TABLA DE CONTENIDO

1.	INTRODU	CCIÓN	1	
	1.1	ANTECEDENTES GENERALES	1	
	1.2	PROCESOS DE ELECTROOBTENCIÓN Y ELECTROREFINACIÓN	4	
	1.2.1	Electrorefinación	4	
	1.2.2	ELECTROOBTENCIÓN	6	
2.	MARCO TEÓRICO			
	2.1	Fundamentos de Electroquímica	9	
	2.1.1	FENÓMENOS QUE CONTROLAN EL PROCESO DE ELECTRODEPOSICIÓN	10	
	2.1.1.1	Control por Transferencia de Carga (CC)	12	
	2.1.1.2	Control por Transferencia de Masa (CM)	13	
	2.1.1.3	Control Mixto (CX)	14	
	2.2	Electro cristalización	14	
	2.2.1	Formación de núcleos	16	
	2.2.2	CRECIMIENTO DE CRISTALES	19	
	2.2.2.1	MECANISMO DE CRECIMIENTO DE CAPAS	19	
	2.2.2.2	Mecanismo de crecimiento cristalino 3D	21	
	2.2.3	Factores que Afectan la Electro cristalización	22	
	2.2.3.1	Densidad de Corriente	22	
	2.2.3.2	Agitación (Hidrodinámica)	23	
	2.2.3.3	Aditivos	23	
	2.2.4	Clasificación de Depósitos Metálicos	25	
	2.3	Diagrama de Winand	27	
	2.4	Efecto de Inhibidores	29	
	2.4.1	Fenomenología de acción de Inhibidores		
	2.4.1.1	Adsorción		
	2.4.1.2	CRECIMIENTO EN VERTICAL Y LATERAL	31	
	2.4.1.3	Formas de coalescencia de capas	34	
	2.5	Uso de aditivos en electrodeposición de Cobre	37	
	2.6	Objetivos	41	
	2.6.1	Objetivo General	41	
	2.6.2	Objetivos Específicos	41	

3.	METODOL	OGÍA EXPERIMENTAL	42
	3.1	Montaje Experimental	42
	3.2	PREPARACIÓN DEL ELECTROLITO Y CONDICIONES DE OPERACIÓN	43
	3.3	Metalografías	44
4.	RESULTAD	DOS Y DISCUSIÓN	46
	4.1	CONCENTRACIONES DE IONES EN EL ELECTROLITO	46
	4.2	Voltaje de celda y Eficiencia de Corriente	47
	4.3	Morfología de los depósitos	50
5.	CONCLUSI	ONES	57
6.	BIBLIOGR	AFÍA	59
7.	ANEXOS		63
	7.1	Potencial Estándar (a 298 K) Electroquímico de Elementos	63
	7.2	Metalografías Corte Completo	64

ÍNDICE DE TABLAS

Tabla 1: Las 10 minas con mayor producción de cobre de mina para el año 2010	2
Tabla 2: Composición de ánodos y cátodos industriales (moats et al., 2007)	5
Tabla 3: Especies Presentes en electrolitos de ER.	6
Tabla 4: Composición de electrolito en plantas de eo chilenas	7
Tabla 5: Resumen de aditivos Comunes en electrorefinación y en Electroobtención	25
Tabla 6: Detalle de corriente y Concentración Teorica de Fe ²⁺ para el electrolito base de 180 g l ⁻¹ de H ₂ SO ₄ y 40 g de Cu ²⁺ .	g l⁻¹ 43
Tabla 7: Concentraciones medidas de fierro y cobre	46
Tabla 8: Eficiencia de Corriente	47
Tabla 9: Diagrama superficial de los depósitos	51
Tabla 10: Diagrama de Winand para depósitos de cobre utilizando ion ferroso como aditivo	52
Tabla 11: Potecial estándar electroquímico de elementos presentes en electrorefinación de cobre	63
Tabla 12: Metalografías obtenidas en las dos muestras recogidas en cada depósito	64

ÍNDICE DE ILUSTRACIONES

Figura	a 1: Usos del Cobre a nivel mundial durante el año 20141
Figura	a 2: Producción Mundial de Cobre (en todas sus formas)2
Figura	a 3: Esquema de las etapas involucradas en el tratamiento de minerales Sulfurados (rama Pirometalúrgica) y minerales Oxidados (rama Hidrometalúrgica)3
Figur	a 4: Esquema general de reación en electrodos11
Figur	a 5: Regiones de control cinético para electro redución de cobre ⁷ 12
Figur	a 6: Cátodos de baja calidad. (a) presencia de nódulos en la superficie, (b) entrampamiento de lodos anódicos causa estriación del cátodo, γ (c) crecimiento de dendritas en los bordes del cátodo
Figur	a 7: Modelo de Región de doble capa donde cationes son especificamente adsorBidos. CIH: capa interna de
	Helmholtz y CEH: capa externa de Helmholtz16
Figura	a 8: Etapas de un proceso de electrocristalización de un metal sobre un sistrato
Figur	a 9: Cambio de energia libre durante la formación de núcleos de cero, UNA, dos y tres dimensiones. ¹ 18
Figura	a 10: Esquema de los diferentes sitios posibles de incorporación de un ad átomo a la superficie del depósito 18
Figura	a 11: Representación de capas de crecimiento (a - b) y crecimiento cristalino 3D (c)
Figura	a 12: Formación de Macropasos Politómicos: (a) crecimiento de micropasos. (b)coalescencia de micropasos originando un macropaso
Figura	a 13: Esquema de ángulos de desorientación en el límite de granos
Figura	a 14: Dislocación de tornillo y crecimiento de cristales: (a) incorporación del <i>ad átomo</i> a la dislocación. (b) crecimiento piramidal del cristal21
Figura	a 15: Mecanismo de crecimiento 3D para un electrodepósito de oro: (a) escenario de coalescencia de nucleos aislados; (b) crecimiento de núcleos; (c) crecimiento continuo de núcleos hasta la formación de un depósito Continuo.
Figura	a 16: Convección natural y perfil de concentración en electrorefinación de cobre
Figura	a 17: (a) Estructura de la cola animal, compuesta por una serie de aminoácidos formando una larga estructura proteica, (b) Mecanismo de acción de la cola animal24
Figura	a 18: (a) Reflexión difusa y (b) Reflexión especular25
Figura	a 19: Tipos de estructuras metalográficas26
Figura	a 20: Diagrama de winand para las diferentes estructuras de crecimiento de cristales policristalinos28
Figura	a 21: Esquema representativo del efecto de moléculas aditivas sobre un sustrato con micro fallas. el diagrama de la izquierda representa en caso donde el sustrato posee un poro en su superficie y el de la deracha una columna31
Figur	a 22: Nucleación y crecimiento de capas atómicas sobre un sustrato con dislocaciones y partículas adsorbida32
Figura	a 23: Nucleación, crecimiento y agrupamiento de capas atómicas formando un macropaso
Figura	a 24: Esquema de sección transversal de un depósito columnar34
Figura	a 25: Sección transversal de crecimiento tipo BR. Depósito de cobre desde una solución sulfurada35

igura 26: Sección transversal de crecimiento tipo FT. Depósito de cobre desde una solución sulfurada utilizando Naftoquinolina como aditivo	β- 36
Figura 27: Diferentes tipo de microestructuras en diagrama de winand	36
-igura 28: Microestructura de depósitos de cobre obtenidos bajo varias relaciones de cola/tiourea g Cu ⁻¹ : (a) 30/ (b) 53/55, (c) 80/60 γ (d) 100/600. [50x]	60, 38
Figura 29: Micrografía óptica de cátodo de cobre obtenido a 300 A m ⁻² en un electrolito de 40 mg l ⁻¹ de Cl ⁻	39
-igura 30: Micrografía óptica de cátodo de cobre obtenido a 300 A m ⁻² en un electrolito de 40 mg l ⁻¹ de Cl- adicionado: a) 60 y b) 150 mg t ⁻¹ de tiourea	39
-igura 31: Micrografía óptica de cátodo de cobre obtenido a 300 A m ⁻² en un electrolito de 40 mg L ⁻¹ de Cl ⁻ adicionado: a) 50 γ b) 300 g t ⁻¹ de Gelatina.	40
-igura 32: Micrografía óptica de cátodo de cobre obtenido a 300 A m ⁻² en un electrolito de 40 mg l ⁻¹ de Cl ⁻ , 100 g de gelatina y 20 mg t ⁻¹ de tiourea.	t⁻¹ 40
-igura 33: Montaje experimental. 1. Baño Calefactor. 2. Agitador Magnético. 3. Celda Electroquímica. 4. Calefact 5. Agitador Magnético.	or. 42
-igura 34: Montaje Cátodo de acero inoxidable. 1. Área disponible para reacción. 2. Resina acrílica aislantel del electrodo. 3. Soporte acrílico para el electrodo.	43
Figura 35: (a) Cortes seleccionados para observar. (b) montaje del depósito en el molde con resina	44
Figura 36: Porcetage de ion férrico respecto al fierro total en solución al final de cada experimento.	47
Figura 37: Voltaje de Celda para diferentes densidades de corriente según concentración de ion ferroso	48
Figura 38: Eficiencia para diferentes densidades de corriente según concentración de ion ferroso	49
Figura 39: Zonas de crecimiento en un depósito cristalino	50
Figura 40: Mecanismo de alta inhibición en las caras superiores del depósito.	54
Figura 41: Crecimiento de cristal con baja inhibición	55
Figura 42: Crecimiento de cristales con alta inhibición	55