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Abstract The magnetic phases of cobalt nanocylin-
ders at the molecular scale have been studied by means
of density functional theory together with micromag-
netism. Diameters of the objects are under 1 nm. The
magnetic phases resulting from first-principle calcu-
lations are far from obvious and quite different from
both semiclassical results and extrapolations from
what is measured for larger objects. These differences
reinforce the importance of the quantum mechanical
approach for small nanoscopic particles. One of the
main results reported here is precisely the unexpected
order in the last filled orbitals, which produce objects
with alternating magnetic properties as the length of
the cylinder increases. The resulting anisotropy is not
obvious. The vortex phase is washed out due to the
aspect ratio of the systems and the strength of the
exchange constants for Co. Nevertheless, we do a
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pedagogical experiment by turning gradually down the
exchange constants to investigate the kind of vortex
states which are hidden underneath the ferromagnetic
phases.
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Introduction

Magnetic nanowires (Nielsch et al. 2005; Li et al.
2004; Bryan et al. 2012) and magnetic nanotubes
(Vogel et al. 2010; Velázquez-Galván et al. 2014) have
been studied for more than 15 years due to their unique
properties. One of the lines of research is on their
sizes since some applications could be enhanced at the
smallest possible scale. One important line of applica-
tion arises in medicine where magnetic nanoparticles
are used in drug delivery and therapy which requires
knowledge of their reacting properties in biological
media (Raphael et al. 2010). At a more point-like med-
ical application, very small particles are used as cell
markers or cell tracers (Xie et al. 2008).

The magnetic behavior of magnetic nanostructures
has been extensively studied (Antonel et al. 2015;
Douvalis et al. 2016; Gómez-Polo et al. 2016), and
from the theoretical side the use of the continuum
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approximation (i.e., micromagnetism) is customary
(Sayed et al. 2016). These models are focused and
tested against nanostructures sized in the several
nanometer range, according to the experimental data
available. However, in the opposite limit, below 1 nm
in some dimension, the situation is more subtle, the
relevant interactions can be dramatically modified
such that it is possible observed the quantum nature
of the system. Therefore, the following question arises
naturally: Are the magnetic phases already obtained
for classical and semiclassical nanoscopic cylinders
still valid for the quantum molecular cylinders? The
question is pertinent since in the classical works a scal-
ing law was proposed without any apparent limitation
in size (D’Albuquerque e Castro et al. 2002; Landeros
et al. 2006; Zhang et al. 2008). We propose to inquire
whether the extrapolation of the classical results still
holds for the dimensions of the quantum cylinders we
investigate here, with the height H of the order of a
few nanometer and diameter D just a decimal of a
nanometer.

In the present paper, we study the magnetic phase
diagram of subnanoscopic cylindrical clusters formed
by a few dozen Co atoms. Such structures have proven
to be stable for different cross sections (Aguilera-
Granja et al. 2014; Aguilera-Granja, Faustino et al.
2016) from a theoretical point of view. We will use
both, a quantum mechanical approach and also by
treating a semiclassical way, considering the mag-
netic moments as independent of the orbital degrees
of freedom. As we will see, the latter coincides
with the results for classical nanoscopic cylinders
(D’Albuquerque e Castro et al. 2002; Landeros et al.
2006; Zhang et al. 2008), in which three phases were
reported: in-plane, out-of-plane, and vortex. In-plane
refers to a ferromagnetic alignment with all spins
parallel to the plane containing the atomic positions
and perpendicular to the cylindrical axis. Out-of-plane
refers to a ferromagnetic alignment with all spins par-
allel to the cylindrical axis and perpendicular to the
plane. In the vortex states, all spins are on the plane
perpendicular to the axis but slightly shifting orienta-
tions so their magnetization orientations close around
in circles yielding nil total magnetization. These three
phases are present in macroscopic systems. However,
the vortex phase is not observed in the present sys-
tems, situation that will be analyzed. Our results show

that although there exist some coincidences with the
semiclassical approach, at this scale a full quantum
mechanical approach is needed.

In the following section, we describe the method-
ology and the systems to be studied. In “Magnetic
Hamiltonian: exchange and anisotropy constants,” we
present the magnetic Hamiltonian and its main con-
sequences for the quantum particles. In “Results and
discussion,” we review the magnetic phases for tubes
and wires. Section “Conclusions” is devoted to the
main conclusions of this work. An Appendix devoted
to nomenclature is included at the end of the paper.

Methodology and systems under study

The systems under study are cylinders at the sub-
nanoscopic (or “molecular”) level. There are five fam-
ilies of particles classified according to their cross
sections. They correspond to those already reported by
Aguilera-Granja et al. (2014) where they are individ-
ually illustrated. Here, we offer generic illustrations
of the families in Fig. 1. In the Appendix, we present
the nomenclature that we have used to label the
nanoparticles.

The calculations were performed using the density
functional theory as implemented within the Vienna
ab initio simulation package (VASP) code (Kresse and
Furthmüller 1996a, b; Kresse and Hafner 1993, 1994).
Projected augmented-wave (PAW) (Blöchl 1994;
Kresse and Joubert 1999) pseudopotentials were used
with PBE as the exchange-correlation parametrization
(Perdew et al. 1996, 1997). A large vacuum space
(at least 15 Å) was considered. The energy cutoff of
the plane waves was set to 350 eV. For all the struc-
tures considered here, we performed a ionic relaxation
until the forces were negligible, |F| < 0.01 eV/Å. A
higher precision on the force limit or in other parame-
ters does not produce any noticeable improvement on
the total energies or anisotropies. We found a general
agreement with the structures already proposed (see
Fig. 1), despite using a different DFT implementation
(Aguilera-Granja et al. 2014).

After a thorough energy minimization, the wave
functions and charge densities were computed within
the collinearity assumption and without spin-orbit
coupling. These quantities were used as input for
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Fig. 1 Schematic views of the nanocylinders. a Lateral view of
a nanotube composed by two kinds of concentric nanotubes: the
inner (outer) nanotube is formed by 4(3) pentagonal (decago-
nal) rings of Co atoms; this system will be called T10-50. b
Top (or bottom) view of family T5-N; c family W5-N; d family
W6 −N ; e family T10-N; and f family W10 −N . T tube, W wire,
N total number of atoms. The colors are just a help to the eye

the next step, which includes the spin-orbit term and
allows the calculation of anisotropies by changing the
quantization axis (Hobbs et al. 2000).

The found solutions allow us to calculate the
exchange constants J which in general vary slightly
for the different nearest-neighbor pairs of atoms
through the particle. However, for simplicity, we shall
assume that J is the same for all such pairs within each
cylinder. This is a useful assumption to estimate the
energy of the exchange interactions, which is orders
of magnitude larger than the other energies involved
(magnetocrystalline-like and shape anisotropies).

The calculations of magnetic properties were car-
ried by a home-made micromagnetism program, using
as a input the parameters taken from DFT together

with a Heisenberg Hamiltonian and the Landau–
Lifshitz–Gilbert equation (Landau and Lifshitz 1935;
Gilbert 2004).

Magnetic Hamiltonian: exchange and anisotropy
constants

In the absence of an external magnetic field, the
contributions to the magnetic Hamiltonian are

H = HH + HA + HDip, (1)

where the first term is the semiclassical Heisenberg
Hamiltonian, HA is the symmetry breaking term due
to the positions of the atoms (it is equivalent to the
magnetocrystalline anisotropy in solids), and HDip is
the dipole-dipole interaction summing over all pairs of
atoms in the system. In the remainder of this section,
we will elaborate on each term of H calculating them
for the different particles under study.

The Heisenberg Hamiltonian models the exchange
energy:

HH = J
∑

<i,j>

Ŝi · Ŝj , (2)

where the summation runs over the nearest neighbors
with spins Ŝi and Ŝi , respectively, for which J has
been assumed constant within each system; the corre-
sponding values of J obtained for the structures under
consideration can be found in Table 1.

The second term in H (1) is the symmetry breaking
term or magnetocrystalline anisotropy energy (HA),
arising from the spin-orbit coupling. Due to the cylin-
drical symmetry of the nanostructures here consid-
ered, the axial axis could be either the easy or the hard
magnetic axis. This component of the Hamiltonian can
be expressed as

HA = K
∑

i

sin2(θi), (3)

where K is the anisotropy constant and θi is the angle
formed by the i-th spin with the axial axis. A posi-
tive value of K means an axial easy axis, conversely, a
negative value of K implies an easy plane perpendic-
ular to the cylinder’s axis. The values of K found here
are listed in Table 1. The last term in the Magnetic
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Table 1 Exchange constants, J, symmetry breaking (magne-
tocrystalline anisotropy) constants, K, and anisotropy constants
from dipolar interactions, KD

Rings System J K KD

2 T5-10 −44 0.56 −0.004

3 T5-15 −46 0.09 0.012

4 T5-20 −28 −0.03 0.019

5 T5-25 −45 −0.03 0.027

6 T5-30 −35 0.22 0.036

7 T5-35 −44 0.84 0.038

2 W5-11 −51 0.31 −0.013

3 W5-17 −46 −0.06 0.003

4 W5-23 −42 −0.07 0.011

5 W5-29 −46 0.28 0.018

6 W5-35 −50 0.21 0.026

7 W5-41 −54 −0.17 0.026

2 W6-13 −70 0.22 −0.012

3 W6-20 −46 −0.17 0.001

4 W6-27 −38 −0.27 0.013

5 W6-34 −41 0.08 0.018

6 W6-41 −44 −0.45 0.023

7 W6-48 −39 0.24 0.026

3/2 T10-35 −57 −0.06 −0.018

4/2 T10-50 −56 −0.01 −0.004

5/4 T10-65 −57 0.23 0.005

2/1 W10-21 −57 −0.16 −0.038

3/2 W10-37 −70 0.10 −0.019

4/2 W10-53 −68 0.12 −0.006

5/4 W10-69 −62 0.11 0.004

All values are given in meV. The “rings” field is the number
of atomic rings composing the nanowire/nanotube; in the case
of wider nanostructures, the inner and outer number of rings is
given in the form inner/outer (see Fig. 1)

Hamiltonian comes from the dipole-dipole interac-
tions. We assign a local magnetic moment at each site
of the cluster, whose magnitude was obtained from
the first-principle calculations, by integranting the
spin-resolved charge density around each atom. The
description was performed assuming that such mag-
netic moments correspond to ideal magnetic dipoles,
described by a vector whose magnitude is preserved.
Explicitly, the dipolar term in Eq. 1 is given by:

HDip = μ0

4π

∑

i,j

Mi ·Mj −3
(
Mi ·n̂ij

)(
Mj ·n̂ij

)

r3
ij

, (4)

where rij is the distance between atom pairs and Mi

corresponds to magnetic moment of the atom i. To cal-
culate the shape anisotropy arising from the dipolar
interaction, we consider that the magnetic moments
are completely aligned with each other due to previous
components of the Hamiltonian and then we calcu-
late the dipolar energy given by the Eq. 4 for two
cases of alignment: direction on the axis and direction
perpendicular to the axis (in-plane), EDA and EDP ,
respectively. Following an approach similar to the one
described by Eq. 3, we define the dipolar anisotropy
constant, KD , as the energy difference between the
two alignment cases: KD = EDP − EDA. Accord-
ingly, a positive value of KD means an axial easy axis,
conversely, a negative value of KD implies an easy
plane perpendicular to the axis. The values for the
dipolar anisotropy constants per atom, KD , are given
in Table 1.

From a dynamic point of view, it is possible to find
the ground state by solving the equation of Landau-
Lifshitz-Gilbert (see Eq. 6), considering a random
initial configuration; This technique is employed in
“Vortex phase,” where we show the changes in the
individual magnetic moments. There, we will explore
the behavior of the different nanocylinders obtained
by (artificially) tuning the value of the exchange inter-
actions from zero to their actual value.

Results and discussion

Magnetic phase diagrams

The main results of our calculations are summarized
in Figs. 2 and 3; they show the diagrams of magnetic
phases for wires and tubes, respectively. These nanos-
tructures are sorted in function of their length (H )
and diameter (D), considering the data of Table 1. To
avoid ambiguity the external dimensions D and H are
measured considering point-like atoms. The blue (red)
symbols represent easy (hard) axis systems respec-
tively. Figures 2a and 3a show the results obtained
from the full magnetic Hamiltonian (1), while Figs. 2b
and 3b ignore the symmetry breaking term HA (see
Eq. 3), but include the anisotropy arising from dipo-
lar interactions. We define the dimensions of the
nanocylinders according to their atomic positions after
the a structural optimization.
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a)

b)

Fig. 2 Magnetic phase diagram for the easy axis orientations of
the nanowires studied here. The upper panel indicates the actual
orientations of the magnetization according to the full Hamilto-
nian given by Eq. 1. The lower panel shows the magnetization
orientations obtained by the semiclassical Hamiltonian of Eq. 5.
The dotted line corresponds to the extrapolation for wires from
the continuum model (see the main text). Boxes are included to
help the eye to identify families

The dotted line corresponds to H = 0.9D

obtained for classical systems sized in tens of nm
(D’Albuquerque e Castro et al. 2002). It can be
noticed that this line agrees well with the semiclas-
sical approach that ignores the spin-orbit interaction.
However, this extrapolation certainly disagrees with
the quantum calculations.

By observing the case employing the full Hamilto-
nian (Figs. 2a and 3a), it is evident that the behavior for
systems on the scale of tens of nanometers disagrees
from the semiclassical approach when applied to the
scale of few atoms, where the quantum phenomena
play an important role, for both wires and tubes. How-
ever, if we ignore the quantum effects arising from the
spin-orbit coupling, we observe a total agreement with
the aforementioned continuum model, even tough that
model was developed for much longer nanocylinders

a)

b)

Fig. 3 Magnetic phase diagram of the easy axis orientation of
the nanotubes. The upper panel indicates the actual orientation
of the magnetization according to the full Hamiltonian given by
Eq. 1. The lower panel shows the magnetization orientations
obtained by the semiclassical Hamiltonian of Eq 5. The dotted
line corresponds to the extrapolation for wires from the contin-
uum model (see the main text). Boxes are included to help the
eye to identify families

treated by means of micromagnetic computational
techniques.

Quantum features

The most striking feature that pops up from running
over the fourth column of Table 1 is that not one trend
is to be found in the symmetry breaking anisotropy,
K . This is a clear manifestation of quantum effects for
these small systems that present discrete energy level
schemes of varying magnetic properties as it is shown
in Fig. 4 and discussed below. This progressive filling
of discrete energy levels produces strong oscillations
of the resulting magnetic moments of the systems
(Munoz et al. 2013; Dorantes-Davila and Pastor 2005;
Gambardella et al. 2002; Hong and Wu 2003) which
resembles molecular magnetism.
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Fig. 4 Electronic levels for T5-N nanocylinders close to the
Fermi energy. Continuous or dashed lines (reinforced by differ-
ent colors) denote different spin states

While it is well-known that the source of HA comes
from the spin-orbit interaction, theoretically, this is a
very complex subject to deal with. Up to the best of
our knowledge the only models of HA in the litera-
ture consider systems larger than ours with a dominant
symmetry which are not applicable here. Therefore,
instead of providing any theoretically insight of the
actual values found in Table 1, we will present argu-
ments that support the lack of patterns in the found
result.

Let us begin by illustrating this point by means
of a much simpler system: an infinite mono-atomic
wire. The symmetry of the wire (crystal field) implies
a splitting of d orbitals depending on their orien-
tations. This defines the angular momentum. Since
spin-orbit coupling, L · S, is much weaker than the
crystal field, it is reasonable to think that L is fixed
independently of S. Then, the only role of the spin-
orbit coupling would be to align S parallel to the
direction of L, which in turn depends on characteris-
tics of the mono-atomic wire. Then, the length, width,
and shape become important parameters to determine
the way the energy levels are filled up.

As we turn now our attention to the particles under
study, we notice that the simplest clusters are those
belonging to the series T5, where any atom has two
different types of neighbors: those from the same ring
and the ones belonging to adjacent rings. This dif-
ference effectively splits the d orbitals according to
their orientations, but in practice the linear combi-
nations of atomic orbitals, building an eigenstate are
very similar, partially because the nearest-neighbor

distances are similar for both orientations of neigh-
bors. As the sizes of the systems increase, the positions
of the atoms on the rings along the axis make a differ-
ence both in the number of nearest neighbors and the
nearest-neighbor distances. This means complicated
energy level schemes changing abruptly for one clus-
ter to next one in the family as N grows. This effect
leads to variable properties in the last occupied elec-
tronic levels, effectively making every cluster different
from the others. In particular, the magnetic property
of each cylinder is quantum mechanically decided not
following any classical trend. This is illustrated in
Fig. 4 where the energy levels corresponding to differ-
ent spin (continuous and dashed lines) can be found at
different, unrelated, energy positions as we go along
the family of tubes. Also there is no trend in the orbital
character of those energy levels (not shown). Thus, the
Fermi energy position (or equivalent for these molecu-
lar objects) determines the magnetic character of each
particle without following any trend. Diagrams simi-
lar to Fig. 4 can be constructed for the other families
all showing a non trivial ordering of energy levels.

Conversely, even thought the value of J varies from
system to system, for most of them J ∼ 50 meV indi-
cating a strong ferromagnetic behavior regardless of
the exact nature of the system. Therefore, we safely
can use this parameter in continuum approximation, at
least is strongly ferromagnetic systems such as Co.

Our results indicate that the dipolar interaction—
compared to the other magnetic interactions—does
not play any significant role at this scale, in strong
contrast to the behavior found for longer systems
(D’Albuquerque e Castro et al. 2002). We found that,
for most cases, the magnitude of KD is much smaller
than both, J and K , showing that the anisotropy result-
ing from the dipolar interaction is not relevant at this
level.

Vortex phase

As it can be appreciated from previous discussion
the vortex phase—a ubiquitous phase of magnetic
nanocylinders—is missing in the tubes and wires con-
sidered in this study. Once the spins are in the plane,
they minimize their energy by adopting a parallel
alignment. Since there is a small number of atoms
in each ring, the angle between consecutive spins in
a vortex would imply a significant energy cost, (see
Eq. 2), for instance, for T6 this angle is π/3, larger



J Nanopart Res (2017) 19: 188 Page 7 of 10 188

than the parallel alignment in the ferromagnetic case.
A strong enough dipolar interaction could overcome
the exchange term, leading to a vortex state in these
rings, but, conversely, in our small systems, this inter-
action is extremely weak. In microscopical cylindrical
systems, two factors favor the vortex state: on one
hand, the rings are larger and they can be though of as
formed by a great number of atoms with only a slight
deviation in the magnetization between consecutive
atoms; on the other hand, the long-range dipolar field
adds up a huge number of interactions to the point it
can compete with the exchange interactions in some
cases.

In spite of the fact our systems do not present the
vortex phase, we can use them to test the conditions
under which a vortex phase could appear. To accom-
plish this task, we can vary the parameters of the
Hamiltonian, searching for the possibility of vortex

configurations that could be energetically competitive
with the other already established phases. One such
possibility is to tune the magnitude of the exchange
interaction J and to ignore the anisotropy coming
from the spin-orbit coupling (K = 0). Starting from
the localized magnetic moments obtained from the
first-principle calculations, the magnetic dipoles can
interact according to the normalized semiclassical
Hamiltonian:

HSC = −Jn

∑

〈i,j〉
mi · mj

+
∑

i<j

mi · mj − 3(mi · n̂ij )(mj · n̂ij )

d3
ij

, (5)

where the first summation runs over first neighbors
and the second summation runs over all pairs of atoms.
The normalized constant exchange interaction is given
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Fig. 5 Magnetic configurations for the semiclassical approach.
a T10-35 lateral, diagonal and top views for Jn = 0. b Same sys-
tem under diagonal view for Jn = 0.5. c T10-65 lateral, diagonal

and top views for Jn = 0. d Same system under diagonal view
for Jn = 0.5
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Fig. 6 Transition from a
vortex configurations to
ferromagnetic
configurations for a wires
W10 and b tubes T10 as the
exchange constant is
increased
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by Jn = −18.6 J/M2
s with J in meV and Ms is the

average value of the magnetic moment per atom in
units of μB (for T10-35 case J = −57 meV and Ms =
1.97, such that Jn = 273.2). The distance between
atom pairs, dij , is given in Å and mi = Mi/Ms cor-
responds to magnetic moment of the atom i in units
of Ms . In this frame, the magnetic configuration is
given by the orientation of each individual magnetic
moment mi .

From a deterministic point of view, temporal evo-
lution of each mi is ruled by Landau-Libshitz-Gilbert
equation (Landau and Lifshitz 1935; Gilbert 2004):

dmi

dt
= −mi × hi

eff + αmi × dmi

dt
, (6)

where time is measured in (|γ |Ms)
−1 units, with γ

the gyromagnetic constant. The Gilbert parameter α in
Eq. 6 introduces the interaction of each particle with
the external environment. Although particles can gain
or lose energy, we consider dissipative environments
(α > 0). Further, hi

eff = −∇ iHSC is the effective
field acting over particle i. Thus, a system of mag-
netic particles with a random initial configuration at
t = 0 will evolve until it reaches a stationary configu-
ration at t = τR (relaxation time). To solve this system
of coupled differential equations, we have applied the
Fourth Order Runge Kutta (RK4) integration method.

The magnetic configurations found in T10-35 and
T10-65, for Jn = 0 are presented in the Fig. 5a, c,
respectively. In both cases, a vortex configuration is
obtained. Increasing Jn to a value of 0.5 (its actual
value is 273.2) shows that the magnetic configuration
changes to a ferromagnetic state, which is in-plane
for T10-35 (Fig. 5b) and parallel to the axial axis for
T10-65 (Fig. 5d). The previous results confirm again
that the ferromagnetic phases are absolutely dominant
for these systems. Furthermore, it is observed that for

T10-35 the ferromagnetic lower energy state is reached
in the plane, whereas for T10-65 is on the axis, con-
sistent result with both semiclassic and first-principle
calculations as it can be seen in Fig. 3.

This transition between the two states—vortex and
ferromagnetic—can be appreciated by the magnetiza-
tion as it can be seen in Fig. 6. Here, Jn is gradually
increased in the range [0.0–0.5] for all the decagonal
systems, with Fig. 6a for wires and Fig. 6b for tubes.
It can be noticed that the vortex to ferromagnetic tran-
sition is abrupt for tubes while it is gradual for wires.
Thus, the highly connected atoms on the wire axis
soften the transition.

Conclusions

The leading magnetic energy is the exchange term,
indicating ferromagnetic states for all the cylinders
studied here.

In general terms, we can speak of systems with
exchange interactions around −40 meV, anisotropy
fields of the order of 0.2 meV reaching down to about
−0.1 meV, and dipolar contributions of the order of
0.01 to −0.01 meV. Modulations are appreciated in
Table 1.

However, the magnetic orientation (in-plane or off-
plane) of each system is a consequence of ordering
of its energy levels and the ways they fill up with
the available electrons. This means abrupt changes of
magnetic properties as the cylinders add more rings to
reach longer lengths within each family.

At this scale, the magnetic phases are not obvi-
ous and full quantum mechanics (including spin-orbit
interactions) is necessary to fully describe these sys-
tems. This means that the classical or semiclassical
description of these cylinders fails at a point which
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makes impossible to extrapolate the phases found
at the nanoscopic or larger systems. In particular,
the preference for in-plane or out-of-plane phases is
completely determined by the quantum mechanical
properties.

The vortex state is lost at this scale since it is energy
costly to close the interactions within the plane for a
low number of magnetic moments. However, we can
attempt to visualize the way the dipolar interaction
could manifest itself in very large systems by tuning
down the exchange interactions. When this is done,
we are able to recover the vortex state which emerges
mainly for the tubes and shorter cylinders as it might
be expected classically. When the exchange constant
is let to gradually increase from zero value the fer-
romagnetic phase is recovered abruptly for tubes and
gradually for wires.

The main message is that these particles present
interesting properties which can be modulated by their
geometries. However, each one has to be character-
ized separately from the rest since quantum mechanics
inhibit extrapolations or family trends, and there-
fore, the continuum approximation, unless a weak
anisotropy is to be expected.

Finally, for the future work, while in the present
study, we showed the dominance of the quantum
effects at molecular scale, it would be helpful to esti-
mate at which size a classical description start to be
valid. Answering this issue is overwhelming diffi-
cult, but instead, a simple model could provide some
information of the length scales.
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Appendix: Nomenclature

Pentagonal tubes The basic unit is a pentagonal
ring of Co atoms. The tube grows by adding these

pentagons in an intercalated way thus minimizing
energy. A projection of the atoms on any end of the
cylinder is presented in Fig. 1b. They are denoted by
T5-N, where N is the total number of atoms in the
particle: N = 5×R, with R representing the number
of rings conforming the tube. We will consider from
T5-10 to T5-35.

Pentagonal wires The basic units are a pentagonal
ring of Co atoms and a single Co atom over the cen-
ter of such pentagon. The wires grow intercalating
the axial atom in between consecutive rings; a pro-
jection of the atoms on any end of the cylinder is
presented in Fig. 1c. These wires are denoted by W5-
N, where N is the total number of atoms in the particle:
N = 5×R+(R−1), with R representing the number of
rings conforming the wire. At the ends of the cylin-
der only pentagons are allowed. We will consider from
W5-11 to W5-41.

Hexagonal wires The basic units are hexagonal rings
of Co atoms and a single Co atom over the cen-
ter of such hexagon. The wires grow intercalating
the axial atom in between consecutive rings; a pro-
jection of the atoms on any end of the cylinder is
presented in Fig. 1d. These wires are denoted by W6-
N, where N is the total number of atoms in the particle:
N = 6×R+(R−1), with R representing the number of
rings conforming the wire. At the ends of the cylin-
ders only hexagons are allowed. We will consider from
W6-13 to W6-48.

Decagonal tubes The basic units are a pentagonal
rings and decagonal rings of Co atoms. These tubes
are grown alternating pentagons and decagons along
the cylindrical axis; a projection of the atoms on any
end of the cylinder is presented in Fig. 1e. These tubes
are denoted by T10-N, where N is the total number
of atoms in the particle: N = 5×R+10×(R−1), with
R representing the number of pentagons conforming
the tube. We will consider from T10-35 to T10-65.
Figure 1a shows a lateral view of T10-50.

Decagonal wires The basic units are single axial
atoms, pentagonal rings and decagonal rings of Co
atoms. These tubes are grown similarly to the decago-
nal tubes but in addition they also have a single atom
on the axis at approximately the same height as the
external decagon; a projection of the atoms on any end
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of the cylinder is presented in Fig. 1f. These wires are
denoted by W10-N, where N is the total number of
atoms in the particle: N = 5×R+10×(R−1)+(R−1),
with R representing the number of pentagons con-
forming the tube. We will consider from W10-21 to
W10-69.

We should mention that the family of hexagonal
tubes (T6-N) is not included here because we failed to
find stable structures for this theoretical conception.
When initiations with this symmetry were started from
several possible configurations they all collapsed into
non cylindrical particles.
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