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others they are substantially delayed; arising in adolescence or young adulthood. In either case the initial
insult initiates a metabolic and/or neurodegenerative cascade that proceeds, often undetected, for a
considerable period of time before diagnosable symptoms appear. This affords a potential for detecting
and slowing or arresting degenerative and/or malfunctioning processes prior to the appearance of
symptoms, but requires an understanding of the mechanisms involved in the progressive dysfunction
that characterizes the disease progression process. While numerous preclinical models of end-stage
symptoms of neurological disease are established, animal models of progressive neurological
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Epileptogenesis
Schizophrenia dysfunction have received comparatively less attention. This review attempts to introduce the concept
Neonatal of modelling progressive dysfunction in animals and provides descriptions of the current status of
Rodents several representative examples of models that have been developed and partially characterized for
understanding diseases of the brain that arise either at or near the time of birth in rodents. It is our belief
that such models are essential to understanding the underlying mechanisms responsible for progressive
neurological dysfunction and hold the potential for identifying targets for early detection and
presymptomatic therapy of these conditions.
© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Mental and neurological disorders are increasingly prevalent
and constitute a major societal and economic burden worldwide.
According to the World Health Organization mental and neuro-
logical disorders are responsible for almost 14% of the global
disease burden (WHO, 2015). Further, due to increased life
expectancy and the ageing of general populations in both
developed and developing countries this number is expected to
rise (WHO, 2015). Many of the most socially and economically
devastating neurological diseases and disorders are characterized
by progressive neurodegeneration. The prevalence of some of the
most common of these diseases in the United States is depicted in
Fig. 1. By extrapolation the prevalence worldwide is probably
about 20x that of the USA.

Symptoms of many forms of progressive mental and/or
neurological disease often appear in late adolescence or early
adulthood and become increasingly severe with increasing age. It
is now widely accepted, however, that the disease process often
begins long before the onset of the symptoms that lead to a clinical
diagnosis. One of the best documented examples of this is
Parkinson’s disease, where it is estimated that up to 60% of the
dopaminergic neurons in the substantia nigra need to be lost
before the first clinical signs appear (Schulz and Falkenburger,
2004). Further, many of these progressive neurodegenerative
diseases and disorders are now linked to a precipitating event (or
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Fig. 1. Prevalence in the USA of several important neurological diseases
characterized by progressive neurodegeneration. Numbers are expressed in
thousands (000s) of persons affected. Data derived from (OHSU Brain Institute,
2010).

events) occurring early in life, often around the time of birth or in
early childhood. This concept is depicted in Fig. 2.

Whether neurodevelopmental or beginning in adulthood, the
slowly progressing nature of these conditions constitutes a
challenge for early detection but also represents a largely
unexplored opportunity for therapeutic intervention. By detecting
the disease process earlier, and initiating appropriate therapy to
arrest the neurodegenerative process prior to the onset of
symptoms, the disease process could be slowed or even stopped
long before the patient becomes debilitated by both the primary
disease process and secondary complications.

1.1. The concept of modelling progressive disease

Understanding the aetiology and initiation of disease often
relies on animal models, as does the development of new
therapeutic strategies. But while there are many pre-clinical
models available for almost all neurological conditions, most of
these models have been created with the aim of identifying new
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Fig. 2. Graphical depiction of the concept of presymptomatic neurodegeneration
originating early in life. Either alone or assisted by a genetic predisposition an event
or events, often of unknown origin, initiates a progressive decline in brain health
that results in diagnosable clinical signs later in life. In some cases the rate of decline
may be accelerated by a subsequent event(s).
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therapeutants to alleviate end-stage symptoms, and hence do not
allow study of the development of disease. Understanding disease
development is the key to identifying early intervention strategies.
There exists, therefore, a largely unmet need to develop and exploit
animal models designed to understand the origins and progression
of neurological disease. This review will introduce several
examples of animal models of progressive neurodegenerative
disease. Because many diseases are neurodevelopmental in origin,
the current review will deal with some of the models that involve
altering brain development at or shortly after the time of birth in
experimental animals. Preclinical models that involve manipula-
tions in utero will not be discussed but are clearly highly relevant to
a comprehensive review of the field. Further, the descriptions
below are not intended to be all-encompassing or even to be an
exhaustive review of all such models or of the existing models of all
important neurological diseases. They are intended, rather, simply
as examples to illustrate the concept of modelling disease
progression as a means to lay a foundation for mechanistic studies
and to identify predictive and/or preventative therapeutic strate-
gies.

1.2. Critical periods of CNS development

The mammalian brain acquires its complex structure and
exquisite organization along prenatal and postnatal periods, when
multiple processes occur in a precise time, involving specific
regions (Molofsky et al., 2012), thus forming critical periods for
short and long term functioning of the central nervous system
(CNS). Damage occurring during the perinatal period would
produce severe impairment in CNS functioning, leading to a
plethora of deleterious effects, depending upon the degree of
damage and the region mainly affected (Herrera-Marschitz et al.,
2014). Accordingly, pre-clinical developmental models of disease
rely on this concept of critical periods in brain development, and
target interventions during species-specific “windows” of vulner-
ability.

1.2.1. Prenatal-postnatal development of the brain

Neuronal and glial growth is predominantly a postnatal event in
the mammalian CNS (Altman, 1967), although the CNS primordiumis
already established when the neural tube is closed, in humans
around the third-fourth weeks of gestation (G), to rapidly develop up
to the time of delivery, when the main compartments of the CNS are
already established and generally organized. In the rat, gestation
lasts three weeks, and sufficient brain development has to occur
during this time to meet the demands occurring during birth, to
allow the newborn to initiate pulmonary ventilation and to sense the
environment and produce coordinated motor behaviour and
reflexes required for proper nurturing by the dam.

Development, including neurogenesis, synaptogenesis and the
formation of neural circuits continues throughout life and is
dependent upon a complex multi-step process that includes cell
fate specification, differentiation and migration, followed by
neurite growth, guidance, synapse formation and pruning, with
a specific timing for different neurochemical systems and different
brain regions (Segalowitz and Davies, 2004; Sowell et al., 1999).
This carefully orchestrated sequence can be illustrated by
formation of the dopaminergic system. Tyrosine hydroxylase
(TH) positive cells can already be identified in the mesencephalon
of rat foetuses at G15 (also in mice, see Riddle and Pollock, 2003),
suggesting the presence of dopamine synthesizing neurons, and at
G19 the distribution of TH positive cells in the substantia nigra and
ventral tegmental area is very similar to that observed at term
(Foster, 1998a,b; Park et al., 2000) and at postnatal day 1 (PND 1).
Dopamine fibres start to invade the neostriatum before birth
(Seiger and Olson, 1973) and peak at the fourth postnatal week,

although mature targeting is fully achieved later, when patches are
replaced by a diffuse innervation pattern (Antonopoulos et al.,
2002; Loizou, 1972; Olson and Seiger, 1972; Seiger and Olson,
1973; Voorn et al., 1988). Dopaminergic axons continue to grow at
a slow rate during adulthood (Loizou, 1972; Voorn et al., 1988) in
concert with naturally occurring waves of dopamine cell death
(Antonopoulos et al., 2002; Oo and Burke, 1997). Dopamine
pathways have an earlier and faster development than noradren-
aline- and 5-hydroxytryptamine pathways (Loizou, 1972). The
functional development of telencephalic neurocircuitries depends
upon mesencephalic, but also upon neocortical inputs, which
mature at various postnatal stages (see Herrera-Marschitz et al.,
2010). In the rat, neocortical pyramidal projections are physiologi-
cally viable only one week after birth (Li and Martin, 2000; Meng
et al., 2004; Meng and Martin, 2003).

This heterogeneity in the developmental timing of the CNS
provides a regionally variable vulnerability to systemic metabolic
insults occurring at strategic periods, including the perinatal
period and the period from PND 7-21 in the rat (see Section 1.2.2).
Immaturity of a particular brain region plays a role, because the
insult affects the initial plastic changes required for establishing
neural circuits and synaptogenesis, and the energy demands of re-
establishing homeostasis competes with that required for consoli-
dating neural circuits.

1.2.2. The brain growth spurt

The brain growth spurt is a period of time in mammalian
development when the brain undergoes a particularly rapid and
sigmoidal increase in weight (Dobbing and Smart, 1974). During this
time of rapid brain growth and change a number of critical processes
are occurring including axonogenesis, dendritic arboration, devel-
opment of neurotransmitter systems, developmental cell death,
synaptogenesis, myelination, and pruning of synapses to form
functional circuitry (McDonald and Johnston, 1990). Even small
alterations that occur during this time can have significant and long
lasting effects, both structurally and functionally. While some
species progress through this growth spurt before they are born,
others do not experience it until after birth. Dobbing and Sands
(1979) suggest that different species can be categorized as prenatal,
perinatal or postnatal brain developers, based on the point in
development when their brains undergo the growth spurt, although
the range of developmental time periods follows a continuum more
sothanitis restricted to those three particular points in time. In rats,
the brain growth spurt begins on the day of birth and continues until
the third week of life (Dobbing and Smart, 1974) and is generally
considered comparable to that of a third trimester in humans
(Dobbing and Sands, 1979). For the purposes of the current review
we will consider two of the three major windows of neonatal brain
development in the rat. The first week of life (i.e. PND days 0-7) and
the period from PND 8-21. This distinction is somewhat arbitrary
although many of the primary neurotransmitter systems come “on
line” during the first week but are subject to post-transcriptional and
post-translational modifications, many of which are activity
dependent, during the second phase. Perhaps more relevant,
however, is that models involving manipulation in the first postnatal
week are intended to simulate trauma at the time of birth (e.g.
asphyxia and hypoxia) whereas those in weeks 2 and 3 do not
simulate birth trauma but do model trauma at an approximately
equivalent developmental stage to that of human birth.

2. Models of birth trauma

Pregnancy culminates at the time when labour begins, implying
a complex interchange of molecules generated by uterine and
extrauterine tissue, leading to increased myometrial contractility,
cervical dilatation, decidual/membrane activation, and rupture of
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chorioamniotic membranes (Romero et al., 2006). The switch of the
myometrium from a quiescent to a contractile state is accompa-
nied by a shift from anti-inflammatory to proinflammatory
signalling chemokines and cytokines, as well as contraction-
associated proteins, warrantying a successful delivery (Romero
et al.,, 2014). Delivery, however, can be a risky episode, whenever
the onset of pulmonary respiration is delayed, leading to perinatal
asphyxia if oxygenation is not promptly re-established. Delay in
the onset of pulmonary ventilation at birth implies a decrease of
oxygen saturation in blood and its supply to the brain, which
depends on aerobic metabolism for maintaining the respiratory
chain and mitochondrial ATPase activity. Whenever hypoxia is
sustained, there is a switch to glycolysis, a poor metabolic
alternative, because of low stores of glucose in brain tissue and
deficient ATP output by the glycolysis pathway. This results in
lactate accumulation and acidosis. Newborn rodents and humans
cerebral energy metabolism utilizes ketone bodies (3-hydroxybu-
tyrate and acetoacetate rather than glucose to satisfy energy
requirements (see Nehlig and Pereira de Vasconcelos, 1993), but it
is not yet established how ketone bodies are available before
lactation begins, although the proton-coupled monocarboxylic
acid transporter proteins have been reported to be very high in the
blood-brain barrier as well as neurons and glia in the PND 1-14 rat
brain (Vannucci and Simpson, 2003).

Oxidative stress is inherent to re-oxygenation, resulting in over
activation and inactivation of buffering enzymes (see Gitto et al.,
2002). In the clinical scenario, resuscitation implies increased
Pa0,, free radical production and oxidative stress, worsening brain
injury (Davis et al., 2004; Kapadia et al., 2013; Solberg et al., 2007).
Thus, perinatal asphyxia is a highly relevant clinical issue, with a
reported incidence of 1-6/1000 term birth (de Haan et al., 2006;
Kurinczuk et al., 2010), with few relevant therapeutic alternatives
for reducing the risk of death and long-term disabilities (Edwards
et al., 2010; Lawn et al., 2010).

2.1. An experimental model of perinatal asphyxia

The short-and long-term clinical outcome of perinatal asphyxia
in patients is well documented (Odd et al., 2009; van Handel et al.,
2007). However, pre-clinical research is still exploratory, mainly
because of a lack of consensus on reliable and predictable
experimental models. A model for investigating the issue was
proposed at the beginning of the nineties (Andersson et al., 1992;
Bjelke et al., 1991; Herrera-Marschitz et al., 1993), although its
validity is still marshalled, because the model works with on term
pups and not with neonates at PND 7. The main argument is that
the brain of a neonatal rat is premature compared to the neonatal
human brain, a statement mainly referring to the neocortex (see
Romijn et al.,, 1991), but also to the pattern of oligodendrocyte
lineage progression required for cerebral myelination (Craig et al.,
2003). The degree of maturity depends upon the tissue examined
and the functions selected for the comparison, and vulnerability to
injury may be related to both the timing and the location of the
insult (Craig et al., 2003; de Louw et al., 2002). Indeed, it has been
reported that susceptibility to hypoxia-ischemia induced by
common carotid artery ligation and hypoxemia is greater when
performed at P7 rather than at earlier postnatal periods (Towfighi
et al., 1997).

In the model described below the authors have chosen a
pragmatic approach, inducing asphyxia at the time when rats are
delivered. Several features support the usefulness of the proposed
model: (i) it mimics well some relevant aspects of human delivery;
(ii) it is largely non-invasive; (iii) it allows studying short- and
long-term consequences of the insult in the same preparation, and
(iv) it is highly reproducible among laboratories. The model is
suitable for studying the early phases of perinatal asphyxia, as

observed in the clinical setup, performed on term, during delivery,
at the time when labour has started, together with a cascade of pro-
inflammatory pathways, including chemokines (interleukine-8;
IL-8) and cytokines (IL-1, IL-6) and contraction associated proteins
(oxytocin receptor, connexin-43, prostaglandin receptors) (see
Romero et al., 2014). Furthermore, the model implies membrane
rupture, playing a role in the initiation and contractions required
for the labour process (Moore et al., 2006). Thus, there are a
number of biochemical and physiological events occurring at the
time of delivery, all of which have to be considered when
proposing suitable experimental models of perinatal asphyxia.

The proposed model starts by an evaluation of the oestral cycle
of young female Wistar rats (~2 months of age), in order to plan for
a programmed mating. A vaginal frotis is taken for exposing the
female to a male at the time of the pro-oestrous for one night,
evaluating thereafter the presence of a vaginal clot. Thus, the
gestation time is calculated, predicting the exact time of delivery
(21 days, after a vaginal clot has been recorded). At the time of
delivery, a first spontaneous birth can be observed before the dam
is anaesthetised, neck dislocated, and subjected to hysterectomy
(Fig. 1). The uterine horns containing the foetuses are immediately
immersed into a water bath at 37 °C for various periods of time
(0-22 min). Following asphyxia, the pups are removed from the
uterine horns and resuscitated by cleaning the nose and mouth
from fluid and amniotic tissue. Pulmonary breathing is stimulated
by touching the surface of the nose and mouth, as well as by
pressing the thorax. Pups exposed to caesarean-delivery only (CS,
0 asphyxia), or to mild asphyxia (2-10 min) are rapidly resuscitat-
ed, without requiring anything else but removing fluid and
amniotic tissue from the head. Pups exposed to zero or mild
asphyxia start breathing with a gluttonous gasp, which is rapidly
replaced by regular and synchronised breathing. For pups exposed
to longer than 19-21 min of asphyxia resuscitation implies expert
and skilful handling, taking a long time (4-6 min) for stimulating a
first gasping, and even longer time for establishing a more or less
regular breathing, always supported by gasping. After 80 min of
care taking, the pups are given to surrogate dams for nursing,
pending further experiments (Dell’Anna et al., 1995; see Herrera-
Marschitz et al., 2011) (Fig. 3).

Apart from the effects produced by perinatal asphyxia on the
survival rate, the model allows to describe early molecular,
metabolic and physiological effects observed minutes after
recovering from a caesarean delivery, without any asphyxia, or
from mild to severe insults. Behavioural scales are applied 60-
80 min after delivery, avoiding competing with the resuscitation
and nursing manoeuvres. Tissue sampling can be started soon after
delivery.

Asphyxia-exposed and the corresponding control pups can be
used for preparing organotypic cultures (Morales et al., 2003, 2005;
Klawitter et al., 2007). Organotypic cultures offer the opportunity
to study neurocircuitry formation, since the procedure moves back
development to an earlier stage. The model, originally developed
by Gahwiler (1981), provides a complexity between cell lines and
primary cultures, allowing to study in vitro neural connections
development and neurochemical phenotype, reproducing many of
the physiological features observed in vivo, enlightening neuronal
targeting and reciprocal modulatory interactions (Plenz and Kitai,
1996a,b; Gomez-Urquijo et al., 1999), evaluating the effect of
pharmacological treatments applied directly into the culture tube
(Plenz and Kitai, 1998), or in vivo, before the pups are used for
culturing (Klawitter et al., 2007). Experiments with organotypic
cultures demonstrated the regional and neurochemical vulnera-
bility elicited by perinatal asphyxia, affecting the number and the
branching of TH-positive neurons in mesencephalon, but increas-
ing the number and neurite tree of nitric oxidase synthase (nNOS)-
positive neurons in the same region, decreased, however, in
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Fig. 3. The Swedish model of perinatal asphyxia. Pregnant Wistar rats (gestation day 22) are anaesthetized, euthanized by neck dislocation and hysterectomized. Two or three
pups are removed immediately, corresponding to caesarean-delivered controls (CS), and remaining foetuses are immersed in a water bath at 37 °C for 21 min (AS). Following
asphyxia, pups are removed from the uterine horns, stimulated to breathe and after 60 min evaluated by an Apgar scale adapted for rats, thereafter, the neonates are given to

surrogate dams, pending further experimental procedures.

neostriatum, without any effect on neocortical nNOS positive
neurons (Klawitter et al., 2007).

2.1.1. Short- and long-term effects

Perinatal asphyxia implies a primary insult, depending upon
the duration of the period lacking oxygenation, leading to death if
re-oxygenation is not re-established, and a secondary insult
produced by re-oxygenation, worsening the oxidative stress status
(Herrera-Marschitz et al, 2014). Perinatal asphyxia affects
different regions of the brain, increasing pro-inflammatory
signalling (NF-kB) (Neira-Pefia et al., 2015), hypoxia cell response
(hypoxia inducible factor-1a, HIF-1a) (Rojas-Mancilla et al., in
preparation), DNA sensing (PARP-1) (Allende-Castro et al., 2012;
Bustamante et al., 2003; Neira-Pefia et al., 2015), and astrocyte
reactivity (Rojas-Mancilla et al., in preparation). Further asphyxia
affects neuronal branching (Klawitter et al., 2007; Morales et al.,
2003) and synaptogenesis, leading to apoptotic-like cell death
(Dell’Anna et al., 1997; Morales et al., 2010; Neira-Pefia et al.,
2015).

A particularly interesting observation is that perinatal asphyxia
induces a decrease in neurite branching of dopamine neurons
(Klawitter et al., 2007; Morales et al., 2003), supporting the idea
that dopamine neurons are particularly vulnerable to hypoxic
insults (Chenetal., 1995,1997; Andersson et al., 1995; Bustamante
et al., 2003, 2007; see Herrera-Marschitz et al., 2011). Consistent
with these results, neurite length and branching in primary
hippocampal neurons from asphyxia-exposed rats are also
decreased and at a synaptic level, an increase in synaptophysin
and PSD-95 levels (pre- and post-synaptic proteins, respectively)
was observed in perinatal asphyxia-exposed rats at PND 7, without
any change in the number of synaptic contacts (Rojas-Mancilla
et al, in preparation). This latter change was followed by a
decrease of pre-synaptic puncta in the hippocampus at PND 22-24
(Fig. 4). These changes suggest that the ultrastructure of synapses
was altered by the insult, implying synapsis degradation by
microglia and astrocytes, shown to be implicated in synapse
pruning during mammalian brain development under both normal
and pathological conditions (Chung et al., 2013; Kettenmann et al.,
2013; Schafer et al., 2012). The precise mechanisms causing these
alterations in synapsis structure has not yet been elucidated, but it
is proposed that down regulation of growth factors, such as brain-
derived neurotrophic factor (BDNF) plays a role in the observed
dendritic atrophy. In fact, it has been reported that hypoxia-
ischemia encephalopathy is associated with low levels of BDNF,
increasing the risk for developing mental disorders (Zornberg et al.,
2000).

Astrocytes constitute the most abundant cell type in the
mammalian brain, in charge of multiple metabolic functions

important for maintaining neuronal homeostasis (Allaman et al.,
2011; Barres, 2008; Parpura et al., 2012; see Hamilton and Attwell,
2010; Perea et al., 2014) but astrocytes in the neocortex and
hippocampus of control rats have reduced number of branches and
long projections when assayed at birth, suggesting an immature
stage. Following asphyxia, morphological changes in astrocytes
have been observed both in vitro and in vivo (Rojas-Mancilla
et al.,in preparation), indicating astrocyte reactivity. Astrocyte
reactivity has been previously described under pathological brain
conditions (e.g. traumatic brain injury, inflammation, hyperther-
mia) (Middeldorp and Hol, 2011), appearing to be a heterogeneous
process, depending upon the type and severity of the insult.
Indeed, differential gene expression has been reported to be
elicited in astrocytes following traumatic brain injury and/or
inflammation (Zamanian et al., 2012). Astrocytes also play
important roles in synapsis formation, and plasticity (Clarke and
Barres, 2013; Eroglu and Barres, 2010; Papa et al., 2014; Sloan and
Barres, 2014), modulating extracellular excitatory neurotransmit-
ter levels (Bergles and Jahr, 1997; Carmignoto, 2000; Domingues
et al., 2010; Halassa and Haydon, 2010; Hamilton and Attwell,
2010), preventing stimulation of extrasynaptic N-methyl-p-aspar-
tate (NMDA) receptors, a mechanism triggering excitotoxic
cascades (Kretschmer et al., 2002; Olney et al., 1971), and
neurodegeneration (Bustos, 2012). Thus, the functioning of
astrocytes is critical for overall brain physiology (Parpura et al.,

Fig. 4. Perinatal asphyxia induces a decreased number of synaptic contacts, and
increased size of pre- and postsynaptic dots in stratum radiatum CA3 of

hippocampus at postnatal day 22. Representative microphotograph of
synaptophysin (green) and PSD95 (red) labelling in stratum radiatum of CA3
from control (A) and asphyxia-exposed (B) rats. Scale bar: 3 wm. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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2012; Vangeison and Rempe, 2009), and the effect of perinatal
asphyxia on astrocytes further compounds the negative effects on
neurons, affecting or even interrupting neurodevelopment (Fig. 5).

2.1.2. Functional studies in perinatal asphyxia

Long-term potentiation (LTP) in the CA1 region of the
hippocampus is a classical and exhaustive model for studying
activity-dependent synaptic plasticity associated to learning and
memory (Bliss and Lomo, 1973; Lomo, 2003; Whitlock et al., 2006),
where glutamate plays a central neurotransmitter role. Perinatal
asphyxia has been found to be associated with a decrease in LTP in
hippocampi at PND 22-24, thus suggesting an impairment of
synaptic plasticity. In agreement with this observation, beha-
vioural changes have been observed at adulthood wherein
asphyxia-exposed rats exhibited impairments in non-spatial
memory as assayed by the novel object recognition paradigm
(Simola et al., 2008), as well as spatial memory in an Oasis maze
test (Rojas-Mancilla et al, in preparation) and performance
alteration in Y and Barnes mazes (Simola et al., 2008) indicating
a special susceptibility of hippocampus to hypoxic-ischemic
injuries (Morales et al., 2007).

2.2. Neonatal hypoxia-ischemia
Based on the original work of J.E. Levine (1960), a widely used

experimental model inducing hypoxic-ischemic (HI) brain lesions
by unilateral common carotid artery ligation followed by 8%
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Fig. 5. Perinatal asphyxia impairs both neurons and astrocytes, altering
hippocampal functioning. Branching and synaptogenesis are early postnatal
events in the hippocampus of the newborn rat. Glutamate synapses imply
astrocytes, conforming what is called a tripartite synapse (Perea et al., 2014), where
the astrocytes efficiently remove glutamate from the synaptic and extrasynaptic
space, maintaining the homeostasis. Following asphyxia: (1) HIF-1a is increased,
leading to (2) astrocyte reactivity, (3) reduction in branching and (4)
synaptogenesis, resulting in loss of synaptic contacts and structure, possibly
affecting long-term potentiation (LTP) in the young rats. (5) Impairment of
astrocyte functioning also implies reduction in glutamate buffering.

hypoxia for 3.5 h at PND 7 is well described (Rice et al., 1981). The
lesion produces moderate to severe ischemic neuronal changes in
the ipsilateral cerebral cortex, striatum and hippocampus, includ-
ing neocortex, and surviving pups exhibit permanent neurological
and behavioural deficits (see Vannucci and Vannucci, 1997, 2005;
Vannucci and Hagberg, 2004). The model has been useful for
characterising the effect of hypoxia/ischemia on cerebral blood
flow and metabolic correlates, as well as molecular alterations in
immature and genetically modified animals and has led to
physiological and pharmacological interventions leading to
neuroprotective strategies (Vannucci and Vannucci, 2005). The
authors have stressed the feature that the model is performed in
immature rodents, at a time when histological development is
similar to that of a 32-34 week gestation human foetus or newborn
infants, when neuronal neocortical layering is complete, the
germinal matrix is involuting, and myelination is still in progress.
The strength of the model has been widely promoted (Patel et al.,
2014), although the model has also been criticized because the
physiological transition from intra to extra-uterine life is missed
(see Tyzio et al., 2006).

One of many interesting features of the neonatal HI model,
however is that sex also comprises an important interdependent
risk factor for ischemic brain injury and is a significant predictor of
outcome. This mirrors observations in newborns where recent
clinical studies reported an increased incidence of arterial ischemic
stroke (Lenicek-Krleza et al., 2009; Lynch et al., 2002; Fullerton
etal., 2001) and cerebral sinus venous thrombosis in male children
(Lenicek-Krleza et al., 2009). Male “sensitivity” to ischemic injury
is also reported in experimental studies where neonatal male mice
with HI injury show increased brain volume loss compared to
females (Mayoral et al., 2009) and in a recent preliminary report
sex differences in long-term functional outcome were also
reported in HI injured rats (Askalan et al., 2014).

The mechanisms of these sex-related differences of neonatal HI
injury are poorly understood. Oestrogen is unlikely to account for
the observed protection in females because circulating oestrogen is
minimal in neonatal females (Carrel and Willard, 1999). Early
hormonal factors, therefore, cannot fully explain sex-differences in
the outcome of HI injury. Neuronal cultures (absence of circulating
hormones) subjected to cytotoxicity have shown differences in
pathways of cell death; male (XY) neurons predominately die by
activating caspase-independent AlIF-mediated apoptosis whereas
female (XX) neurons die by utilizing the caspase-dependent
pathway (Carrel and Willard, 2005). Brain sexual differentiation
may also contribute to the responses to pathological stimuli such
as HI insult. In this regard, PND 2 female rats have higher levels of
NF-kB in the anteroventral periventricular nucleus whereas NF-kB
signalling is suppressed in male neonates (Zhao and Eghabali-
Webb, 2002). These results, taken together, suggest that male and
female neurons utilize different pathways of cell death that may
explain sex-differences in outcome of neonatal HI injury.

2.2.1. Functional studies

While the neonatal HI model has been used for a very long time
and generated a great deal of important information, it has proven
extremely challenging to reliably detect long-term functional
deficits in this model. There are probably three major contributors
to this “failure”: (i) the protocols employed by different laboratories
demonstrate a wide range of experimental conditions including the
location of the occlusion (common carotid versus internal carotid)
and the duration of the occlusion and the duration and oxygen
content of the hypoxia as well as the temperature maintained, (ii)
the extreme variability commonly observed in the size of the
resulting infarct, and (iii) the remarkable ability of the neonatal brain
to manifest plasticity thereby limiting (or masking) the resulting
deficits. Despite these limitations long-term functional deficits have
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been reported in rats and mice following neonatal HI. Several groups
have reported on significant sensorimotor deficits weeks after rats
underwent HI (Feltetal.,2002; Pazaitietal.,2009; Lubics et al.,2005)
also reported changes in neurological reflexes, motor function and
open field behaviour during the first month following HI. But in
general long-term deficits in complex behaviours such as learning
and memory have been hard to detect although quite recently Smith
et al. (2014) reported on lasting deficits in working memory using a
more challenging version of the radial arm maze task, so it may be
that more complex paradigms are able to reveal deficits that are not
detectable in more simple tasks.

3. Models originating during the second and third postnatal
week

In contrast to models originating at the time of birth there are a
number of well-established and well-validated animal models that
involve manipulation of brain development during the second and
third postnatal week. There are probably two main reasons for this:
(1) in both rats and mice the period from PND 6/7 until weaning is
the time of the brain growth spurt in which rapid development
with accompanying plasticity of the CNS is occurring (see Section
1.2.2), and (2) this time point corresponds roughly to the period
shortly before birth in humans, allowing for investigations of
human perinatal trauma in a rodent model that is experimentally
easier to deal with than in utero or PND 0 manipulations. Because of
the multiplicity of such models we provide herein a comparatively
brief overview of the models and consequences in text, and have
included additional experimental detail with appropriate citations
in the form of two comprehensive tables (see Tables 1 and 2).

3.1. Models of epileptogenesis

Epilepsy is a complex, symptomatically-defined cluster of
disorders that affects 1-1.5% of the population worldwide (Murray
and Lopez, 1994). Characterized by recurrent seizures manifesting
either as motor convulsions or abnormalities in electroencephalo-
graphic (EEG) recordings, epilepsy can be either generalized
(affecting the whole brain) or partial (affecting discrete brain
regions such as the temporal lobe). Partial epilepsy may or may not
progress to generalized seizures (Engel and Schwartzkroin, 2006).
Epilepsy is also frequently neurodevelopmental in origin, whereby
a strong correlation exists between early-life CNS trauma (e.g.
hypoxia, closed head trauma, febrile seizures) and the subsequent
development of seizure disorders such as temporal lobe epilepsy
(Jefferys, 2003). While childhood epilepsy is not uncommon, early
trauma is often followed by a latent, or “silent”, period ranging
from years to decades before the onset of epileptic seizures. This
delayed onset is a time when the brain is undergoing progressive
changes in structure and function that ultimately culminate in
seizures, and is referred to as “epileptogenesis” (i.e. the process of
becoming epileptic) (Engel and Schwartzkroin, 2006).

The process of epileptogenesis is poorly understood, but
because it is presymptomatic, the epileptogenic period represents
a window in which therapeutic intervention could slow or even
stop the development of epilepsy. Understanding the molecular
changes occurring during epileptogenesis and identification of
potential biomarkers for presymptomatic intervention (see Section
4.4), however, requires the development of appropriate animal
models. There are a number of well-established and extensively
documented epilepsy models that involve chemical or electrical
induction of spontaneous recurrent seizures in adult animals (for
review see Jefferys, 2003). Modelling epilepsy as a disease, and
particularly epileptogenesis, in neonatal animals has proven more
difficult. This is due, in part, to what appears to be a paradox. It is
well established that the immature brain is more prone than the

adult brain to seizures arising from chemical or environmental
intervention (Cavalheiro et al., 1987; Stafstrom et al., 1992;
Stafstrom et al., 1993; Doucette et al., 2000), probably because of a
difference in the developmental maturation of excitatory and
inhibitory systems (Ben-Ari et al., 1997). Despite this increased
susceptibility to seizure genesis, however, the neonatal brain has
generally been regarded as largely resistant to the development of
long-term consequences consistent with epilepsy (e.g. spontane-
ous recurrent seizures, mossy fibre sprouting, hippocampal cell
loss) (Nitecka et al., 1984; Sperber et al., 1991; Haas et al., 2001),
although others have reported long-lasting consequences of
neonatal seizures particularly when multiple convulsants are
administered during early development (Holmes et al., 1999; Liu
et al., 1999).

Of particular relevance to understanding the neurodevelop-
mental origins of epilepsy and epileptogenesis, however, are two
recently described rodent models of epilepsy that produce slowly-
developing, or delayed onset, changes in epilepsy-relevant
morphology, neurochemistry and behaviour. These are the
neonatal inflammation model and the neonatal domoic acid
model; each of which is described in more detail below.

3.1.1. Neonatal inflammation

Several years ago an interesting model linking neonatal
inflammation and seizure susceptibility was described (Galic
et al., 2008, 2009; Riazi et al., 2010). Sprague-Dawley rat pups
injected intraperitoneally with the bacterial endotoxin lipopoly-
saccharide (LPS) on PND 14 manifested enhanced susceptibility to
seizures induced by lithium-pilocarpine, kainic acid or the GABA
antagonist pentylenetetrazol when challenged at 6-8 weeks of age.
The effect was antagonized by concurrent administration of an
antibody to tumour necrosis factor o (TNFa). The authors also
investigated whether the same result was obtained following LPS
injection at other stages of development, and reported that
injections on PND 7 also reduced seizure threshold, but that LPS
injections on PND 1 or PND 20 did not; strongly implicating the
second postnatal week of life as a “critical window” for the lasting
effects (see Section 1.2.2). A follow-up paper by the same group
described how direct (i.c.v.) injections of the viral mimetic
polyinosinic:polycytidylic acid into PND 14 rat pups produces
central inflammation and also results in a reduced seizure
threshold when tested at 7-8 weeks of age (Galic et al., 2009).
Thus both peripheral and central inflammation during the second
postnatal week of development in the rat appears to initiate a
chronic neurodegenerative condition that culminates in reduced
seizure threshold.

3.1.2. Neonatal domoic acid

The other neurodevelopmental model of epileptogenesis that
has been described is the neonatal domoic acid model. Domoic acid
(DOM) is a naturally occurring excitotoxin that is structurally
similar to kainic acid and an analogue of glutamate. Domoic acid is
recognized as a selective, but not specific, agonist at the kainate
subclass of non-NMDA glutamate receptors (Verdoorn et al., 1994;
Tasker et al., 1996). In the late 1980s DOM was identified as the
causative agent in an outbreak of human toxicity in which patients
experienced dose-dependent neurotoxicity culminating in sei-
zures and death (Perl et al., 1990; Teitelbaum et al., 1990). One of
the patients who survived subsequently went on to develop
temporal lobe epilepsy (Cendes et al., 1995). Building on this
background of clinical data, Doucette and co-workers investigated
the response of neonatal rats to very low doses of domoic acid
(Doucette et al., 2000, 2003) and in 2004 they described a unique
low-grade seizure response that occurred in aged adult rats
exposed to novel and/or stressful environments even though the
only drug treatment had been as neonates (Doucette et al., 2004).



Table 1

Behavioural deficits observed in several developmentally based models for schizophrenia research.

Model name

Gating

Cognitive behaviour

Social behaviour

Response to antipsychotic drugs

References

Neonatal domoic acid

Neonatal quinpirole
model

Maternal separation

Social isolation rearing

Neonatal DOM + social
isolation rearing

Maternal separation + social
isolation rearing

Disrupted PPI

Unknown

Disrupted PPI

Strain dependent
disrupted PPI

DOM treatment
made animals
refractory to the
social isolation
induced deficit
in PPI amplitude;
additive decrease
in PPI latency

No additive or
interacting effects
on PPI

Disrupted LI; alterations to memory
and emotionality; altered response to
novelty and reward

Impairments in the MWM Increased
quinpirole-induced yawning response

Enhanced LI; improved avoidance
learning; disrupted LI; increased
anxiety-like behaviour and decreased
memory performance

Reduced LI (may be age/strain
dependent); impaired avoidance
learning; hyperactivity in a novel
environment; impaired novel object
recognition and impaired attentional
set-shifting; increased anxiety and
decreased performance in the MWM;
spatial working memory impairments;
modified response to reward

Abolished LI and abnormal presence of
LI depending on sex and timing of
testing

No additive or interacting effects on LI

Social withdrawal

Unknown

Social withdrawal
Increased social
interaction and
aggression and

impaired social
recognition

Unknown

Unknown

Unknown

Olanzapine alleviated cognitive
impairment on the MWM place version
and increases in yawning

PPI deficit reversed by haloperidol and
quetiapine

PPI deficits reversed by Raclopride;
seroquel and olanzapine; risperidone
and haloperidol

Unknown

Unknown

Adams et al. (2009, 2008), Burt et al.
(2008a, 2008b) , Doucette et al. (2007),
Marriott et al. (2014, 2012), Robbins
et al. (2013) and Ryan et al. (2011)
Brown et al. (2008, 2004, 2002),
Kostrzewa and Brus (1991) and Thacker
et al. (2006)

Bouet et al. (2011), Ellenbroek et al.
(2004, 1998), Ellenbroek and Cools
(1995a,b), Lehmann and Feldon (2000),
Lehmann et al. (1998) and Weiss et al.
(2001)

Bakshi et al. (1998), Domeney and
Feldon (1998), Einon (1980), Ferdman
et al. (2007), Gentsch et al. (1988),
Geyer et al. (1993), Han et al. (2012),
Hellemans et al. (2004), Marriott et al.
(2014); McLean et al. (2010), Shao et al.
(2009), Stevens et al. (1997), Varty and
Geyer (1998), Varty and Higgins (1995),
Weiss et al. (2001, 2000), Wilkinson
et al. (1994) and Wongwitdecha and
Marsden (1995)

Marriott et al. (2014)

Weiss et al. (2001)

Adapted from Animal Models for Schizophrenia Research, www.schizophreniaresearchforum.org.
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Table 2

Summary of molecular and morphological changes observed in developmentally based models for schizophrenia research.

TeModel name Region

Molecular/morphological

References

Neonatal domoic acid Hippocampus 1 BDNF mRNA

| Cell counts

1 Mossy fibre sprouting
1 trkB receptor expression

Bernard et al. (2007), Doucette et al. (2004),
Gill et al. (2010) and Robbins et al. (2013)

| GAD65/67 immunostaining

| Number of parvalbumin containing neurons
PFC o Altered tyrosine hydroxylase immunoreactivity
NAc e Altered tyrosine hydroxylase immunoreactivity

Neonatal quinpirole model Hippocampus
| BDNF

| Acetyltransferase

| In nerve growth factor (NGF)

Brown et al. (2008, 2006), Kostrzewa (1995),
Kostrzewa et al. (2004), Maple et al. (2007)
and Thacker et al. (2006)

PFC | In nerve growth factor (NGF)

| BDNF
| Acetyltransferase

NAc | Regulator of G-protein signaling 9

Striatum

| Regulator of G-protein signaling 9

Other 1 Dopamine D2 receptor sensitivity but no change
in the number of DA receptors

Maternal separation Hippocampus

e Neuronal degeneration

Llorente et al. (2010, 2009, 2008)

1 Astrocytes in hippocampus,
e Altered cannabinoid receptor expression

1 Levels of 5-HT
PFC 1 Levels of 5-HT
1 Levels of DA

Striatum 1 levels of 5-HT
1 Levels of DA
Other e Neuronal degeneration

1 GFAP+cells in cerebellum
1 Plasma glucocorticoid levels

Social isolation rearing Hippocampus

| Number of parvalbumin and calbindin positive
GABAergic interneurons
PFC | Volume (neuron # unchanged)

Bloomfield et al. (2008), Day-Wilson et al.
(2006), Harte et al. (2007), Heidbreder et al.
(2000) and Roncada et al. (2009)

| Reduced GAT-1 expression
NAc o Altered protein expression (some correlated with

PPI deficits)
1 Basal DA level

| Basal 5-HT turnover

Neonatal DOM + social Unknown Unknown
isolation rearing
Maternal separation +social Unknown Unknown

isolation rearing

Adapted from Animal Models for Schizophrenia Research, www.schizophreniaresearchforum.org.

In addition to manifesting seizures in adulthood, post-mortem
analysis of these animals at 15 months of age revealed many
hallmark features of clinical temporal lobe epilepsy (TLE) including
hippocampal cell loss, mossy fibre sprouting (MFS) in the dentate
gyrus and area CA3 (see Fig. 6), and regionally-selective elevation
of the neurotrophin BDNF (Doucette et al., 2004). Of particular
interest in the context of the current review, however, is that these
changes did not occur at the time of drug administration
(unpublished) but were progressive in nature with changes
occurring over time. Adolescent rats (PND 29) showed no
hippocampal pathology with the exception of a mild astrogliosis
(unpublished) whereas younger mature animals (PND 75)
displayed less severe MFS than aged rats and no loss of
hippocampal cells (Bernard et al., 2007). Further, confirming the
relevance of this model to understanding epilepsy and epilepto-
genesis are two reports by Gill et al. (2009, 2010) demonstrating
alterations in electroencephalographically recorded sleep patterns
and reductions in seizure threshold that accompany selective loss
of inhibitory neurons in the hippocampus.

The same research group has subsequently attempted to better
understand the molecular basis of these changes through the use of
organotypic hippocampal slice cultures. Transient (24 h) exposure
of cultures to a low concentration (2 M) of domoic acid was

shown to produce a mild regionally-specific toxicity in hippocam-
pal subfield CA1 that stimulated neurogenesis in the dentate gyrus
(Perez-Gomez and Tasker, 2012) that was subsequently shown to
be dependent on both mitogen-activated protein kinase kinase
(MEK) and cAMP-dependent protein kinase A (PKA) intracellular
signalling pathways (Perez-Gomez and Tasker, 2013). And
consistent with what was observed in vivo (see Fig. 6) slice
cultures also demonstrated mossy fibre sprouting and increased
synaptogenesis in response to domoic acid (Perez-Gomez and
Tasker, 2014a). The neonatal domoate model of epileptogenesis
represents, therefore, an interesting example of “reverse transla-
tion” in that the model began with a clinical case that was
subsequently replicated in vivo in the rat and now in vitro using
hippocampal slice cultures.

3.2. Models of schizophrenia and related disorders

Schizophrenia is a complex and debilitating mental disorder
characterized by impairments in the perception of reality. It is
found in approximately 1% of the general population and results in
great emotional cost to those directly affected, as well as large
financial cost to the economy worldwide (Knapp et al., 2004;
Rossler et al., 2005).
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Fig. 6. Mossy fibre sprouting in the neonatal domoic acid model of epileptogenesis. The orientation of the hippocampus is depicted in A. Photomicrographs illustrating Timm’s
stain labeled fibre’s sprouting in Dentate Gyrus (B) and stratum oriens of the CA3 region (C) of hippocampus of control and Domoic acid (DOM) treatment are shown. Sprouting
of abnormal dentate granule cell axons is first seen in the dentate gyrus (B) and at a later age in hippocampal area CA3 (C). Scale bar 50 pm.

Believed to arise due to a combination of genetic susceptibility
and environmental influence (Rapoport et al., 2005), schizophrenia
manifests great variability in symptom profiles, developmental
time course and response to treatment (Tamminga and Holcomb,
2005). It has been suggested that events occurring long before the
formal onset of the illness (potentially during gestation and/or
early life), disrupt the normal development of the CNS leading to
significant and long-lasting changes in CNS functioning (Rapoport
et al, 2005). While genetic factors likely contribute to the
development of schizophrenia by causing an individual to be
more vulnerable to the illness, a variety of early life events have
been implicated in a higher than average risk of developing
schizophrenia (as illustrated in Fig. 2). These events include
maternal illness during gestation (Mednick et al., 1988), prenatal
stress (reviewed by Baier et al., 2012), obstetric complications
(Cannon et al., 2002; Geddes et al., 1999) and toxin exposure (Fiore
et al.,, 2004). Such events can lead to subtle alterations in the
functioning of the CNS which may result in an increased
vulnerability to environmental triggers later in life (Lieberman
et al., 2001).

Of relevance to the current review, there are a number of
developmentally based animal models of schizophrenia and
related disorders that seek to study the effect of various
developmental insults during the postnatal period and the effects
that such events may have in adulthood. This is a logical approach,
for although schizophrenia generally arises in adolescence or early
adulthood, it is increasingly regarded as being neurodevelop-
mental in origin. It is believed that subtle perturbations in the
developing brain result in a permanent change in brain develop-
ment, increasing the risk of developing schizophrenia later in life.
The approach to using environmentally adverse events to model
schizophrenia in animals has come about due to epidemiological
studies showing that a variety of early life events can increase a

person’s likelihood of developing schizophrenia including child-
hood trauma, abuse, illness, infection, famine, etc. (Brown, 2011).
Some of the major features of the models described below are
summarized in Tables 1 and 2.

3.2.1. Neonatal quinpirole

Repeated administration early in development of the dopamine
D2/D3 receptor agonist quinpirole results in a long term increase in
D2 receptor sensitivity (Kostrzewa et al., 1990). As a result of this
treatment during the neonatal period, rats display a variety of
behavioural and neurological changes in adulthood consistent
with schizophrenia and potentially, with other disorders that
implicate DA dysfunction (Brown et al., 2004a, 2004b; Kostrzewa
and Brus, 1991; Kostrzewa, 1995).

The neonatal quinpirole model consists of a single daily i.p.
injection of quinpirole (usually 50 pg/kg/day) for some period of
time following birth. Following treatment, both male and female
Sprague-Dawley rats display increased behavioural sensitization
illustrated by hyperlocomotion, increased vertical jumping and
enhanced quinpirole-induced yawning, an effect which persists
into adulthood (Kostrzewa and Brus, 1991; Kostrzewa, 1995;
Kostrzewa et al., 1990, 1993a, 1993b). Other behavioural effects
observed in adulthood include deficits in the Morris water maze,
hyperlocomotion and enhanced skilled reaching (Brown et al.,
2002, 2004a, 2004b, 2005; Thacker et al., 2006) (see Table 1).
Neonatal quinpirole treatment produces a significant decrease in
nerve growth factor in the hippocampus and prefrontal cortex
(PFC), as well as decreases in BDNF and acetyltransferase in the
hippocampus and PFC (Brown et al., 2006; Thacker et al., 2006)
(Table 2). Furthermore, some of the reported behavioural and
neurochemical alterations have been found to be partially or
totally blocked by the administration of the antipsychotic
olanzapine (Brown et al., 2008; Thacker et al., 2006) as well as
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by the administration of nicotine (Brown et al., 2004a, 2004b,
2006; Tizabi et al., 1999) (Table 1).

3.2.2. Maternal separation

A stressful environment can cause maladaptive brain develop-
ment and functioning from the period of prenatal development
until adulthood. These effects can be modelled in animals in a
variety of ways. Some stress paradigms such as mild chronic stress
(Hill et al., 2012) and social defeat (Kudryavtseva et al., 1991;
Venzala et al., 2012) are used most often to model depression in
animals, while neonatal maternal separation (Schmidt et al., 2011)
and social isolation rearing are used to model schizophrenia and
related disorders (Weiss et al., 2001).

The maternal separation model consists of separating mice or
rat pups from their mothers for a period of 1-24 h, with some set
frequency, thereby limiting the maternal care that they are able to
receive. The methodologies used are highly variable with common
differences being the age of the animals at which the separation
occurs, the length of the separation, as well as if the separation is
repeated and how often (Bouet et al., 2011; Lehmann and Feldon,
2000; Schmidt et al., 2011). The degree of social separation is also a
factor with some protocols calling for rat pups to be isolated when
they are separated (McIntosh et al., 1999; Zimmerberg and
Shartrand, 1992) while others consist of removing the litter as a
whole from the mother (Lehmann et al., 2000b) or removing only
the mother from the homecage (Bouet et al., 2011; Lehmann et al.,
2000a). Related to this, the temperature at which the pups are kept
during the separation appears to be important, with colder
temperatures leading to greater deficits (Zimmerberg and Shar-
trand, 1992).

Maternally separated animals show a variety of behavioural
alterations including altered spontaneous locomotor activity in an
open field, (Lehmann et al, 1999a, 1999b; Zimmerberg and
Shartrand, 1992), social withdrawal and an increase in anxiety-like
behaviour (Bouet et al.,2011) (see Table 1). Studies have also found
that these animals display reduced sensitivity to d-amphetamine
(Matthews et al, 1996; Zimmerberg and Shartrand, 1992),
increased sensitivity to apomorphine (Ellenbroek and Cools,
1995b; Rots et al., 1996) as well as alterations to hypothalamic-
pituitary (HPA) axis functioning and corticosterone responsiveness
to stressors (Ladd et al., 1996; Meaney et al., 1996; Plotsky and
Meaney, 1993; Stanton et al., 1988). The effects of maternal
separation on measures of attention and information processing
have often produced conflicting results. Some groups have shown
that maternal separation leads to reduced pre-pulse inhibition
(PPI) (Ellenbroek et al., 2004) while others have found no change
(Weiss et al., 2001). Likewise, studies have shown that maternal
separation can lead to both enhanced latent inhibition (LI)
(Lehmann and Feldon, 2000; Lehmann et al., 1998; Weiss et al.,
2001) and disrupted LI (Ellenbroek and Cools, 1995a). There are a
number of other inconsistencies in the literature regarding the
behavioural outcomes of maternal separation, some examples
being anhedonia-like behaviour, sucrose consumption and sucrose
preference (Schmidt et al., 2011). While some of this variability
may be attributed to strain differences and thus a specific genetic
vulnerability (Ellenbroek and Cools, 1995b; El Khoury et al., 2006)
it is also likely that such inconsistencies can be attributed to the
wide variety of experimental paradigms used although they are all
collectively referred to as “maternal separation” (Lehmann and
Feldon, 2000).

3.2.3. Social isolation rearing

Since Hatch et al. (1963) first reported that housing rats in
isolation produced abnormal behavioural reactivity, many studies
have shown that rats who experience social isolation (housed one
animal per cage for some period of time post-weaning but still in

auditory, visual and olfactory contact with other animals) display a
variety of profound behavioural, neurobiological and neuroana-
tomical differences when compared to those rats who are raised in
groups (Ferdman et al., 2007; Hall, 1998; Lehmann and Feldon,
2000; Paulus et al., 1998; Weiss et al., 2004).

Examples of behavioural alterations include locomotor hyper-
activity (Einon and Morgan, 1978; Gentsch et al., 1988; Heidbreder
et al., 2000), spatial working memory impairments (Einon, 1980)
increased food hoarding behaviour (Heidbreder et al., 2000),
impairments in reversal learning (Jones et al., 1991), a modified
response to reward (Wongwitdecha and Marsden, 1995), increases
in anxiety-like behaviour (Bouet et al., 2011), increase in social-
avoidance (Bouet et al., 2011) and increased sensitivity to
amphetamine (Jones et al., 1990) (see Table 1). A number of
studies have also demonstrated that social isolation rearing can
affect various measures of information and attention processing.
Social isolation rearing has been shown to disrupt LI, however, the
results indicate that these effects may vary according to the timing
of the isolation, the timing of the testing period, the strain of rat
used, and the other experiences of the animal (Gentsch et al., 1988;
Han et al,, 2012; Shao et al., 2009; Weiss et al., 2001; Wilkinson
et al., 1994). In contrast, PPI can be reliably disrupted by post-
weaning social isolation (Domeney and Feldon, 1998; Geyer et al.,
1993; Stevens et al., 1997; Harte et al., 2007). This effect of social
isolation on PPI has been shown to be reversible by various
antipsychotics (Bakshi et al., 1998; Stevens et al., 1997; Varty and
Higgins, 1995) and is routinely used in preclinical drug develop-
ment (for reviews see Johansson et al., 1995; Swerdlow et al.,
2008). It is important, however, to keep in mind that as with other
measures, various experimental variables can impact the result of
social isolation rearing on PPI such as the length of the isolation
period (Varty et al., 1999), exposure to other behavioural tests
(Domeney and Feldon, 1998), type of housing (solid bottomed vs
wire bottom cages) (Weiss et al., 1999) and the strain of rat used
(Varty and Geyer, 1998; Weiss et al., 2000).

3.2.4. Neonatal domoic acid

The neonatal domoate rat model uses repeated s.c. injections of
low doses (20 pg/kg) of DOM to stimulate the glutamatergic
(presumably non-NMDA) system of rats during the second
postnatal week of life, from postnatal days (PND) 8-14. DOM
can induce excitotoxicity by acting on both pre and post-synaptic
receptors (for review see Perez-Gomez and Tasker, 2014b). As
described previously, at low concentrations DOM is selective for
kainate receptors, in particular the low-affinity kainate receptors
(Verdoorn et al., 1994; Tasker et al., 1996), although at higher
concentrations other receptors are also able to be activated (see
Perez-Gomez and Tasker, 2014b). While this treatment protocol
does not produce overt signs of toxicity in the rat pups (Doucette
et al., 2003) once the animals reach adulthood they display a host
of behavioural, neuropathological and neurochemical alterations
indicating the potential usefulness of this paradigm to model
certain aspects of neuropsychiatric illness.

Behavioural changes (summarized in Table 1) include altered
responses to novelty and reward (Burt et al., 2008a, 2008b),
changes in cognitive functioning (Adams et al., 2009; Doucette
et al., 2007; Robbins et al., 2013), altered social interaction (Ryan
et al., 2011) and changes in stress response (Gill et al., 2012).
Alterations to measures of information and attention processing
have also been observed with both LI (Marriott et al., 2012, 2014)
and PPI (Adams et al., 2008; Marriott et al., 2012) being affected
depending on the sex of the animal and the specific paradigm used.
Alterations to brain regions, systems, and specific measures known
to be implicated or affected in schizophrenia include increases in
hippocampal BDNF mRNA, increases in hippocampal mossy fibre
sprouting, decrease in hippocampal cell counts and elevated trkB
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receptor expression (Bernard et al., 2007; Doucette et al., 2004).
Alterations to dopaminergic and GABAergic system proteins have
also been observed. A study by Robbins et al. (2013) found that
neonatal DOM treatment leads to significantly less TH immunore-
activity in the right mPFC of male rats, and significantly greater TH
immunoreactivity in the left core and right shell of the nucleus
accumbens in female rats. Gill et al. (2010) found decreased
GADG65/67 combined immunostaining in the ventral dentate gyrus
(females) and ventral CA3 area (males) of the hippocampus. It was
also found that DOM treated rats displayed a significantly lower
number of parvalbumin containing neurons in the dorsal dentate
gyrus, the mid dentate gyrus and the mid CA3 subfield with these
results often being present in only one sex (Gill et al., 2012). These
changes are summarized in Table 2.

3.2.5. Developmentally based postnatal multi-hit models

Historically, efforts to model schizophrenia and similar
disorders in animals have concentrated on using only one
experimental intervention to produce disease characteristics.
More recently (and consistent with the concept depicted in
Fig. 2), attention has turned to the possibility of developing animal
models that incorporate two or more developmental insults in
what has come to be referred to as a “multi-hit” approach. In doing
so, models may be created that better mimic the aetiology of the
disorders, which are often considered to result from multiple
interacting factors (see Fig. 2). In animal models of schizophrenia,
these multi-hit models usually involve using some combination
(often two) of previously established interventions. The two
manipulations may be from different categories of models (e.g.
gene-environment models) or may be from the same model
category (e.g. two developmentally based interventions). Estab-
lished models that have been used in combination include
maternal infection (Dalton et al., 2012; Deslauriers et al., 2013)
and stress paradigms (Deslauriers et al., 2013), as well as a variety
of gene-environment models (Cash-Padgett and Jaaro-Peled, 2013;
Karl, 2013) and a combination of NMDA receptor antagonism and
social isolation rearing (Ashby et al., 2010; Gaskin et al., 2014;
Gilabert-Juan et al., 2013; Hawken et al., 2013; Hickey et al., 2012;
Lim et al., 2012). While most multi-hit models combine a prenatal
and postnatal intervention, there are a small number of
developmentally based two-hit models where both manipulations
occur during the postnatal period.

3.2.5.1. Neonatal DOM and social isolation. A recently developed
two-hit model that combines neonatal DOM treatment and social
isolation rearing has demonstrated both singular and additive
effects in measures of information and attention processing. In this
model, rats are given low doses of DOM as described above (Section
3.2.4). Animals are then weaned on PND 21 and housed alone in
cages where they can still see, hear and smell other rats, but cannot
interact socially. In this paradigm neonatal treatment with DOM
abolished LI behaviour in adult male rats regardless of housing
condition when tested 48 h after conditioning (Marriott et al.,
2014). When tested again one week later, animals who received
both neonatal DOM treatment and isolation rearing displayed
significant LI whereas control animals, those that received DOM
alone or were isolated alone did not (Marriott et al., 2014). Further,
while social isolation alone significantly lowered PPI amplitude in
male (but not female) rats in a manner consistent with previous
literature using this model (Domeney and Feldon, 1998; Geyer
etal., 1993; Stevens et al., 1997), DOM treatment appeared to make
animals refractory to this isolation rearing effect. Additionally,
combining social isolation and DOM treatment caused an additive
decrease in PPI startle latency that was observed in both sexes as
described in a preliminary report (Marriott et al., 2013). In
conclusion, both neonatal low-dose DOM treatment and social

isolation rearing have been shown to affect the development of
attentional processing in rats. However, each paradigm may exert
these effects through different neuronal signalling systems and
these different systems may be responsible for different aspects of
the behavioural changes that were observed.

3.2.5.2. Maternal separation and social isolation. Another proposed
multi-hit model that focuses solely on postnatal events consists of
a combination of pre-weaning maternal separation and post-
weaning social isolation. A study by Weiss et al. (2001) made use of
this model and found that maternal separation did not affect PPI
but resulted in enhanced LI, while social isolation disrupted PPI in
male rats when tested 12 weeks after weaning (but not when
tested 30 weeks after weaning) but did not affect LI (see Table 1).
Additionally they found no additive effects or interaction between
the two experimental manipulations with regard to their effect on
either PPI or LI by combining maternal separation and social
isolation rearing, although both of the effects on PPI and LI that
were observed separately were maintained. While additive effects
were not observed, this model does produce sustained alterations
to both PPI and LI and provides support for the theory that the two
behaviours implicate different psychological and neurobiological
mechanisms (Ellenbroek et al., 1996; Weiss et al., 2001; Wilkinson
et al., 1994).

3.3. Models of disease co-morbidity

Examination of Section 3.1 (epilepsy) and Section 3.2 (schizo-
phrenia) reveals that two of the pre-clinical models described
appear in both sections. Both neonatal inflammation and neonatal
low dose DOM have been described as models of epilepsy but also
as models of schizoaffective disorders. This is because both exhibit
behavioural and histopathological changes consistent with both
conditions depending on what the authors chose to investigate. In
short, if one chooses to measure seizure threshold and finds
significant reductions it is concluded that the model is a model of
epilepsy. Conversely, if one chose to measure sensory gating using
PPl and found deficits the conclusion would be a model of
schizophrenia. But in truth are these models of both, or neither? In
these particular examples it is tempting to say “both” because
seizure disorders are a common comorbidity with schizophrenia
with one recent study estimating that 6% of epileptic patients
manifest psychosis (Clancy et al., 2014) so logically there must be
some overlap of the underlying neuropathology although it must
be acknowledged that the opposite was speculated when
proposing electroconvulsive shock therapy for treating schizo-
phrenia. But by the same argument it is entirely possible that one
or both models also show changes consistent with other diseases
or disorders that have simply not been investigated or reported to
date.

One way to resolve the paradox described above is to avoid
labelling the protocols as “models” that are representative of a
single disease (e.g. an “epilepsy” model) and rather to simply view
these paradigms as experimental manipulations that result in
“progressive neurological dysfunction” in rats. This is a personal
opinion of the authors and many would disagree, but if one avoids
labels and simply measures progressive alterations in brain
structure and function arising from a neonatal challenge it
becomes possible to objectively describe changes over time and
ultimately, through mechanistic investigations, to determine
causality or lack of causality between different types of change.
Again, in our opinion this represents an alternate path for studying
disease development as opposed to symptom reduction (see
Section 1.2).

The argument above is not intended to suggest that models of
symptoms do not have value; they do. If a particular new chemical
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entity is developed as an anticonvulsant then determining efficacy
in a model of chemically-induced acute convulsions is useful. But
similarly, most neurological and/or psychiatric patients present
with multiple, and often personalised, groups of symptoms,
implying that either they have different pathologies or they have
differing overt responses to the same underlying pathology. In
either case using preclinical models to mechanistically dissect
progressive brain dysfunction not exclusive to a single disease
seems a viable approach.

4. Potential therapeutic strategies

Clearly the ultimate goal of studying disease and disease
models is to identify potential therapeutic strategies. In the case of
modelling progressive neurological dysfunction there is the further
hope that treatments can be found to slow or arrest the disease
process prior to the onset of clinical signs (see Fig. 2). At this time
our understanding of the processes involved in presymptomatic
neurodegeneration is very limited, and accordingly, treatment
options are largely absent. None-the-less a few strategies have
been attempted as described below.

4.1. Supportive therapy

Perinatal asphyxia requires neuroprotective treatments for
preventing or reducing catastrophic consequences, including
mortality and major disabilities. Different approaches have been
explored, but the focus has been on the reanimation of the affected
baby.

Oxygen therapy was proposed as a universal approach for
critical illnesses implying hypoxemia (American Heart Associa-
tion guidelines, 1992). It is now accepted, however, that high
concentration of supplemental oxygen can be harmful to the
newborn (see Saugstad et al., 2006) probably by increasing
reactive oxygen (ROS) and nitrosylated (RNS) species (Kapadia
et al,, 2013; Martin and Grocott, 2013; Saugstad et al., 2006; van
Zanten et al., 2014), therefore, oxygen therapy is no longer
recommended.

Hypothermia has also been proposed as a relevant therapeutic
intervention against hypoxic/ischemic insults, aiming to decrease
energy expenditure (Ginsberg et al., 1992). It has been shown that
hypothermia can be a potent therapeutic intervention for
preventing the short-term effects of perinatal asphyxia, even
more effective than glutamate antagonism, but suffers from a
narrow therapeutic window (Engidawork et al., 2001). Neverthe-
less, there is now compelling clinical evidence that hypothermia
improves the neurodevelopmental outcome following hypoxic-
ischemic encephalopathy (Edwards et al., 2010; Guillet et al.,,
2012; Shankaran et al., 2012; Wu et al., 2014), although the
protocols are not yet fully established, and the issue of
distinguishing between beneficial or deleterious effects on risk
of death and/or severe disability is not fully clarified (see Wassink
et al., 2014) and the neuroprotective potential of hypothermia is
still being discussed (Bonifacio et al., 2015; Robertson et al.,2012;
Jacobs et al., 2013).

4.2. Signalling pathways during asphyxia

It has been proposed that the effects observed long after
perinatal asphyxia can be explained by overexpression of sentinel
proteins, including PARP-1, competing for NAD" during the re-
oxygenation period (Klawitter et al., 2006), supporting the idea
that PARP-1 overactivation is an early endpoint and hence a
possible therapeutic strategy (see Herrera-Marschitz et al., 2014;
Kauppinen and Swanson, 2007). Nicotinamide, a PARP-1 inhibitor
(Virag and Szabo, 2002), prevents several of the short- and

long-term outcomes elicited by perinatal asphyxia (Allende-Castro
et al., 2012), evaluated at neurochemical (Bustamante et al., 2003,
2007), cellular (Klawitter et al., 2007) and behavioural (Morales
et al., 2010; Simola et al., 2008) levels, and it has recently been
reported that the neurodegenerative cascade elicited by perinatal
asphyxia involves PARP-1 overactivation, pro-inflammatory sig-
nalling and cell death; which can be prevented by systemic
neonatal nicotinamide administration (Neira-Pefia et al., 2015),
further supporting the idea that PARP-1 inhibition represents a
suitable therapeutic strategy.

The role of HIF-1a, a cue molecule for oxygen homeostasis
(Wang et al., 1995) that is involved in erythropoiesis, angiogenesis,
energy metabolism, cell proliferation/survival and apoptosis (Ke
and Costa, 2006) has also been investigated. In vitro, hypoxia and
hypoxia/re-oxygenation was shown to increase levels of HIF-1a
together with astrocyte reactivity and these changes were
prevented by HIF-1« inhibition (Rojas-Mancilla et al., in prepara-
tion). The same authors also observed in vivo that HIF-1o protein
levels were increased by 60% and translocated to the nucleus of
astrocytes and neurons, suggesting increased transcriptional
activity. These finding suggested that HIF-1a is a suitable
therapeutic target. Indeed, the competitive HIF-1a inhibitor, YC-
1 (3-(5’-hydroxymethyl-2’-furyl)-1-benzylindazole), which accel-
erates HIF-1 elimination, inhibits de novo synthesis of HIF-1
through mouse double minute 2 homolog (mdm?2) inhibition and
stimulates FIH-dependent p300 dissociation from HIF-1a (Cox-
Limpens et al.,, 2014). YC-1 was found to prevent the loss of
synaptic contacts induced by perinatal asphyxia in the hippocam-
pus (Rojas-Mancilla et al., in preparation). The effect of YC-1 was
also investigated on long-term behavioural outcomes of perinatal
asphyxia, finding that it improved spatial and non-spatial memory
deficits, in agreement with previous reports (Lopez-Hernandez
et al., 2012; Sheldon et al., 2009).

4.3. Inflammatory preconditioning

Based on the frequent observation that subtoxic doses of a
stressful stimulus can lead to the generation of a protective state,
the possibility of using preconditioning strategies in neonates to
confer long-term reductions in the severity of insults has been
described in several models.

In the neonatal HI model (see Section 2.2) preconditioning by
exposure to low doses of neurotoxins acting as Toll-like receptors
(TLRs) agonists such as LPS has been proposed as a therapeutic
strategy (Hickey et al., 2011). LPS is a known specific agonist for
Toll-like receptor 4 (TLR4), one of the 13 mammalian TLRs that
recognize foreign pathogens. LPS mediates ischemic tolerance in
the adult brain by stimulation of TLR4 signals either by MyD88
(myeloid differentiation primary response gene 88)-dependent or
by MyD88-independent pathways. Activated MyD88 recruits a
series of downstream adaptor proteins, which then activate the
transcription factor NF-kB, leading to expression of pro-inflam-
matory cytokines. TLR4 can also activate a series of adaptor
proteins independently of MyD88, ultimately inducing type
1 interferon (for review see Marsh et al., 2009). The pathways
and potential of LPS preconditioning in the neonatal brain (and
corresponding neonatal HI model) is, however, less well described.
Several recent papers by the Askalan group, however, have
provided compelling evidence that LPS preconditioning is neuro-
protective in neonatal HI (Hickey et al., 2011). Interesting these
authors have shown that the timing of the preconditioning
stimulus is critical and is correlated with the time-dependent
expression of different TLRs (Shi et al., 2013), suggesting that new
chemical entities with specificity for TLR subtypes could be
developed, achieving desired-, without the undesirable-side
effects of non-specific inflammation.
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4.4. Biomarkers

In most cases presymptomatic intervention will still require
some reliable indicator that the disease process is underway. Of
late we are seeing that even commonplace preventative strategies
such as vaccination are being questioned, so deciding that an
infant or child warrants preventive intervention for a neurological
condition that has X% of occurring in adolescence or adulthood is a
medical dilemma with profound ethical consequences, and
accordingly, a need for an extremely reliable indicator, or
biomarker, that a disease process is underway. To further
confound the issue, most of the relevant changes are likely to
be found in the infant brain subsequent to trauma. Biopsy of brain
tissue is not a viable option and non-invasive imaging of
prospective patients is impractical in terms of both time and
expense (although may be warranted if there is a clear indication
of risk, for example extreme hypoxia at birth). So ideally either a
serum biomarker or a definitive deficit on some early test of
cognition, motor function, etc. probably represents the best
possibility for early diagnosis. At this time, studies in animal
models such as those described above are far from identifying
such markers and those changes that are seen quite consistently
(e.g. increases in the neurotrophin BDNF have been observed in
most of the models described; see above) are relatively non-
specific (or presumed to be so at this time). None-the-less the goal
of identifying biomarkers of disease progression that can be
obtained non-invasively or using minimally-invasive techniques
is worthy of considerable effort.

5. Conclusions

In this review we have attempted to briefly summarize the
concept of modelling disease progression rather than end-stage
symptoms as a valuable means of improving clinical translation of
experimental findings. To maintain some focus we have limited
our descriptions to models in rodents (almost exclusively rats) and
to models that originate in neonatal life. Further, we have not
provided a comprehensive overview of all of the models or dealt
with most of them in any great detail, but have rather attempted to
illustrate both the current status and potential of this approach.
The goal of basic biomedical research is to understand normal and
abnormal brain function relevant (primarily) to humans and to use
that knowledge to reduce the incidence, severity and societal
burden of these devastating conditions. It is our belief and hope
that the use of animal models is essential to achieving that goal, but
that advancement of the field requires a re-thinking of the way we
use models in both biomedical investigation and therapeutant
development.
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