19)

For the plane stress case and isotropic material, the Hooke’s tensor C can be written as:

C =
E

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

 (plane stress) (3.20)

and for plane strain problems with isotropic material, the Hooke’s tensor C can be written
as:

C =
E

(1 + ν) (1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

 (plane strain) (3.21)

Weak Form

The Weak form of the equilibrium equation is given by:

∫
Ω

(σ(u) : ε(w)) dΩ =

∫
Γ

(t̄ ·w) dΓ (3.22)

where w belongs to the space of all vector functions whose derivatives are square-integrable
which vanish on Ωu and are discontinuous on Ωc. u belongs to the space of all vector func-
tions whose derivatives are square-integrable which satisfy the essential boundary condition.
Details of this can be found at Appendix A.

Finite Element Method - FEM

The Finite Element Method (FEM) is a widely numerical technique used to obtain an ap-
proximated solution of the distribution field variables (in this work: strains, stresses and
displacements) which is difficult to obtain analytically. It is done by dividing the domain
(discretizing the problem) into a set of elements, where each element is formed by nodes. The
continuous field variable is approximated by shape functions in each element. The discrete
values of the field variable at the node are the unknown. Each element is related to the
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others by a governing equation (in this work it is the weak form of the problem: Equation
(3.22)). This equation leads to different algebraic relations between the unknown variables.
The complete procedure to obtain and solve this method goes as follows:

Domain Discretization The first step is to divide the solid body Ω into N elements Ωe,
such that each one cannot overlap and the union of the N elements must be Ω. Each element
Ωe is formed by nodes which are connected in a predefined consistent way to create the
connectivity of the system.

This process is called meshing and is done by the so called pre-processor in the commercial
FEM software. (See Figure 3.7)

Figure 3.7: Example of a mesh with numbered elements, local and global coordinate system.
Source: [45].

Displacement Interpolation: The second step is to interpolate the main function, in this
case the displacement u from the weak form problem (Equation (3.22)). This interpolation
is done by the Shape Functions N. Let u be the displacement of a point, uh the displacement
of the nodes (which is the unknown value that FEM wants to find), nd the number of nodes
and nf the degree of freedom of each node. The displacement u can be approximated by:

u(x, y) =

nd∑
i=1

Ni · uh(xi, yi) (3.23)
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In Equation (3.23) Ni is the matrix of shape functions related to the node i, which is
arranged as:

Ni =


Ni1 0 0 0
0 Ni2 0 0
0 0 ... 0
0 0 0 Ninf

 (3.24)

Formulation of FEM in each element: After Discretizing the domain and obtaining
the shape functions, the weak form of the problem (Equation (3.22)) must be moved from the
global coordinate system to the local coordinate system. In the FEM context, this is done by
selecting the weight function w as the shape functions N to then apply certain properties of
N which reduce the weak form to a set of local equations per element [45, 46]. This results
in a linear algebraic equation for each element:

Ke ·Ue = fe (3.25)

where Ke is the stiffness matrix of the element in the local coordinate system, Ue is the
displacement of the element in the local system and fe is the force matrix in the local
system.

Assembly of the global equation: Given that there is one system of equations per
element, and adjacent elements share nodes, the Equation (3.25) must be assembled to obtain
equation:

K ·U = f (3.26)

where K is known as the global stiffness matrix, U is the vector containing unknown values
of uh and f is the force field.

Application of boundary conditions: After assembling the global equation the Dirichlet
and Neumann boundary conditions need to be applied. The Neumann conditions are applied
in the formulation of the weak form, while the Dirichlet boundary conditions are imposed to
the global assembly equation (Equation (3.26)).

Solving the equation: The final step in the FEM procedure is to solve Equation (3.26),
which is done by inverting the stiffness matrix K:

U = K−1 · f (3.27)
With this, we only have to use Equation (3.23) to obtain the displacement field u.
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Shape Functions

All the FEM formulation is based on a coordinate system. The mesh is described in general
coordinates but each shape function is described in a local coordinate system (see Figure
3.7). The definition of the shape functions is done in a local coordinate system so it can be
used for any element, independent of the element’s size.

The shape functions N have the following properties:

a. Consistency property: The consistency property states that if the complete order of
monomial used to build Ni is k, then the shape function is said to possess a consistency
Ck.

b. Reproduction property: The reproduction property says that if there is a function f(x)
which can be written in terms of

f(x) =
k∑
j

pj(x) · βj (3.28)

where pj are monomials and βj are constants. So there exists a set of fi such that:

f(x) =
∑

Ni · fi (3.29)

c. Linear Independence: The shape functions meet the property of linear independence.

d. Delta Function property: The shape functions have the delta function property:

Ni(xj) = δi,j =

{
1 , if i = j

0 , otherwise (3.30)

e. Partition of unity property: The shape functions form a partition of the unity, i.e. :

∑
Ni(x) = 1 (3.31)

at any x

One of the most used shape functions is the linear shape function. In Figure 3.8, there is
an example of a 2D element and its transformation from the global coordinate system x and
y to the local coordinates ξ and η.

As an example, the Bi-linear shape functions for a 2D element are (see Figure 3.9):

N1(ξ, η) =
1

2
· (1− ξ) · 1

2
· (1− η) (3.32)
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Figure 3.8: Relationship between global and local coordinates in a 2D element.
Source: prepared by the author.

N2(ξ, η) =
1

2
· (1− ξ) · 1

2
· (1 + η) (3.33)

N3(ξ, η) =
1

2
· (1 + ξ) · 1

2
· (1− η) (3.34)

N4(ξ, η) =
1

2
· (1 + ξ) · 1

2
· (1 + η) (3.35)
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(a) N1 (b) N2

(c) N3 (d) N4

Figure 3.9: Bi-linear shape functions N1, N2, N3 and N4 for a 2D element. Source: Prepared
by the author.

3.2.3 Isogeometric Analysis - IGA

This section briefly reviews the basic concepts of IGA.

Non Uniform Rational B-Spline NURBS

Let Ξ = ξ0, ..., ξn+p+1 be a non-decreasing sequence of real numbers, i.e., ξi < ξi+1, i =
0, ..., n + p + 1. The ξi are called knots and Ξ is called the knot vector. n is the number of
basis functions which comprise the NURBS and p is the polynomial order of the NURBS. If
knots are equally-spaced in the parametric space, they are said to be uniform. If they are
unequally spaced, then they are non-uniform.

A p− th degree NURBS curve is defined by:
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C(ξ) =
n∑
i=1

Ri,p(ξ)Pi (3.36)

where Pi are the control points of the curve and Ri,p are the Rational basis functions, defined
by:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=0 Nj,p(ξ)wj

(3.37)

where wi are the weights associated to each Ri,p(ξ) and Ni,p(ξ) are the p-th degree B-Spline
basis functions, which are defined in a recursive way:

Ni,0(ξ) =

{
1 if ξi < ξ < ξi+1

0 otherwise

Ni,p(ξ) =
ξ − ξi
ξi+1 − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (3.38)

Figure 3.10 shows an example of a 2D B-spline curve. The Control points are denoted by
the red dots and the curve is denoted by the blue line.

Figure 3.10: B-spline, piece-wise quadratic curve in 2D. Control point locations are denoted
by red dots.

Source: [6].

Analogously, a NURBS surface of p-th degree in the ξ direction and q-th degree in the η
direction is defined by:

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Pij (3.39)
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where Pij is a set of n×m bidirectional control net and Rp,q
i,j is defined by:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)∑n
î

∑m
ĵ Nî,p(ξ)Mĵ,qwî,ĵ

(3.40)

where Nî,p(ξ) and Mĵ,q are B-splines functions defined on knots sets Ξ1 and Ξ2, respectively.

Figure 3.11 shows an example of 2D basis functions of order p = q = 1 (bi-linear),
p = q = 2 (bi-quadratic) and p = q = 3 (bi-cubic). For the bi-linear there are four corner
basis function (the same as the standard element method, Figure 3.9), there are four corner
basis functions, four edge basis functions and one internal basis function for bi-quadratic
and there are four corner basis functions, eight edge basis functions and one internal basis
function for bi-cubic.

The B-spline basis functions have the following properties:

• Linear independence.
• Partition of unity.
• Compact support for each Ni,pin the interval [ui, ui+p+1].
• Non-negative basis functions.

Since NURBS are transformations of the B-spline basis functions they inherit their main
properties and obtain more. Some of them include:

• Partition of unity.
• Continuity and support of B-spline.
• Affine transformations in a physical space are achieved by applying them to the control

points. This means NURBS have the property of affine covariance.
• If the weights of all control points are equal, NURBS become B-splines.
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(a) Bi-linear NURBS: Corner
basis function

(b) Bi-quadratic NURBS:
Corner basis function

(c) Bi-quadratic NURBS:
Edge basis function

(d) Bi-quadratic NURBS: In-
ternal basis function

(e) Bi-cubic NURBS: Corner
basis function

(f) Bi-cubic NURBS: Edge ba-
sis function

(g) Bi-cubic NURBS: Internal
basis function

Figure 3.11: Bi-linear, Bi-quadratic and Bi-cubic basis function for a uniform knot vector
Ξ1 = Ξ2 = {0, 1, 2, 3, 4, ...}. Source: prepared by the author.

Solution Discretization

In the NURBS based Isogeometric concept, the physical field is approximated by the same
NURBS basis functions as those used to describe the geometry. The physical domain is
denoted by Ω and the parametric domain by Ω̂ (which is the domain that includes the knot
vector), the mapping from the parametric domain to the physical domain is then given by:

X =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ) · Pij (3.41)

where ξ = (ξ, η) are the parametric coordinates from the NURBS system, X = (x, y) are the
physical coordinates, Rp,q

i,j are the basis of NURBS functions and Pij are the control points.
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The isoparametric formulation for the displacement is:

u =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ) · uij (3.42)

where uij are the control variables. In this formulation an element is defined in the parameter
space as an interval between two consecutive non-repeated knots [ξa, ξb]. By applying this
formulation to the weak form equation (Equation (3.22)) the same equation as in Equation
(3.26) is obtained with the control variables as the unknowns. The details can be found in
[47]

Isogeometric Analysis - IGA

Since IGA uses NURBS to match the geometry exactly, it slightly changes the way the FEM
algorithm works. NURBS are defined on "patches" rather than elements. Patches play the
role of sub-domains within element types and material model assumed to be uniform [6].

A summary of the similarities and differences between FEA and IGA is presented in Table
3.1. In [6] and [48] expand further in detail.

Table 3.1: Comparison between FEA and IGA based on NURBS

Comparison of Finite Element Analysis and Isogeometric Analysis based on NURBS
Differences

Finite Element Analysis Isogeometric Analysis
Nodal points Control Points
Nodal Variables Control Variables
Mesh Knots
Basis interpolates nodal points and variables Basis does not interpolate control points and variables
Approximate geometry Exact geometry
Gibbs phenomena Variation diminishing
Sub-domains Patches
Polynomial basis NURBS Basis

Similarities
Compact support
Partition of unity

Isoparametric concept
Affine covariance
Patch test satisfied

Source: Adapted from [6].

According to Hughes, the framework of IGA is:

a. A mesh for NURBS patch is defined by the product of knot vector. For a 2D problem
it distinguishes between the physical space given by the coordinates (x, y) and the
parametric space given by a NURBS plane (ξ, η).
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b. Knot spans subdivide the domain into "elements".

c. The support of each basis function consists of a small number of "elements".

d. The control points associated with the basis functions define the geometry.

e. The isoparametric concept is applied to the unknown field (e.g., displacement). The
field is represented in terms of the same basis functions as the geometry. The coefficients
of the basis functions are the degrees-of-freedom.

f. Arrays constructed from isoparametric NURBS patches can be assembled into global
arrays in the same way as finite elements.

g. Boundary conditions are applied in a similar way as in the FEM. Neumann boundary
conditions are satisfied naturally, while Dirichlet boundary conditions are applied to
the control variables (using the affine covariance property of the NURBS).

h. Solve the problem the same way as in the FEM (Equation (3.27)) to find the coefficients
of the basis functions of the field (uij) which will be use to approximate the solution
in every point of the physical space by using the transformation between the physical
and parametric space.

3.2.4 Extended Finite Element Method

In 1996 Melek and Babuska [49] introduced the concept of Partition of the Unity Finite
Element Method (PUFEM). The main idea is to define a set of m functions fk(x) within a
domain Ωpu such that:

m∑
k=1

fk(x) = 1 (3.43)

with the following property for any g(x) function:

m∑
k=1

(fk(x)g(x)) = g(x) (3.44)

In the FEM the shape functions Nj are a set of Partition of Unity (PU) functions.

The concept of partition of unity provides a mathematical framework for the development
of an enriched solution, which is used by the XFEM method. Further details can be found
in Mohammadi [41].
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Enrichment

Theoretically speaking, the concept of enrichment consist in to increase the order of com-
pleteness that can be achieved. It is done with the goal to increase the accuracy of the
solution (especially in cases like crack tip solution).

The choice of the enriched function depends on the a priory knowledge about the solu-
tion of the problem. For instance, in a crack analysis, enrichment functions represent the
asymptotic behavior of the solution near the crack tip [41].

There are two types of enrichment procedures: Intrinsic enrichment and Extrinsic enrich-
ment. The first one consists in adding new basis functions to the shape functions N and
proceed with the normal FEM procedure. On the other hand, the extrinsic enrichment con-
sists in adding new degrees of freedom (DOF) to the system and using a new basis of linear
independent functions for those enriched degrees, i.e. the solution is defined in the form:

u(x, y) =
∑

Ni(x, y) · uh +
∑

Nk(x, y)
∑

cl · fl(x, y) (3.45)

where cl are the new degrees related to the fl enrichment functions. This type of enrichment
involves a new assembly procedure in order to include the new degrees of freedom into the
Equation (3.26). This approach is known as Partition of Unity FEM (PUFEM).

Methods such as the PUFEM and the Generalized Finite Element Method(GFEM) use
both intrinsic and extrinsic enrichment. The PUFEM uses the classical finite element shape
functions Nj(x) in both types of enrichment. In the GFEM, different shape functions are
used for the classical and enriched parts of the approximation.

The Extended Finite Element Method (XFEM), proposed by Moës et al. [4], uses the same
concept of intrinsic and extrinsic enrichment but instead of applying it in all the domain,
the enrichment is applied only at a local level. For example, in crack problems only a small
region around the crack tip is enriched.

In the framework of crack tip problems, Moës et al. [4] implemented a discontinuous
extrinsic enrichment by using a Heaviside function enrichment for the nodes related to the
crack face and an asymptotic enrichment for the nodes related to the crack tip. Figure 3.12
shows a crack modeling mesh with blue circles representing the Heaviside enrichment and
red squares representing the crack tip enrichment. The following equation shows both types
of enrichment:

u(x, y) =
∑

Ni(x, y) · uh +
∑

Nj(x, y) · dj ·H(x, y) +
∑

Nk(x, y)
∑

cl · fl(x, y) (3.46)

where dj are the new degrees of freedom related to the crack face and cl are the new degrees
of freedom related to the crack tip. The Heaviside function is defined in the local crack
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coordinate system as follows:

H(x, y) =

{
1 for nodes above the crack
−1 for nodes bellow the crack (3.47)

Figure 3.12: Enrichment: Heaviside enrichment is represented by blue circles and crack tip
enrichment is represented by red squares.

Source: [50].

The basis functions for the crack tip enrichment are defined as:

{fl(r, θ)} =
{√

rsin(θ/2),
√
rcos(θ/2),

√
rsin(θ/2)sin(θ),

√
rcos(θ/2)sin(θ)

}
(3.48)

where (r, θ) is the local polar coordinate system at the crack tip (see Figure 3.13).

Figure 3.13: Local and global coordinates at the crack tip.
Source: [9].

The transformation between the local polar coordinate system to the local Cartesian
coordinate system at the crack tip is as follows:

{
r =

√
x2 + y2

θ = arctan( y
x
)

(3.49)
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The following is the transformation between the local Cartesian coordinate system at the
crack tip and the physical space:

{
x
y

}
=

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

]{
X1 −Xct

Y1 − Yct

}
(3.50)

where X1, Y1 are the physical coordinates (defined by Equation (3.41)), Xct, Yct are the crack
tip coordinates at the physical space and φ is the angle between the crack tip with respect
to the horizontal line.

3.2.5 Extended Isogeometric Analysis - XIGA

By taking into account the pros of both XFEM and IGA, the Extended Isogeometric Analysis
(XIGA) is proposed. This combined approach allows for the entire crack to be represented
independently of the mesh. The isogeometric approximation is locally enriched to simulate
discontinuities and singular fields. According to the location of any crack, a few degrees of
freedom (DOF) are added to the selected control points of the original IGA model near the
crack and contribute to the overall approximation through the use of enrichment functions.

The generalization of Equation (3.23) with the NURBS functions of the IGA and the
enrichment of the XFEM is:

uh(ξ) =
ne∑
i=1

Ri(ξ) · ui +

ncf∑
j=1

Rj(ξ) ·H(ξ) · dj +
nct∑
k=1

Rk(ξ) · (
nef∑
l=1

fl(ξ) · cl) (3.51)

where ξ = (ξ1, ξ2) represents the parametric coordinates from the NURBS system, Ri is the
basis of NURBS functions, ne is the number of control points in the parametric system, ncf is
the number of enriched control points related to the crack face, nct is the number of enriched
control points related to the crack tip, nef is the number of enrichment basis functions, H(ξ)
is the Heaviside function, fk represents the crack tip enrichment functions, dj and Ck are
the additional DOF related to the crack face and crack tip, respectively.

The main steps for an XIGA method are as follows:

Crack Modeling

Given the framework of Fracture Mechanics and NURBS, the cracks are modeled as NURBS
curves (Equation (3.36)) with no limitations in simple geometries (Figure 3.14 shows an
example of a crack modeled as a NURBS curve). As the enrichment for both crack faces and
crack tips takes place, this will involve the creation of routines, allowing the identifications
of all parameters necessary for identifying a NURBS patch whose support contains a crack
tip or crack face.
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Figure 3.14: A crack as a NURBS curve.
Source: prepared by the author.

Selection of Enriched Control Points

For the selection of the enriched control points the same procedure used in [8] will take place:

In IGA it is know that there are the same number of basis functions as control points,
therefore each basis function can be uniquely assigned to its corresponding control point.
Further, each basis function has its own support and becomes zero outside it. Taking into
account that, the follow criteria is applied:

a. Heaviside enrichment: The control points associated to the basis functions whose sup-
port contains a crack face will be enriched by the Heaviside functions.

b. Crack tip enrichment: The control points associated to the basis functions whose sup-
port contains a crack tip will be enriched by the crack tip functions.

It is necessary to clarify that the control points selected for both Heaviside and crack tip
enrichment are only considered as crack tip enriched control points. Figure 3.15 exemplifies
this. There are three highlighted control points on the Ω domain : Pj (red circle), Pk (blue
circle) and Pl (green circle) with their respective basis functions support (dashed circles).
There is also the crack with their respective crack tip (xct). Since the green dashed circle
is crossed by the crack, the control point Pl is enriched by the Heaviside criteria. The blue
dashed circle is crossed by the crack and also has the crack tip, so the control point Pk
is enriched by the crack tip criteria. The red dashed circle is not crossed by the crack or
contains a crack tip, hence the control point Pj is not enriched.
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Figure 3.15: Selection of enriched Control points. Pj, Pk and Pl are three control points.
The dashed circles are their basis support. The control point Pk is enriched by the crack tip
criteria, the control point Pl is enriched by the Heaviside criteria and the control point Pj is
not enriched. Source: prepared by the author.

Numerical Integration

Given that the weak form problem in the IGA formulation is being integrated, the Gauss
quadrature is used for that procedure. In the case that the element contains a crack, it will
be separated into cases of crack face integration and crack tip integration. In both cases the
Gauss quadrature procedure is used.

Extended Isogeometric Formulation

New assembled matrix for both the global stiffness matrixK and global force vector F must
be performed to include the new DOF incorporated by the enrichment. This is the same
assembly process taken place in the XFEM method and further details can be found in [41].

The governing equation for the extended isogeometric analysis can be written as:

KenrUenr = Fenr (3.52)

where Kenr is the enriched stiffness matrix, Fenr is the Force Vector and Uenr is the enriched
displacement vector:

Uenr =
{
U d c1 c2 c3 c4

}T (3.53)
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where U is the vector of DOF related to the normal IGA, d is the vector of DOF related to
Heaviside enrichment and c1, c2, c3 and c4 are the DOF related to the crack tip enrichment
functions.

Kenr and Fenr are assembled from the element stiffness matrix as:

Kenr =


Kuu Kud Kuc1 Kuc2 Kuc3 Kuc4

Kdu Kdd Kdc1 Kdc2 Kdc3 Kdc4

Kc1u Kc1d Kc1c1 Kc1c2 Kc1c3 Kc1c4

Kc2u Kc2d Kc2c1 Kc2c2 Kc2c3 Kc2c4

Kc3u Kc3d Kc3c1 Kc3c2 Kc3c3 Kc3c4

Kc4u Kc4d Kc4c1 Kc4c2 Kc4c3 Kc4c4

 (3.54)

Fenr =
{
Fu Fd Fc1 Fc2 Fc3 Fc4

}T (3.55)

where the size of each quadrant of Kenr and Fenr is given by the number of control points
ne, ncf , nct and the number of enrichment basis functions nef . Each component of the Kenr

and Fenr can we written as:

Krs
ij =

∫
Ωe

(Br
i )
TCBs

jdΩ (r, s = u, d, c1, c2, c3, c4) (3.56)

Fu
i =

∫
Γt̄

RT
i t̄dΓ (3.57)

Fd
i =

∫
Γt̄

RT
i Ht̄dΓ (3.58)

Fcα
i =

∫
Γt̄

RT
i fcα t̄dΓ (α = 1, 2, 3, 4) (3.59)

Bu
i =

∂Ri∂x
0

0 ∂Ri
∂y

∂Ri
∂y

∂Ri
∂x

 (3.60)

Bd
i =

∂Ri∂x
H 0

0 ∂Ri
∂y
H

∂Ri
∂y
H ∂Ri

∂x
H

 (3.61)

Bcα
i =


∂Rifcα
∂x

0

0 ∂Rifcα
∂y

∂Rifcα
∂y

∂Rifcα
∂x

 (α = 1, 2, 3, 4) (3.62)
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where H is the Heaviside function (Equation (3.47)) and fcα (α =1,2,3,4) represents the crack
tip enrichment function (Equation (3.48)).

The derivative of the basis functions with respect to the physical coordinates can be
calculated as

[ ∂Ri
∂X1
∂Ri
∂X2

]
= J−1

[
∂Ri
∂ξ1
∂Ri
∂ξ2

]
(3.63)

where the Jacobian matrix J for the transformation between physical and parametric spaces
is defined as

J =

[
∂X1

∂ξ1

∂X2

∂ξ1
∂X1

∂ξ2

∂X2

∂ξ2

]
(3.64)

and the NURBS derivatives are computed as in [6].

3.3 Displacements, Stresses and Strains

By solving the Equation (3.27) with the stiffness matrix and force vector obtained with the
results of the previous section, the next step is to obtain the approximated displacements
uh, stresses and strains. The displacement field uh is obtained by computing the Equation
(3.51) using the controls points obtained by the resolution of Equation (3.27). The strains
are retrieved from uh using the follow equation:

ε(ξ) = Luh(ξ) (3.65)

where L is the differential operator defined as

L =

 ∂
∂X1

0

0 ∂
∂X2

∂
∂X2

∂
∂X1

 (3.66)

The stresses are computed using the Hooke’s law (Equation (3.16)). Finally, the von Mises
stress is computed as:

σvm =
√
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy (3.67)
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3.4 Error Estimates

Three different types of measurement for relative error are calculated to assess the accuracy
of the method: L2 norm of the error, H1 norm of the error and Energy norm of the error.
The equations for each measurement are as follows:

‖e‖L2

‖u‖L2

=

√∫
Ω

(u− uh)T (u− uh)dΩ√∫
Ω
uTudΩ

(3.68)

‖e‖H1

‖u‖H1

=

√∫
Ω

[
(u− uh)T (u− uh) + (∂u

∂x
− ∂uh

∂x
)T (∂u

∂x
− ∂uh

∂x
) + (∂u

∂y
− ∂uh

∂y
)T (∂u

∂y
− ∂uh

∂y
)
]

dΩ√∫
Ω

[
uTu + ∂u

∂x

T ∂u
∂x

+ ∂u
∂y

T ∂u
∂y

]
dΩ

(3.69)

‖e‖E
‖u‖E

=

√∫
Ω

(ε− εh)T (σ − σh)dΩ√∫
Ω
εTσdΩ

(3.70)
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Chapter 4

Implementation

This chapter discusses the main topics of the implementation of enrichment procedures and
post-process procedures for the Extended Isogeometric formulation.

4.1 Enrichment of the IGA Code (XIGA)

For the implementation of the enrichment method in Isogeometric Analysis, the follow func-
tions are created:

4.1.1 Crack-Element Identification

A Crack-Element identification routine is implemented in order to select which control points
are enriched by Heaviside or Crack tip criteria. Given that the crack is described as a NURBS
curve (Equation (3.36)) and the body is described as a NURBS surface (Equation (3.41))
where each one has its own parametric space, the identification of the enriched Control
points is done in the physical space by determining whether or not each element is cut by
the crack. This process is explained in algorithm 1. This algorithm also saves the principal
data that will be used during the integration and assembly process, such as the element’s
identification number, coordinates in the parametric space of the intersection between the
crack and element, and NURBS functions which are cut by the crack. In this procedure the
function Crack cuts element is used, which is explained in Algorithm 2.

In Algorithm 2, the function crack intersects edge determines if the crack collides with an
edge of an element by doing a Newton-Raphson algorithm.
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Algorithm 1: Crack-element identification algorithm for finding which elements are cut
by the crack and store the principal information related to it.

1 Crack-Element identification ;
Input : Physical domain X and crack C
Output: List of elements cuts by crack and principal parameters

2 for each element Xi on X do
3 if Crack cuts elements then
4 if Crack Tip is inside the element then
5 Save index number for crack tip enrichment;
6 Save parametric coordinates of the intersection between crack and element;
7 Save parametric coordinates of the crack tip inside the element;
8 Save shape functions support of the element;
9 else

10 Save index number for Heaviside enrichment;
11 Save parametric coordinates of the two intersections between the crack and

the element;
12 Save shape functions support of the element;
13 end
14 else

15 end
16 end
17 for each shape function Rj on Heaviside enrichment do
18 if Rj is on crack tip shape functions support list then
19 Delete Rj from Heaviside Enrichment
20 else

21 end
22 end
23 return Index numbers for Heaviside and crack tip enrichment. Shape function list for

Heaviside and crack tip enrichment.

Algorithm 2: Crack cuts element algorithm to determine whether an element is cut or
not by crack.

1 Crack cuts element ;
Input : Physical domain Xi of an element and crack C
Output: True if Crack cuts the element, otherwise false

2 for each edge of the element Xi do
3 if crack intersects edge then
4 return True;
5 else

6 end
7 end
8 return False;
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4.1.2 Crack Mapping Process

Given that the crack C(ξc) is defined as a NURBS curve and the body X(ξ, η) is defined as
a NURBS surface, each one with its own parametric space, it is necessary to choose a unique
parametric space to work with. In this case, it is optimal to work in the parametric space
of the body. In order to do that the crack is mapped from the physical space to the body
parametric space (see Figure 4.1).

Figure 4.1: Scheme of crack mapping from the physical space to the field parametric space.
Source: prepared by the author.

This is done by an inverse-map algorithm, which finds the point (ξp, ηp) in the parametric
space such that X(ξp, ηp) = C(ξc). Algorithm 3 explains the crack mapping process. This
is done by splitting the crack’s parametric space into n points ξci and then finding their
value C(ξci) = (xi, yi) on the physical space. In this Algorithm the inverse map function
computes the value ξ, η such that (x, y) = X(ξ, η). This function is implemented based on
the algorithm proposed by Piegl in [51].

Algorithm 3: Crack mapping algorithm to determine the field’s parametric coordinates
of the crack.

1 Crack mapping ;
Input : Physical domain X and crack C
Output: vectors ξp and ηp)

2 for i = 0 ; i < n ; i+ + do
3 compute ξci ;
4 compute C(ξci) ;
5 [ξpi , ηpi ] = inverse_map(C(ξci)) ;
6 end
7 return vectors ξp and ηp;
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4.1.3 Crack-Element Integration

The procedure for numerical integration is performed by the Gaussian quadrature process.
This is done in the parametric space of the field approximation. In the case of elements which
are cut by the crack or contain a crack tip, the integral is split into several parts in order to
integrate avoiding discontinuity. This process can be divided into two cases: elements cut by
crack and elements containing the crack tip. Figure 4.2 outlines both cases:

Figure 4.2: Different types of Crack-element Integration represented on the parametric space
(crack represented by orange line). Source: prepared by the author.

Elements cut by crack

Given that elements are squares in the parametric space, the crack can only cross the element
in the following cases (Figure 4.3):

Figure 4.3: Two different examples of crack cutting a square element.
Source: prepared by the author.

Considering that, the algorithm required to accomplish the numerical integration consists
of reparametrizing the split elements into square ones. It is done by the NURBS trimming
algorithm proposed by Beers [11, 12]. The explanation of the mapping technique for elements
cut by the crack is illustrated in Figure 4.4.
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Figure 4.4: Mapping technique for elements cut by the crack.
Source: prepared by the author.

It starts with mapping the two trimming curves defining the upper and lower boundaries
of the trimmed surface (Figure 4.5):

Figure 4.5: Detail on a trimmed element. CI and CII are the two trimming curves.
Source: prepared by the author.

CI = (ξI , ηI) (4.1)

CII = (ξII , ηII) (4.2)

where

ξI(ξ̂) =

NI∑
n=1

RI
n(ξ̂) · ξIn (4.3)

ηI(ξ̂) =

NI∑
n=1

RI
n(ξ̂) · ηIn (4.4)

ξII(ξ̂) =

NII∑
n=1

RII
n (ξ̂) · ξIIn (4.5)
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ηII(ξ̂) =

NII∑
n=1

RII
n (ξ̂) · ηIIn (4.6)

where RI
n(ξ̂), RI

n(η̂) are one-dimensional NURBS basis functions defining the trimming
curves, N I , N II are the number of control points and ξI ,ηI and ξII ,ηII are the (ξ, η) co-
ordinates of the control points. The superscript I and II refers to the bottom and top curve
respectively.

Linear interpolation is used between the curves to map the trimmed area:

ξ(ξ̂, η̂) = N1(η̂) · ξI(ξ̂) +N2(η̂) · ξII(ξ̂) (4.7)

η(ξ̂, η̂) = N1(η̂) · ηI(ξ̂) +N2(η̂) · ηII(ξ̂) (4.8)

Finally, the map from the (ξ̂, η̂) system to the global (x, y) system is:

X =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ̂, η̂)Pij (4.9)

In our case, one of the trimming NURBS is the boundary of the element and the other one
is the part of the crack that lies on the element. The algorithm implemented for the crack
detection allow us to know the parameters of the crack that are involve in this process. Given
that the crack is know in the physical space and has its own parametrization as a NURBS
curve, it is necessary to perform an inverse mapping process from the physical space to the
parametric space (which is explained in section 4.1.2). Also, given that Gauss quadrature is
performed directly inside the trimmed element, the whole process is resumed in Algorithm
4.

Elements with the crack tip

In this case, the elements can be split into a sub-element with the crack and a sub-element
without the crack, applying the elements cut by crack procedure to the sub-elements which
include the crack. The other sub-element is integrated by the normal Gaussian quadrature
procedure. The explanation of this mapping technique for elements with the crack tip is
illustrated in Figure 4.6.
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Algorithm 4: Gauss quadrature performed over a trimmed element.
1 Trimmed Element Gauss Quadrature ;
Input : function f , Element cut by the crack, crack beginning and end in the

element, Gauss points and weights.
Output: Numerical integration S over a trimmed element

2 for each Gauss point in ξ direction do
3 for each Gauss point in η direction do
4 Calculate ξgp and ugp;
5 Calculate ηgp by performing a linear interpolation between the element

boundary and the inverse_map(C(ξugp));
6 Perform the integration S+ = wgp × f(ξgp, ηugp)

7 end
8 end
9 return S;

Figure 4.6: Mapping technique for elements with the crack tip.
Source: prepared by the author.

4.1.4 Heaviside Enrichment

The Heaviside enrichment is implemented using the formulation for XIGA. This process
is done by implementing the assembly of the stiffness matrix and force vector. Algorithm 5
explains the assembly process of the Heaviside enriched stiffness matrix. Algorithm 6 explains
the assembly process of the Heaviside enriched force vector:
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Algorithm 5: Stiffness matrix algorithm assembly with Heaviside enrichment.
1 Stiffness Heaviside Enrichment Matrix ;
Input : List of elements cut by the crack and their principal parameters, Physical

domain X, crack C and Stiffness Matrix K
Output: Stiffness Heaviside Enrichment Matrix K

2 for each control point Ui do
3 for each control point Uj do
4 Calculate Kuu

ij from Equation (3.56);
5 Assembly Kuu

ij to The global stiffness matrix K;
6 if we are in a Heaviside Enrichment control point then
7 Calculate Kud

ij ,Kdu
ij and Kdd

ij from Equation (3.56);
8 Assembly to The global stiffness matrix K

9 else

10 end
11 end
12 end
13 return K;

Algorithm 6: Force vector algorithm assembly with Heaviside enrichment.
1 Force Heaviside Enrichment Vector ;
Input : List of elements cut by the crack and their principal parameters, Physical

domain X, crack C and Force Vector F
Output: Force Heaviside Enrichment Vector K

2 for each control point Ui do
3 Calculate Fu

i from Equation (3.57);
4 Assembly Fu

i to The global Force vector F;
5 if we are in a Heaviside Enrichment control point then
6 Calculate Fd

i from Equation (3.58);
7 Assembly to The global Force vector F
8 else

9 end
10 end
11 return F;

4.1.5 Heaviside and Crack Tip Enrichment

Both Heaviside and Crack Tip enrichment are implemented using the formulation for XIGA.
This process is done by implementing a new assembly of the stiffness matrix and force vector.
Algorithm 7 explains the assembly process for the stiffness matrix. Algorithm 8 explains the
assembly process for the enriched force vector.

40



Algorithm 7: Stiffness matrix algorithm assembly with Heaviside and Crack Tip en-
richment.

1 Stiffness Enrichment Matrix ;
Input : List of elements cut by the crack and their principal parameters, Physical

domain X, crack C and Stiffness Matrix K
Output: Stiffness Enrichment Matrix K

2 for each control point Ui do
3 for each control point Uj do
4 Calculate Kuu

ij from Equation (3.56);
5 Assembly Kuu

ij to The global stiffness matrix K;
6 if we are in a Heaviside Enrichment control point then
7 Calculate Kud

ij , Kdu
ij , Kdd

ij , Kcmd
ij and Kdcm

ij (m from 1 to 4) from Equation
(3.56);

8 Assembly to The global stiffness matrix K.
9 else if we are in Crack Tip Enrichment control point then

10 Calculate Kcmu
ij , Kucm

ij , Kcmd
ij , Kdcm

ij , Kclcm
ij and Kcmcl

ij (m and l from 1 to 4)
from Equation (3.56);

11 Assembly to The global stiffness matrix K.
12 end
13 end
14 return K;

Algorithm 8: Force vector algorithm assembly with Heaviside and Crack Tip enrich-
ment.

1 Force Enrichment Vector ;
Input : List of elements cut by the crack and their principal parameters, Physical

domain X, crack C and Force Vector F
Output: Force Heaviside Enrichment Vector K

2 for each control point Ui do
3 Calculate Fu

i from Equation (3.57);
4 Assembly Fu

i to The global Force vector F;
5 if we are in a Heaviside Enrichment control point then
6 Calculate Fd

i from Equation (3.58);
7 Assembly to The global Force vector F
8 else if we are in a Crack Tip Enrichment control point then
9 Calculate Fcm

i (m from 1 to 4) from Equation (3.59);
10 Assembly to The global Force vector F
11 end
12 return F;
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4.2 Post-Processing

4.2.1 J-Integral

For the numerical computation of the J-Integral, the domain method proposed by Li et al.
[44] is implemented. In the isogeometric approach, a smooth q-function can be defined by
the NURBS basis function as

q(ξ̂, η̂) =
n∑
i

m∑
j

Rp,q
i,j (ξ̂, η̂)Qij (4.10)

where Qij are the corresponding 3D control points. Figure 4.7 shows an example of a q
function. It can be seen that q(0.5, 0.5) = 1 and q = 0 in all the boundaries. Table 4.1 shows
the control points and weights employed to generate the q function.

Figure 4.7: q-function employed for the computation of J-integral. Source: prepared by the
author.

The derivatives of q with respect to the physical coordinates X can be computed using
the chain rule:

∂q

∂x
=

(
∂q

∂ξ̂

∂ξ̂

∂ξ
+
∂q

∂η̂

∂η̂

∂ξ

)
∂ξ

∂x
+

(
∂q

∂ξ̂

∂ξ̂

∂η
+
∂q

∂η̂

∂η̂

∂η

)
∂η

∂x
(4.11)
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∂q

∂y
=

(
∂q

∂ξ̂

∂ξ̂

∂ξ
+
∂q

∂η̂

∂η̂

∂ξ

)
∂ξ

∂y
+

(
∂q

∂ξ̂

∂ξ̂

∂η
+
∂q

∂η̂

∂η̂

∂η

)
∂η

∂y
(4.12)

where ∂ξ̂
∂ξ
, ∂η̂
∂ξ
, ∂ξ̂
∂η
, ∂η̂
∂η

are the derivatives between the parametric space and the q-space. ∂ξ
∂x
, ∂η
∂x
,

∂ξ
∂y
, ∂η
∂y

are the derivatives between the physical and the parametric space (Equation (3.63)).

Table 4.1: Control Points and weights for q function

Control Point Xij weight wij control Point Qij weight wij
(0,0,0) 1.0 (0,0.66,0) 1.0

(0.33,0,0) 1.0 (0.33,0.66,1) 1.5
(0.66,0,0) 1.0 (0.66,0.66,1) 1.5
(1,0,0) 1.0 (1,0.66,0) 1.0

(0,0.33,0) 1.0 (0,1,0) 1.0
(0.33,0.33,1) 1.5 (0.33,1,0) 1.0
(0.66,0.33,1) 1.5 (0.66,1,0) 1.0
(1,0.33,0) 1.0 (1,1,0) 1.0

Source: prepared by the author.

The expression for the J-integral is computed using the domain integral method (Equation
(3.9)). The domain for the integral is taken as the complete physical space and is computed
by the Gaussian quadrature:

J =
∑

elements
in Ω

Ngp∑
p=1

[[
σij
∂ui
∂x
−Wδ1i

]
∂q1

∂xj
det

(
∂xk

ξ̂

)]
p

wp (4.13)

where the expressions inside [ ]p are evaluated at the Gauss points, and wp are the respective
Gauss weights.

4.2.2 Error Estimates

L2, H1 and Energy norms of the error are computed using the post-process results obtained
by Equations (3.51),(3.65) and (3.66). The integrals are solved by integrating over each
element using the Gaussian quadrature:

‖e‖L2

‖u‖L2

=

√√√√ ∑
elements

in Ω

Ngp∑
p=1

[(u− uh)T (u− uh)det(J)]pwp√√√√ ∑
elements

in Ω

Ngp∑
p=1

[(uTu) det(J)]pwp

(4.14)
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‖e‖H1
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)T ( ∂u
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− ∂uh
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)T ( ∂u
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− ∂uh
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)
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det(J)
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p
wp
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Ngp∑
p=1

[(
uTu+ ∂u
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T ∂u
∂x

+ ∂u
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T ∂u
∂y

)
det(J)

]
p
wp

(4.15)

‖e‖E
‖u‖E

=

√√√√∑
elem.
in Ω

Ngp∑
p=1

[(ε− εh)T (σ − σh)det(J)]pwp√√√√∑
elem.
in Ω

Ngp∑
p=1

[(εTσ) det(J)]pwp

(4.16)

where the expressions inside [ ]p are evaluated at the Gauss points, wp are the respective
Gauss weights and det(J) is the determinant of the Jacobian transformation for the integral.
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Chapter 5

Results

The XIGA routine is tested with two numerical simulations. The first numerical simulation
consists in the problem of an infinite plate with a crack under tensile loading. It is tested
with a partial enriched IGA routine (only Heaviside enrichment) and a XIGA (Heaviside +
crack tip enrichment) routine. L2, H1 and Energy norms of the error are computed to test
the accuracy of the method. KI is computed by the J-integral to validate the results and ux,
uy, εx, εy, εxy and σvm contour plots are generated for both the numerical and the analytical
solution.

The second numerical simulation consists in the problem of a plate with a circular hole
containing a straight crack under tensile loading. It is tested with a XIGA routine using
quadratic and cubic order NURBS. L2, H1 and Energy norms of the error are also computed
to test the accuracy of the method. KI is computed by the J-integral to validate the results
and ux, uy, εx, εy, εxy and σvm contour plots are generated for both the numerical and the
analytical solution.

5.1 Infinite Plate with a Crack Under Uniform Tensile
Loading

An infinite plate containing a regular straight crack of length 2a under uniform tensile loading
σo is considered. The plate is in a plane strain state. The closed area ABCD which includes
the cl part of the crack, as depicted in Figure 5.1, is modeled. The analytical solution for the
displacement and stress fields in terms of local polar coordinates from the crack tip are:

ux(r, θ) =
2(1 + ν)√

2π

KI

E

√
rcos

θ

2
(2− 2ν − cos2 θ

2
) (5.1)

uy(r, θ) =
2(1 + ν)√

2π

KI

E

√
rsin

θ

2
(2− 2ν − cos2 θ

2
) (5.2)
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σxx(r, θ) =
KI√
2πr

cos
θ

2
(1− sinθ

2
sin

3θ

2
) (5.3)

σyy(r, θ) =
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
) (5.4)

σxy(r, θ) =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(5.5)

Figure 5.1: Geometry and loading in a center crack plate under remote tension.
Source: adapted from [9].

The boundary conditions for the top, right and bottom edges are essential boundaries,
while the left edge is considered as a natural boundary. The physical parameters are presented
in Table 5.1. The control points and weights used for the parametrization of the geometry
and the crack are presented in Table 5.2 and Table 5.3 respectively. The Knot vectors used
for the parametrization of the geometry and the crack are presented in Table 5.4 and Table
5.5 respectively. This problem is analyzed by Heaviside enriched IGA and Heaviside + Crack
tip enriched IGA to see the influence of the enrichment at the crack tip. Linear NURBS are
used for all the simulations:

Four different types of discretization has been considered to measure the accuracy and
convergence rate of this numerical simulation. This is accomplish by a h-refinement method,
which is a standard NURBS refinement procedure. The details can be found at [48]. Table 5.6
resumes the principal information for the discretization. Figure 5.2 shows the four meshes.
2× 2 Gaussian quadrature are used for the integration in each element.
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Table 5.1: Physical Parameters for Infinite Plate with a Crack Under Uniform Tensile Loading

Physical Parameters
Young’s Modulus E 10
Poisson Ratio’s ν 0.3
Mode 1 Stress Intensity Factor KI 1
geometry size AB = BC = CD = DA 2
Crack length Cl 0.5

Source: prepared by the author.

Table 5.2: Control Points and weights for Physical Domain - Numerical Simulation 1

Control Point Xij weight wij
(-1,-1) 1.0
(-1,1) 1.0
(1,-1) 1.0
(1,1) 1.0

Source: prepared by the author.

Table 5.3: Control Points and weights for crack - Numerical Simulation 1

Control Point Xij weight wij
(-1,0) 1.0
(0,0) 1.0

Source: prepared by the author.

Table 5.4: Knot vector for Physical Domain - Numerical Simulation 1

Direction Knot vector
ξ Ξ1 =

{
0, 0, 1, 1

}
η Ξ2 =

{
0, 0, 1, 1

}
Source: prepared by the author.

Table 5.5: Knot vector for crack - Numerical Simulation 1

Direction Knot vector
ξc Ξ1c =

{
0, 0, 1, 1

}
Source: prepared by the author.
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Table 5.6: Maximum edge size and number of elements for each mesh - Numerical Simulation
1

Mesh Maximum edge size h Number of Elements
1 0.333 3×3
2 0.111 9×9
3 0.037 27×27
4 0.012 81×81

Source: prepared by the author.

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 5.2: Infinite plate with a crack under uniform tensile loading: Meshes produced by
uniform h-refinement. The black line represents the crack. Source: prepared by the author.
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Figure 5.3 shows the selection of enriched Control points by the Heaviside and Crack tip
criteria for two different meshes.

Figures 5.4, 5.5 and 5.6 show the log-log L2, H1 and Energy norms of the error respectively,
obtained for Heaviside enrichment and Heaviside + Crack tip enrichment.

Figure 5.7 shows the Stress Intensity Factor K1 obtained for Heaviside enrichment and
Heaviside + Crack tip enrichment computed by J-integral using the domain method.

Figures 5.8 and 5.9 show the contour plot for the ux displacement obtained with XIGA
and the exact solution respectively. Figures 5.10 and 5.11 show the contour plot for the uy
displacement obtained with XIGA and the exact solution, respectively.

Figures 5.12 and 5.13 show the contour plot for the εx strain obtained with XIGA and
the exact solution respectively. Figures 5.14 and 5.15 show the contour plot for the εy strain
obtained with XIGA and the exact solution respectively. Figures 5.16 and 5.17 show the
contour plot for the εxy strain obtained with XIGA and the exact solution, respectively.

Figure 5.18 shows the contour plot for the equivalent von Mises stress obtained with XIGA
and Figure 5.19 shows the contour plot for the equivalent von Mises stress obtained with the
exact solution.

In all the contour plots a mesh of 81× 81 elements is used.

(a) Mesh 2 (b) Mesh 3

Figure 5.3: Control Point selection for enrichment for mesh 2 (left) and mesh 3 (right) :
Control Points marked by red squares are enriched by Heaviside function and the black ones
are enriched by the Crack tip functions. The black line represents the crack. Source: prepared
by the author.
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Figure 5.4: Heaviside and Heaviside + Crack Tip enriched IGA. Convergence in the L2 norm
upon decreasing the element size. Source: prepared by the author.
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Figure 5.5: Heaviside and Heaviside + Crack Tip enriched IGA. Convergence in the H1 norm
upon decreasing the element size. Source: prepared by the author.
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Maximum edge size h
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Figure 5.6: Heaviside and Heaviside + Crack Tip enriched IGA. Convergence in the Energy
norm upon decreasing the element size. Source: prepared by the author.
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Figure 5.7: Heaviside and Crack Tip enriched IGA. Convergence of the Stress Intensity Factor
K1 upon decreasing the element size. Source: prepared by the author.
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Figure 5.8: ux displacement contour plot generated by XIGA. Source: prepared by the author.

Figure 5.9: ux displacement contour plot generated by exact solution. Source: prepared by
the author.
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Figure 5.10: uy displacement contour plot generated by XIGA. Source: prepared by the
author.

Figure 5.11: uy displacement contour plot generated by exact solution. Source: prepared by
the author.
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Figure 5.12: εx strain contour plot generated by XIGA. Source: prepared by the author.

Figure 5.13: εx strain contour plot generated by exact solution. Source: prepared by the
author.
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Figure 5.14: εy strain contour plot generated by XIGA. Source: prepared by the author.

Figure 5.15: εy strain contour plot generated by exact solution. Source: prepared by the
author.
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Figure 5.16: εxy strain contour plot generated by XIGA. Source: prepared by the author.

Figure 5.17: εxy strain contour plot generated by exact solution. Source: prepared by the
author.
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Figure 5.18: Von Mises equivalent stress contour plot generated by XIGA. Source: prepared
by the author.

Figure 5.19: Von Mises equivalent stress contour plot generated by exact solution. Source:
prepared by the author.
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5.2 Plate with a Circular Hole Containing a Straight Crack

In the next example we consider the same analytical solution as in the previous numerical
example ( Equations (5.1, 5.2, 5.3, 5.4 and 5.5)), but applied to the geometry shown in Figure
5.20.

Figure 5.20: Geometry and loading in a plate with a circular hole containing a straight crack
under remote tension. Source: prepared by the author.

The boundary conditions for the top, right and bottom edges are essential boundaries,
while the left edge is considered as a natural boundary. The physical parameters are pre-
sented in Table 5.7. The control points and weights employed for the parametrization of
the geometry and the crack are presented in Table 5.8 and Table 5.9 respectively. The knot
vector for the parametrization of the geometry and the crack are presented in Table 5.10 and
Table 5.11 respectively. This problem is analyzed using XIGA. Quadratic and cubic NURBS
are employed for all the simulations.

Four different types of discretization has been considered to measure the accuracy and
convergence rate of this numerical simulation. This is accomplish by a h-refinement method,
which is a standard NURBS procedure. Table 5.12 resumes the principal information for the
discretization. Figure 5.21 shows the four meshes. 4 × 4 Gaussian quadrature are used for
the integration in each element.

Figures 5.22, 5.23 and 5.24 show the loglog L2, H1and Energy norms of the error respec-
tively, obtained for quadratic and cubic XIGA.

Figure 5.25 shows the Stress Intensity Factor K1 for quadratic and cubic XIGA computed
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Table 5.7: Physical Parameters for plate with a circular hole containing a straight crack

Physical Parameters
Young’s Modulus E 10
Poisson Ratio’s ν 0.3
Mode 1 Stress Intensity Factor KI 1
Hole’s radio r 0.5
geometry size 1 AB = CD 2.5
geometry size 2 BC = DA 2
Crack length Cl 1

Source: prepared by the author.

Table 5.8: Control Points and weights for Physical Domain - Numerical Simulation 2

Control Point weight Control Point weight Control Point weight
Xij wij Xij wij Xij wij

(-1.5,-1.0) 1 (0.0,-1.0) 1 (1.0,-1.0) 1
(-1.5,-0.5) 1 (0.0,-0.85) 1 (1.0,-0.75) 1
(-1.5,-0.5) 1 (0.0,-0.75) 1 (1.0,-0.65) 1
(-1.211,-0.5) 0.866 (0.0,-0.5) 1 (1.0,-0.5) 1
(-1.066,-0.25) 1 (0.0,-0.25) 1 (1.0,-0.35) 1
(-0.922,0.0) 0.866 (0.0,0.0) 1 (1.0,0.0) 1
(-1.066,0.25) 1 (0.0,0.25) 1 (1.0,0.35) 1
(-1.211,0.5) 0.866 (0.0,0.5) 1 (1.0,0.5) 1
(-1.5,0.5) 1 (0.0,0.75) 1 (1.0,0.65) 1
(-1.5,0.5) 1 (0.0,0.85) 1 (1.0,0.75) 1
(-1.5,1.0) 1 (0.0,1.0) 1 (1.0,1.0) 1

Source: prepared by the author.

Table 5.9: Control Points and weights for crack - Numerical Simulation 2

Control Point Xij weight wij
(-1,0) 1.0
(0,0) 1.0

Source: prepared by the author.

Table 5.10: Knot vector for Physical Domain - Numerical Simulation 2

Direction Knot vector
ξ Ξ1 =

{
0, 0, 0, 1, 1, 1

}
η Ξ2 =

{
0, 0, 0, 0.15, 0.3, 0.3, 0.5, 0.5, 0.7, 0.7, 0.85, 1, 1, 1

}
Source: prepared by the author.
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Table 5.11: Knot vector for crack - Numerical Simulation 2

Direction Knot vector
ξc Ξ1c =

{
0, 0, 1, 1

}
Source: prepared by the author.

Table 5.12: Maximum edge size and number of elements for each mesh - Numerical Simulation
2

Mesh Maximum edge size h Number of Elements
1 0.0971 5×3
2 0.0571 5×9
3 0.0032 15×9
4 0.0010 45×27

Source: prepared by the author.

by J-integral using the domain method.

Figures 5.26 and 5.27 show the contour plot for the ux displacement obtained with
quadratic XIGA and the exact solution respectively. Figures 5.28 and 5.29 show the con-
tour plot for the uy displacement obtained with quadratic XIGA and the exact solution,
respectively.

Figures 5.30 and 5.31 show the contour plot for the εx strain obtained with quadratic
XIGA and the exact solution respectively. Figures 5.32 and 5.33 show the contour plot for
the εy strain obtained with quadratic XIGA and the exact solution respectively. Figures 5.34
and 5.35 show the contour plot for the εxy strain obtained with quadratic XIGA and the
exact solution respectively.

Figure 5.36 shows the contour plot for the equivalent von Mises stress obtained with
quadratic XIGA and Figure 5.37 shows the contour plot for the equivalent von Mises stress
obtained with the exact solution.

60



(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 5.21: Plate with a circular hole containing a straight crack: Physical meshes produced
by h-refinement. The black line represents the crack. Source: prepared by the author.
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Figure 5.22: Quadratic and cubic XIGA. Convergence in the L2 norm upon decreasing the
element size. Source: prepared by the author.
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Figure 5.23: Quadratic and cubic XIGA. Convergence in the H1 norm upon decreasing the
element size. Source: prepared by the author.
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Figure 5.24: Quadratic and cubic XIGA. Convergence in the Energy norm upon decreasing
the element size. Source: prepared by the author.
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Figure 5.25: Quadratic and cubic XIGA. Convergence of the Stress Intensity Factor K1 upon
decreasing the element size. Source: prepared by the author.
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Figure 5.26: ux displacement contour plot generated by XIGA. Source: prepared by the
author.

Figure 5.27: ux displacement contour plot generated by exact solution. Source: prepared by
the author.
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Figure 5.28: uy displacement contour plot generated by XIGA. Source: prepared by the
author.

Figure 5.29: uy displacement contour plot generated by exact solution. Source: prepared by
the author.
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Figure 5.30: εx strain contour plot generated by XIGA. Source: prepared by the author.

Figure 5.31: εx strain contour plot generated by exact solution. Source: prepared by the
author.
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Figure 5.32: εy strain contour plot generated by XIGA. Source: prepared by the author.

Figure 5.33: εy strain contour plot generated by exact solution. Source: prepared by the
author.
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Figure 5.34: εxy strain contour plot generated by XIGA. Source: prepared by the author.

Figure 5.35: εxy strain contour plot generated by exact solution. Source: prepared by the
author.
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Figure 5.36: Von Mises equivalent stress contour plot generated by Quadratic XIGA. Source:
prepared by the author.

Figure 5.37: Von Mises equivalent stress contour plot generated by exact solution. Source:
prepared by the author.
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Chapter 6

Analysis and Discussions

6.1 XIGA Implementation

One of the main objectives of this project work is to implement the enrichment criteria from
XFEM into an IGA code for solving fracture mechanics problems. In this context, several
algorithms have been executed to accomplish this objective. Figure 5.3 exemplifies how all
the Crack-Element Identification algorithms (Algorithms 1 and 2) works by identifying the
control points that have to be enriched by the Heaviside criteria or crack tip criteria. It can
also be seen from Figure 5.3 how the ratio between Crack tip enriched Control points and
Heaviside enriched Control points decreases when increasing the refinement of the mesh. The
reason for this is that the Crack tip criteria employed (topological enrichment) only enriches
the Control points which belong to the element that has crack tip, while the Heaviside
criteria enriches the Control points which belong to the elements that are crossed by the
crack. By refining the mesh, this will increase the number of Heaviside enriched Control
points, while the number of Crack tip enriched Control points will remain the same. It is
worth noting that the improvement of the solution is impressive taking into account that
the two procedures only differs in the enrichment of 4 Control points. However, this type of
enrichment criteria does not allow to reach optimal convergence rate, which will be discussed
in the follow paragraphs.

Regarding the integration over the elements which contain the crack, a mapping technique
using trimmed NURBS has been implemented in order to perform Gaussian quadrature. The
results obtained in the error graphs (Figures 5.4, 5.5 and 5.6 in numerical simulation 1 and
Figures 5.22, 5.23 and 5.22 in numerical simulation 2) support this procedure even though
both NURBS and enrichment functions are not necessarily polynomials. Nonetheless, it is
know that there are better methods for this numerical integration, for example the almost
polar integration proposed by Laborde et al. [52] allows to avoid the singularity generated
by the 1√

r
by mapping that to a triangle domain, also Chin et al. proposed the Homogeneous

Numerical Integration scheme (HNI) [53] which allows to integrate over an element with a
crack tip without element-partitioning. It is expected that better results can be achieved by
considering those integration methods.
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Regarding the crack parametrization, a NURBS curve parametrization has been imple-
mented for this analysis. It has been useful in both the enrichment criteria and the trimmed
NURBS technique since it allows to work with the same concepts as in IGA and also it
enables to work with free form cracks.

Two different enrichment methods have been implemented: A "partial" enrichment with
only Heaviside criteria and a "complete" enrichment with Heaviside and Crack tip criteria.
For each enrichment have been developed Algorithms for the assembly of the Force vector
and the stiffness matrix. All this has been done with the purpose of study the improvement
of the solution when including the enrichment of the crack tip. It can be seen from Figures
5.4, 5.5 and 5.6 in numerical example 1 how the complete enrichment improves the error of
the solution.

6.2 Numerical Simulation 1

The Numerical Simulation 1 - Infinite plate with a crack under uniform tensile loading is a
classical fracture mechanics problem employed for test the XIGA implementation.

Figure 5.4 shows the relative L2 error norm with respect to edge size h for four different
meshes for a partial enrichment and a complete enrichment. It can be seen that in both cases
the L2 norm decreases when refining the mesh, which is a expected behavior. Also, Both
methods show a linear behavior in the log-log plot, where the complete enrichment presents
a slope equal to 1.07, while the slope of the partial enrichment is equal to 0.743. It can also
be seen that the complete enrichment presents a lower L2 error compared with the partial
enrichment. The optimal slope for this error norm in linear elasticity, considering that Linear
NURBS are employed for the simulations, is 2 (which appears as a reference in the plot).

Figures 5.5 and 5.6 show the relative H1 norm of the error and Energy norm of the error
with respect to edge size h for four different meshes for a partial enrichment and a complete
enrichment. It can be seen in both graphs that the errors decreases when refining the mesh,
which is also a expected behavior. In both plots the error for the complete enrichment is
lower than the error for the partial enrichment. In the H1 norm of error the slopes are 0.482
and 0.494 for the complete and partial enrichment, respectively. In the Energy norm of error
the slopes are 0.435 and 0.428 for the complete and partial enrichment, respectively. In both
cases, the optimal slope is 1 (which appears as a reference in the plot).

In the three norms, the error for the complete enrichment is lower than the error for the
partial enrichment.

Regarding the convergence rates, for both partial enrichment and complete enrichment,
the slopes are around 50% lower than the optimal slope mentioned above. First, it needs to
be clarified that by optimal convergence rate we refer to the convergence rate expected in
classical FEM or IGA, which is ||u− uh|| = O(hk), where k is the order of the NURBS. The
sub-optimal convergence rate obtained is also reported in XIGA [8, 9] and XFEM [52, 54].
The explanation given by Laborde et at. [52] state that the topological enrichment improves
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the solution (reduces the error), but it does not change the convergence rate. According to
the same authors, the convergence rate for topological enrichment of the H1 error norm is 0.5
and it is independent of the degree approximation. According to that, the slopes obtained
for the H1 error norm are 3.6% and 1.2% lower than the optimal slopes for the complete
and partial enrichment, respectively. The difference can be attributed to the numerical
integration, which is not suited for discontinuous functions. Laborde et al. state that better
converge rate can be achieved by employing the geometrical enrichment (which consist in to
enrich always a fixed are on the domain [54]).

Figure 5.7 shows the Stress Intensity Factor KI computed using the J-integral domain
method for a partial enrichment and a complete enrichment with respect to edge size h for
four different meshes. The theoretical value is KI = 1 in this numerical simulation. This plot
shows the agreement between the theoretical value and the numerical value for the complete
enrichment in the four meshes. On the other hand, the partial enrichment doesn’t show
a good agreement between the theoretical value and the numerical one for the first three
meshes. In the finest mesh, the error for the KI is 0.16% for the complete enrichment and
4.51% for the partial enrichment.

Figures 5.8, 5.9, 5.10 and 5.11 show the contour plots for the ux and uy displacement over
the deformed shape using the XIGA methodology and the analytical solution respectively. It
can be seen in both cases the agreement between the analytical solution and XIGA solution.
These graphs are in line with the results obtained for the L2 norm of error in Figure 5.4.

Figures 5.12, 5.13, 5.14, 5.15 5.16 and 5.17 show the contour plots for the εx, εy and εxy
strains over the deformed shape using the XIGA methodology and the analytical solution
respectively. The εx, εy and εxy plots show an excellent agreement between the analytical
solution and the XIGA solution. It can also be seen that the approximation for εx, εy and
εxy is constant between elements and it is due the fact that linear NURBS are employed in
this simulation. All of those graphs are also in line with the results obtained for the H1 norm
of the error and Energy norm of the error in Figures 5.5 and 5.6.

Figures 5.18 and 5.19 show the contour plot for the von Mises stress σvm over the deformed
shape using the XIGA methodology and the analytical solution. It can be seen in both
graphics that the maximum von Mises stress focus at the crack tip area. Also, both graphics
show an almost identical stress distribution and deformed shape. This result also endorse
the XIGA method.

6.3 Numerical Simulation 2

The Numerical Simulation 2 - Plate with a circular hole containing a straight crack is solved
to test the capability of the XIGA method to deal with complex geometries such as the crack
tip in the middle of a circle. This numerical simulation is solved using quadratic and cubic
NURBS with 4× 4 Gauss points.

Figure 5.22 shows the relative L2 norm of the error with respect to edge size h for four
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different meshes. It can be seen that in the two cases the L2 norm decreases when refining the
mesh, which is a expected behavior. Also, the two different NURBS show a linear behavior
in the log-log plot, where the quadratic NURBS exhibits a slope equal to 1.429, while the
cubic NURBS exhibits a slope equal to 1.261. It can also be seen that the cubic NURBS
presents the lower L2 error compared with the quadratic NURBS.

Figure 5.23 shows the relative H1 norm of the error with respect to edge size h for four
different meshes using a complete enrichment with quadratic and cubic NURBS with 4 × 4
Gauss points. It can be seen that in the two cases the H1 norm decreases when refining the
mesh, which is a expected behavior. Also, the two NURBS show a linear behavior in the
log-log plot, where the quadratic NURBS exhibits a slope equal to 0.613, while the slope for
the cubic NURBS is equal to 0.567. It can also be seen that the cubic NURBS presents a
lower H1 error compared with the quadratic NURBS.

Figure 5.24 shows the relative Energy norm of the error with respect to edge size h for four
different meshes using a complete enrichment with quadratic and cubic NURBS with 4 × 4
Gauss points. It can be seen that in all three cases the Energy norm decreases when refining
the mesh, which is a expected behavior. Also, the two NURBS show a linear behavior in the
log-log plot, where the quadratic NURBS exhibits a slope equal to 0.668, while the slope for
the cubic NURBS is equal to 0.598. It can also be seen that the cubic NURBS presents a
lower Energy error compared with the quadratic and cubic NURBS.

In a similar way as in first numerical simulation, the convergence rates for the L2, H1 and
Energy error norm are sub-optimal and does not improve as expected when increasing the
NURBS order in the simulation. In the three error plots is observed that the relative error
improves by increasing the order of the NURBS, but the convergence rate does not change as
expected. Again, we refer with expected convergence rate as the convergence rate obtained
with classical FEM or IGA. This sub-optimal convergence rate and not improvement of the
slope with the increase of the NURBS order is also reported by Laborde et al. [52] in XFEM
and by Luycker et al. [8] in XIGA. In the case of XFEM, Laborde et al concluded that,
even with high-order approximation, the H1 converge rate is 0.5 and is independent of the
order of the approximation employed in XFEM when topological enrichment is employed.
On the other hand, Luycker et al. state that even using blending corrections and topological
enrichment in XIGA, the convergence rate for H1 is restricted to 1. Luycker et al improved
that by including a modified projection method to generate the blending functions to achieve
convergence near the optimal.

In this case, the sub-optimal convergence rate can be attributed to the fact that topological
enrichment is employed in the simulations, no blending corrections are performed and the
numerical integration may not be able to perform well with crack tip enrichment functions
and NURBS. It is expected that optimal convergence can be achieved by including those
modifications in the model. Regardless, optimal convergence rates are out of the scope of
this final project.

Figure 5.25 shows the Stress Intensity Factor KI computed using the J-integral domain
method using a complete enrichment with quadratic and cubic NURBS with 4 × 4 Gauss
points. The theoretical value is KI = 1 in this numerical simulation. In a same way as in
numerical simulation 1, it can be seen that the computed value for the KI converges to their
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theoretical value in each case. In the four mesh, the error between the theoretical value and
the obtained by the XIGA is 0.052% for quadratic NURBS and 0.022% for cubic NURBS.
This fact validates the results.

Figures 5.26, 5.27, 5.28 and 5.29 show the contour plots for the ux and uy displacement
over the deformed shape using XIGA with quadratic NURBS and 4×4 Gauss points and the
analytical solution respectively. It can be seen the agreement between the analytical solution
and XIGA solution. These graphs are in line with the results obtained for the L2 norm of
the error in Figure 5.22.

Figures 5.30, 5.31, 5.32, 5.33 5.34 and 5.35 show the contour plots for the εx, εy and εxy
strains over the deformed shape using the XIGA with quadratic NURBS and 4 × 4 Gauss
points and the analytical solution respectively. In a same way as in numerical simulation
1, the εx, εy and εxy plots show an excellent agreement between the analytical solution and
the XIGA solution. Looking at detail, it can be seen some minor irregularities in the strains
around the crack tip, however, they are small enough to not undermine the error norms. All
of those graphs are also in line with the results obtained for the H1 and Energy norm of the
error in Figures 5.23 and 5.24.

Figures 5.36 and 5.37 show the contour plot for the von Mises stress σvm over the deformed
shape using the XIGA with quadratic NURBS and 4 × 4 Gauss points and the analytical
solution. It can be seen in both graphics that the maximum von Mises stress focus at the
crack tip area. Also, both graphics show an almost identical stress distribution and deformed
shape.
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Chapter 7

Conclusions and Commentaries

An Extended formulation for Isogeometric Analysis has been developed for the study of 2D
fracture mechanics problems. In particular, both Heaviside and Crack tip enrichment has
been implemented to solve the benchmark problems of an infinite plate with a straight crack
under uniform loading and the problem of an infinite plate with a circular hole with two
regular straight cracks.

XIGA allows to obtain precisely results in fracture mechanical problems. This is endorsed
by all the results obtained for numerical simulations 1 and 2.

The virtues of IGA related to mesh generation are exploit in numerical simulation 2 by
creating a geometry with a circular hole. This gives it an advantage compared with the
classic FEM mesh process by having an exact geometry of the problem.

The integration scheme used for this work is the Gauss quadrature. In the cases of
elements cut by the crack, a trimmed NURBS mapping technique is employed. Despite Gauss
quadrature cannot integrate such functions as the employed in the enrichment methodology,
the overall results are of great quality. Given that the integration process is out of the scope
of this project work there weren’t done more efforts into improve that. It is expected to
obtain even lower error measurement by improving the integration technique, such as almost
polar integration scheme [52] or the Homogeneous Numerical Integration (HNI) method [53].

Regarding the first numerical simulation, it can be seen that both Heaviside enrichment
and Heaviside + Crack tip enrichment allow to model the crack opening, being the complete
enrichment better than only the Heaviside enrichment. Nevertheless, sub-optimal conver-
gence rate where obtained. It is expected to improve this convergence rates by improving
the integration technique, changing from topological enrichment to geometrical enrichment
and incorporating the blending modifications proposed by Luycker et al. [8].

Regarding the second numerical simulation, it can be seen how both quadratic and cubic
NURBS are employed to model a complex geometry. In this case, L2 norm of the error, H1

norm of the error and Energy norm of the error exhibit sub-optimal rate. It is observed that
the error norms improve with increasing the NURBS degree, but the convergence does not
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improve. As mentioned before, improvements such as the integration process and enrichment
modifications can be implemented in order to achieve optimal convergence rate. However,
the low error and convergence rate is enough to prove the ability of XIGA to deal with cracks
and complex geometries.

In both numerical simulation 1 and 2, the KI SIF is computed by the domain method
using the J-integral with the aim to compare against their theoretical value. In both cases
the numerical value are in agree with their theoretical one, endorsing the results of the error
measurement.

One of the main drawbacks observed by working with NURBS is the lack of local refine-
ment. This is something desirable when the focus of the analysis is in a small area, such as
an abrupt change of geometry. Unfortunately, when employing h−refinement in NURBS, the
tensor product topology structure of NURBS expands the refinement all over the domain,
creating NURBS that can be considered as superfluous. In this context, T-Splines and PHT-
Splines have been introduced as generalizations of NURBS that allow local refinement. It
is proposed to extend this project work by employing T-Splines or PHT-Splines in order to
achieve local refinement.
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Appendix A

Weak form formulation

Recalling the strong form of the elastostatics equation in the absence of body forces is:

5 ·σ(u) = 0 (A.1)

In index notation it can be written as:

σij,j(u) = 0 (A.2)

with the following boundary conditions:

σ · n = t̄ on Γt̄ (A.3)

σ · n = 0 on Γc+ (A.4)

σ · n = 0 on Γc− (A.5)

u = ū on Γū (A.6)

where n is the unit outward normal, σ is the stress tensor and u is the displacement vector.

Considering an arbitrary function w, called the weight function, we multiply all the equa-
tion with w and integrate over the domain Ω:

∫
Ω

σij,j(u)widΩ = 0 (A.7)
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Integrating by parts, we obtain:

∫
Ω

(σij(u)wi),j dΩ−
∫

Ω

(u)σijwi,jdΩ = 0 (A.8)

Applying the divergence theorem to the first integral, we obtain:

∫
Γ

(σij(u)wi) · njdΓ−
∫

Ω

σij(u)w,jdΩ = 0 (A.9)

Substituting with the traction definition t = σn, we obtain:

∫
Γ

tiwidΓ−
∫

Ω

σij(u)wi,jdΩ = 0 (A.10)

Any tensor can be written as a sum of symmetric and antisymmetric parts, so we write
5w as:

wi,j =
1

2
(wi,j + wj,i) +

1

2
(wi,j − wj,i) (A.11)

recalling that the product of a symmetric and an antisymmetric tensor is 0 and that σ is a
symmetric tensor, we have that:

σij(u)wi,j = σij(u)

(
1

2
(wi,j + wj,i) +

1

2
(wi,j − wj,i)

)
(A.12)

σijwi,j = σij(u)
1

2
(wi,j + wj,i) +

��
���

���
���:

0

σij(u)
1

2
(wi,j − wj,i)

recalling that:

εij(u) =
1

2
(ui,j + uj,i) (A.13)

we can write Equation (A.12) as:

σij(u)wi,j = σij(u)εij(w) (A.14)

and replacing Equation (A.14) on Equation (A.10) we obtain:

∫
Γ

tiwidΓ−
∫

Ω

σij(u)εij(w)dΩ = 0 (A.15)
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which can be written as:

∫
Ω

σ(u) : ε(w)dΩ =

∫
Γ

t̄ ·wdΓ (A.16)

which is known as the weak form of the elastostatics equation. It is worth notice that since
this is an integral equation, the requirements for u and w are the follow:

a. u belongs to the space of all the vector functions whose derivatives are square-integrable
on Ω (known as the Hilbert space H1(Ω)) which satisfy the essential boundary condi-
tions.

b. w belongs to the space of all the vector functions whose derivatives are square-integrable
on Ω (known as the Hilbert space H1(Ω)) which vanish on Ωu and are discontinuous
on Ωc.
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