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Abstract
Recent experimental work has determined that free falling 87Rb atoms on 
Earth, with vertically aligned spins, follow geodesics, thus apparently ruling 
out spin-gravitation interactions. It is showed that while some spinning matter 
models coupled to gravitation referenced to in that work seem to be ruled 
out by the experiment, those same experimental results confirm theoretical 
results derived from a Lagrangian description of spinning particles coupled to 
gravity constructed over forty years ago. A proposal to carry out (similar but) 
different experiments which will help to test the validity of the universality 
of free fall as opposed to the correctness of the aforementioned Lagrangian 
theory, is presented.

Keywords: spin-gravity coupling, spinning massive particle, Lagrangian 
description

1.  Introduction

In a recently published Letter [1] an experiment to asses the universality of free fall (UFF) by 
testing spin-gravity coupling was presented. The experiment considers free falling 87Rb atoms 
on Earth with vertically aligned spins pointing either up or down. The determination of the 
Eötvos ratio for the accelerations of both kinds of spin orientation allows for the comparison 
of the experimental results with theoretical models of spin-curvature and spin-torsion cou-
plings developed in [2–4]. The conclusion is that spin-curvature and spin-torsion couplings 
are not observed at the level of 1.2 × 10−7, thus disproving the aforementioned theoretical 
models. This attempt is the latest one in a series of experiments aiming to determine the UFF 
on spin atoms on Earth’s gravitational field [5, 6]. This is relevant as different theories have 
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tried to explain those results through the spin-gravity coupling [7–10], where others have 
shown a direct coupling between spin, electromagnetic and gravitational fields finding a lower 
bound for the Landé g-factor value [11–13].

In this work, we prove that experimental results described in [1], are exactly consistent 
with the ones predicted by a Lagrangian theory of spinning particles (tops) coupled to gravity 
constructed over forty years ago [14] and applied in different contexts over the years [15–24]. 
The results obtained in [14] are developed starting from the Lagrangian flat spacetime formal-
ism of spinning tops developed by Hanson and Regge in [25]. Furthermore, we propose a 
similar (but different) experiment to test UFF against the spin-gravity coupling defined in this 
Lagrangian description of tops [14–24]. This test might yield a violation of UFF within the 
capabilities of the experimental setting as the one described in [1].

2.  Lagrangian model for spinning particles

The dynamics of tops with mass m, spin J, energy E and total angular momentum j can be 
fully described in terms of a Lagrangian theory. For a spinning particle, its velocity vector uµ 
and its canonical momentum vector Pµ are not parallel in general, and the velocity vector may 
become spacelike [14, 15, 25] while the momentum vector remains timelike due to a dynami-
cal conservation law of the (square of the) mass m2 ≡ PµPµ > 0 [14, 18]. Usually, the spin 
of the particle is defined in terms of an antisymmetric tensor Sµν . The dynamics of a top is 
completely described by the non-geodesic equations of motion for the momentum [14, 17]

DPµ

Dλ
= −1

2
Rµ

ναβuνSαβ ,� (1)

and for the spin tensor

DSµν

Dλ
= Sµλσλ

ν − σµλSλν = Pµuν − uµPν ,� (2)

where σµν  is the antisymmetric angular velocity tensor. Here, Dλ ≡ D/Dλ is the covariant 

derivative, such that DλPµ ≡ Ṗµ + Γµ
αβPαuβ, and DλSµν ≡ Ṡµν + Γµ

αβSανuβ + Γν
αβSµαuβ, 

where the overdot represents the derivative with respect to an arbitrary parameter λ, and Γν
ρτ  

are the Christoffel symbols for the metric field gµν (the speed of light is set equal to 1). The six 
independent components of the antisymmetric spin tensor generate Lorentz transformations. 
In order to restrict them to describe three dimensional rotations only, the Tulczyjew constraint 
is usually imposed [14, 25, 26]

SµνPν = 0 .� (3)

The behavior of a top moving on a background gravitational field is determined by equa-
tions (1)–(3). It is clear that the top does not follow geodesic paths (by the non-zero right-
hand side of equation  (1)). Thereby, the top can be understood as an extended object that 
feels tidal forces due to gravity. They are directly obtained from a Lagrangian formulation. 
The position of the top is denoted by xµ, and its orientation is defined by an orthonor-

mal tetrad e(α)µ (with six independent components) [14, 17]. The orthonormality condi-

tion implies gµν e(α)µ e(β)ν ≡ η(αβ), with η(αβ)(= η(αβ)) the flat-spacetime metric 
η(αβ) ≡ diag (+1,−1,−1,−1). The top velocity vector uµ is thus defined in terms of the 
arbitrary parameter λ by

uµ ≡ dxµ

dλ
,� (4)
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whereas the antisymmetric angular velocity tensor is [14, 17]

σµν ≡ η(αβ)e(α)µ
De(β)

Dλ

ν

= − σνµ ,� (5)

with De(β)ν/Dλ ≡ de(β)
ν/dλ + Γν

ρτ e(β)ρ uτ.

Therefore, the action for the top dynamics S =
∫

L dλ, is chosen to be λ-reparametrization 
invariant. The Lagrangian

L(a1, a2, a3, a4) = (a1)
1/2L

(
a2/a1, a3/(a1)

2, a4/(a1)
2) ,� (6)

is an arbitrary function of four invariants a1, a2, a3, a4, and L is an arbitrary function of 
a1 ≡ uµuµ, a2 ≡ σµνσµν = −tr(σ2), a3 ≡ uασαβσβγuγ , a4 ≡ det(σ), where uµ and σµν  
are the top’s velocity and angular velocity respectively. The momentum vector Pµ and the 
antisymmetric spin tensor Sµν are canonically conjugated to the position and orientation of 
the top. They are defined by

Pµ ≡ ∂L
∂uµ

, Sµν ≡ ∂L
∂σµν

= −Sνµ .� (7)

Without a Lagrangian formulation for a top, the canonical momentum cannot be appropriately 
defined. The non-geodesic equations of motion (1) and (2) can be obtained by variation of the 
action S (for an arbitrary L) with respect to ten independent δxµ and the covariant generaliza-

tion of δθµν ≡ η(αβ)e(α)µδe(β)
ν = −δθνµ.

The consistency of the constraint (3) with the equations of motion (1) and (2) is guaranteed 
making use of the arbitrariness of Lagrangian [25]. This implies that the Tulczyjew constraint 
can be considered as a dynamical property of the arbitrary Lagrangian, and not an external 
imposition on the top dynamics. In [18, 25] an explicit Lagrangian function has been built to 
give rise to equations of motion (1) and (2) and to the constraint (3).

Furthermore, it is possible to show that both the top mass m and its spin J are conserved 
quantities in this theory [18]

m2 ≡ PµPµ , J2 ≡ 1
2

SµνSµν .� (8)

Lastly, if ξµ is a Killing vector, then

Cξ ≡ Pµξµ − 1
2

Sµνξµ;ν ,� (9)

is a constant of motion [14, 15, 17].

3.  Free fall with vertically aligned spin

The experiment described in [1] consists in a free falliing top with its spin aligned (parallel or 
antiparallel) to its vertical trajectory. In this section we show that the theory presented above 
agrees exactly with the results of [1].

Let us consider the Earth’s Schwarzschild field. In order to better model a free 
fall, let us write the metric in cartesian coordinates x0  =  t and x, y, z such that 
g00 = 1 − 2r0/r, where 2r0 is the Schwarzschild radius, and r =

√
x2 + y2 + z2 . Similarly 

g0i  =  0, and gij = −δij − 2r0xix j/(r3 − 2r0r2) [14].
As we model a free fall in this gravitational field, then we set x = ẋ = 0 and y = ẏ = 0 as 

initial conditions. It is a straightforward matter to prove that these conditions are preserved by 
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the dynamics so that the particle only moves along the z-direction. Therefore, the momentum 
is aligned along the free-fall direction Px = 0 = Py. In [1], the spin is chosen to be along the 
direction of the top motion, then Sxy �= 0 is the only non-zero spin component. We show that 
dynamics defined by the previous assumptions are consistently allowed by equations (1)–(3).

First, it is straightforward to prove that the four constraints (3) are identically satisfied by 
our choices. On the other hand, the spin equation (2) for the 0z-components yields the relation

P0uz = Pzu0 ,� (10)

implying that the momentum along the free-fall direction is proportional to the velocity in 
that direction (similar to the spinless case). Also, the spin equation for xy-components turns 
out to be

Ṡxy = 0 ,� (11)

and then, the spin in the z-direction is conserved along the trajectory. All other components for 
the spin equations are identically satisfied. By equation (8), we can identify Sxy = ±J  as the 
two possible orientations of the spin of the particle5.

Finally, the time component of equation (1) yields

DP0

Dλ
≡ Ṗ0 + 2Γ0

0zP
0uz = 0 ,� (12)

whereas the z-component becomes

DPz

Dλ
≡ Ṗz + Γz

00P0u0 + Γz
zzP

zuz = 0 .� (13)

In both equations (12) and (13) the spin gravity coupling vanish identically (the right-hand 
side in equation (1) vanishes). Similarly, the x and y-components vanish identically.

The above solution describes a free falling top where the spin is initially orientated along 
the direction of motion. Equation (11) establish that the spin vector of the particle will remain 
constant along the whole motion, and that any measurement of the momentum or velocity of 
the particle will only reflect the dynamics of a geodesic motion in free fall (equations (12) and 
(13)). Thereby, the experiment performed in [1] agrees exactly with this Lagrangian theory on 
a Schwarzschild background.

The particular solution detailed above is the one where the spin decouples from the gravi-
tational field. To obtain a solution where the spin-gravity coupling be relevant, a different 
trajectory should be studied.

4.  ‘Parabolic’ motion with spin perpendicular to the plane of motion

Let us assume Schwarzschild field background to describe the Earth gravitational field. In this 
case, the equatorial motion of a top can be solved exactly (notice that due to spherical sym-
metry there are infinite many equatorial planes defined by each of the vertical planes where 
the ‘parabolic’ motion takes place). We go back to write the metric in spherical coordinates 
for simplicity xµ = t, r, θ,φ. Thus, the metric is g00 = 1 − 2r0/r, grr = − (1 − 2r0/r)−1, 
gθθ = −r2, gφφ = −r2 sin2 θ.

Without any loss of generality, we can study the the motion in the plane defined by 
cos θ = 0. If the top is initially in that plane and θ̇ = 0, then it remains in the equatorial plane 
[14], in which θ = π/2 and Pθ = 0. Also the spin can be chosen to be orthogonal to the 

5 Using solution (11) in equation (8) gives gxxgyy(Sxy)2 = (Sxy)2 = J2, as gxx = gyy = −1 in free fall.
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equatorial plane Srθ = Sθφ = S0θ = 0. Thus, the spin remain parallel to the angular momen-
tum of the top along the trajectory. We refer the reader to [18] where this solution is fully 
developed. Here, we limit ourselves to exhibit the most important features of this solution. 
Solving equations (1), using the Killing vector conservation laws (9) we get [18]

Pφ =
−j ± EJ/m

1 − η
, Pt =

E ∓ jJr0/(mr3)

1 − η
,� (14)

and

Pr =

[
P2

t −

(
P2
φ

r2 + m2

)(
1 − 2r0

r

)]1/2

,� (15)

which is obtained from PµPµ = m2. Here, E is the top’s energy and j is its total angular 
momentum. Also we have defined the dimensionless parameter

η =
J2r0

m2r3 ,� (16)

where J is the top’s spin given by equation (8). Now, using equation (2) in the plane θ = π/2,

DStr

Dλ
= Ptṙ − Pr ,

DStφ

Dλ
= Ptφ̇− Pφ ,� (17)

althogeter with the relations [18]

Str = −SφrPφ

Pt
, Stφ =

SφrPr

Pt
,

(
Sφr)2

=
J2 (Pt)

2

m2r2 ,� (18)

derived from equations (3) and (8), will let us find the solution for the velocities [18]

φ̇ =
1
r2

(
1 − 2r0

r

)(
2η + 1
η − 1

)(
Pφ

Pt

)
,� (19)

ṙ =

(
1 − 2r0

r

)(
Pr

Pt

)
.� (20)

The problem is completely solved. However, we are interested in any correction to the trajec-
tories that tops follow. Using above solution we can get [14, 18]

dφ±

dr
=

(2η + 1)

(1 − η)
2

(
j ∓ EJ/m

r2

)[
(E ∓ jJr0/mr3)2

(1 − η)2 −
(

1 − 2r0

r

)(
m2 +

(−j ± EJ/m)2

(1 − η)2r2

)]−1/2

.

� (21)

The above trajectory yields the usual results for geodesic motion in the Schwarzschild field 
when J  =  0 (η = 0) [27]. Also, if the particle is freely falling with Pφ = 0 and φ̇ = 0, then the 
top has a nonzero total angular momentum j = ±EJ/m. Thus, Pt  =  E and Pr becomes again 
the classical radial momentum for the geodesic motion in the Schwarzschild field.

It is clear that the equatorial plane trajectory (21) contains as some of its solutions 
the‘parabolic’ motion of the top. However at this point is clear that for any ‘parabolic’ solution 
there are two different trajectories described by the term j ∓ EJ/m in (21). These two trajec-
tories depend on the spin orientation, parallel or antiparallel to the total angular momentum of 
the top, remaining both of them perpendicular to the plane of motion.

S A Hojman and F A Asenjo﻿Class. Quantum Grav. 34 (2017) 115011
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The spin coupling to gravity also affects the acceleration of the top. From equations (14) 
and (20) we can readily obtain

Ṗt = ∓ 3Jr0

mr4(1 − η)

(
1 − 2r0

r

)
PφPr

Pt
,

Ṗφ = ∓ J
m

Ṗt .
�

(22)

Similarly, from equation (15) we can get the radial top component for the acceleration

Ṗr =
PtṖt

Pr − PφṖφ

Prr2

(
1 − 2r0

r

)

+
1
Pt

(
1 − 2r0

r

)[
P2
φ

r3

(
1 − 3r0

r

)
− r0m

r2

]
.

�

(23)

Spinless particles experience a radial force only. For a top, however, its spin, and its interplay 
with gravity, introduces corrections to the radial acceleration Ṗr/m, and a new acceleration 
Ṗφ/m in the φ-direction. One possible way to detect these effects is presented in the follow-
ing section.

5.  Estimations

‘Parabolic’ motion is one of the best candidates to find spin-gravity coupling. Free falling tops 
with spin vertically aligned behave as spinless particles. But in a ‘parabolic’ motion the spin 
orientation plays a crucial role in the non-geodesic motion of the top.

Let us assume a top in an experiment near the Earth surface, such that r ∼ R � r0 (where 
R is the Earth radius), and J ∼ �. Also assume j � J , η � 1, and neglect O(�2). In this case 
we have Pφ ≈ −j , Pt ≈ E ≈ m, where we have considered that the initial velocity of the top 
much smaller than the speed of light.

First, form equation (21) we can see that the top’s trajectory differences for the two types 
of spin orientations can be estimated as

ηφ =
drφ− − drφ+

drφ− + drφ+
∝ J

j
∼ 6 × 10−20

(me

m

)(c
v

)
,� (24)

where drφ ≡ dφ/dr. Here we have approximated the total angular momentum j ∼ mvR, 
where v is the initial top velocity, and me is the electron mass (we have reinserted c for the 
sake of clarity). If initially the top velocity is of the order of (mm s−1), then

ηφ ∼ 10−8
(me

m

)
.� (25)

Therefore, for an electron, this trajectory difference could, in principle, be detected with cur
rent experimental capabilities.

On the other hand, one can also wonder about the differences on the top’s acceleration 
between the two spin orientations in a ‘parabolic’ motion. Using our approximations, equa-
tions (22) reduce to

Ṗt ≈ ±3Jjr0

m2r4 Pr , Ṗφ ≈ 0 ,� (26)

and the top has a radial acceleration given by

S A Hojman and F A Asenjo﻿Class. Quantum Grav. 34 (2017) 115011
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a±=
Ṗr

m
≈ − r0

r2 +
j2

m2r3 ± 3Jjr0

m2r4
� (27)

where the first term corresponds to the acceleration of gravity. We can calculate the Eötvös 
ratio for the top motion acceleration

ηa =
a− − a+

a− + a+
≈ 3Jj

m2c2r2

(
1 − j2

m2c2r0r

)−1

.� (28)

If we assume that the top velocity is much less than the Earth’s escape velocity, v � c
√

r0/R, 
then near the Earth surface (r = R � r0) we have

ηa ≈
(

3J
mecR

)(me

m

)(v
c

)
∼ 10−19

(me

m

)(v
c

)
.� (29)

For this case, the Eötvös ratio is very small ranging outside the current experimental capabili-
ties. However, the ratio (28) can increase if the top total angular momentum approaches the 
critical value j0 = mc

√
r0R, which corresponds to a top velocity of the order of the Earth’s 

escape velocity.

6.  Concluding remarks

Using a Lagrangian theory for the motion of spinning particle on gravitational fields, we have 
predicted using estimations (24) and (29) that a ‘parabolic’ motion for a top shows some 
deviations from a classical geodesic motion, whereas its free-falling motion (12) and (13) does 
not present any difference from the spinless dynamics.

Indeed, it is in the parabolic motion where the spin-gravity coupling can be observed, while 
it is absent in a free falling trajectory. Both results are exact solutions for this model and at 
least the former one completely agrees with previous experimental findings [1]. It is important 
to emphasize that other theoretical models do not coincide with these experimental results, 
therefore, this theoretical framework is a good candidate for a correct description on the inter-
action between matter and gravity.

We hope that this results encourage the search for these effects in general relativity.
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