TABLA DE CONTENIDO

1.	11	NTROD	UCCIÓN	. 1
	1.1	Μοτιν	ACIÓN	. 1
	1.2	OBJET	IVOS	. 2
	1.3	ORGAN	NZACIÓN DE LA MEMORIA	. 3
2.	R	EVISIÓ	N BIBLIOGRÁFICA	. 4
	2.1	LICUAC	CIÓN DE SUELOS	. 4
	2	.1.1 F	actores que Afectan la Licuación	. 5
		2.1.1.1	Geología	. 5
		2.1.1.2	2 Granulometría	. 7
		2.1.1.3	B Fábrica	. 8
	2	.1.2 D	istancia a la Fuente	. 9
	2	2.1.3 E	valuación del Potencial de Licuación	11
		2.1.3.1	Solicitación Cíclica, CSR	12
		2.1.3.2	2 Resistencia Cíclica, CRR	15
		2.1.3.3	B Ensayo Triaxial Cíclico	15
		2.1.3.4	Uso de Vs como Predictor de Licuación	18
		2.1.3.5	5 Limitaciones del Vs como predictor de Licuación	22
	2	2.1.4 P	erfil de Velocidad de Onda de Corte Vs	24
		2.1.4.1	Métodos Geofísicos para Obtención de Perfil Vs	24
		2.1.4.2	2 Metodología del método de Correlaciones Cruzadas	25
		2.1.4.3	B Obtención de la razón espectral H/V	26
		2.1.4.4	Inversión de curvas de dispersión	26
	2.2	Model	AMIENTO NUMÉRICO MEDIANTE SOFTWARE OPENSEES	27
	2	2.2.1 R	esumen del Modelo Numérico	27
	2	2.2.2 G	eneración de la Columna de Suelo	29
	2	.2.3 A	plicación de Cargas	31
	2	2.2.4 N	Iodelo Constitutivo	33
3.	C	ASOS	DE ESTUDIO	35
	3.1	EVIDEN	NCIA DE LICUACIÓN A GRANDES DISTANCIAS	35
	3.2	MARCO) GEOLÓGICO DE LAS ZONAS DE ESTUDIO	39
	3.3	PROGF	RAMA DE ENSAYOS	41
	3.4	LAGO F	RANCO – PLAYA CALCURRUPE	42
	3	8.4.1 T	rabajo en Terreno	42
	3	8.4.2 R	esultados de Ensayos de Laboratorio	45
	3	8.4.3 R	esultados de Ensayos Geofísicos	50
	3.5	Lago L	LANQUIHUE— LAS CASCADAS	53
	3	8.5.1 T	rabajo en Terreno	53
	3	8.5.2 R	esultados de Ensayos en Laboratorio	55
	3	8.5.3 R	esultados de Ensayos Geofísicos	60
	3.6	POTEN	CIAL DE LICUACIÓN EN EL LAGO LLANQUIHUE	62
	3	8.6.1 N	lediante la Curva de Resistencia Cíclica	62
	3	8.6.2 M	lediante el Uso de la Velocidad de Onda de Corte	64
	3.7	Resum	IEN DE RESULTADOS	66

4. MODELAMIENTO MEDIANTE OPENSEES [®]	67
4.1 Perfiles de Suelo	
4.2 REGISTROS DE ACELERACIÓN DE ENTRADA	69
4.3 CALIBRACIÓN MEDIANTE ENSAYOS DE LABORATORIO	73
4.3.1 Calibración de Parámetros	73
4.3.2 Limitaciones del Modelo Constitutivo	79
4.3.3 Casos de Estudio	80
4.4 RESULTADOS DEL MODELAMIENTO	80
5. DISCUSIÓN Y ANÁLISIS DE RESULTADOS	86
6. CONCLUSIONES	89
7. BIBLIOGRAFÍA	
ANEXOS	95
A.1 ESTACIÓN DE VALDIVIA	95
A.2 ENSAYOS DE LABORATORIO	
A.2.1 Ensayo de Permeabilidad	
A.2.2 Resultados de Ensayos Triaxiales Cíclicos	100
A.3 RESULTADOS DE MODELAMIENTO NUMÉRICO	103

ÍNDICE DE TABLAS

Tabla 3. 1. Programa de ensayos en terreno y en el laboratorio41
Tabla 3. 2. Ensayo a carga cíclica de 0,35 kg/cm ² 59
Tabla 3. 3. Parámetros utilizados para la obtención de la Figuras 3.36 y 3.3765
Tabla 3. 4. Resumen de las propiedades obtenidas mediante los ensayos de laboratorio y los ensayos geofísicos
Tabla 4. 1. Aceleración máxima en superficie rocosa por dirección con el menor error cuadrático medio asociado utilizando las curvas de atenuación CB12 e I17 71
Tabla 4. 2. Parámetros de modelación para cada estrato 78
Tabla 4. 3. Aceleraciones máximas en superficie (PGA) obtenidas de los resultados delos modelos de capa con distintas permeabilidades
Tabla A. 1. Datos de confección de ensayo de permeabilidad a carga constante98
Tabla A. 2. Resultados ensayos de permeabilidad a carga constante

ÍNDICE DE FIGURAS

Figura 2. 1. Curvas granulométricas con distintos rangos de potencial de licuación marcados: (a) suelo con bajo coeficiente de uniformidad Cu < 3,5 y (b) suelos con altos coeficientes de uniformidad Cu > 3,5. (Obtenido de MLIT, 2007)......7

Figura 2. 4. Relación entre distancia hipocentral de licuación documentada y magnitud del sismo (Wang et al., 2006)......10

Figura 2. 6. Resultados de rd provenientes del análisis de respuesta de 2153 combinaciones de condiciones de sitio y terremotos. En línea negras se muestra: (a) la primera aproximación de Seed & Idriss (1971) y (b) el promedio y desviación estándar de los valores de los 2153 casos analizados (Seed et al., 2003)......13

Figura 2. 12. Resistencia cíclica versus velocidad de onda de corte corregida. Se muestran las curvas propuestas anteriormente en conjunto a la curva propuesta con los nuevos datos recopilados. (a) set de datos de Andrus & Stokoe (2000) y (b) set de datos ampliados. Los puntos rellenos representan lugares donde hubo licuación y los puntos sin relleno aquellos lugares donde no hubo licuación (Kayen et al., 2013)20

Figura 2. 13. Comparación de las curvas propuestas con distintas magnitudes de momento junto a la propuesta realizada por Andrus y Stokoe (2000) (Kayen et al. 2013)

Figura 2. 14. Comparación de los factores de escalamiento obtenidos de diferentes

Figura 2. 15. (a) Efecto del parámetro OCR en la velocidad de onda de corte Vs; (b) Efecto del parámetro OCR en curva de resistencia cíclica (Verdugo, 2016)......22

Figura 3. 8. Vista en planta del lugar de medición (Obtenida de GoogleEarth[®]), junto al acceso a la zona, los dos arreglos realizados y la distancia entre trominos (representados por las siglas T1, T2, T3 y T4) en cada arreglo.......42

Figura 3. 11. (a) Muestra de suelo M1 (LR-M1); (b) Muestra de suelo M2 (LR-M2)......45

Figura 3. 14. Rangos de potencial de licuación propuestos por el código japonés MLIT (2007) y curvas granulométricas obtenidas: (a) LR-M1 y (b) LR-M2......46

Figura 3. 16. Determinación de la línea de estado último LEU en el espacio de tensiones p'-q'; (b) línea de consolidación isótropa LCI y LEU en el espacio e-p'48

Figura 3. 18. Resultados de mediciones de la razón H/V, (a) resultados de registros individuales de Trominos; (b) promedio de las mediciones y desviación estándar.50

Figura 3. 25. Estimación de la permeabilidad del suelo mediante la Ley de Darcy......56

Figura 3. 27. (a) Determinación de la línea de estado último LEU en el espacio de tensiones p'-q'; (b) línea de consolidación isótropa LCI y LEU en el espacio e-p'......57

Figura 3. 31. Resultados de mediciones de la razón H/V, (a) promedio de mediciones entre pares de trominos; (b) promedio total con desviación estándar......60

Figura 3. 36. Evaluación del potencial de licuación utilizando: (a) propuesta hecha por Andrus & Stokoe (2000) y (b) propuesta hecha por Kayen et al. (2013)64

Figura 4. 3. Registros en roca del terremoto del Maule Mw 8,8, normalizados por la aceleración máxima PGA (a) componente E-W; (b) componente N-S......69

Figura 4. 4. Espectros de aceleración de los registros en roca, normalizados por su aceleración máxima PGA; (a) componente E-W; (b) componente N-S......69

Figura 4. 8. Variación de presión de poros y la deformación axial en función del número de ciclos. Comparación de resultados de laboratorio (curva azul) y simulaciones numéricas (curva verde), considerando (a) c1= 0,05 y (b) c1= 0,1......73

Figura 4. 9. Influencia del parámetro d1 en la acumulación de deformaciones por corte. Comparación de resultados de laboratorio (curva azul) y simulaciones numéricas (curva verde), considerando (a) d1= 0,05 y (b) d1= 0,4......74

Figura 4. 10. Influencia del parámetro c2 en esfuerzos efectivos del espacio p'-q'. Comparación de resultados de laboratorio (curva azul) y simulaciones numéricas (curva verde), considerando (a) c2=0.5 y (b) c2=3.0.....75

Figura 4. 12. Resultados de ensayo triaxial cíclico con un σ 0' de 1 kg/cm² y esfuerzo de corte de 0,35 kg/cm² en el espacio p'-q......76

Figura 4. 14. Resultados de la calibración de parámetros; (a) espacio p'-q; (b) espacio γ-q

Figura 4. 17. Resultados de modelamiento en modelo de capas para $k = 10^{-7}$ m/s......81

Figura 4. 20. Resultados del modelamiento en modelo de capas para $k = 9x10^{-5}$ m/s ..83

Figura A. 3. Resultados de ensayo triaxial cíclico con $\Delta\sigma'/2$ de 0,4 kg/cm² y un σ c' de 1 kg/cm²: (a) espacio p'-q'; (b) espacio γ -q'; (c) deformación axial ϵ axial versus número de ciclos y (d) razón de presión de poros ru = $\Delta u/\sigma$ c' versus número de ciclos......100

Figura A. 4. Resultados de ensayo triaxial cíclico con $\Delta\sigma'/2$ de 0,4 kg/cm² y un σ c' de 1 kg/cm²: (a) espacio p'-q'; (b) espacio γ -q'; (c) deformación axial ϵ axial versus número de ciclos y (d) razón de presión de poros ru = $\Delta u/\sigma$ c' versus número de ciclos......101

Figura A. 5. Resultados de ensayo triaxial cíclico con $\Delta\sigma'/2$ de 0,3 kg/cm² y un σ c' de 1 kg/cm²: (a) espacio p'-q'; (b) espacio γ -q'; (c) deformación axial ϵ axial versus número de ciclos y (d) razón de presión de poros ru = $\Delta u/\sigma$ c' versus número de ciclos......102