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Abstract

This paper studies the effects of ambiguity on long-run cooperation in infinitely repeated games with strategic
players. Using a neo-additive capacities framework, which allows us to work with a utility function that
parametrically captures the degree of ambiguity, we determine a critical condition under which players
can cooperate in equilibrium. Then, this result is applied to canonical problems of strategic interaction
and potential cooperation: the Prisoner’s Dilemma and the Cournot and Bertrand duopoly models. The
application leads to two main conclusions. First, ambiguity may alter the game structure to schemes where
seeking conditions to sustain long-run cooperative agreements stops being desirable. In these cases, non-
cooperation is more profitable in expected terms and is achievable as a short-run Nash equilibrium. This
happens for parametric combinations usually characterized by large levels of ambiguity. Second, in cases
where cooperation between individuals is still desirable, the critical discount factor needed to sustain the
equilibrium can vary in very non-trivial ways with the ambiguity parameters. In some cases, games may not
accept a feasible discount factor consistent with a cooperative equilibrium, even when the expected payoff
of cooperating is larger.

Keywords: Ambiguity, Strategic Games, Long-Run Cooperation, Infinitely Repeated Prisoner’s

Dilemma, Cournot Duopoly, Bertrand Duopoly.

1. Introduction

Why individuals cooperate is a question that has been widely studied by several disciplines
(Nowak and Highfield, 2011). In economics, a particular interest has been put on determining
conditions under which cooperative behaviors may arise as a result of the interaction between
strategic individuals. Depending on the game structure, cooperation could or could not be
a potential equilibrium and, when being, conditions required for implementation may vary
depending on the setting considered.

In this literature, repeated games are particularly interesting, as the possibility of generating
long-run relationships between individuals may induce the implementation of sustained cooperative
strategies even though non-cooperative behaviors are optimal from a static point of view (see
Mailath and Samuelson, 2006). The canonical example in this regard is the Prisoner’s Dilemma
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(henceforth, PD). In its static version, cooperation is dominated by defection. Nevertheless, in the
infinitely repeated PD cooperation may arise as an equilibrium if individuals are patient enough,
as long-run payoffs for sustained cooperation may offset short term gains for defecting. This
line of reasoning has also being used to study the conditions under which, in markets character-
ized by imperfect competition, firms decide whether or not to sustain long-run collusive agreements.

This paper revisits the standard analysis of long-run cooperation in strategic games in a simple
ambiguity setting.2 We alter assumptions about individuals’ decision-making by allowing strate-
gic players to have ambiguous beliefs about their counterparts’ actions. Given that, individuals
partially distrust their predictions derived from the game’s equilibrium and assign some degree of
probability to potential deviations of their counterparts from the expected behavior. These poten-
tial deviations from expected rational behavior can be motivated in several ways. Players could
doubt about their counterpart’s rationality, could suspect about the other player’s intentions, or
could simply internalize that they could eventually make mistakes when implementing the optimal
strategy. Generally speaking, individuals distrust their counterparts’ behavior just because they
do not feel they know enough about each other in order to fully trust in rational strategic behaviors.

Some developments in the ambiguity literature offer intuitive and simple frameworks to include
these concerns in a standard model. In particular, we follow Eichberger, Kelsey, and Schipper
(2009) strategy to model ambiguity in strategic games built on Chateauneuf, Eichberger, and Grant
(2007) framework based on neo-additive capacities. In this model, individuals play a game that has
well-behaved predictions about the counterpart’s behavior in the absence of ambiguity, i.e game’s
equilibrium derives a probability distribution defined over the other player actions. Nevertheless,
individuals may partially distrust this probability distribution. The degree of distrust an individual
has over the probability distribution is understood as the degree of ambiguity the individual faces:
the more ambiguous the situation is, the less weight the individual puts on the original probability
distribution to make decisions. The remaining weight is mapped to the best or worst possible
outcomes depending on the player’s attitude towards ambiguity. If the individual is optimistic
(pessimistic), the unassigned probability is assigned to the best (worst) possible outcome, i.e. to
the other player’s action that is more beneficial (harmful) for the individual.3

For our purpose, we extend Eichberger, Kelsey, and Schipper (2009) framework to infinitely re-
peated strategic games accounting for beliefs’ updating concerns. Then, we look for conditions
under which cooperative equilibria may arise in the long-run in cases where there exists short-run
incentives to deviation. In particular, we characterize a condition for the critical discount factor
needed for cooperation in the infinitely repeated game. This condition is a function of the game’s
expected payoffs and the individual’s beliefs about the counterpart behavior, which in turn de-
pend on the ambiguity level and the individual’s attitude towards ambiguity. After formalizing
our framework, we illustrate our results by revisiting two canonical examples in our ambiguity
setting: the possibility of cooperation in the infinitely repeated PD, and the possibility of collusion

2In simple words, ambiguity extends the notion of risk by stating that not only the realization of different states of
nature is unknown, but also the probabilities assigned to their realization. For a survey, see Etner, Jeleva, and Tallon
(2012). Ambiguity emerged as an important topic in decision theory as it has been able to explain some facts that
the standard theory has failed to (see, for example, Ellsberg, 1961, and Chen and Epstein, 2002).

3Throughout the paper, pessimism refers to ambiguity aversion.
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in infinitely repeated duopoly models, specifically under Cournot and Bertrand competition. By
analyzing these examples, we find that this simple and intuitive ambiguity perturbation may have
strong implications on the possibility of sustaining cooperative agreements.

Applications display two main results. First, ambiguity may alter the game’s structure to schemes
where seeking for conditions to sustain long-run cooperative agreements stops being desirable. This
may happen because of two different reasons. Given games with effective payoffs coherent with
long-run cooperation desirability, expected payoffs induced by ambiguity can change in such a way
that the non-cooperative equilibrium becomes Pareto-superior. In other words, it may no longer
be interesting to ask for conditions for cooperating in the long-run since non-cooperation is more
profitable in expected terms and is achievable as a short-run Nash equilibrium. As it is explained
later with detail, this happens in some parametrizations where marginal increasings in ambiguity
lower cooperation expected payoffs (since individuals anticipate potential harmful deviations) and
increase non-cooperation expected payoff (since individuals anticipate potential benefitial devia-
tions). As it is illustrated in the PD analysis, for some plausible exogenous payoffs, this feature
may characterize a sizeable portion of the ambiguity and optimism parameter spaces. The other
explanation comes from the fact that when payoffs are endogenous (i.e. depend on players’ ac-
tions), as it is the case of the duopoly models, ambiguity may affect players’ decisions in ways that
lead to game structures different from the standard PD payoff ordering. As it is debated later, the
analysis regarding cooperation in these new games becomes far more complex than the standard
exercise.4

The second main result of the paper is that in cases where looking to implement a cooperative
equilibrium is still relevant (i.e. in cases where the game structure is unchanged), the discount
factor needed to sustain the equilibrium can vary in very non-trivial ways with both the ambigu-
ity and optimism parameters. In most of the analyzed cases, there exists a positive relationship
between ambiguity and the critical discount factor, being ambiguity detrimental for long-run co-
operation (more patient players are needed for sustaining cooperative agreements). While this
seems intuitive, a striking issue arises in this regard. For some parametric combinations, under the
(standard) assumptions considered, games may not accept a feasible discount factor that ensures
the possibility of agreeing on a cooperative equilibrium (i.e. the discount factor is required to be
larger than one). That is, even when the expected payoff of cooperating is larger than the expected
payoff of the non-cooperative equilibrium, ambiguity may erode the possibility of achieving mutu-
ally beneficial agreements (in effective, not expected, terms).

Although our results are not general, since some structure is imposed in order to derive our results,
their implications are still of high relevance. We illustrate how ruling out ambiguity in the ana-
lyisis of strategic games will not generally be without loss of generality. Recall that the degree of
ambiguity an individual faces can be understood as a situation-specific parameter (i.e. it can vary
due to external reasons).5 Then, in cases where cooperation between individuals is desirable, our

4For pessimistic firms facing high levels of ambiguity, short term deviation incentives are replaced for low-payoff
multiple equilibria games. In limit cases with positive marginal costs, the declining of payoffs may lead firms to
optimally not participate in the market.

5This is not necessary true regarding the attitude towards ambiguity, which usually is understood as an individual-
specific parameter.
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analysis stresses the importance of lowering the degree of ambiguity between individuals in order
to increase the likelihood of cooperation (or, in more extreme cases, to make cooperation at least
feasible). The converse is also true: in the duopoly models, when cooperation is not desirable, our
analysis sheds light about firms’ behavior and potential antitrust policies. In general, increasing
the degree of ambiguity firms face (for example, through information disclosure regulations or re-
strictions in communication between firms) will lower the likelihood of achieving tacit collusions.
This is consistent with the findings in Kandori and Matsushima (1998), Athey and Bagwell (2001)
and Fonseca and Normann (2012) findings.

This paper contributes to three branches of the literature. First, the analysis of the potential
achievement of cooperative equilibria in repeated games have been developed in incomplete in-
formation settings, for example, when the counterpart’s type is uncertain or when there exists
imperfect monitoring.6 In this context, we contribute to this literature by proposing a framework
to analyze the likelihood of cooperative equilibria when players have ambiguous beliefs on coun-
terpart’s actions. Second, this paper contributes to the understanding of the effect of ambiguity in
strategic games. This strand of the literature has formalized some notions of ambiguity in strategic
settings and has carried out different applications to analyze whether ambiguity may alter stan-
dard results.7 We broaden the analysis by studying the likelihood of cooperation in an ambiguity
environment. Third, as our applications to duopoly models suggest, our framework contributes
to the understanding of antitrust behaviors in stochastic environments.8 Regardless its simplicity,
the proposed framework could fit well to analyze other related problems.

The rest of the paper is organized as follows. Section 2 describes the theoretical setting proposed
to analyze strategic repeated games under ambiguity. Section 3 restricts the attention to a specific
subset of games and derives our main result for assessing the likelihood of long-run cooperation.
Section 4 applies this framework to the previously mentioned canonical examples. Finally, Section
5 concludes.

2. Theoretical setting

2.1. Ambiguity and strategic games

We follow Chateauneuf, Eichberger, and Grant (2007) framework based on neo-additive capacities
to model ambiguity.9 A neo-additive capacity is a particular capacity that can be interpreted
as a convex combination between an additive probability distribution and a capacity that only

6See, for example, Kreps, Milgrom, Roberts, and Wilson (1982) and Conlon (2003) for analysis of finitely re-
peated games with incomplete information on counterpart’s type; Ellison (1994), Watson (1994), Aoyagi (1996) and
Chan (2000) for a similar analysis in infinitely repeated games; and Kandori (1992), Sekiguchi (1997), Compte
(1998), Compte (2002), Ely and Valimaki (2002), Piccione (2002), Cripps, Mailath, and Samuelson (2004) and
Cripps, Mailath, and Samuelson (2007) for analysis of infinitely repeated games with imperfect monitoring.

7For ambiguity applications to strategic games, see Dow and Werlang (1994), Marinacci (2000), Haller (2000),
Dimitri (2005) and Rothe (2011). For the analysis of oligopoly models under ambiguity, see Fontini (2005) and
Eichberger, Kelsey, and Schipper (2009).

8See, for example, Green and Porter (1984), Rotemberg and Saloner (1986), Bagwell and Staiger
(1997), Fonseca and Normann (2012), Kandori and Matsushima (1998), Athey and Bagwell (2001),
Athey, Bagwell, and Sanchirico (2004) and Rojas (2012).

9For technical details about capacities and neo-additive capacities, see Appendix A.
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distinguishes if a state is possible, impossible or certain. Given a space of actions X, the Choquet
integral of the function f : X → R with respect to the neo-additive capacity v : 2X → R+ is defined
by

∫

fdv := δ(αM + (1− α)m) + (1− δ)Eπf, (1)

where δ is the degree of ambiguity, α is the degree of optimism,10 Eπ is the expectation induced
by the probability distribution π (defined over X), M = maxx∈X f(x) and m = minx∈X f(x).
Chateauneuf, Eichberger, and Grant (2007) axiomatized (1) as a choice criterion under ambigu-
ity.11

Eichberger, Kelsey, and Schipper (2009) follow this strategy to model ambiguity in strategic games.
The authors propose a game in the form G = 〈(Si, ui, δi, αi, πi)i=1,2〉, where Si and ui are the space
of strategies and the utility function of player i, respectively. In this context, πi (and, consequently,
uncertainty) is defined over S−i. Then, the expected utility under ambiguity of player i when
choosing strategy si, is defined by

v(si; δi, αi, πi) := δi(αiMi(si) + (1− αi)mi(si)) + (1− δi)Eπi
ui(si, s−i), (2)

where si ∈ Si, s−i ∈ S−i, Mi(si) = maxs−i∈S−i
ui(si, s−i) and mi(si) = mins−i∈S−i

ui(si, s−i). In
this context, ambiguity is understood as the uncertainty an individual faces regarding the other
player’s decisions. For simplicity, we will focus on symmetric games, i.e. Si = S, ui = u, δi = δ,
αi = α and πi = π, for i = 1, 2.

This framework for modeling ambiguity has three good properties. First, it has a clear interpreta-
tion. The individual faces a subjective additive probability measure, π, but does not trust it fully.
The ambiguity parameter, δ, measures the degree of distrust on π. Then, the unassigned proba-
bility is mapped to the best and worst possible outcomes depending on the degree of optimism of
the individual. Second, no assumptions are imposed on player’s attitude towards ambiguity: the
model flexibly represents both optimistic and pessimistic individuals. Third, the setting fits well
on the strategic games modelling. Concretely, it makes sense to assume the existence of π as it can
be derived endogenously from the game’s equilibrium.12

2.2. Static (short-run) equilibrium definition

Following Eichberger, Kelsey, and Schipper (2009), define the best-response correspondence of player
i, given a neo-additive capacity, as Ri(δ, α, π) := argmaxsi∈S v(si; δ, α, π). Then, we define a static
(short-run) equilibrium as a pair (s∗1, s

∗
2) ∈ S × S such that s∗i ∈ Ri(δ, α, π), for i = 1, 2.13

10If α = 1 (α = 0), we say that the individual is completely optimistic (pessimistic).
11In a context of no ambiguity (i.e. δ = 0), (1) is reduced to the standard Expected Utility model (Savage, 1954).

For a completely ambiguous and pessimistic individual (i.e. δ = 1 and α = 0), (1) mimics the maxmin expected
utility model (Gilboa and Schmeidler, 1989).

12There are other frameworks for modelling ambiguity which are built from the idea that it is not possible to
assume the existence of subjective probability distributions (see Etner, Jeleva, and Tallon, 2012).

13Note that the equilibrium could also be defined as an equilibrium in beliefs. See Eichberger, Kelsey, and Schipper
(2009) for details.
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2.3. Dynamic setting and parameters’ updating

The framework can be extended to a dynamic setting by modelling an infinitely repeated strategic
game. In this context, in t = 0 player i chooses a sequence of strategies, s̃i := {sit}

∞
t=0 ∈ Sω :=

∏∞
i=1 S, which, given a subjective discount factor, β ∈ (0, 1), induces an expected utility described

by14

V (s̃i; δ0, α0, π0| s−i,t−1) :=

∞
∑

t=0

βt
∑

s∈S

φstv(si,t; δt, αt, πt|s−i,t−1), (3)

where s−i,t−1 is the strategy the other player played on the period t − 1, and φst is the proba-
bility the individual assigns in t = 0, to the other player playing strategy s ∈ S in period t − 1
(in other words, it is the ex-ante probability of arriving to the state induced by s−i,t−1 in period
t).15 Note that the exogenous parameters (δ and α) and the additive probability distribution (π)
now have a time subscript. This is due to the fact that, given the existence of ambiguity, stage
realizations may contain information that could induce updating player’s beliefs. We model the
updating rule following Eichberger, Grant, and Kelsey (2010). The authors recommend using the
Generalized Bayesian Updating Rule for capacities as (i) it preserves the utility index, and (ii) it
keeps unchanged the ambiguity aversion parameter.16

The rule works as follows. Fix a conditioning event E ⊆ S (in our case, E is a counterpart’s
action) and an unconditional neo-additive capacity v defined by (δ, α, π). The authors show that
the Generalized Bayesian Updating rule for neo-additive capacities implies that vE , the conditioned
capacity, is also a neo-additive capacity defined by (δE , αE , πE), where

δE =
δ

(1− δ)π(E) + δ
, (4)

αE = α, (5)

πE(A) =
π(A ∩ E)

π(E)
, ∀A ∈ S. (6)

Note that for games with a unique equilibrium in pure strategies, π is always degenerated, i.e.
always assigns probability 1 to the strategy s∗−i ∈ S associated with the equilibrium and 0 to every
other strategy s−i ∈ S different from s∗−i. This issue, which will be relevant for the cases analyzed
in the following sections, implies that when the other individual plays the expected action (i.e.
plays E = s∗−i ∈ S such that π(E) = 1), then δE = δ and πE(A) = π(A), ∀A ∈ S. Therefore, all
parameters remain unchanged. On the other hand, when the other individual deviates from the
expected action (i.e. plays E = s−i ∈ S different from s∗−i such that π(E) = 0), then δE = 1 and
the probability measure becomes irrelevant. This condition is stationary, as when δ = 1, δE = 1,
∀E ∈ S. This is intuitive, as the additive distribution stops being relevant for the individual when
an impossible event (from a subjective point of view) is actually realized.

14For simplicity, it is assumed that the expected utility given by the sequence of strategies chosen in t = 0 only
depends on the strategies played on the last period, which are assumed to contain all relevant information available
to that date. As is described later, this affects the parameters’ updating dynamics.

15If S is infinite, φst in (3) is replaced by a probability distribution ft(s), with
∫
s∈S

ft(x)dx = 1.
16The latter property is important as the ambiguity aversion parameter, α, is usually seen as an individual’s

intrinsic parameter and, therefore, it is reasonable to assume it fixed over time.
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2.4. Dynamic (long-run) equilibrium definition

We can extend the notion of the static equilibrium to the dynamic setting. Define the best-response
correspondence of player i, given a neo-additive capacity, asRi(δ, α, π) := argmaxs̃i∈Sω V (s̃i; δ, α, π).
Then, we define a dynamic (long-run) equilibrium as a pair (s̃∗1, s̃

∗
2) ∈ Sω × Sω such that s̃∗i ∈

Ri(δ, α, π), for i = 1, 2.

3. Looking for cooperative equilibrium in competitive games

Following our general theoretical setting, we restrict our attention to a specific type of games. Sup-
pose a non-cooperative (strategic) game with a unique symmetric static (short-run) equilibrium in
pure strategies. Denote by n ∈ S the symmetric equilibrium strategy. Suppose the existence of
some other strategy c ∈ S such that u(c, c) > u(n, n) but that cannot be implemented as a short-
run equilibrium given incentives for deviation (i.e. c 6∈ R(δ, α, π), when π(c) = 1). Denote by d ∈ S
the optimal response when the other individual plays c, with u(d, c) > u(c, c). Nevertheless, in the
infinitely repeated game, playing c̃i := {sit = c}∞t=0, for i = 1, 2, could be an equilibrium if the
(expected) present value of playing that sequence is greater or equal than the (expected) present
value of playing any other feasible sequence of strategies.17 We call this potential equilibrium a
cooperative equilibrium.

We investigate the effects ambiguity may have on this long-run analysis. Assume that u(n, d) >
u(c, d). Therefore, deviation from the static cooperative equilibrium is not only profitable for the
one that deviates from it, but it is also costly for the one that does not deviate (with respect to
playing non-cooperative strategies). Therefore, a punishment scheme has to be defined in order to
induce commitment on players to play c. We follow the standard grim trigger punishment scheme:
an individual plays c until the other player deviates, punishing her by playing n forever.

This simple analysis is similar in structure to the standard case (i.e. non-ambiguity setting). What
is interesting is that the discounted benefits of the different strategies are affected by ambiguity, as
individuals internalize the possibility that the other player might choose an action different from
the expected. Concretely speaking, uncertainty about the other player’s behavior affects the com-
putation of discounted benefits through three channels. First, ambiguity induces changes on the
expected payoffs of the different strategies, as payoffs depend on the other player’s action which
is (by definition) partially unpredictable given uncertainty. Second, potential future deviations
from the cooperative equilibrium may induce potential future punishments. Third, whenever an
individual plays an action different from the expected, counterparts update their beliefs. Potential
future belief updating is considered in the computation of expected payoffs.

Now we proceed to derive conditions for sustaining a cooperative equilibrium.

Proposition I: c̃i := {sit = c}∞t=0, for i = 1, 2, is an equilibrium of the infinitely repeated game if
the subjective discount factor, β, meets the following condition:

v∗c − βφcv
u
n

1− βφc

≥ v∗d +
βφc(v

∗
n − vun)

1− βφn

, (7)

17As it was argued before, this can be equivalently stated as an equilibrium in beliefs, as the potential equilibrium
proposed implies π(c) = 1.
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where

v∗c := δ(αM(c) + (1− α)m(c)) + (1− δ)u(c, c),

v∗n := δ(αM(n) + (1− α)m(n)) + (1− δ)u(n, n),

v∗d := δ(αM(d) + (1− α)m(d)) + (1− δ)u(d, c),

vun := αM(n) + (1− α)m(n), and

φs is the probability the individual assigns to the other individual playing the

expected action in the equilibrium in strategy s (i.e. playing s), for s = c, n.

Define as β∗ the value of β that meets (7) with equality. When φc = φn = φ, (7) is reduced to

v∗c − βφv∗n
1− βφ

≥ v∗d, (8)

which implies that,

β∗ = φ−1 (v
∗
d − v∗c )

(

v∗d − v∗n
) . (9)

Proof: See Appendix B.

Define the critical discount factor, β∗, as the discount factor that meets equation (7) with equality.
Cooperation will be always feasible if players face a discount factor greater or equal than β∗. Note
that β∗ cannot always be analytically determined, given the non-linear nature of the problem.
Particular cases in which φc = φn = φ allow to work with a more tractable expression.

Before proceeding to the applications, we want to make a final remark. Note that the existence
of a feasible β ∈ (0, 1) meeting equation (7) is not guaranteed. As it is shown below, there may
be cases where no β ∈ (0, 1) meets equation (7), thus being cooperation impossible to achieve in
those cases, regardless of players’ discount factor.18 This is the main result of this paper: under
standard conditions, ambiguity may erode cooperation possibilities, i.e. an intuitive perturbation
in the assumptions of the analysis of long-run cooperation in strategic games can have important
implications on the main conclusions.

4. Applications: revisiting canonical examples under ambiguity

This section applies the proposed framework to canonical standard problems in order to analyze
the implications that ambiguity may have on the likelihood of sustaining long-run cooperative
equilibria. We look at the long-run analysis of the infinitely repeated PD, and the Cournot and
Bertrand duopolies. For each case, we first assess how their structure is affected by ambiguity, as
it could change to the extent that our results above might not longer apply. Then, we evaluate the
conditions for sustaining a cooperative equilibrium.

18Note that this is not equivalent to claim that the Folk Theorem fails in an ambiguity setting, as here we work
both with a specific ambiguity model and with a specific punishment scheme. The analysis of the Folk Theorem in
a more general setting is beyond the scope of this paper.
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4.1. Infinitely repeated Prisoner’s Dilemma

Consider the normal form representation of the PD

C N
C (R,R) (Q,T )
N (T,Q) (P,P )

where C and N stand for Cooperate and Non Cooperate, T > R > P > Q and Q+T
2 < R. In

this case, the space of strategies S = {C,N}, and considering the notation above c = C and
n = d = N . Consequently, M(c) = R, m(c) = Q, M(n) = M(d) = T , m(n) = m(d) = P ,
u(c, c) = R, u(d, c) = T and u(n, n) = P . Also, vun = αT +(1−α)P , φc = (1−δ)+δα = 1−δ(1−α)
and φn = (1− δ) + δ(1 − α) = 1− δα. Therefore, for given values of T , R, P and Q, it is possible
to compute all terms of equation (7) for each (δ, α) combination, in order to determine β∗ and its
relations with ambiguity.

For that purpose, we first look at the expected values of the cooperative and non-cooperative static
equilibria, i.e.

v∗c = δ(αR + (1− α)Q) + (1− δ)R, and (10)

v∗n = δ(αT + (1− α)P ) + (1− δ)P. (11)

Notice that the analysis of the PD rises the question about the possibility of implementing a cooper-
ative equilibrium in the long-run given that the cooperative equilibrium payoff, R, is larger than the
non-cooperative equilibrium payoff, P . Note that ambiguity affects the equilibria’s expected payoffs
by decreasing the expected value of the cooperative equilibrium (as relatively pessimistic individ-
uals internalize that the counterpart may deviate from the expected action to a non-cooperative
behavior, thus losing R−Q) and increasing the expected value of the non-cooperative equilibrium
(as relatively optimistic individuals internalize that the counterpart may deviate from the expected
action to a cooperative behavior, thus obtaining T − P ). In fact, while when δ → 0 (i.e. non-
ambiguity case), v∗c > v∗n, when δ → 1 (i.e. highly ambiguous case), v∗c < v∗n. In the latter case,
seeking to implement the cooperative equilibrium stops being desirable, as the static equilibrium
is Pareto-superior.19

Concretely, given T , R, P and Q, we have that

v∗n > v∗c ⇔ δ > (R− P ) [α(T − P ) + (1− α)(R −Q)]−1 . (12)

19Note that, consistent with Marinacci (2000), the static equilibrium is not affected by ambiguity. In fact, if π is
a probability distribution that assigns probability p to the other individual playing C and probability 1 − p to the
other individual playing N , then

v(C; δ, α, π) = δ (αR + (1− α)Q) + (1− δ)(pR+ (1− p)Q), and

v(N ; δ, α, π) = δ (αT + (1− α)P ) + (1− δ)(pT + (1− p)P ),

and, since T > R and P > Q, endogenous π will imply p = 0 and, therefore, playing N will always be dominant
strategy. Moreover, it remains being the only short-term equilibrium as v(N ; δ, α, π(p = 1)) > v(C; δ, α, π(p = 1))
and, therefore, incentives for deviating from a cooperative equilibrium remain existing in an ambiguity context.
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Figure 1: Infinitely repeated PD: Comparison of expected equilibria’ payoffs
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Note: Blue zones account for (δ, α) combinations such that v∗c > v∗n. Red
zones account for (δ, α) combinations such that v∗n > v∗c .

Then, for a given α, there is a threshold level of ambiguity such that the game structure changes
to scenarios in which the expected payoff associated with the cooperative equilibrium is strictly
lower than the non-cooperative equilibrium expected payoff. This defines a critical function, δ∗(α),
which suggests that when δ > δ∗(α), asking for conditions to sustain a cooperative equilibrium
stops being relevant, given that the static non-cooperative equilibrium is Pareto-superior (in ex-
pected terms) and is implementable as a short-run Nash equilibrium. This is illustrated in Figure
1 for different values of (T,R, P,Q). (δ, α) combinations marked with blue (red) represent cases
in which v∗c > v∗n (v∗c < v∗n). The line which separates the different areas correspond to δ∗(α).
It can be seen that for some payoffs, the possibility of changing the game structure is far from
negligible since δ∗(α) depends on the relationship between payoffs. The mechanism behind this is
that higher levels of ambiguity give relatively more weight to the best and worst scenarios, which
are larger when playing non-cooperative strategies. Namely, more ambiguous players are better
off when playing N as potential deviations are associated with higher payoffs than when playing
C. This is a first interesting insight: ambiguity may change the game’s structure to scenarios in
which asking for conditions to sustain cooperative equilibria is no longer relevant.

Despite this last finding, the result developed in the previous section is still valid for cases in which
v∗c > v∗n. In the repeated game, given the punishment scheme previously described, cooperation
is an equilibrium if the expected discounted benefits of cooperating are larger than the expected
discounted benefits of deviating from the cooperative agreement and then being punished for that.
Since in this case φc 6= φn (except for α = 0.5), equation (7) has not analytical solution and has
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Figure 2: Infinitely repeated PD: Behavior of β∗
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Note: Red zones account for (δ, α) combinations such that v∗n > v∗c . The
remaining zones account for (δ, α) combinations such that v∗c > v∗n. In the
latter, the bluer the color, the lower β∗; the more yellow the color, the higher
β∗. The orange zones account for (δ, α) combinations for which no exists
β ∈ (0, 1) satisfying equation (7).

to be numerically addressed to see how the critical discount factor, β∗, behaves regarding ambiguity.

We proceed by considering the same cases exposed in Figure 1. Figure 2 illustrates what happens
with the critical discount factor when the game structure remains unchanged. The former blue
zone is replaced by two new zones: a color palette zone and an orange zone. The color palette
zone is read as follows: for each pair (δ, α), the bluer the point, the smaller the critical discount
factor. Conversely, the more yellow the point, the higher the critical discount factor required.
Hence, numerical analysis of these examples suggest that for a given α, ambiguity decreases the
possibility of cooperation in the infinitely repeated PD, as it demands more patient individuals for
meeting the critical condition. While previous result seems intuitive, the orange zone accounts for
a more striking insight. A certain (δ, α) combination marked in orange refers to the nonexistence
of feasible discount factors (i.e. β ∈ (0, 1)) satisfying equation (7). In other words, orange zones
represent cases in which although is profitable to implement cooperative agreements, ambiguity
erodes the possibility by making infeasible the patience levels required. If we add the red and
orange zones, we can see that ambiguity may turn cooperation infeasible for several portions of the
(δ, α) parameter space.

To understand this, first note that the expected payoff of deviating falls with the ambiguity level as
the outcome (T,Q) is less likely to happen. In principle, this should make cooperation more likely.
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However, higher levels of ambiguity increase the expected value of non cooperating and lower the
value of cooperating. Both effects combined more than compensate the less appealing deviation,
generating that the possibility of cooperation decreases with ambiguity. The non-linear nature of
the relationship yields on the fact that the ambiguity needed for compensating the effects varies
with α.

The examples presented suggest that ambiguity may importantly affect the standard long-run
analysis of this canonical game. First, it may affect the game structure making cooperation no
longer a desirable scenario from a strategic point of view. Moreover, in cases when the structure
remains unchanged, the necessary conditions for sustaining cooperative agreements may be more
restrictive, even being infeasible in some cases regardless of players’ patience.

4.2. Cournot Duopoly

Consider two firms competing in quantities, producing an homogeneous product with constant
marginal cost k and facing an inverse demand function P (Q) = min {A− bQ, 0}, where A > k,
b > 0, and Q = q1 + q2, where qi is the quantity produced by firm i. Also consider ambiguity on
the competitor’s action, which means firms internalize that the other firm may produce a quantity
different from the expected, i.e. different from the standard competitive equilibrium. Suppose firms
can produce any q ∈ [0, q̄], where q̄ is the capacity constraint. For simplicity, we assume that q̄ is
such that A−bq̄ = 0. In this case, S = [0, q̄]. Therefore, M(s) = (A−bs)s−ks, ∀s ∈ S, as the best
scenario is always given by the other firm producing zero. Conversely, m(s) = −ks, ∀s ∈ S, as the
worst scenario is always given by the other firm producing q̄ and, therefore, taking the price to zero.

In this setting, n is the competitive quantity, qn, which comes from the following maximization
problem,

v∗n = max
qn∈[0,q̄]

δα(A − bqn)qn + (1− δ) [A− b(qn + qj)] q
n − kqn, (13)

where qj is the expected quantity produced by the other firm in the non-ambiguous scenario, i.e.
what the firm expects the other firm to produce when things behave as they are supposed to.
Taking first order condition leads to the reaction function,

qn = R(qj) =
δαA+ (1− δ)(A − bqj)− k

2b(1 − δ(1− α))
. (14)

When solving for qn, we make two different assumptions on qj. The first is to assume that the
other firm is expected to behave as a standard competitive firm and, therefore, qj = A−k

3b and
qn = R(qj). The second is to assume that the other firm is expected to be ambiguous, being the

symmetric equilibrium given by qn = δαA+(1−δ)A−k

2b(1−δ(1−α))+b(1−δ) . Simulations for both cases are reported.

Finally, v∗n is given by

v∗n = δα(A − bqn)qn + (1− δ)

(

A− b

(

qn +
A− k

3b

))

qn − kqn, or (15)

v∗n = δα(A − bqn)qn + (1− δ) (A− 2bqn) qn − kqn, (16)

depending on the assumption made over qj.
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On the other hand, c is given by collusive quantity, qm, which is the (equally splitted) standard
optimal monopoly production,

qm =
A− k

4b
, (17)

which leads to

v∗c = δα(A − bqm)qm + (1− δ)(A − 2bqm)qm − kqm. (18)

Finally, d is given by the optimal reaction to the collusive agreement, qd = R (qm), which leads to,

v∗d = δα(A − bqd)qd + (1− δ)
[

A− b(qd + qm)
]

qd − kqd. (19)

Since φc = φn = 1− δ, the critical discount factor can be analytically determined by equation (9).
Before proceeding with the analysis of whether ambiguity affects the game structure and the effects
of ambiguity on the discount factor, let’s recall the similar PD structure that tacit collusions in
oligopoly models have.

The canonical analysis of tacit collusions in oligopoly models following a repeated PD logic arises
from the fact that payoffs (firms’ benefits) have a similar structure to the PD, i.e. π

(

qd, qm
)

>

π (qm, qm) > π (qn, qj), where qj =
A−k
3b or qj = qn, depending on the assumption made. And where

π(qi, qj) = (A−b(qi+qj)−k)qi are the benefits when the firm produces qi and the counterpart pro-
duces qj. To simplify notation, we will refer to these benefits as πd, πc, and πn, respectively. While
the mentioned ordering is always met in the non-ambiguity setting, it is worth asking if it holds
in an ambiguity environment, since optimal quantities now depend on the ambiguity parameters,
which in turn determine benefits.20 Therefore, it is important to check which (δ, α) combinations
are characterized by alternative payments orderings, in order to rule them out in our subsequent
analysis.

In order to address that concern, we proceed by computing the benefits for each (δ, α) pair, for
given values of A, b and k. For k, we consider two cases: zero and positive marginal costs. Figure 3
illustrates the analysis for the two different assumptions made on counterpart benchmark behavior,
unambiguous (or non-symmetric) and symmetric, and for both cases regarding the marginal cost.21

When marginal cost is zero, both with and without symmetry, payoffs ordering is unaltered with
respect to the non-ambiguity case. Nevertheless, this is not always true when marginal costs are
positive. When firms are relatively pessimist and face high levels of ambiguity, the problem stops
behaving as a particular case of the PD (red zones). Here two cases arise. First, when ambiguity
and pessimism are moderately high, deviation stops being profitable. Light-red zones account for
this fact in the right panels in Figure 3. Concretely, payoffs ordering changes to πc > πd > πn and
πc > πn > πd, in the non-symmetric and symmetric cases, respectively. Therefore, with effective

20This was not the case in the PD, since payoffs were exogenous and not affected by ambiguity parameters.
21While results are shown for A = 10, b = 1 and k = 2 (when being positive), qualitative implications of the

numerical analysis do not rely on these specific values. Altering parameter values may marginally alter the zones’
magnitude, but not their shape and existence.
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Figure 3: Cournot duopoly: Game’s structure
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Note: A = 10 and b = 1. Blue zones account for (δ, α) combinations such
that the PD structure holds (πd > πc > πn). Red zones account for (δ, α)
combinations such that PD structure no longer holds. The light red zones
accounts for games defined by πc > πd > πn and πc > πn > πd, in the non-
symmetric and symmetric cases, respectively. The dark red zone accounts
for (δ, α) combinations such that for firms is no longer profitable to enter
the market.

payoffs considerable lower in magnitude with respect to the non-ambiguity case, the game transits
to a multiple equilibria structure.22 Moreover, when ambiguity and pessimism are large enough, a
second change in the game structure happens. This is illustrated by the dark red zones of Figure
3. At this point, it is no longer profitable for firms to enter the market, as they put considerable
weight to the scenario where their counterparts set the price equal to zero, thus only facing losses
when production is positive. In this case, πn and πd are equal to zero. In brief, a first insight
about this application is that the duopoly may no longer behave as a particular case of the PD
when marginal costs are positive and, therefore, dynamics about their market performance work
in a different way regarding the standard tacit collusion analysis. This is interesting, since zero
marginal costs are usually assumed without loss of generality in some applications of these models.23

22Note that this not means that now collusion can be achieved as a short run-equilibrium, since firms make decisions
looking at expected payoffs, and in these cases, expected payoff of non-cooperation is larger.

23To better understand the mechanism, note that in the zones that are not characterized by πd > πc > πn but
firms do not leave the market (light red zones), the optimal quantity for a firm wishing to defect from a cooperative
agreement is lower than the optimal collusive quantity, as opposed to the regular setup where the optimal deviation
quantity is larger than the collusive agreement. This makes the potential deviation to generate a smaller total
quantity and hence a higher price than the monopoly one. Consequently, this results in a lower profit (i.e. πc > πd)
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Departing from the previous consideration, we can now replicate the analysis done in the previous
section to the cases in which the payoff ordering is consistent with a PD structure. First, we address
the comparison between expected payoffs derived from sustaining cooperative and non-cooperative
equilibria. Figure 4 illustrates the analysis for the four cases considered. As in previous section,
we mark with dark red (blue) the (δ, α) pairs in which v∗n > v∗c (v∗n < v∗c ). Note that again, a
large area arises in which the cooperative equilibrium is Pareto-dominated (in expected terms) by
the non-cooperative equilibrium in the static game. To understand this, recall that when firms are
relatively optimistic and face high levels of ambiguity, they give more probability to the other firm
not producing anything. Therefore, collusive agreements are less profitable for firms in expected
terms (although not in effective terms) since potential benefitial deviations are more profitable
when firms are not cooperating.24

Finally, Figure 5 pools the analysis done above and adds the critical discount factor that would
sustain a cooperative equilibrium in the long-run in cases where the PD structure is maintained and
still exist incentives to seek cooperative equilibria (when v∗c > v∗n). Figure 5 is read as Figure 2. It
can be seen that when there are no marginal costs, the figure shows a similar pattern than the PD
case: ambiguity increases the critical discount factor needed for cooperation (color palette zone,
from blue to yellow) up to a point that cooperation is infeasible (orange zone). This suggests, as in
the previous section, that ambiguity is detrimental for cooperation and can lead to infeasibility for
a large fraction of the parameter space. Where marginal costs are positive, that pattern is seen for
firms with a minimum level of optimism. When firms are relatively pessimist, the critical discount
factor decreases up to the point the game is altered.25

4.3. Bertrand Duopoly

We finally address the case of the Bertrand duopoly. Consider two firms competing in prices,
producing an heterogeneous product with constant marginal cost k. Imperfect substitution implies
that demand for firm i is given by D(pi, p−i) = max{0, a + bp−i − cpi}, where c > b, a > k and
a + bk − cK > 0, with K = a

c
. Without loss of generality, we can restrict the strategy space to

S = [k,K].26 Therefore, M(s) = (a− bs+ cK)(s− k), ∀s ∈ S, as the best scenario is always given
by the other firm setting the price equal to K. Conversely, m(s) = (a− bs+ ck)(s− k), ∀s ∈ S, as
the worst scenario is always given by the other firm setting the price equal to k.

and in a deviation that never takes place. Recall that in these zones, firms assign large probabilities to counterparts
deviating from the expected benchmark behavior to a case in which their production is high enough to set the price
to zero.

24To better understand the mechanism, note that zones characterized by v∗n > v∗c are associated with large
quantities of the non-cooperative equilibrium. This occurs because higher levels of ambiguity lead optimistic firms
to produce more (as optimal decision relies more on the best potential scenario). Then, collusive agreements are less
profitable than competing and expecting beneficial deviations.

25Again, the explanation is in the non-linearity of the problem (regarding δ) that affects optimal quantities and,
therefore, benefits. When firms are pessimistic, all expected payoffs decrease with ambiguity, but the short-term
expected benefit from defecting does it faster. That increases the likelihood of sustaining a collusion, but in a
context with extremely low payoffs, with respect to the non-ambiguity case.

26Choosing prices below k will always be dominated by not entering the market while choosing prices above K

will always be dominated by choosing K (in both cases, strictly dominated if k > 0).
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Figure 4: Cournot duopoly: Comparison of expected equilibria
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Note: A = 10 and b = 1. Blue zones account for (δ, α) combinations such
that the PD structure holds (πd > πc > πn) and v∗c > v∗n. Dark red zones
account for (δ, α) combinations such that the PD structure holds (πd > πc >

πn) and v∗c < v∗n. Light red zones account for (δ, α) combinations such that
PD structure no longer holds. Among them, the lighter zones accounts for
games defined by πc > πd > πn and πc > πn > πd, in the non-symmetric
and symmetric cases, respectively, while the darker zone accounts for (δ, α)
combinations such that for firms is no longer profitable to enter the market.

In this case, n is given by pn, which comes from the following optimization problem27

v∗n = max
pn∈[k,K]

(pn − k)(a− cpn) + (pn − k)b ((1− δ)pj + δαK + δ(1− α)k) , (20)

where pj is the expected price chosen by the other firm in the non-ambiguous scenario, i.e. the
price that the firm expects the other firm to set when things behave as they are supposed to.
Taking first order condition leads to the reaction function,

pn = R(pj) =
a+ b [(1− δ)pi + δαK + δ(1 − α)k] + ck

2c
. (21)

For solving for pn, we make the two same assumptions as in the Cournot case. The first is to assume
that the other firm is expected to behave as a standard competitive firm and, therefore, pj =

a+ck
2c−b

and pn = R(pj). The second is to assume that the other firm is expected to be ambiguous, being the

27The optimization problem is given by v∗n = maxpn∈[k,K] δ(α(p
n
− k)(a + bK − cpn) + (1− α)(pn − k)(a + bk −

cpn)) + (1− δ)(pn − k)(a+ bpj − cpn) and simplifies to (20).
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Figure 5: Cournot duopoly: Behavior of β∗
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Note: A = 10 and b = 1. Dark red zones account for (δ, α) combinations
such that the PD structure holds (πd > πc > πn) and v∗c < v∗n. Light red
zones account for (δ, α) combinations such that PD structure no longer holds.
Among them, the lighter zones accounts for games defined by πc > πd > πn

and πc > πn > πd, in the non-symmetric and symmetric cases, respectively,
while the darker zone accounts for (δ, α) combinations such that for firms is
no longer profitable to enter the market. The remaining zones account for
(δ, α) combinations such that the PD structure holds (πd > πc > πn) and
v∗c > v∗n. In the latter, the bluer the color, the lower β∗; and the more yellow
the color, the higher β∗. The orange zones account for (δ, α) combinations
for which no exists β ∈ (0, 1) satisfying equation (9).

symmetric equilibrium given by pn = a+δαK+δ(1−α)k+ck

2c−b(1−δ) . Simulations for both cases are reported.

Given that, v∗n is given by

v∗n = (pn − k)(A− cpn) + (pn − k)b

(

(1− δ)

(

a+ ck

2c− b

)

+ δαK + δ(1 − α)k

)

, or (22)

v∗n = (pn − k)(A− cpn) + (pn − k)b ((1− δ)pn + δαK + δ(1 − α)k) , (23)

depending on the assumption made over pj.

On the other hand, c is given by the collusive price, pm, which comes from the maximization of
the joint profits, (p1 − k)(a+ bp2 − cp1)+ (p2 − k)(a+ bp1 − cp2). Solution to this problem is given

by pm = 1
2

(

a
c−b

+ k
)

. This leads to

v∗c = (pm − k)(a− cpm) + (pm − k)b ((1− δ)pm + δαK + δ(1− α)k) . (24)
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Figure 6: Bertrand duopoly: Numerical results
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Note: a = 10, b = 0.5, c = 1 (and, therefore, K = 10). Dark red zones
account for (δ, α) combinations such that the PD structure holds (πd >

πc > πn) and v∗c < v∗n. Light red zones account for (δ, α) combinations such
that PD structure no longer holds (πc > πd > πn). The remaining zones
account account for (δ, α) combinations such that the PD structure holds
(πd > πc > πn) and v∗c > v∗n. In the latter, the bluer the color, the lower β∗;
and the more yellow the color, the higher β∗. The orange zones account for
(δ, α) combinations for which no exists β ∈ (0, 1) satisfying equation (9).

Finally, d is given by the optimal reaction to the collusive agreement, pd = R (pm), which leads to,

v∗d = (pd − k)(a− cpd) + (pd − k)b ((1− δ)pm + δαK + δ(1 − α)k) .

Since φc = φn = 1− δ, critical discount factor is determined by equation (9). We perform the same
numerical analysis than the one made in previous subsections. Results are summarized in Figure 6.
The analysis suggest almost the same as in previous cases. First, ambiguity may alter the effective
payoffs ordering. This happens to highly pessimistic and ambiguous firms with positive marginal
costs, where again the new structure is characterized by πc > πd > πn.

28 Second, in cases when
the payoff ordering remains unchanged, an area arises in which cooperation is no longer desirable
in expected terms. Finally, in cases when cooperation is desirable, ambiguity makes it less likely,
since it demands more patient firms. In some cases, it even makes it infeasible. Important from
this application is the fact that the zones in which cooperation fails to be feasible comprises a
highly significant portion of the parameter.

28Unlike the Cournot analysis, firms always stays on the market, regardless the values of δ and α.
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5. Conclusions

This paper studies the effects of ambiguity on long-run cooperation in repeated strategic games.
We show how the inclusion of ambiguity in strategic games can change in nontrivial ways the
structure of them, altering the conditions under which long-run cooperation can be sustained. By
using neo-additive capacities, we assess the requirements on the discount factor for a cooperative
long-run equilibrium in a two-player game, considering beliefs’ updating in players’ strategies. In
this framework, players partially distrust their own beliefs about other player’s behavior and place
themselves in the best and worst cases depending on their attitude towards ambiguity. As the
concepts of ambiguity and optimism are intuitively and flexibly parametrized, we can theoretically
explore the effects ambiguity has on the likelihood of sustaining a cooperative equilibrium in the
long-run.

Equipped with this, we proceed to analyze three applications to get insights about specific effects
on different setups. We study the infinitely repeated Prisoner’s Dilemma, and the Cournot and
Bertrand duopoly models. These applications lead to the following conclusions. First, ambiguity
may alter the game’s structure to schemes where seeking conditions to sustain long-run cooperative
agreements stops being desirable. In these cases, non-cooperation is more profitable in expected
terms and is achievable as a short-run Nash equilibrium. Second, ambiguity is in general detrimen-
tal for cooperation. Whenever the question of a reachable long-run equilibrium is still relevant, all
three applications studied result in critical discount factors which increase with the level of ambi-
guity. Furthermore, for some parametric combinations, games may not accept a feasible discount
factor consistent with a cooperative equilibrium, even when the expected payoff of cooperating is
larger.

The implications of these results are relevant for understanding cooperative equilibria in strategic
games in contexts of uncertainty. Moreover, they can be relevant for the design of antitrust
policies. The knowledge players have with respect to their counterparts’ expected actions can
have substantial effects on the set of equilibria that can arise. For instance, in more informed
environments, i.e. settings with low levels of ambiguity, players should face increasing chances
of attaining cooperative equilibria compared to less informed ones. This is connected to what
policies can foster or discourage the existence of tacit collusion. Higher certainty about competitors’
decisions may make more attractive for firms to agree on production or price decisions.
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Appendix A. Capacities and Neo-Additive Capacities

Given a finite space X and its correspondent power set 2X , a capacity v : 2X → R+ is a function
that satisfies

v(φ) = 0,

v(A) ≤ v(B) if A ⊆ B,

v(X) = 1.

A capacity is said to be convex if v(A) + v(B) ≤ v(A ∪ B) + v(A ∩ B) (concave if the relation
holds with ≥). Hence, capacities not necessarily comply the additivity law of probabilities. In
this setting, integrating a function f : X → R with respect to a capacity v (the analogous of an
expectation in the additive probability framework) is done by using Choquet integrals (Choquet,
1954). When the capacity is additive, the Choquet integral is equivalent to the Riemann integral.

Intuitively, capacities can capture ambiguous beliefs as, given their non-additivity, the sum of the
likelihood assigned to the realization of the different states does not necessarily sum one. For
example, weight assigned to the union of two excluding acts may be greater than the sum of the
weights assigned to each act individually. In that case, associated with a convex capacity, it is said
that the individual is ambiguity averse.

A neo-additive capacity, proposed by Chateauneuf, Eichberger, and Grant (2007), is a particular
type of capacity defined by

v(A) := (1− δ)π(A) + δµN
α (A),

for all A ⊂ X, where δ ∈ [0, 1], π is an additive probability distribution defined over X and µN
α is

a Hurwicz capacity exactly congruent with N ⊂ X with an α ∈ [0, 1] degree of optimism, defined
by

µN
α (A) =







0 if A ∈ N ,
α if A /∈ N and S \ A /∈ N ,
1 if S \A ∈ N ,

(A.1)

where S is the set of all possible states and N ⊂ X is the set of null events, i.e. the set of
states whose realization is impossible. Chateauneuf, Eichberger, and Grant (2007) show that the
Choquet integral of a neo-additive capacity is given by (1) and axiomatize the functional form as
a utility function under ambiguity.
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Appendix B. Proof of Proposition I

For formal issues, let’s assume that s−i,−1 = c for i = 1, 2. Therefore, history allows to raise the
question about the conditions for sustaining the cooperative sequence as a dynamic equilibrium.

In the described setting, ({sit = c})∞t=0 for i = 1, 2 is an equilibrium if the present value of always
cooperating is larger than the present value of deviating from the cooperative agreement and then
being punished by the scheme proposed.

We first look on the present value of always cooperating. In t = 0 the expected payoff of the
cooperative agreement is given by

v∗c := δ(αM(c) + (1− α)m(c)) + (1− δ)u(c, c).

In t = 1, the individual sees what the counterpart played in t = 0. If the counterpart played c in
the previous period, then the individual keeps playing c and makes no update on the parameters.
Therefore, the expected payoff is again v∗c . The individual predicts that this will happen with
probability φc, which is bounded from below by (1− δ).29 However, if the counterpart deviated on
the previous period (i.e. played any strategy s−i ∈ S different from c), then the individual punishes
the counterpart by playing n and updates the ambiguity parameter, δ, to 1. This situation gives
an expected payoff of

vun := αM(n) + (1− α)m(n).

The later scenario is stationary, as the individual will play n forever and will not make any further
update, regardless the other player’s future actions. Adding up, the expected payoff of the coop-
erative agreement in t = 1, seen from t = 0, is given by φcv

∗
c + (1− φc)v

u
n.

A similar argument is applied recursively for future periods. If the counterpart played c in t = 0
and, therefore, the individual keeps on playing c in t = 1, in t = 2 sees what the counterpart
played in t = 1 and decides how to behave following the rule described in the previous paragraph.
Hence, the expected payoff of the cooperative agreement in t = 2, seen from t = 0, is given by
φ2
cv

∗
c + φc(1− φc)v

u
n + (1 − φc)v

u
n = φ2

cv
∗
c + (1 − φ2

c)v
u
n. Straightforward calculations allow to con-

clude that the expected payoff of the cooperative equilibrium in t = T , seen from t = 0, is given
by φT

c v
∗
c + (1− φT

c )v
u
n.

Thereby, given the subjective discount factor, β, the present value at t = 0 of playing the cooper-
ative strategy is given by

PVc = v∗c + β [φcv
∗
c + (1− φc)v

u
n] + β2

[

φ2
cv

∗
c + (1− φ2

c)v
u
n

]

+ ...

= v∗c

[

1 + βφc + (βφc)
2 + ...

]

+ vun
[

β(1− φc) + β2(1− φ2
c) + ...

]

= v∗c
∑

s≥0

(βφc)
s + βvun

∑

s≥0

βs − βφcv
u
n

∑

s≥0

(βφc)
s

=
v∗c − βφcv

u
n

1− βφc
+

βvun
1− β

. (B.1)

29It could be higher, for example, if M(c) = u(c, c).
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Now, lets refer to the deviating strategy. In t = 0, the expected payoff of deviating from the
cooperative agreement is given by

v∗d := δ(αM(d) + (1− α)m(d)) + (1− δ)u(d, c).

After deviating, the individual knows that the counterpart will punish her by playing n forever,
so she will play n forever as well. Nevertheless, other player’s actions may induce updating on
the individual’s parameters if they do not match the expected behavior. Other player’s expected
behavior in t = 0 is to play c (which the individual predicts it will happen with probability φc),
and in t ≥ 1 is to play n (which the individual predicts it will happen with probability φn, which
is also downward bounded by (1− δ)).30

In t = 1 the individual sees what the counterpart played on t = 0. If the counterpart played c in
the previous period, then the individual makes no update and perceives an expected payoff of

v∗n := δ(αM(n) + (1− α)m(n)) + (1− δ)u(n, n).

However, if the counterpart played any strategy s−i ∈ S different from c in the previous period,
then the individual updates the ambiguity parameter to 1 and perceives an expected payoff of vun.
Again, the later situation is stationary. Adding up, the expected payoff of the deviating strategy
in t = 1, seen from t = 0, is given by φcv

∗
n + (1− φc)v

u
n.

Again, a recursive argument is followed. If the counterpart played c in t = 0 and, therefore, the
individual made no update in t = 1, in t = 2 sees what the counterpart played in t = 1 and decides
how to behave. If the counterpart played n, then the individual makes no update and perceives
an expected payoff of v∗n. Conversely, if the counterpart deviated from expected behavior, then
the expected payoff is vun. Hence, the expected payoff of the deviating strategy in t = 2, seen from
t = 0, is given by φcφnv

∗
n + φc(1 − φn)v

u
n + (1 − φc)v

u
n = φcφnv

∗
n + (1 − φcφn)v

u
n. Straightforward

calculations allow to conclude that the expected payoff of the deviating strategy in t = T , seen

from t = 0, is given by φcφ
(T−1)
n v∗n +

(

1− φcφ
(T−1)
n

)

vun.

Thereby, given the subjective discount factor, β, the present value of playing the deviating strategy
is given by

PVd = v∗d + β [φcv
∗
n + (1− φc)v

u
n] + β2 [φcφnv

∗
n + (1− φcφn)v

u
n] + ...

= v∗d + βφcv
∗
n

[

1 + βφn + (βφn)
2 + ...

]

+ βvun
[

1 + β + β2 + ...
]

− βφcv
u
n

[

1 + βφn + (βφn)
2 + ...

]

= v∗d + βφcv
∗
n

∑

s≥0

(βφn)
s + βvun

∑

s≥0

βs − βφcv
u
n

∑

s≥0

(βφn)
s

= v∗d +
βφc(v

∗
n − vun)

1− βφn
+

βvun
1− β

. (B.2)

Putting together (B.1) and (B.2) yields to (7).

Finally, (9) comes straightforward after algebra by replacing φc = φn = φ in (7). �

30It could be higher, for example, if m(n) = u(n, n).
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