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Canonical Forms for Isomorphic and Equivalent RDF
Graphs: Algorithms for Leaning and Labelling Blank Nodes
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Existential blank nodes greatly complicate a number of fundamental operations on RDF graphs. In particular,
the problems of determining if two RDF graphs have the same structure modulo blank node labels (i.e. if they
are isomorphic), or determining if two RDF graphs have the same meaning under simple semantics (i.e., if
they are simple-equivalent), have no known polynomial-time algorithms. In this paper, we propose methods
that can produce two canonical forms of an RDF graph. The �rst canonical form preserves isomorphism
such that any two isomorphic RDF graphs will produce the same canonical form; this iso-canonical form is
produced by modifying the well-known canonical labelling algorithm Nauty for application to RDF graphs.
The second canonical form additionally preserves simple-equivalence such that any two simple-equivalent
RDF graphs will produce the same canonical form; this equi-canonical form is produced by, in a preliminary
step, leaning the RDF graph, and then computing the iso-canonical form. These algorithms have a number
of practical applications, such as for identifying isomorphic or equivalent RDF graphs in a large collection
without requiring pair-wise comparison, for computing checksums or signing RDF graphs, for applying
consistent Skolemisation schemes where blank nodes are mapped in a canonical manner to IRIs, and so forth.
Likewise a variety of algorithms can be simpli�ed by presupposing RDF graphs in one of these canonical
forms. Both algorithms require exponential steps in the worst case; in our evaluation we demonstrate that
there indeed exist di�cult synthetic cases, but we also provide results over 9.9 million RDF graphs that suggest
such cases occur infrequently in the real world, and that both canonical forms can be e�ciently computed in
all but a handful of such cases.
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1 INTRODUCTION
At the very core of the Semantic Web is the Resource Description Framework (RDF): a standard
for publishing graph-structured data that uses IRIs as global identi�ers such that graphs in remote
locations on the Web can collaborate to contribute information about the same resources using
consistent terminology in an interoperable manner. The adoption of RDF on the Web has been
continuously growing, where we can point to the hundreds of datasets published as RDF using
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Linked Data principles [22] spanning a variety of domains, including collections from governmental
organisations, scienti�c communities, social web sites, media outlets, online encyclopaedias, and so
forth [51]. Furthermore, hundreds of thousands of web-sites and hundreds of millions of web-pages
now contain embedded RDFa [24] – incentivised by initiatives such as Schema.org (promoted by
Google, Microsoft, Yahoo! and Yandex), and the Open Graph Protocol (promoted by Facebook) – with
three of the largest providers being, for example, tripadvisor.com, yahoo.com and hotels.com [43].

Despite this trend of RDF playing an increasingly important role as a format for structured-data
exchange on the Web, there are a number of fundamental operations over RDF graphs for which
we lack practical algorithms. In fact, RDF does not consist purely of statements containing IRIs,
but also supports literals that represent datatyped-values such as strings or numbers, and, more
pertinently for the current scope, blank nodes that represent a resource without an explicit identi�er.
It is the presence of blank nodes in RDF graphs that particularly complicates matters.

In the original W3C Recommendation for RDF published in 1999 [35], anonymous nodes were
introduced as a means of describing a resource without an explicit identi�er, quoting use-cases
such as the representation of bags of resources in RDF, the use of rei�cation to describe RDF
statements as if they were themselves resources, or simply to describe resources that did not have
a native URI/IRI associated with them. When the W3C Recommendation for RDF was revised in
2004 [20], the serialisation of RDF graphs as triples was supported through the introduction of the
modern notion of blank nodes to represent resources without explicit identi�ers; these blank nodes
were de�ned as existential variables that are locally-scoped. Intuitively speaking, this existential
semantics captures the idea that one can relabel the blank nodes of an RDF graph in a one-to-one
manner without a�ecting the structure [11] nor the semantics [21] of the RDF graph, nor without
having to worry if those same labels already exist in another graph elsewhere on the Web.

Practically speaking, blank nodes are used for two main reasons [28]:
• Blank nodes allow publishers to avoid having to explicitly identify speci�c resources, where

RDF syntaxes such as Turtle [5] use this property to enable various convenient shortcuts
for specifying ordered lists, n-ary relations, etc.; tools parsing these syntaxes can invent
blank nodes to represent these implicit nodes.
• In other cases, publishers may use blank nodes to represent true existential variables, where

a value is known to exist, but the exact value is not known.
In a recent questionnaire we conducted with the Semantic Web community, we found that publishers
may (hypothetically) use blank nodes sometimes in one case, or the other, or both [28]. In any case,
blank nodes have become widely used on the Web, where in previous work we found that in a
survey of 8.4 million Web documents containing RDF crawled from 829 pay-level domains1, 66% of
domains and 45% of documents used blank nodes [28].

Unfortunately, the presence of blank nodes in RDF complicates some fundamental operations
on RDF graphs. For example, imagine two di�erent tools parsing the same RDF graph – say, for
example, retrieved from the same location on the Web in the same syntax – into a set of triples,
labelling blank nodes in an arbitrary manner. Now take the two resulting sets of triples and say we
wish to determine if the two RDF graphs are the same modulo blank node labels; i.e., to determine
if they are isomorphic [11]. If the original RDF graph did not contain blank nodes, this process
is trivially possible in polynomial time by checking if both sets of triples are equal, for example,
by sorting both sets of triples and then comparing them sequentially. However, if the original
RDF graph contains blank nodes, then the problem of deciding RDF isomorphism has the same

1Domains such as bbc.co.uk or facebook.com, but not news.bbc.co.uk or co.uk
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computational complexity class as graph isomorphism (GI-complete), for which there are no known
polynomial-time algorithms (if such an algorithm were found, it would establish GI = P).

While isomorphism refers to a structural comparison of RDF graphs, it is also possible to consider
a semantic comparison of such graphs. The RDF semantics [21] de�nes a notion of entailment
between RDF graphs such that one RDF graph entails another, loosely speaking, if the entailed
graph adds no new information over the entailing graph; in other words, if the entailing graph
is considered to be true under the model theory of the semantics, then the entailed graph must
likewise be considered true. Two RDF graphs that entail each other are thus considered equivalent:
as having the same meaning under a particular semantics. The foundational semantics for RDF,
called simple semantics, does not consider any special vocabulary nor the interpretation of datatype
values; rather, it considers the meaning of RDF graphs considering blank nodes as existential
variables and IRIs and literals as ground terms denoting a particular resource. Given an RDF graph
G and H without blank nodes, then asking if G entails H is the same as asking if H contains a
subset of the triples of G, which again is possible in polynomial time by, for example, sorting both
sets of triples and comparing them sequentially to see if every triple of H is in G. However, as
we discuss later, if both RDF graphs contain blank nodes, the problem is in the same complexity
class as the problem of graph homomorphism (namely NP-complete), implying that there is no
known polynomial-time solution. Furthermore, it is known that determining if two RDF graphs are
simple-equivalent – i.e. if they simple-entail each other – falls into the same complexity class [18].

In summary then, there are no known polynomial-time algorithms for these two fundamental
operations of determining if two RDF graphs are structurally the same (per isomorphism) or
semantically the same (per simple equivalence).2

In this paper, we propose two di�erent canonical forms for RDF graphs. First we must de�ne two
RDF graphs as equal (or we may sometimes say the same) if and only if they are equal as sets of
RDF triples considering blank node labels as �xed in the same manner as IRIs and literals. The �rst
canonical form, which we call iso-canonical, is an RDF graph unique for each set of isomorphic RDF
graphs; in other words, it is a form that is canonical with respect to the structure of RDF graphs.
The second canonical form, which we call equi-canonical, is an RDF graph unique for each set of
simple-equivalent RDF graphs; in other words, it is a form that is canonical with respect to the
(simple) semantics of RDF graphs. More speci�cally, two RDF graphs are isomorphic if and only if
their iso-canonical forms are the same; two RDF graphs are simple-equivalent if and only if their
equi-canonical forms are the same.

These canonical forms have a number of use-cases, including:

• given a large set of RDF graphs, detect/remove graphs that are duplicates;
• given an RDF graph, compute a hash of that RDF graph, which can be used for computing

and verifying checksums, signatures, etc.;
• given an RDF graph, Skolemise the blank nodes in the RDF graph – replacing them with

fresh IRIs – in a deterministic manner based on the content of the graph.

Our methods do not rely on the syntax of the RDF documents in question, but rather operate on
the abstract representation of an RDF graph as a set of triples, where the user can decide whether
they wish to consider duplicates, signatures, Skolem constants, etc., to be consistent with respect
to either isomorphism or (simple) equivalence.

2Although polynomial-time algorithms have been proposed in the literature for computing canonical forms of RDF graphs
with respect to isomorphism (e.g., [2, 9, 32]), these may not always yield correct results. We will discuss such works in more
detail in Section 7.
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Given an input RDF graph, we propose algorithms for computing both its iso-canonical form
and equi-canonical form. As expected from earlier discussion, neither of these algorithms is in
polynomial-time: both have exponential-time worst-case performance in the general case. However,
unlike the more general problems of graph isomorphism and graph homomorphism, in the case of
real-world RDF graphs, we often have ground information that helps to distinguish blank nodes.
Hence in our evaluation, we �rst present results for computing both canonical forms over the
BTC–14 dataset [31] – a collection of 43.6 million RDF graphs of which 9.9 million contain blank
nodes – where said results suggest that computing these forms is e�cient in all but a handful
of cases. To stress-test our algorithms, we also present results for canonicalising a collection of
synthetic graphs at various sizes, which give some idea of the type of RDF graph required to invoke
exponential runtime, arguing that such graphs are unlikely to occur naturally in practice.

This paper is an extension of earlier work [27] where we �rst introduced methods to canonically
label blank nodes, computing an iso-canonical form of RDF graphs for the purposes of Skolemisation.
Aside from extended discussion throughout, the main novel contribution of this paper is to discuss
an algorithm for leaning RDF graphs and for computing their equi-canonical form in a manner
that takes into account not only structural but also semantic identity. In this latter contribution, we
take some of the ideas and experiences learnt from another previous work where we presented
some initial ideas on leaning RDF graphs [28]; however, the methods we present in this paper focus
on leaning potentially complex RDF graphs in memory where, in particular, we present a novel
depth-�rst search algorithm that is shown to perform better than a variety of baseline methods.

We begin by presenting some preliminaries relating to the structure and semantics of RDF graphs
(Section 2). We then present a theoretical analysis with a mix of new and existing results that
help establish both the hardness of the canonicalisation problems we propose to tackle, as well as
high-level approaches by which they can be computed (Section 3). Afterwards, we present in detail
our algorithms for computing the iso-canonical version of an RDF graph, which relies on a canonical
labelling of blank nodes (Section 4); and the equi-canonical version of an RDF graph (Section 5),
which relies on a pre-processing step that leans the RDF graph. We then present evaluation results
over collections of both real-world and synthetic RDF graphs (Section 6). We then discuss related
works before concluding the paper (Sections 7 and 8).

2 PRELIMINARIES
We now present some formal preliminaries with respect to RDF graphs, isomorphism, and the
simple semantics of RDF.

2.1 RDF terms, triples and graphs
RDF graphs are sets of triples containing RDF terms, with certain restrictions on which terms can
appear in which positions of a triple.

De�nition 2.1 (RDF term). Let I, L and B denote the in�nite sets of IRIs, literals and blank nodes
respectively. These sets are pair-wise disjoint. We refer generically to an element of one of these
sets as an RDF term. We refer to elements of the set IL (i.e., I ∪ L) as ground RDF terms.
De�nition 2.2 (RDF triple). We call a triple (s,p,o) ∈ IB × I × ILB an RDF triple, where the �rst

element, called the subject, must be an IRI or a blank node; the second element, called the predicate,
must be an IRI; and the third element, called the object, can be any RDF term.
De�nition 2.3 (RDF graph). An RDF graph G ⊂ IB × I × ILB is a �nite set of RDF triples. We

denote by terms(G) the set of all RDF terms appearing in G, and bnodes(G) the set of all blank
nodes appearing in G.
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Remark 1. We say that two RDF graphs G and H are equal, or the same, if and only if G = H in
terms of set equality.

2.2 RDF isomorphism
Two RDF graphs that are the same modulo blank nodes labels – i.e., where one can be obtained
from the other through a one-to-one mapping of blank nodes – are called isomorphic. We �rst give
a preliminary de�nition to capture the idea of mapping blank nodes to other RDF terms:

De�nition 2.4 (Blank node mapping and bijection). Let µ : ILB→ ILB be a partial mapping of RDF
terms to RDF terms, where we denote by dom(µ) the domain of µ and by codom(µ) the codomain
of µ. If µ is the identity on IL, we call it a blank node mapping. If µ is a blank node mapping that
maps blank nodes in dom(µ) to blank nodes in codom(µ) in a bijective manner, we call it a blank
node bijection.

Abusing notation, given an RDF graph G, we may use µ(G) to denote the image of G under µ
(i.e., the result of applying µ to every term in G).

We are now ready to de�ne the notion of isomorphism between RDF graphs.

De�nition 2.5 (RDF isomorphism). Two RDF graphs G and H are isomorphic, denoted G � H , if
and only if there exists a blank node bijection µ such that µ(G) = H , in which case we call µ an
isomorphism.

Lemma 2.6. RDF isomorphism (�) is an equivalence relation.

Proof. First, � is re�exive per the existence of the identity map µ on blank nodes, which is a
blank node bijection. Second, � is symmetric since ifG � H , then there exists µ such that µ(G) = H
and such that µ−1(H ) = G, where µ−1 is also a blank node bijection. Third, � is transitive since if
G � H and H � I , then there exist blank node bijections µ and µ ′ such that µ(G) = H , µ ′(H ) = I ,
and thus µ ′(µ(G)) = I , where µ ′ ◦ µ is a blank node bijection that witnesses G � I . �

Remark 2. If G = H , then G � H . �

Example 2.7. Take the following two RDF graphs, with G on the left and H on the right, where
the term 2014 is a literal (denoted with a square box), all terms pre�xed with underscore are blank
nodes, and all other terms (in the ex: example namespace) are IRIs. Now we consider: are these
RDF graphs isomorphic?

_:a2

ex:Chile

ex:presidency

_:a1

ex:presidency

2014

ex:startYear

ex:MBachelet

ex:president

ex:president

_:bA

ex:Chile

ex:presidency

_:b

ex:presidency

2014

ex:startYear

ex:MBachelet

ex:president

ex:president

In fact they are: there is a blank node bijection µ such that µ(_:a1) = _:bA and µ(_:a2) = _:b where
µ(G) = H . We could also take the inverse mapping µ−1, where µ−1(H ) = G and where µ−1 is also a
blank node bijection. Thus we conclude G � H . �
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A related concept to isomorphism – and one that will play an important role later – is that of an
automorphism, which is an isomorphism that maps an RDF graph to itself. Intuitively speaking,
automorphisms represent a form of symmetry in the graph.

De�nition 2.8 (RDF automorphism). An automorphism of an RDF graph G is an isomorphism
that maps G to itself; i.e., a blank node mapping µ is an automorphism of G if µ(G) = G. If µ is the
identity mapping on blank nodes in G then µ is a trivial automorphism; otherwise µ is a non-trivial
automorphism. We denote the set of all automorphisms of G by Aut(G) .

Example 2.9. We give the automorphisms for two RDF graphs G and H . Trivial automorphisms
(i.e., those that are the identity mapping) are shown in grey.

_:a _:b

:p

:pG Aut(G)

µ(·) _:a _:b

=
_:a _:b

_:b _:a
_:c _:d

:p

_:e

:p:p

H Aut(H )

µ(·) _:c _:d _:e

=

_:c _:d _:e

_:d _:e _:c

_:e _:c _:d

Applying any of the automorphisms shown for the graph in question would lead to the same graph
(and not just an isomorphic copy). �

2.3 Simple semantics, interpretations, entailment and equivalence
The RDF (1.1) Semantics recommendation [21] de�nes four model-theoretic regimes that, loosely
speaking, provide a mathematical basis for assigning truth to RDF graphs and, subsequently, for
formally de�ning when one RDF graph entails another: in other words, if one assigns truth to
a particular RDF graph, entailment de�nes which RDF graphs must also hold true as a logical
consequence. Thus, unlike RDF isomorphism which is, in some sense, a structural comparison of
RDF graphs [11], entailment o�ers a semantic comparison of RDF graphs in terms of their underlying
meaning [21]. The four regimes are: simple semantics, datatype semantics, RDF semantics and
RDFS semantics. In this paper, we are interested in the simple semantics, which codi�es a meaning
for RDF graphs without considering the interpretation of datatype values or special vocabulary
terms (such as rdf:type or rdfs:subClassOf).

Each regime is based on the notion of an interpretation, which maps the terms in an RDF graph to
a set, and then de�nes some set-theoretical conditions on the set. The intuition is that RDF describes
resources and relationships between them, where interpretations form a bridge from syntactic
terms to the resources and relationship they denote. We now de�ne a simple interpretation.

De�nition 2.10 (Simple interpretation). A simple interpretation is a 4-tupleI = (Res, Prop,Ext , Int)
where Res is a set of resources; Prop is a set of properties that represent types of binary relations
between resources (not necessarily disjoint from Res); Ext maps properties to a set of pairs of
resources, thus denoting the extension of the relations; and Int maps terms in IL to Res ∪ Prop,
i.e., maps terms in the RDF graph to the resources and properties they describe. With respect to
blank nodes, let A : B→ Res be a function that maps blank nodes to resources, and let IntA denote
a version of Int that maps terms in ILB to Res ∪ Prop using A for blank nodes. We say that I is a
model of an RDF graph G if and only if there exists a mapping A such that for each (s,p,o) ∈ G, it
holds that Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)).

Here, the existential semantics of blank nodes is covered by the existence of an auxiliary function
A, which is not part of the actual interpretation.
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Simple entailment of RDF graphs can then be de�ned in terms of the models of each graph.

De�nition 2.11 (Simple entailment). An RDF graph G simple-entails an RDF graph H , denoted
G |= H , if and only if every model of G is also a model of H .

Intuitively speaking, if G |= H , then H says nothing new over G, or in other words if we hold G
to be true, then we must hold H to be true as a logical consequence. If two RDF graphs entail each
other, then we state that they are simple-equivalent. In other words, semantically speaking, both
graphs contain the same information.

De�nition 2.12 (Simple equivalence). An RDF graph G is simple-equivalent with an RDF graph H ,
denoted G ≡ H , if and only if every model of G is a model of H and every model of H is a model of
G (in other words, G |= H and H |= G).

Lemma 2.13. Simple equivalence (≡) is an equivalence relation.

Proof. G ≡ H if and only if the sets of models of G and H are equal. Since set-equality is an
equivalence relation, so is ≡. �

Remark 3. If G � H , then G ≡ H . �

Given that we currently deal exclusively with the simple semantics of RDF, for brevity, henceforth,
we may refer to interpretations, models, entailment, equivalence, etc., without quali�cation, where
we implicitly refer to the simple semantics.

An important question is how isomorphism and equivalence are di�erent for RDF graphs. This
is perhaps best illustrated with an example.

Example 2.14. Take the following two RDF graphs with G on the left and H on the right. First of
all, we ask does G |= H hold (i.e., is every model of G also a model of H )?

_:a2

ex:Chile

ex:presidency

_:a1

ex:presidency

2014

ex:startYear

ex:MBachelet

ex:president

ex:president

ex:Chile

_:b

ex:presidency

2014

ex:startYear

ex:MBachelet

ex:president

Let’s say I = (Res, Prop,Ext , Int) is a model of G , where for the purposes of generality we give no
further details. Since the set of ground terms in H is a subset of G, then Int maps ground terms in
H to Res ∪ Prop in the same manner as forG . Let A denote an auxiliary mapping of blank nodes for
G such that for each (s,p,o) ∈ G it holds that Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)); in
other words, A witnesses that I is a model of G . Now let µ denote a blank node mapping such that
µ(_:b) = _:a2. Then, for each (s,p,o) ∈ H , it holds that Int(p) ∈ Prop and (IntA◦µ (s), IntA◦µ (o)) ∈
Ext(Int(p)), where A◦ µ is a valid auxiliary mapping that satis�es the condition for I to be a model
of H . Hence, any model of G is also a model of H , or in other words, G |= H . Intuitively speaking, if
we �rst map _:b in H to _:a2 in G, then we see that H contains a subset of the information of G.

Now let us ask: does H |= G hold? This time consider a blank node mapping µ such that
µ(_:a1) = _:b and µ(_:a2) = _:b. Using a similar argument as above but in the opposite direction,
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we can now see that any model of H must be a model of G: the ground terms of G are a subset of
H , and if A is an auxiliary mapping that witnesses that I is a model of H , then A ◦ µ witnesses that
I is a model of G . Put another way, looking just at G , if we map _:a1 to _:a2, we do not change the
meaning of G, and we end up with an isomorphic copy of H , and hence we may see that H |= G.

Given that G |= H and H |= G, we have that G ≡ H , even though G � H . Though both graphs
are structurally di�erent, from a semantic perspective both graphs have the same set of models
under RDF’s simple semantics: they imply each other. �

In this example, we saw that an RDF graph can be equivalent to a smaller graph: in other words,
an RDF graph can contain redundant triples that add no new information in semantic terms. This
gives rise to the notion of a lean RDF graph [21], which is one that does not contain such redundancy.

De�nition 2.15 (Lean RDF graph). An RDF graph G is considered lean if and only if there does
not exist a proper subgraph G ′ ⊂ G such that G ′ |= G. Otherwise we call G non-lean.

Example 2.16. Referring back to Example 2.14, H is lean. However, letG ′ denote the set of triples
of G that do not mention _:a1. We can see that G ′ |= G (with the same line of reasoning as to why
H |= G). In terms of explaining why G is non-lean, intuitively the graph can be read as making the
following claims:

• Chile has a presidency with MBachelet as president and startYear 2014.
• Chile has a presidency with MBachelet as president.

Under simple semantics, the second claim is considered redundant. �

3 THEORETICAL SETTING
The goal of this paper is to propose and develop algorithms to compute two canonical forms for RDF:
a canonical form with respect to isomorphism and a canonical form with respect to equivalence.
Having de�ned these notions in the previous section, we now present some theoretical results that
show these to be hard problems in general; we also present high-level strategies as to how these
canonical forms could be computed. We �rst focus on isomorphism and later discuss equivalence.

3.1 Isomorphism
To begin, we wish to establish that RDF isomorphism is in the same complexity class as the related
and more well-established problem of graph isomorphism for undirected graphs. In fact, this result
is folklore and was hinted at previously by other authors, such as Carroll [9], but to the best of our
knowledge, no formal proof of this result was given. First we need some preliminary de�nitions.

De�nition 3.1 (Undirected graph). An undirected graph G = (V ,E) is a graph were V is the set of
vertexes, E ⊆ V ×V is the set of edges, and (v,v ′) ∈ E if and only if (v ′,v) ∈ E (or in other words,
the edges are unordered pairs).

De�nition 3.2 (Graph isomorphism). Given two undirected graphs G = (VG,EG) and H = (VH,EH),
these graphs are isomorphic, denoted G � H, if and only if there exists a bijection β : VG → VH
such that (v,v ′) ∈ EG if and only if (β(v), β(v ′)) ∈ EH. In this case, we call β an isomorphism.

The graph isomorphism problem – of deciding if G � H – is GI-complete: a class that belongs to
NP but is not known to be equivalent to NP-complete nor to permit polynomial-time solutions. We
now give a result stating that the RDF isomorphism problem – of deciding for two RDF graphs if
G � H – is in the same complexity class as graph isomorphism.

Theorem 3.3. Given two RDF graphs G and H , determining if G � H is GI-complete.
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A proof for Theorem 3.3 – which originally appeared in the conference version of this work [27]
– is provided in Appendix A. From Theorem 3.3, we can conclude that it is not known if there
exists a polynomial-time algorithm for RDF isomorphism: the existence of such an algorithm would
imply GI = P, solving a long-open problem in Computer Science. In a recent result, Babai [3] proved
that the graph isomorphism problem can be solved in quasi-polynomial time3, where although a
polynomial-time algorithm has not yet been found, an algorithm better than exponential is now
known; hence GI is contained within QP: the class of problems solvable in quasi-polynomial time.
These results extend to RDF isomorphism per Theorem 3.3. But these theoretical results refer
to worst-case analyses, where a previous result by Babai et al. [4] showed that isomorphism for
randomly generated graphs can be performed e�ciently using a naive algorithm. Hence, despite
the possibility of non-polynomial worst cases, many practical algorithms exist to solve graph
isomorphism quickly for many cases.

In fact, our goal here is not the solve the isomorphism decision problem but rather to tackle the
harder problem of computing an iso-canonical version of an RDF graph.

De�nition 3.4 (Iso-canonical RDF mapping). Let M be a mapping from an RDF graph to an RDF
graph. M is iso-canonical if and only if M(G) � G for any RDF graph G and M(G) = M(H ) if and
only if G � H for any two RDF graphs G and H .

We know that computing an iso-canonical form of an RDF graph is GI-hard since it can be used
to solve the RDF isomorphism problem: we can compute the iso-canonical form of both graphs and
check if the results are equal. Hence we are unlikely to �nd polynomial-time algorithms.

Before we continue, let us establish an initial iso-canonical mapping that is quite naive and
impractical, but establishes the idea of how such a form can be achieved: de�ne a total ordering
of RDF graphs and for a set of pairwise isomorphic RDF graphs, de�ne the lowest such graph
(following certain �xed criteria) to be canonical.

De�nition 3.5 (κ-mapping). Assume a total ordering of all RDF terms, triples and graphs.4 Assume
that κ is a blank node bijection that labels all k blank nodes in a graph G from _:b1 to _:bk , and let
κ(G) denote the image ofG under κ. Furthermore, letK denote the set of all such κ-mappings valid
for G. We then de�ne the minimal κ-mapping of an RDF graph G as Mκ (G) = min{κ(G) | κ ∈ K}.

Proposition 3.6. Mκ is an iso-canonical mapping.

Proof. First, since we have a total ordering of graphs, there is a unique graphmin{κ(G) | κ ∈ K},
and hence Mκ is a mapping from RDF graphs to RDF graphs.

Second, Mκ (G) � G since we only relabel blank nodes: κ is a blank node bijection.
We are now left to prove that Mκ (G) = Mκ (H ) if and only if G � H .
(Mκ (G) = Mκ (H ) implies G � H ) We know that Mκ (G) � G and Mκ (H ) � H . If we are given

Mκ (G) = Mκ (H ), then we have that G � Mκ (G) � Mκ (H ) � H , and since � is an equivalence
relation, if follows that G � H .

(G � H implies Mκ (G) = Mκ (H )) Suppose the result does not hold and there exist G and H
such that G � H and (without loss of generality) Mκ (G) > Mκ (H ). Since G � H , there exists
a blank node bijection µ such that µ(G) = H . Let κ be the mapping such that κ(H ) = Mκ (H ).
Now κ ◦ µ(G) = Mκ (H ). Since κ ◦ µ is a κ-mapping for G and Mκ (G) > κ ◦ µ(G), we arrive at a
contradiction per the de�nition of Mκ since it does not use the minimum κ-mapping for G. �
3On January 9, 2017, the result was brie�y retracted as a bug was found in the proof. The result was reasserted a few days
later when a �x was found. See http://people.cs.uchicago.edu/~laci/update.html.
4For example, we can consider terms ordered syntactically, triples ordered lexicographically, and graphs ordered such that
G < H if and only if G ⊂ H or there exists a triple t ∈ G \ H such that no triple t ′ ∈ H \G exists where t ′ < t .

ACM Transactions on the Web, Vol. 0, No. 0, Article 00. Publication date: January 2017.

http://people.cs.uchicago.edu/~laci/update.html


00:10 Aidan Hogan

Example 3.7. Take graph H from Example 2.9. We have a total of 3! = 6 possible κ-mappings
(with only blank nodes from bnodes(H ) in their domain and blank nodes from {_:b1, _:b2, _:b3} in
their codomain) as follows.

κ(·) _:c _:d _:e
H

{(_:c, :p, _:d), (_:d, :p, _:e), (_:e, :p, _:c)}

=

_:b1 _:b2 _:b3 {(_:b1, :p, _:b2), (_:b2, :p, _:b3), (_:b3, :p, _:b1)}
_:b1 _:b3 _:b2 {(_:b1, :p, _:b3), (_:b3, :p, _:b2), (_:b2, :p, _:b1)}
_:b2 _:b1 _:b3 {(_:b2, :p, _:b1), (_:b1, :p, _:b3), (_:b3, :p, _:b2)}
_:b2 _:b3 _:b1 {(_:b2, :p, _:b3), (_:b3, :p, _:b1), (_:b1, :p, _:b2)}
_:b3 _:b1 _:b2 {(_:b3, :p, _:b1), (_:b1, :p, _:b2), (_:b2, :p, _:b3)}
_:b3 _:b2 _:b1 {(_:b3, :p, _:b2), (_:b2, :p, _:b1), (_:b1, :p, _:b3)}

The six κ-mappings only produce two distinct graphs, where the �rst, fourth and �fth mappings
correspond to κ ′(H ) and the rest to κ ′′(H ), as follows:

_:b1 _:b2

:p

_:b3

:p:p

κ ′(H )

_:b1 _:b3

:p

_:b2

:p:p

κ ′′(H )

Assuming a typical lexical ordering (as per Footnote 4), Mκ (H ) = κ
′(H ). Importantly, one could

(bijectively) relabel _:c, _:d, _:e in the original graph without a�ecting the result: the output would
be the same for any Mκ (H

′) such that H � H ′. �

This discussion suggests a correct and complete brute force algorithm to compute an iso-canonical
form for any RDF graph G: search all κ-mappings of G for one that gives the minimum such graph.
However, such a brute-force process is unnecessary and naive: by applying a more �ne-grained
total ordering on RDF graphs, we can use a similar principle to �nd an iso-canonical form in a
much more e�cient way. Such an algorithm will be presented later in Section 4.

3.2 Equivalence
As previous discussed in Section 2.3, two RDF graphs are equivalent if they entail each other. Towards
an initial procedure for deciding if two RDF graphs entail each other, we have the following result:

Theorem 3.8. G |= H if and only a blank node mapping µ exists such that µ(H ) ⊆ G [18, 21]. �

Example 3.9. Referring back to Example 2.14, as a witness that G |= H holds, we have a mapping
µ such that µ(_:b) = _:a2 and µ(H ) ⊂ G. As a witness that H |= G holds, we have a mapping µ ′

such that µ(_:a1) = µ(_:a2) = _:b and µ(G) = H .
For argument’s sake, let us consider an RDF graph H ′ derived from H by replacing _:b with

an IRI :I. We no longer have a mapping µ that witnesses G |= H ′; in fact, G 6 |= H ′. However, for
H ′ |= G, we have the mapping µ(_:a1) = µ(_:a2) = :I. �

In traditional graph terms, �nding a blank node mapping µ that witnesses such an entailment
relates closely with the notion of graph homomorphism.

ACM Transactions on the Web, Vol. 0, No. 0, Article 00. Publication date: January 2017.



Canonical Forms for Isomorphic and Equivalent RDF Graphs 00:11

De�nition 3.10 (Graph homomorphism). Given two undirected graphs G = (VG,EG) and H =

(VH,EH), a mapping β : VG → VH is a homomorphism from G to H if and only if (v,v ′) ∈ EG implies
(β(v), β(v ′)) ∈ EH.

The problem of deciding simple entailment between RDF graphs – i.e., given two RDF graphs G
and H , to decide if G |= H – falls into the same complexity class as the problem of deciding graph
homomorphism between undirected graphs – i.e., given two undirected graphs G and H , deciding
if there exists a homomorphism from G to H. Furthermore, it is known that deciding whether or
not G ≡ H is also NP-complete.

Theorem 3.11. Deciding if G |= H is NP-complete [18]. �

Theorem 3.12. Deciding if G ≡ H is NP-complete [18]. �

However, much like the case for isomorphism, although the worst-case analysis suggests that
it is unlikely we will �nd a general polynomial-time algorithm for determining equivalence, for
many real-world RDF graphs, e�cient procedures are possible. From work by Pichler et al. [46], for
example, we know that the entailment problem is �xed-parameter tractable; more speci�cally, they
demonstrated the following result.

De�nition 3.13 (Blank node graph). Let B denote a mapping from RDF graphs to undirected
graphs B(G) = (V ,E) such that V = bnodes(G), and such that (b1,b2) ∈ E (and thus (b2,b1) ∈ E) if
and only if b1 ∈ V , b2 ∈ V and there exists a p ∈ I such that (b1,p,b2) ∈ G. We call B(G) the blank
node graph of G.

Theorem 3.14. G |= H can be decided in time O(m2 + mn2k ), where n = |G |, m = |H | and
k = tw(H ) + 1, where tw(H ) is the treewidth of B(H ). [46]. �

Intuitively speaking, treewidth is a measure of how cyclical an undirected graph is. For example,
an acyclical graph has a treewidth of 1, any graph with cycles has a treewidth of at least 2, an
n-clique has a treewidth of n − 1, etc. Thus, for example, if an RDF graph G does not contain blank
nodes cycles (i.e., if B(G) is acyclic), then entailment can be checked in time O(m2 +mn2). Likewise,
for RDF graphs with blank node graphs that have bounded treewidth, entailment can be decided in
polynomial time. In previous work, in a survey of 3.8 million Web documents containing RDF with
blank nodes, we found 3.3 million connected components of blank nodes, of which 62.3% were
acyclical (treewidth of 1), where 37.7% had a treewidth of 2; cases with higher treewidth were very
rare, with the highest treewidth encountered being 6. The conclusion here is that although we
would expect a general algorithm to have an exponential running time in the worst-case, entailment
– and by extension equivalence – should be e�ciently computable for most real-world cases.

Again however, our goal is not to decide entailment or equivalence, but rather to address the
harder problem of computing an equi-canonical form for any RDF graph.

De�nition 3.15 (Naive equi-canonical RDF mapping). Let M be a mapping from RDF graphs to
RDF graphs. M is a naive equi-canonical mapping if an only if, for any two RDF graphs G and H ,
M(G) ≡ G, and M(G) = M(H ) if and only if G ≡ H .

We know that computing a naive equi-canonical form of an RDF graph is NP-hard since it can
be used to solve equivalence. However, per the previous arguments, we hope to be able to �nd a
general algorithm that is e�cient for most real-world cases.
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Our general approach is to lean an RDF graph – i.e., given an RDF graph G, compute G ′ such
that G ′ is lean and G ′ |= H – and then compute an iso-canonical form of the leaned graph. As such,
we aim for a more speci�c form of mapping.5

De�nition 3.16 (Equi-canonical RDF mapping). A naive equi-canonical RDF mapping M is a lean
equi-canonical mapping (or simply an equi-canonical mapping) if M(G) is lean for any RDF graph G .

With respect to leaning RDF graphs, there are various problems one could consider that relate to
the more well-established notion of cores in undirected graphs.6

De�nition 3.17 (Graph core). An undirected graph G is a core if each homomorphism from G to
itself is an isomorphism.

In other words, a graph is a core if there is no homomorphism from G to a sub-graph of itself.
There is thus a direct correspondence between the notion of leanness for RDF graphs, and the
notion of cores in undirected graphs [23]. Hence, following the precedent of Gutierrez et al. [18],
we can de�ne the core of an RDF graph analogously:

De�nition 3.18 (RDF core). Let G be an RDF graph. Let G ′ be a lean RDF graph such that G ′ ⊆ G
and G ′ |= G. We call G ′ a core of G. We denote by core(G) a core of G.

In fact, here we are slightly abusing notation since core(G) is not uniquely de�ned: a non-lean
graph may have multiple cores. However, there is a unique core modulo isomorphism, where we
assume core(G) selects any such graph.

Theorem 3.19. core(G) is unique up to isomorphism [18]. �

Theorem 3.20. G ≡ H if and only if core(G) � core(H ) [18]. �

These results lead us almost directly to the following result, which is important to establish the
correctness of our approach for computing equi-canonical forms:

Theorem 3.21. LetM be an iso-canonical mapping. ThenM ◦ core is an equi-canonical mapping.

Proof. We need to check thatM◦core meets all of the following conditions for an equi-canonical
mapping:

• M(core(G)) ≡ G for any RDF graph G:
G ≡ core(G) � M(core(G)), and hence G ≡ M(core(G)) (from Lemma 2.13).

• M(core(G)) = M(core(H )) if and only if G ≡ H for any RDF graphs G and H :
(if) If M(core(G)) = M(core(H )), then G ≡ core(G) � M(core(G)) = M(core(H )) �
core(H ) ≡ H , and hence G ≡ H (from Lemma 2.13).
(only if) If G ≡ H , then from Theorem 3.20, core(G) � core(H ), and since M is
iso-canonical, M(core(G)) = M(core(H )).

• M(core(G)) is lean for any RDF graph G:
core(G) is lean by de�nition and given that M(core(G)) � core(G), it holds that
M(core(G)) is also lean.

Thus M ◦ core satis�es all conditions for an equi-canonical mapping. �

5We call the original version of the mapping “naive” as it appears that any practical such mapping would produce a lean
graph.
6This is not to be confused with the notion of k-cores proposed by Seidman [52].
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In other words, once we have a practical algorithm for computing an iso-canonical form for
RDF graphs, we can lean the RDF graph and then apply the iso-canonical form to arrive at an
equi-canonical form. The question then is how much harder the problem becomes when we add
leaning as a pre-processing step. We have the following complexity results from the literature:

Theorem 3.22. Deciding if an RDF graph G is lean is coNP-complete [18]. �

A homomorphism µ, such that µ(G) ⊂ G, acts as an e�ciently-veri�able witness that G is not
lean, which, along with a reduction from the analogous coNP-complete procedure for undirected
graphs [23] to the RDF case [18], means that deciding if an RDF graph is lean is coNP-complete.

On the other hand, deciding if one graph is the lean version of another has di�erent complexity:

Theorem 3.23. Given two RDF graphsG and H , deciding if core(G) � H (i.e., if H is a core ofG) is
DP-complete [18]. �

The DP-complete class, loosely speaking, refers to when separate calls to an NP-complete
procedure and a coNP-complete procedure are required. To determine if H is a core of G, we can
check if H is lean (coNP-complete) and in parallel check if there is a homomorphism from G to
H (NP-complete); this establishes membership in DP. Conversely, DP-hardness can be shown by
reduction from the analogous DP-complete problem for undirected graphs [12] to the RDF case [18].

From these results, we know that computing the equi-canonical form of an RDF graph is coNP-
hard, since we can use such a procedure to e�ciently decide ifG is lean: compute the equi-canonical
form of G and and test if it has fewer triples than G.

The question we now must ask is what procedure we can apply to lean an RDF graph. With respect
to the computation of cores, in the setting of incomplete databases, papers by Fagin et al. [12],
Gottlob and Nash [16], Pichler and Savenkov [47], Marnette et al. [38], Mecca et al. [42], etc.,
propose polynomial-time algorithms for computing core solutions under restricted data exchange
settings. However, in a survey of such approaches by Savenkov [49], it appears that the most
practical approach is to compute a core solution directly rather than computing a solution and
then computing its core, where the most practical post-processing algorithm (one that computes a
solution and then the core) was proposed by Gottlob [15] and is based on hypertree decompositions.
However, it is unclear how such approaches could be applied to our scenario and how practical
they might be (especially since we are not aware of any implementations thereof). This might be
an interesting question for future work.

Instead, we propose a much more “direct” algorithm for computing the lean version of an RDF
graph, which exploits the relation between conjunctive query answering (aka. basic graph pattern
matching) over RDF graphs and computing cores [28]. On a high level, conjunctive query answering
involves computing all homomorphisms from a query (a graph pattern similar in structure to an RDF
graph) to a target RDF graph. Each such homomorphism constitutes a solution to the conjunctive
query. If we use well-known conjunctive query answering techniques to – in a manner we will
de�ne later where we consider blank nodes as query variables – match an RDF graph G against
itself, we can compute all endomorphisms within G: all homomorphisms from G to itself. At least
one such endomorphism must thus be a homomorphism from G to a core of G; we call such an
endomorphism a core endomorphism. In fact, given the set of all endomorphisms of G , it is trivial to
identify the core endomorphisms: as we will prove momentarily, the core endomorphisms of G are
the endomorphisms that map to the fewest unique blank nodes in G.

De�nition 3.24 ((Core) Endomorphism). Given an RDF graph G, we denote by End(G) all blank
node mappings with domain terms(G) that map G to a subgraph of itself: End(G) = {µ | µ(G) ⊆
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G and dom(µ) = terms(G)}. We call End(G) the endomorphisms of G. If an endomorphism µ is not
an automorphism – i.e., if µ(G) ⊂ G – we call it a proper endomorphism. We denote by CEnd(G) the
set of all mappings in End(G) that map to the fewest unique blank nodes, which we call the core
endomorphisms of G; more formally, CEnd(G) is the set of all µ ∈ End(G) such that there does not
exist µ ′ ∈ End(G) such that |codom(µ ′) ∩ B| < |codom(µ) ∩ B|.

Example 3.25. We look at the endomorphisms for three RDF graphs: G , H and I . Automorphisms
are shown in grey and core endomorphisms are shaded.

_:c _:d

:p

_:e

:p:p

G

_:j _:k
:p

:X

:p

_:l

:p

I

_:j :X
:p

µ ′(I )

End(G)

µ(·) _:c _:d _:e

=

_:c _:d _:e

_:d _:e _:c

_:e _:c _:d

End(I )

µ(·) _:j _:k _:l

=

_:j _:k _:l

_:j _:l _:k

_:j _:k _:k

_:j _:l _:l

_:j _:k :X

_:j _:l :X

_:j :X _:k

_:j :X _:l

_:j :X :X

_:f _:g
:p

_:h

:p

_:i
:p

:p

H

_:h _:i
:p

µ ′(H )

End(H )

µ(·) _:f _:g _:h _:i

=

_:f _:g _:h _:i

_:f _:i _:h _:g

_:h _:g _:f _:i

_:h _:i _:f _:g

_:f _:g _:h _:g

_:f _:g _:f _:i

_:f _:i _:h _:i

_:f _:i _:f _:g

_:h _:g _:f _:g

_:h _:g _:h _:i

_:h _:i _:f _:i

_:h _:i _:h _:g

_:f _:g _:f _:g

_:f _:i _:f _:i

_:h _:g _:h _:g

_:h _:i _:h _:i

We see that all ofG’s endomorphisms are automorphisms (note: µ(G) = G if and only if dom(µ) =
codom(µ)); as will prove momentarily, this implies that G is lean.

In the case of H , we see 16 endomorphisms returned, 4 of which are automorphisms (in grey) that
map four blank nodes bijectively to four blank nodes; 8 of which are not automorphisms, but map
to three unique blank nodes; and 4 of which map to only two unique blank nodes, and are thus the
core endomorphisms (CEnd(H )). Taking µ ′ to be the last (core) homomorphism listed for End(H ),
we show the results of applying µ ′(G); we will prove momentarily that since µ ′ ∈ CEnd(H ), we
can conclude that µ ′(H ) is a core of H .

Finally in the case of I , we consider a node with an IRI :X. In this case, we have 9 endomorphisms
in total, including 2 automorphisms and 1 core endomorphism. Letting µ ′ be the unique core
endomorphism in this case, µ ′(I ) shows the result of sending both _:j and _:k to :X in I .

With respect to the relation to query answering, note that each set End(G), End(H ) and End(I )
is just the set of solutions considering that graph as a query against itself, where blank nodes are
considered query variables. To compute the set End(I ), for example, in SPARQL [19] we could
consider the following query:

SELECT DISTINCT ?j ?k ?l WHERE { ?j :p ?k , ?l , :X . }

The solutions returned for this query would e�ectively be as seen in End(I ). In any case, we do
not use SPARQL nor SPARQL engines for various reasons (e.g., SPARQL does not preserve blank
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nodes labels in solutions), but the idea of querying an RDF graph G against itself and �nding the
solution with the fewest unique blank nodes may help to conceptualise the approach we will take
to compute the core of G.7 �

Having given the intuition in Example 3.25 of the relation between endomorphisms and lean-
ness/cores, we �rst give some remarks that follow generally for endomorphisms and automorphisms
before formalising this relationship.

Remark 4. Aut(G) ⊆ End(G) holds for any RDF graph G. �

Remark 5. If µ ∈ End(G) and µ ′ ∈ End(G), then µ ◦ µ ′ ∈ End(G). �

Now we establish the relationship between endomorphisms and leanness.

Lemma 3.26. G is lean if and only if End(G) = Aut(G).

Proof. (G is lean implies End(G) = Aut(G)) If G is lean, it implies that there is no subgraph
G ′ ⊂ G such that G ′ |= G, which implies that there is no µ such that µ(G) ⊆ G ′ (or µ(G) ⊂ G).
Hence, if G is lean, for any µ ∈ End(G), it holds that µ(G) = G, and hence End(G) = Aut(G).

(End(G) = Aut(G) impliesG is lean) Likewise, if End(G) = Aut(G), then there can be no subgraph
G ′ ⊂ G such that µ(G) ⊆ G ′ (since µ would be in End(G) \Aut(G)), and hence there is no subgraph
G ′ such that G ′ |= G, and hence G is lean. �

We can now show that any core endomorphism of G maps G to a core of G.

Theorem 3.27. If µ ∈ CEnd(G), then µ(G) is a core of G.

Proof. Recall that G ′ is a core of G if and only if G ′ |= G and G ′ is lean. Given any blank node
mapping µ, then µ(G) |= G trivially holds with µ as a witness (see Theorem 3.8). We are thus left to
prove that if µ ∈ CEnd(G), then µ(G) is lean.

Suppose a case where µ ∈ CEnd(G) but µ(G) is not lean. Given that µ(G) is not lean, there must
exist a mapping µ ′ ∈ End(µ(G)) \ Aut(µ(G)) (per Lemma 3.26); in other words, there must exist a
proper endomorphism µ ′. However, in that case, µ ′ ◦ µ must also be in End(G) (per Remark 5), and
µ ′ ◦ µ must map to strictly fewer unique blank nodes in its codomain than µ, which contradicts
with µ ∈ CEnd(G). Hence the theorem holds. �

Finally we provide a lemma that will be useful later, indicating that one can apply proper
endomorphisms to G in an iterative manner to get to the core.

Lemma 3.28. If µ ∈ End(G), then for any µ ′ ∈ CEnd(µ(G)), it holds that µ ′(µ(G)) is a core of G.

Proof. We need to prove that µ ′(µ(G)) is lean and µ ′(µ(G)) |= G. The premise µ ′ ∈ CEnd(µ(G))
combined with Theorem 3.27, implies that µ ′(µ(G)) is a core of µ(G) and must thus be lean. With
respect to showing µ ′(µ(G)) |= G, since µ ∈ End(G), then µ(G) |= G, and likewise since µ ′ ∈
End(µ(G)), then µ ′(µ(G)) |= µ(G), and thus µ ′(µ(G)) |= G. Hence the lemma holds. �

In summary, we have shown that to compute a core of a graph, it su�ces to �nd an endomorphism
that maps to the fewest blank nodes (which we call a core endomorphism). The endomorphism
can be considered as any solution of posing the RDF graph as a query against itself considering its
blank nodes as variables. We have also shown that we can apply the process iteratively, meaning
that we can compute the core of an RDF graph by iteratively �nding and simplifying the graph
7In SPARQL 1.1, it would even be possible to compute a “core solution” directly by �nding the solution(s) with the fewest
blank nodes using a combination of BIND and IF to increment a chain of fresh variables by 1 if a binding for a given variable
is a blank node, and then applying an ORDER BY with LIMIT 1.
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according to any sequence of proper endomorphisms (an endomorphism that removes some blank
nodes). These results serve as the basis for our algorithm for leaning – and for computing the
equi-canonical form of an RDF graph – discussed in Section 5.

4 ISO-CANONICAL ALGORITHM: LABELLING BLANK NODES
We will now propose an algorithm for computing the iso-canonical form of an RDF graph, which
implements a function M from RDF graphs to RDF graphs such that M(G) = M(G ′) if and only if
G is isomorphic with G ′. This has a number of applications, including hashing or signing graphs,
detecting duplicate (more speci�cally, isomorphic) RDF graphs from a large collection without
needing pairwise comparison, as well as a form of Skolemisation [11] where blank nodes are
mapped to IRIs in a deterministic (more speci�cally, isomorphism-preserving) manner.

As discussed in Section 3, this problem is GI-hard, and thus according to recent results for graph
isomorphism, we can expect worst-cases with at least quasi-polynomial behaviour [3] (unless
we resolve the open problem of GI = P). In fact, our algorithm will have exponential worst-case
behaviour. However, our conjecture is that the worst-cases predicted by theory are not likely to
occur often in practice, and that it is possible to derive algorithms that are e�cient in practice.

The algorithm we propose is based on the idea of considering a total ordering of RDF graphs,
where we can then choose the lowest RDF graph in every isomorphic partition of RDF graphs
to be the canonical graph for that partition. We previously illustrated this idea in Example 3.7
using κ-mappings to de�ne the ordering; however, this particular ordering of RDF graphs is very
generically de�ned and thus the search space of κ-graphs is quite broad—this was only intended
to illustrate the high-level idea. In practice, we can leverage the ground information in an RDF
graph – i.e., IRIs and literals – to specify a much more constrained blank node labelling that greatly
reduces the search space in many cases. In cases where ground information is not enough to provide
distinguishing labels to blank nodes, we can adapt ideas from well-known algorithms for graph
isomorphism to complete the labelling of blank nodes.

4.1 Hash-based labelling of blank nodes
In the graph isomorphism literature [40, 41, 48], an invariant is a property of a node in a graph
that is preserved in an isomorphism. For example, given an isomorphism between two undirected
graphs G and G

′, a node of degree d in G must map to a node with degree d in G
′, and hence node

degree is invariant under isomorphism. Such invariants help narrow the search space of possible
isomorphisms. In the case of RDF, ground terms attached to blank nodes additionally o�er a rich
invariant that can often be highly selective. Thus, rather than in the naive case of κ-mappings
where any blank node can be given any of the available labels, we can instead begin by assigning
each blank node a deterministic hash based on the ground terms surrounding it.

We highlight that similar hashing schemes have been proposed in the literature by, for example,
Arias-Fisteus et al. [2], Kasten et al. [32] and Lantzaki et al. [34] for similar purposes; however,
none of these approaches are sound and complete with respect to isomorphism. We will discuss
such works in more detail in Section 7.

In Algorithm 1, we propose such an iterative hashing scheme for initially labelling blank nodes
based on the ground terms that surround them in the RDF graph.

Lines 2–7 A map of terms to hashes is initialised. IRIs and literals are assigned unique static hashes.
Blank nodes hashes are initialised to zero and will be computed iteratively in subsequent
steps. For now, we assume perfect hashing without clashes, where practical hashing issues
will be discussed later in Section 4.4.

ACM Transactions on the Web, Vol. 0, No. 0, Article 00. Publication date: January 2017.



Canonical Forms for Isomorphic and Equivalent RDF Graphs 00:17

Lines 9–17 A hash for each blank node is computed iteratively per its inward and outward edges
in the RDF graph. The function hashTuple(·) will compute an order-dependant hash of
its inputs, and is used to compute the hash of an edge based on the hash of the predicate,
value (the subject for inward edges or the object for outward edges) and the direction. The
symbols ‘+’ (outward) and ‘-’ (inward) are used to distinguish edge directions. The hash
of the value is static in the case of IRIs or literals; otherwise it is the hash of the blank node
from the previous iteration. The function hashBaд(·) computes hashes in a commutative
and associative way over its inputs and is used to aggregate the hash across all edges.

Line 18 The computed hashes form a partition of blank nodes. The hash of each blank node
changes in every iteration. The loop terminates when either (i) the hash-based partition of
terms does not change in an iteration, or (ii) no two terms share a hash.

Algorithm 1 Deterministically hashing blank nodes
1: function hashBnodes(G ) . G is any RDF graph

2: initialise hash0[] . a map from terms to hashes

3: for x ∈ terms(G) do . all terms in G
4: if x ∈ B then

5: hash0[x ] ← 0 . an initial hash

6: else

7: hash0[x ] ← hashT erm(x ) . a static hash based on the string of the term

8: i ← 0
9: repeat

10: i++
11: initialise hashi [] with hashi−1[] . copy map

12: for (b, p, o) ∈ G : b ∈ B do . o ∈ IBL
13: c ← hashTuple(hashi−1[o], hashi−1[p], +) . hashTuple(·) is order-dependent

14: hashi [b] ← hashBaд(c, hashi [b]) . hashBaд(·) is commutative and associative

15: for (s, p, b) ∈ G : b ∈ B do . s ∈ IB
16: c ← hashTuple(hashi−1[s], hashi−1[p], -)
17: hashi [b] ← hashBaд(c, hashi [b])
18: until (∀x, y : hashi [x ] = hashi [y] i� hashi−1[x ]=hashi−1[y]) or (∀x, y : hashi [x ]=hashi [y] i� x = y)
19: return hashi [] . final map of terms to hashes

We now give an example of how Algorithm 1 works.

Example 4.1. In practice, blank nodes are assigned numeric hashes, but here we will use Greek
letters to represent hashes, where upper-case denotes static hashes (for IRIs and literals) and
lower-case denotes dynamic hashes (for blank nodes). The iteration is given by i .

:p

_:a:q

_:b:q

_:c
:p

_:d
:p

:r

Input

:p

α:q

α:q

α
:p

α
:p

:r

i = 0

Γ

β∆

β∆

γ
Γ

δ
Γ

Θ

i = 1

Γ

ϵ∆

ζ∆

η
Γ

θ
Γ

Θ

i = 2
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In the initial state (i = 0), an initial hash α is assigned to all blank nodes and static hashes to all
IRIs and literals. In the iterations that follow, hashes are computed for blank nodes according to
their neighbourhood; e.g., for _:d at i = 1, the hash will be computed based on its previous hash
and its inward and outward edges as follows:

hash1[_:d] ← hashBaд
(
hash0[_:d],

hashTuple(hash0[_:b], hash0[:p], +),

hashTuple(hash0[_:c], hash0[:r], -)
)

The process continues until either each blank node is assigned a distinct hash, or the partition of
blank nodes under hashes does not change. In this example, all blank nodes have a distinct hash for
i = 2, and thus the process terminates. �

Algorithmic characteristics. We now show that assuming a perfect hashing scheme, the algorithm
terminates in a bounded number of iterations, and that the computed hashes preserve isomorphism.
We start with a lemma which states that if two blank nodes are assigned di�erent hashes in a given
iteration, they will remain distinguished in subsequent iterations.

Lemma 4.2. Assuming a perfect hashing scheme, in Algorithm 1, if hashi [x] , hashi [y], then
hashj [x] , hashj [y] for j ≥ i .

Proof. A perfect hashing scheme implies that given distinct inputs, a distinct output will be
produced: in other words, clashes do not occur. We can then prove the lemma by induction, with
the base case that hashi [x] , hashi [y]. For i + 1, we know that hashi+1[x] takes hashi [x] as input
whereas hashi+1[y] does not (and that no other hash in the computation of hashi+1[y] can clash
with hashi [x]). Hence we have that hashi+1[x] , hashi+1[y]. The lemma is thus true under the
induction hypothesis. �

Lemma 4.3. Algorithm 1 terminates in Θ(β) iterations in the worst case for an RDF graph G where
β := |bnodes(G)|.

Proof. Hashes form a partition of bnodes(G). Algorithm 1 terminates if the partition does not
change. Per Lemma 4.2, partitions can only split. Hence only β − 1 splits can occur before the unit
partition is reached. The tight asymptotic bound is given, for example, by the path graph of the form
x1

p
−→ x2

p
−→ . . .

p
−→ xn (xi ∈ B for 1 ≤ i ≤ n), where dn−12 e iterations are needed to terminate. �

Assuming for simplicity that hashi [·] has constant insert/lookup and linear copy performance,
then Algorithm 1 runs in Θ(β · (τ + γ )) in a worst-case analysis, where β := |bnodes(G)|, τ :=
|terms(G)| and γ := |G |. In terms of space, the graph and two maps of size τ are stored. Ground
triples can be pre-�ltered to reduce space and time.

Next we show a speci�c correctness property of the algorithm, which intuitively states that two
blank nodes that could be mapped to each other through an isomorphism will be assigned the same
hash by the algorithm. In fact, this is quite a weak result (since, e.g., it would trivially hold if we
gave all blank nodes the same hash), but it will be extended upon later for the complete algorithm.

Lemma 4.4. Let G � H be two isomorphic RDF graphs and let hashG denote the map from RDF
terms to hashes produced by Algorithm 1 for G , and likewise hashH for H . Let b be a blank node of G
and c be a blank node of H . If there exists a blank node bijection µ such that µ(G) = H and µ(b) = c ,
then hashG (b) = hashH (c).
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Proof. IfG and H are isomorphic, then they di�er only in the strings that are used to label blank
nodes. With respect to blank node label strings, no part of Algorithm 1 performs computation based
on these label strings (other than to identify the blank node, which is preserved under isomorphism).
Thus, relabelling blank nodes in the input graph in a one-to-one manner cannot a�ect the output.

Although an RDF graph is unordered, Algorithm 1 must read the triples in some order, where the
order forG and H may be di�erent. However, this cannot a�ect the output since the commutativity
and associativity of hashBaд(·) ensures order-independent hashing over sets of triples.

Hence neither the strings on the blank node labels nor the implicit order in which triples are read
can a�ect the output of Algorithm 1, and we conclude it will give consistent hashes for isomorphic
graphs, and that the lemma holds. �

Splitting the graph. When there are disconnected sub-graphs of blank nodes in the input RDF
graph, the hashing of terms in those sub-graphs may continue longer than necessary. Speci�cally,
let’s say we use hashG as the basis of a Skolemisation scheme to generate a blank node mapping
µG , where output hashes are used to mint fresh IRIs. Given two RDF graphs G and H , then µG (G)
may not equal µG+H (G); alternatively, µG (G) may not be a subset of µG+H (G + H ).

Example 4.5. In the following, the hashing of blank nodes in G will require one fewer iteration
than H or G + H to terminate.

:p

_:a:q

_:b:q

:s
:p

_:c
:p

:r

G

:p

_:d:q

_:e:q

_:f
:p

_:g
:p

:r

H

Hence the hashes of graph G would no longer correspond with the hashes of the corresponding
sub-graph of G + H since blank node hashes change in every iteration. �

Since this may be undesirable in certain applications, we propose an optional step prior to
Algorithm 1 that partitions the input RDF graph according to its blank nodes.

De�nition 4.6 (Blank node split). For an RDF graph G, let G := (V ,E) denote an undirected
graph where V := G and a pair of triples (t ,u) is in E if and only if {t ,u} ⊆ G and bnodes({t}) ∩
bnodes({u}) , ∅. Let t ∼G v denote that t and v are reachable from each other in G, and let
G/∼G denote the partition of G based on reachability in G. We de�ne a blank node split of G as
split(G) := {G ′ ∈ G/∼G | G

′ is not ground}. We de�ne the ground split of G as the graph that
contains all (and only the) ground triples of G.

The blank node split ofG contains a set of non-overlapping subgraphs ofG , where each subgraph
G ′ contains all and only the triples for a given group of connected blank-nodes in G. For instance,
in Example 4.5, split(G ∪ H ) = {G,H }.

Instead of passing a raw RDF graph G to Algorithm 1, to ensure that µG (G) is a subset of
µG+H (G + H ), we can pass the individual split sub-graphs to Algorithm 1. This process is outlined
in Algorithm 2.
Line 2 We compute split(G) using a standard Union–Find algorithm, which runs in O(n logn)

worst-case for n the number of triples in G.
Lines 3–5 The results of each split are computed by calling Algorithm 1 and unioned: two splits

cannot disagree on the hash of a given term since hashes for IRIs and literals are static and
no blank node can appear in two splits.
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Line 6 The union of hashes for blank node splits are returned. If needed, we can also add the
hashes of constants in the ground split not appearing elsewhere to align the results with
Algorithm 1; however, most of the time we are only interested in the hashes of blank nodes.

Algorithm 2 Hashing blank nodes splits independently
1: function hashBnodesPerSplit(G ) . G a non-ground RDF graph

2: {G1, . . . , Gn } ← split(G) . use, e.g., a Union–Find algorithm

3: initialise hash

4: for 1 ≤ i ≤ n do

5: hash← hash ∪ hashBnodes(Gi ) . hashBnodes(·) calls Algorithm 1

6: return hash . final hashes

When compared with Algorithm 1, Algorithm 2 may produce di�erent hashes for blank nodes
due to running fewer iterations over split graphs (per Example 4.5). The added cost of the split
computation is o�set by the potential to reduce iterations when hashing the blank nodes of
individual splits; likewise splitting the graph in such a manner o�ers the potential to parallelise the
processing of each split. In general, however, we provide Algorithm 2 not for performance reasons,
but rather to o�er users a choice in how individual splits should be labelled, as per Example 4.5.

4.2 Distinguishing the remaining blank nodes
Algorithm 1 described in the previous section would su�ce to compute distinct hashes for each
blank node in many real-world RDF graphs. However, the algorithm does not guarantee to produce
unique hashes. For example, in the case of non-trivial automorphisms, Algorithm 1 would give sets
of blank nodes with the same hash.

Example 4.7. Referring back to graphsG and H from Example 2.9, if we inputG into Algorithm 1,
after each iteration, all blank nodes will have the same hash and the process will terminate after two
iterations since the partition does not change: there is no way that Algorithm 1 can distinguish the
two blank nodes. The exact same behaviour will be observed for H : the non-trivial automorphisms
in G and H make it impossible for Algorithm 1 to distinguish those blank nodes in the graph. �

Instead, when Algorithm 1 fails to distinguish all blank nodes, we need to revert back to using
some sort of total ordering over RDF graphs such that, for each partition of isomorphic RDF
graphs, we can de�ne the lowest such graph in each partition as a canonical version. Instead
of using the naive κ-method outlined previously, we can use a more speci�c style of ordering –
inspired by standard graph isomorphism methods like Nauty [40] – to narrow the search space in
a deterministic manner.

First we assume a set of totally ordered hashes H. Let hash be a map from blank nodes to hashes
computed by Algorithm 1; these hashes form a partition of blank nodes where blank nodes with
the same hash are in the same set of the partition.
De�nition 4.8 (Hash partition). Given a set of blank nodes B and a mapping hash from B to

hashes, let v denote an equivalence relation between blank nodes such that b1 v b2 if and only
if b1,b2 ∈ B and hash[b1] = hash[b2]. We de�ne a hash partition P of a set of blank nodes B with
respect to hash as the quotient set of B with respect to v, i.e., P := B/v. We call B′ ∈ P a part of P .
We call a part B′ trivial if |B′ | = 1; otherwise we call it non-trivial. We call a partition P �ne if it has
only trivial parts, coarse if it has only one part, and intermediate if it is neither coarse nor �ne.

In Example 4.1, we gave an example where Algorithm 1 produces a �ne hash partition, and in
Example 4.7 we discussed two cases where the hash partitions will be coarse. We now introduce a
running example where Algorithm 1 rather produces an intermediate hash partition.
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Example 4.9. On the left hand side, we have an RDF graph that is similar to a 2D-grid.8 On
the right hand side, we have the result of applying Algorithm 1 over this graph, using the same
conventions as in Example 4.1 (i.e., representing static hashes with upper-case Greek letters and
blank node hashes with lower-case Greek letters).

_:a _:b
:p

_:c
:p

_:d

:p

_:e

:q

:q
_:f

:p

:q

_:g
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:p

:p

β γ
Γ

β
Γ

γ

Γ

δ

∆

∆
γ

Γ

∆

β

Γ

γ
Γ

∆

β
Γ

Γ

The hash partition of the graph is P = {{_:a, _:c, _:g, _:i}, {_:e}, {_:b, _:d, _:f, _:h}}. The part
{_:e} is trivial. The partition is neither �ne (since it contains non-trivial parts) nor coarse (since it
contains more than one part); hence it is intermediate. �

A �ne partition corresponds to having a unique hash for each blank node. These hashes can be
used to compute iso-canonical blank node labels and ultimately an iso-canonical version of the RDF
graph. Our goal is to thus use a deterministic process – avoiding arbitrary choices and use of blank
node label strings – to compute a set of hashes that correspond to a �ne partition of blank nodes.
However, since there may be no obvious way to deterministically choose from the blank nodes in a
non-trivial partition, we must try all equal choices. Exploring di�erent alternatives will result in a
set of �ne partitions, where we can de�ne the partition that, intuitively speaking, produces the
lowest possible graph G (after mapping hashes to blank nodes in a �xed manner) as providing the
canonical labelling for the blank nodes in G.

To start with, if we have an intermediate partition, we must choose a non-trivial part to begin
distinguishing blank nodes. By de�ning an order over partitions, we can do so in a deterministic
manner that helps narrow the search space.

De�nition 4.10 (Ordered partition). Given P = {B1, . . . ,Bn}, a hash partition of B with respect
to hash, we call a sequence of sets of blank nodes P := (B1, . . . ,Bn) an ordered partition of B with
respect to hash.

To deterministically compute an initial P from an input P and hash, we use a total ordering ≤
of parts such that B′ < B′′ if |B′ | < |B′′ |, or in the case that |B′ | = |B′′ |, then B′ < B′′ if and only
if hash(b ′) < hash(b ′′) for b ′ ∈ B′ and b ′′ ∈ B′′ (recall that all elements of B′ have the same hash
and likewise for B′′, and that B′ and B′′ are disjoint). In other words, we start with the smallest
parts �rst, breaking ties by selecting the part with the lower hash. We will then start distinguishing
blank nodes in the �rst non-trivial part of P. It is worth noting that di�erent graph isomorphism
algorithms apply similar ideas but try di�erent orderings of partitions, where some orderings work
well for certain classes of graph whereas other orderings work better for other classes of graph [41].
For the moment, we explore smaller partitions �rst; however, it may be interesting to investigate
the e�ect of varying the ordering of partitions, for example to start with the largest partitions �rst.

8This is an RDF version of similar examples used in the graph isomorphism literature, for example, by McKay and
Piperno [41].
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Algorithm 3 presents the method we use to compute a �ne partition from a non-�ne partition by
recursively distinguishing blank nodes in its lowest non-trivial part, knowing the same part will
likewise be selected for all isomorphic graphs.9 The lowest such graph found in this process – by
labelling blank nodes according to the computed hashes – represents the iso-canonical version of
the RDF graph G.
Lines 2–3 The algorithm �rst calls Algorithm 1 to compute an initial set of hashes for blank nodes

(note that depending on the user’s preference, we could equivalently call Algorithm 2). The
results are used to compute an initial hash partition.

Line 4–5 If the initial hashes produce a �ne partition, we can just label the graph according to the
initial hashes and return the result as the iso-canonical version.

Line 6 If the initial hashes produce a non-�ne partition, we make the �rst call to the function that
will recursively distinguish blank nodes.

Lines 9–14 The algorithm �rst orders the partition and then selects the lowest non-trivial part.
For each blank node in this part, the algorithm �rst marks the blank node with a new hash
and then calls Algorithm 1 initialised with the intermediate hashes. Based on the results of
this call, a new partition is computed and ordered.

Lines 15–17 If the new partition is �ne, then the algorithm labels the blank nodes in G according
to the hashes, and checks to see if the resulting graph is lower than the lowest that has
been found before; if so, it is set as the lowest.

Line 18 If the new partition is not �ne, blank nodes in the lowest non-trivial part will be distin-
guished recursively.

Line 19 Once all of the alternatives have been explored, the lowest graph found is returned as the
iso-canonical version of G.

Algorithm 3 Computing an iso-canonical version of an RDF graph
1: function isoCanonicalise(G ) . G an RDF graph

2: hash← hashBnodes(G) . calls Algorithm 1

3: compute hash partition P of bnodes(G) w.r.t. hash
4: if P is �ne then

5: G⊥ ← label (G, hash) . we are done: generate blank node labels from hash

6: else G⊥ ← distinguish(G, hash, P, ∅, bnodes(G)) . start recursively distinguishing blank nodes

7: return G⊥ . canonical graph is the lowest graph found

8: function distinguish(G, hash, P, G⊥, B) . G⊥: smallest hash-labelled graph found thus far

9: P← order P by ≤ . order by smallest parts first; use hash to break ties

10: B′ ← lowest non-trivial part of P
11: for b ∈ B′ do
12: hash[b] ← hashTuple(hash[b], ‘@’) . ‘@’: an arbitrary distinguishing marker

13: hash
′ ← hashBnodes(G, hash) . abusing notation: initialise hash0 in Algorithm 1 with hash

14: compute partition P ′ of B w.r.t. hash′

15: if P ′ is �ne then

16: GC ← label (G, hash′) . generate blank node labels from hash
′

17: if G⊥ = ∅ or GC < G⊥ then G⊥ ← GC . keep track of lowest graph generated

18: else G⊥ ← distinguish(G, hash′, P ′, G⊥, B) . recursively refine next non-trivial part

19: return G⊥ . the lowest graph found on this branch of recursion

9Here we simplify the presentation of the conference version [27], which spoke about re�nements of partitions similar
in principle to Nauty [41], where the idea is that when computing a �ne partition, the order of elements from the input
partition is somehow preserved and parts are split “in situ”; the order of elements in the output partition then represents
the identi�er for the node. In our case, however, we can simply use our hashes as identi�ers, which means we have no need
for this (rather awkward) notion of in-situ partition re�nements.
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Fig. 1. Search tree for Example 4.9

The algorithm thus explores a directed labelled search-treeT = (V ,E,L), where the set of vertices
V are ordered partitions, edges E connect ordered partitions to their direct re�nements, and L
labels edges with an ordered list of blank nodes manually distinguished for that re�nement. More
speci�cally, let P ∈ V be a node in the tree and L(·, P) denote the label of its inlink (or an empty list
for the root node). Let B be the �rst non-trivial part of P (if P is �ne, it has no children). Then, for
every b ∈ B, an edge extends from P with label L(·, P) ‖ [b] (where ‖ denotes concatenation) to the
re�nement of P computed by distinguishing b and rerunning the hashing to a �xpoint. Algorithm 3
explores this re�nement tree in a depth-�rst manner looking for a leaf that corresponds to the
lowest labelled graph.

Example 4.11. In the following, to ease presentation, we will assume that blank nodes with lower
labels happen to be hashed with lower values, but this should be considered a coincidence: in
reality, hashes have nothing to do with blank node labels.

Referring back to Example 4.9, the ordered partition resulting from the initial hashing would
be P = ({_:e}, {_:a, _:c, _:g, _:i}, {_:b, _:d, _:f, _:h}) assuming β < γ . So now we distinguish blank
nodes in the �rst non-trivial part. Let us denote by P[b1, ...,bn ] the ordered partition derived by �rst dis-
tinguishingb1, thenb2, etc. The following left-hand-side graph shows the result of distinguishing _:a

and running Algorithm 1 to �xpoint: P[_:a] = ({_:a}, {_:e}, {_:i}, {_:b, _:d}, {_:c, _:g}, {_:f, _:h}).
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P[_:a] is still not a �ne partition. Hence we proceed by distinguishing one of the blank nodes in
the �rst non-trivial part {_:b, _:d} of P[_:a]. If we distinguish, e.g., _:b, then P[_:a,_:b] = ({_:a}, {_:b},
{_:c}, {_:d}, {_:e}, {_:f}, {_:g}, {_:h}, {_:i}}) would be a �ne partition, as shown to the right.

However, when we chose _:a from the part {_:a, _:c} and later when we chose _:b from the
part {_:b, _:d}, we did so arbitrarily: the hashes for the blank nodes within each part are the same
and we cannot use blank node labels to choose one since that choice would not be deterministic
with respect to di�erent isomorphic graphs. Hence, we must try all alternatives. Having computed
P[_:a,_:b], next the algorithm would try P[_:a,_:d], then P[_:c,_:b], P[_:c,_:f], and so on. For example,
below on the left we give the graph resulting from P[_:c] and on the right the graph resulting
from P[_:c,_:b] = ({_:c}, {_:b}, {_:a}, {_:f}, {_:e}, {_:d}, {_:i}, {_:h}, {_:g}}), where the parts are
ordered by hash as before; e.g., _:c in P[_:c,_:b] has the same hash as _:a in P[_:a,_:b].
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Figure 1 depicts the search tree with the ordered partition resulting at every step, where the �rst
non-trivial part for each intermediate partition – from which a blank node will be distinguished –
is shaded (we omit blank node underscores for formatting purposes; other greyed-out parts of the
tree will be discussed later). This tree is traversed by the algorithm in a depth-�rst manner and for
every leaf, the corresponding labelled graph is computed and the minimum such graph is kept.

In this particular example, every leaf of the tree will result in the same labelled graph: consider
again P[_:a,_:c] and P[_:c,_:a] above. The latter graph is the same as the former but read right-to-left
instead of left-to-right. A closer examination of Figure 1 will reveal a similar pattern for all leafs:
some read left-to-right, some right-to-left, some read along rows, some read along columns, but
once we map the hashes to blank nodes, all edges in the resulting RDF graphs, like (_:ρ, :p, _:σ ),
will appear for every leaf in this particular example. Hence the labelling given by any leaf will
serve as an iso-canonical labelling of the RDF graph (though we do not know in advance). �

In the previous example, we saw that all leaves produce the same labelled graph. It is then
interesting to consider in what cases such leaves would produce di�erent labelled graphs; in
fact, �nding such examples is non-trivial. While some such examples have been found [7], the
constructions involved are quite intricate. We expect in most such cases that only one distinct
labelled graph is found [7].

Algorithmic characteristics. We brie�y remark on two properties of the algorithm.
Theorem 4.12. For any RDF graph G, Algorithm 3 terminates.

Proof. The search tree, though exponential in the number of blank nodes in the graph, is �nite.
The search follows a standard depth-�rst recursion on the search tree. �

The algorithm is indeed exponential, but as we will see momentarily, we can implement some
optimisations to avoid exploring the entire search tree in every case (though the worst case
behaviour still remains exponential [44]).
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Theorem 4.13. Given an RDF graph G, the graph G⊥ produced by Algorithm 3 is a canonical
version of G with respect to isomorphism.

Proof. Algorithm 3 only terminates once all blank nodes in G are distinguished in the output
and blank nodes are generated from hashes in a one-to-one manner: hence the algorithm produces
a blank node bijection and thus G and G⊥ are isomorphic.

Using a similar argument as Lemma 3.6, we can see that Algorithm 3 provides a deterministic
total ordering of the isomorphic partition in which G is contained that does not consider blank
node labels. Hence G⊥ is also canonical. �

With respect to RDF graphs containing a blank node split with multiple graphs, we can perform
the split per Algorithm 2 and then run Algorithm 3 over each split. We can then compare the resulting
canonical graphs. If two or more such graphs are themselves isomorphic, we can distinguish all
blank nodes in said graphs by hashing with a �xed fresh symbol to separate them, taking the union
with the ground triples for output. Another simpler option would be to run Algorithm 3 directly
over the full RDF graph, though this may lead to a larger search tree.

4.3 Pruning the search tree using automorphisms
In Example 4.11, we saw that exploring the eight leaves of the search tree was redundant since
they all resulted in equal graphs: this was due to symmetries in the graph caused by automor-
phisms, where there are two large orbits – sets of nodes mappable by an automorphism – namely
{_:a, _:c, _:g, _:i} and {_:b, _:d, _:f, _:h}.

The Nauty algorithm – and similar labelling methods such as Traces [48] or Bliss [30] – track
automorphisms found while exploring the search tree. If two leaves produce the same labelled
graph, then the mapping between the generating ordered partitions represents an automorphism.

Example 4.14. Taking Example 4.11, consider the two ordered partitions

P[a,b] = ({_:a}, {_:b}, {_:c}, {_:d}, {_:e}, {_:f}, {_:g}, {_:h}, {_:i})

P[a,d ] = ({_:a}, {_:d}, {_:g}, {_:b}, {_:e}, {_:h}, {_:c}, {_:f}, {_:i})

Note that one partition is reading across rows and the other down columns; they both produce the
same graph. Since both partitions generate the same labelled graph, we can assert the following
bidirectional automorphism:

_:a↔ _:a, _:b↔ _:d, _:c↔ _:g, _:d↔ _:b, _:e↔ _:e, _:f↔ _:h, _:g↔ _:c, _:h↔ _:f

If we apply this blank node mapping (from left-to-right or right-to-left) to the input RDF graph, we
will end up with the same RDF graph. �

Automorphisms can thus be used to prune the search tree [41] where we employ one such
strategy. Let P[b1, ...,bn ] be a node in the tree with the children P[b1, ...,bn,b′] (which we shall denote
by P

′) and P[b1, ...,bn,b′′] (which we shall denote P
′′) derived by subsequently distinguishing b ′ and

b ′′, respectively. Assume that P′ has been visited and we are considering visiting P
′′ next. If we

can �nd an automorphism µ that is the pointwise stabiliser for all the blank nodes in {b1, . . . ,bn}
(i.e., µ(b) = b for all b ∈ {b1, . . . ,bn}) such that µ(b ′) = µ(b ′′), then we need not visit P′′, since
we can map the explored path [b1, . . . ,bn ,b ′] to the unexplored path [b1, . . . ,bn ,b ′′] by a known
automorphism, meaning that we are exploring a di�erent symmetry of the same graph and we will
�nd the same leaves under P′′ as we did for P′ [41].

Example 4.15. In Figure 1, the greyed-out sub-tree need not be explored if automorphisms are
tracked and used to prune branches (for now, we include [_:c, _:i]). After discovering that the
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[_:a, _:c], [_:a, _:g], [_:c, _:a] and [_:c, _:i] leaves form the same graph, automorphisms can be
formed, per Example 4.14, by mapping the leaf nodes (in the same column) from the following:

λ ν ξ o π ρ σ τ υ
[_:a, _:b] _:a _:b _:c _:d _:e _:f _:g _:h _:i xy[_:a, _:d] _:a _:d _:g _:b _:e _:h _:c _:f _:i

[_:c, _:b] _:c _:b _:a _:f _:e _:d _:i _:h _:g

[_:c, _:f] _:c _:f _:i _:b _:e _:h _:a _:d _:g

Assume we are now considering visiting [_:g] from the root. No nodes need be stabilised at the
root, so we need not restrict the automorphisms considered. Take the automorphism derived from,
e.g., [_:c, _:b] → [_:a, _:d], which gives _:c → _:a, _:b → _:d, _:a → _:g, _:f → _:b, and so on.
We can use this automorphism to map to [_:g] from its sibling [_:a], which has already been visited.
We can now compute the sub-tree below [_:g] by applying the same automorphism to the sub-tree
of [_:a] where we would ultimately end up with the same leaf graphs. Hence we know we can
prune [_:g]. We need not visit [_:i] along the same lines, and so we can terminate the process.

In fact, going back a little, as hinted at by Figure 1, in theory we need not have visited [_:c, _:f]
either. When considering visiting [_:c, _:f], we must look for automorphisms that root _:c, but no
such automorphism is computable from the �rst three leaves. However, if we look at a higher level,
after visiting the [_:c, _:a] leaf, we have found an automorphism that makes visiting the higher
branch at [_:c] redundant. Thus we need not continue with the [_:c] branch any further. �

However, naively materialising and indexing the entire automorphism group as it is discovered
would consume prohibitive amounts of space for certain graphs: given a graph with β blank nodes,
the number of automorphisms may approach β!. Our current implementation thus computes
automorphisms on-the-�y as needed, lazily generating and caching orbits with pointwise stabilisers
relevant for a given level of the tree. For this reason, in the previous example we would not prune
[c, f]: instead of checking pruning possibilities at every level for all steps, we only check on the
current level of the depth-�rst search. Thus we would run [c, f] without checking at the [c] level.
When the depth-�rst-search returns to the higher level, we would prune at [g] and [i].

In general, a variety of pruning and search strategies have been explored in the graph isomorphism
literature that are not considered in this current work (see, e.g., [41] for more details, explaining
how di�erent strategies may work better for di�erent types of graphs). However, such strategies
only become crucial when considering larger instances of di�cult cases which, as we will put
forward later, are unlikely to be of concern when dealing with real-world RDF data.

4.4 Hashing and globally-unique labels
Thus far we’ve discussed the general principles of canonically labelling an RDF graph to preserve
isomorphism. In this context, it is only important that the labels produced from the colouring are
locally unique. However, if we were to use such a scheme to Skolemise the blank nodes and produce
IRIs, we may wish to avoid collisions. For this reason, we may wish to compute hashes for blank
nodes that, instead of being locally unique in the graph (like for example the κ-mapping example
earlier), are rather globally unique, meaning that a given label will only appear in an isomorphic
graph. Unfortunately, for reasons we discuss presently, such a guarantee is practically speaking
impossible; however, with an appropriate choice of hash function, we can guarantee that such
clashes are extremely unlikely in practice.

Table 1 presents the estimated risk of collisions for hypothetical hashing schemes of various
lengths (represented in bits, hexadecimal strings and Base64, rounding up the number of characters
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Table 1. Approximate number of elements needed to reach the given probability of hash collision for the

given length hash (assuming perfect uniformity)

Bits Hex B64

Probability

2−1 2−4 2−16 2−64

32 8 6 77, 163 22, 820 362 < 2
64 16 11 5.1 × 1009 1.5 × 1009 2.4 × 1007 < 2

128 32 22 2.2 × 1019 6.4 × 1018 1.0 × 1017 6.1 × 1009
160 40 27 1.1 × 1024 4.2 × 1023 6.7 × 1021 4.0 × 1014
256 64 43 4.0 × 1038 1.1 × 1038 1.9 × 1036 1.1 × 1029
512 128 86 1.4 × 1077 4.0 × 1076 6.4 × 1074 3.8 × 1067

to the nearest whole number where necessary); in particular, we present the approximate number
of inputs needed to reach the given probability of collision, where 2−1 indicates a 1

2 probability, 2−4

a 1
16 probability, etc. We assume hashing schemes with perfect uniformity, i.e., we assume that the

schemes produce an even spread of hashes across di�erent inputs.
We see a trade-o�: longer hashes require longer string labels but increase tolerance to collisions.

When considering the Web, we could be talking about billions or trillions of inputs to the scheme.
As such, we can rule out hashes of 32 or 64 bits, where even relatively modest inputs cause a 50%
or greater chance of a collision. However, if we use a very long labelling scheme, the resulting
labels would be cumbersome and slow down transmission times, clog up storage, etc. For reference,
we previously found that the average length of IRIs found in a large RDF crawl was about 52
characters [29]. Even in Base64, a 512- or 256-bit hash would produce a cumbersome IRI. Hence we
propose that the sweet-spot is around 128-bit (MD5 or Murmur3_128) or 160-bits (SHA1): in this
range, the likelihood of collisions – even assuming inputs in the trillions – are negligible.10

Aside from hash lengths, when we wish to compute globally unique labels we require an additional
step, as the following example demonstrates.

Example 4.16. Consider the following two RDF graphs:

<a> <b> <c>

_:d

:p

_:e

:q

:r
_:f

:r

:p

<a> <z>

_:g

:p

_:h

:q

:r

Both graphs would have distinguished colours after one iteration of Algorithm 1 but nodes _:d

and _:g would have the same colour: _:d would not yet have “encoded” the information from <b>

and _:f. The Skolem IRIs produced for _:d and _:g would (problematically) thus be the same. �

In fact, the only way to ensure globally unique blank nodes would be if each blank node encodes
the information from the input graph itself in a lossless manner; otherwise, given that graphs
are composed of terms from in�nite sets, some other (non-isomorphic) graph must exist that
would have to contain that term. Obviously such a lossless encoding would lead to infeasibly long

10In certain applications, it may also be important to have cryptographically secure hashes, in which case stronger functions
than MD5 or SHA1 may be required to ensure, e.g., pre-image and collision resistance.
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labels. Our solution, instead, is to compute a hash of the entire canonicalised graph – which as
per Theorem 4.13, is unique to that graph modulo isomorphism – and combine that hash with the
hash of each blank node. The hash of each blank node then incorporates a hash signature unique
(modulo hash collisions) to the structure of the entire graph.

5 EQUI-CANONICAL FORM
We will now present algorithms for computing the equi-canonical form of an RDF graph, which
gives a function M such that M(G) = M(G ′) if and only if G ≡ G ′. This allows to canonicalise
graphs not in terms of structure, but in terms of semantics.

As per the discussion in Section 3, the problem we face is coNP-hard: thus we can (probably)
expect worst-cases with non-polynomial behaviour. However, we again conjecture that it is feasible
to develop an algorithm that is e�cient for the vast majority of real-world cases. Our strategy, as
mentioned before, is to compute the lean version of an RDF graph and then apply the iso-canonical
procedure discussed in the previous section. Thus, in this section, we focus on designing e�cient
algorithms for leaning RDF graphs. As likewise discussed in Section 3, we conceptualise this
problem as looking for a core endomorphism: a mapping of the blank nodes in an RDF graph to the
graph itself that has the fewest possible unique blank nodes in its codomain.

5.1 Removing initially redundant blank nodes
In the �rst step, we wish to remove blank nodes that are obviously causing non-leanness in the
graph. These are blank nodes whose edges are a subset of another term in the RDF graph and are
thus relatively trivial to identify, where all triples that mention such blank nodes are candidates for
removal from the graph. However, we must be careful if two or more blank nodes have the same
set of edges, in which case we may need to preserve one such blank node and its triples.

Example 5.1. Let us consider the following spider-like RDF graph:

_:a1 _:a2
ex:next

_:a3
ex:next

_:a4
ex:next

ex:MBachelet

ex:president ex:president

_:c
ex:spouse

ex:Chile

ex:presidency

ex:presidency ex:presidency

ex:presidency

_:b1

ex:cabinet

_:b2

ex:cabinet

_:b3

ex:cabinet

_:b4

ex:cabinet

23

ex:members ex:members

In terms of edges, the blank nodes _:b1 and _:b4 are covered by _:b2 and _:b3. Likewise _:b2 covers
_:b3 and _:b3 covers _:b2. Hence we can consider either {_:b1, _:b2, _:b4} or {_:b1, _:b3, _:b4} as a
set of redundant blank nodes; note we cannot remove both _:b2 and _:b3 since their edges are equal
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and they are not covered by the edges for another term; thus we must choose one such blank node
to keep. Assuming we consider {_:b1, _:b2, _:b4} redundant, we can remove all triples mentioning
these blank nodes from G and produce a graph closer to the core of G.

Looking at the other blank nodes, none of their edges are covered by another term; hence they
will not be removed from the graph. �

In fact, in some cases, this process can be iterative.

Example 5.2. Let us consider a similar graph as presented in Example 4.9, but where all edge
labels are the same and some edges are reversed.

_:a _:b
:p

_:c
:p

_:d

:p

_:e

:p

:p
_:f

:p

:p

_:g

:p

_:h
:p

:p

_:i
:p

:p

_:b

_:e

:p

_:d
:p

_:f
:p

_:h

:p

_:b

_:e

:p

In the leftmost graph, the edges of nodes _:a, _:c, _:g and _:i are subsets of the edges of the node
_:e; for example, _:a connects to _:b and _:d with label :p, as does _:e. Hence we can remove the
four corner blank nodes to arrive at the middle graph. But now the edges of _:b, _:d, _:f and _:h

are covered by each other (which they were not before), so we can remove all but one such blank
node, as per the rightmost graph. �

We detail the process of identifying and removing redundant blank nodes in Algorithm 4:
Lines 2–3 A copy of the input graph is made that will be re�ned in subsequent steps; the iterative

process then begins.
Lines 4–6 The algorithm loads the set of all edges for all terms. Note that ‘+’ is again a �xed

symbol used to denote an outward edge and ‘−’ the analogue for an inward edge. This
representation makes it easier to compare sets of edges.

Lines 7–8 We initialise a set X that will store all blank nodes that have already been seen as well
as all ground terms; we use this to ensure that whenever a blank node b has the same set of
edges as another term x , we will only remove b if x is a ground term or a blank node that
has already been seen. We also allocate R: an initially empty set of redundant blank nodes.

Lines 9–13 For each blank node, we check each term in the graph. If the edges of the blank node
are a proper subset of the edges for another term, we can consider the blank node redundant.
Otherwise if the set of edges of the blank node is equal to a ground term or a blank node
that was previously seen, we can also remove it. Although not shown in the algorithm, in
practice, we do not check each term for each blank node, but rather only check candidate
terms that share the most selective edge of that blank node (using an index on edges).

Lines 14–15 We make a note of the size of the current RDF graph and then remove any redundant
blank nodes identi�ed.

Lines 16–17 If any triples are removed, the above process is repeated (see Example 5 for a case
requiring two iterations); otherwise the current graph is returned.

Algorithm characteristics. We present some performance and correctness results:

Lemma 5.3. Algorithm 4 terminates inO(β) iterations (Line 17) in the worst case for β = |bnodes(G)|.
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Algorithm 4 Removing initial redundant blank nodes
1: function removeRedundantBnodes(G ) . G an RDF graph

2: G′ ← G
3: do

4: initialise edges

5: for x ∈ terms(G′) do
6: edges[x ] ← {(p, o, +) | (x, p, o) ∈ G′ } ∪ {(p, s, −) | (s, p, x ) ∈ G′ } . store edges of x
7: X ← terms(G′) ∩ IL . will store ground terms and blank nodes seen

8: R ← ∅ . will store redundant blank nodes

9: for x ∈ bnodes(G′) do
10: for x ′ ∈ terms(G′) do
11: if edges[x ] ⊂ edges[x ′] or (edges[x ] = edges[x ′] and x ′ ∈ X ) then
12: R ← R ∪ {x } (break) . x is a redundant blank node

13: X ← X ∪ {x } . add x as a seen blank node

14: n ← |G′ | . used later to see if something changed

15: G′ ← G′ \ {(s, p, o) ∈ G′ | s ∈ R or o ∈ R } . remove triples from G with a redundant blank node

16: while n , |G′ |
17: return G′

Proof. The process will iterate at Line 16 if and only if the graph is changed, which can only
happen if a blank node is removed, which can only happen at most β times. �

Assuming linear lookups and insertions to edges, as a loose worst-case analysis, the algorithm
runs in the order of O(β2τγ 2) (where β := |bnodes(G)|, τ := |terms(G)| and γ := |G |). However, it is
important to note that this bound may not be tight and this analysis excludes the indexing and
selectivity optimisations we apply.

Lemma 5.4. LetG be an RDF graph andG ′ be the result of applying Algorithm 4 toG . Then it holds
that G ′ ≡ G.

Proof. We need to prove that G ′ |= G and G |= G ′. Since G ′ ⊆ G , we have that G |= G ′. In order
to prove G ′ |= G, following Theorem 3.8, we can show that there exists a blank node mapping µ ′
such that µ ′(G) ⊆ G ′. We will do so for the �rst iteration of the algorithm, which is su�cient for
an induction argument.

Let µ map each x that passes the condition on Line 11 to the term x ′ that satis�es the condition,11

and let µ be the identity for all other terms in G. Since the edges of x are a subset of the edges of
µ(x), we know that if (x ,p,o) ∈ G , then (µ(x),p,o) ∈ G , and that if (s,p,y) ∈ G , then (s,p, µ(y)) ∈ G ,
and hence if (x ,p,y) ∈ G , then (µ(x),p, µ(y)) ∈ G . Hence we have that µ(G) ⊆ G , and thus that µ is
an endomorphism.

As a slight complication, note that with µ, x may map to x ′ such that x ′ maps to x ′′, where in G ′

we will remove x and x ′. Thus we need to apply µ to a �xpoint to “skip” x ′ and map both x and x ′′

directly to x ′′ (assuming of course x ′′ maps to itself). Letting µ1 := µ and µi+1 = µ ◦ µi , further let
µ ′ be de�ned as the �xpoint µn for the least value of n such that µn = µn+1. Importantly, µ does not
contain cycles other than identity loops – µ(x) = x ′ if and only if the edges of x are a subset of
x ′, or the set of edges of x ′ are equal to x and either x ′ is a ground term or all other blank nodes
with the same set of edges map to x ′, where proper set containment cannot contain cycles and
only one blank node can be in the domain of µ with an equal set of edges – and hence the �xpoint

11As a minor detail, we must assume that X preserves insertion order to make sure a consistent blank node is picked from
every equivalence class of blank nodes with the same set of edges.
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is well-de�ned. Since µ ′ is the composition of endomorphisms, from Remark 5 it follow that µ ′ is
itself an endomorphism: µ ′ ∈ End(G).

Finally, we need to show that µ ′(G) = G ′. Since µ ′ is, by de�nition, the closure of the subset
relation on edges, we know that µ ′(x) , x if and only if there exists a term x ′ such that x ′ has a
proper superset of the edges of x or x ′ has the same set of edges but is chosen �rst; this is how
Algorithm 4 computes the set of redundant blank nodes R (the base mapping µ of µ ′ was de�ned in
terms of the same condition on Line 11 used to select R). Since µ ′ is an endomorphism, and since µ ′
is a �xpoint, removing triples mentioning blank nodes in R gives the same result as applying µ ′(G).

With µ ′(G) = G ′ for the �rst iteration, and applying the induction hypothesis to remaining
iterations in consideration of Lemma 3.28, we complete the proof. �

We can show that if a blank node is not connected to another blank node, then Algorithm 4 will
either remove the blank node, or it can be considered “�xed” in the leaning process: there exists a
core endomorphism that will map that blank node to itself.

Lemma 5.5. Let G be an RDF graph and let b be a blank node in G such that there does not exist
a triple (b,p,b ′) ∈ G nor a triple (b ′,p,b) ∈ G for any b ′ ∈ B, p ∈ I. LetG ′ be the result of applying
Algorithm 4 toG . It holds that eitherb < bnodes(G ′), or there exists a core endomorphism µ ∈ CEnd(G)
such that µ(b) = b.

Proof. We know from Lemma 5.4 that there exists an endomorphism µ ′ ∈ End(G) such that
µ ′(G) = G ′, and such that µ ′ is a �xpoint, meaning that if x ∈ codom(µ ′), then µ ′(x) = x . Since µ ′ ∈
End(G), per Lemma 3.28, for any mapping µ ′′ ∈ CEnd(µ ′(G)), µ ′′(µ ′(G)) gives a core of G; in other
words, letting µ ′′+ denote the mapping µ ′′ extended by the identity for terms in terms(G) \ dom(µ ′′),
and letting µ be the mapping µ ′′+ ◦ µ ′, it holds that µ ∈ CEnd(G).

Now we left to show that for an unconnected blank node b, either µ ′(b) , b, or µ(b) = b; in other
words, we show that for any unconnected blank node b in G ′, b can only be mapped to itself by an
endomorphism over G ′; i.e., if µ ′′ ∈ CEnd(G ′), then µ ′′(b) = b.

First of all, such a blank node by de�nition will only have ground edges.
If such a blank node is not removed by Algorithm 4 – i.e., if µ ′(b) = b – then there can be no RDF

term in G ′ with a superset of the (ground) edges of b (nor an equal set). Hence any mapping from b
to another term would create a triple not in G, contradicting the de�nition of an endomorphism.
Hence µ ′′ must map such a blank node b to itself, and hence if µ ′(b) = b, then µ(b) = b. The
existence of the core endomorphism µ then satis�es the lemma. �

5.2 Identifying candidate mappings for blank nodes
In a practical sense, Lemma 5.5 tells us that after applying Algorithm 4, all unconnected blank
nodes fromG will be either removed or “�xed” (meaning they cannot be redundant), where we thus
now need to focus only on connected blank nodes. To begin, we can use the ground information in
G to identify which terms each remaining blank node could be mapped to; we call such terms the
candidates for that blank node, with the idea that an endomorphism can only map a blank node to
one of its candidates. Each blank node can be mapped to at least itself. Blank nodes that can only
be mapped to themselves are �xed, and �xed blank nodes act as ground terms; hence, when we �x
a blank node, we can iterate the process to �x further blank nodes.

Example 5.6. The following is the result of Algorithm 4 applied to the graph of Example 5.1
where some redundant blank nodes have been removed:
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_:a1 _:a2
ex:next

_:a3
ex:next

_:a4
ex:next

ex:MBachelet

ex:president ex:president

_:c
ex:spouse

ex:Chile

ex:presidency

ex:presidency ex:presidency

ex:presidency

_:b3

ex:cabinet

23

ex:members

b cands[b]

_:a1 _:a1, _:a2, _:a3
_:a2 _:a2

_:a3 _:a2, _:a3
_:a4 _:a2, _:a4
_:b3 _:b3

_:c _:c

To the right, we provide the initial candidates for all blank nodes. We know as a result of
Lemma 5.5 that the remaining unconnected blank nodes _:b3 and _:c will map to themselves in any
further steps. We are thus more concerned with the connected blank nodes _:a1, _:a2, _:a3, _:a4.

If we start with blank node _:a1, considering its local ground information, we see that it is
covered by _:a2 and _:a3 but not _:a4, which has no outgoing ex:next edge. Next, _:a2 is �xed
because no node has both incoming and outgoing ex:next edges and an outgoing ex:president edge
to ex:MBachelet: hence _:a2 can only map to itself. By similar arguments, we see that _:a3 can only
map to itself or _:a2 due to having both incoming and outgoing ex:next edges, and that _:a4 can
only map to _:a2 or _:a4 due to having an outgoing ex:president edge to ex:MBachelet.

However, when we �x _:a2, we know it can only map to itself and that it acts like a ground term
in the sense that for any endomorphism, µ(_:a2) = _:a2. Hence _:a1 can now be �xed since it has a
unique outward ex:next edge to _:a2, and likewise, iteratively, _:a3 can be �xed for its incoming
ex:next edge from _:a2, and _:a4 can be �xed due to its unique incoming ex:next edge from _:a3.

Hence, in this particular case, we have managed to �x all blank nodes, and the graph is thus lean,
and we need to go no further. In other cases we will look at later, however, some blank nodes may
maintain multiple candidates. �

In Algorithm 5, we outline a procedure for �nding candidates for blank nodes based on the
ground information directly surrounding terms in the graph, and likewise for �nding blank nodes
that are �xed (mapped to themselves by any endomorphism).

Lines 1–3 We �rst call Algorithm 4 to remove redundant blank nodes. Any unconnected blank
nodes in the output can only map to themselves: they are �xed.

Lines 4–7 This initialises the sets of candidate terms for individual blank nodes. Note that in
practice, we re-use indexes from Algorithm 4 to speed up the process if b is not �xed, where,
e.g., we only initialise cands[b] with terms that have the most selective edge found for b;
we do not show these optimisations for brevity.

Line 8 If all blank nodes are �xed, we can return since the graph is lean.
Lines 9–19 For each blank node b that is not yet �xed, check for each candidate of b that it has the

incoming and outgoing edges to cover b; if not, remove the candidate. Again, in practice,
we re-use indexes from Algorithm 4 to accelerate these checks.
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Lines 20–21 Update the set of �xed blank nodes as those blank nodes whose only valid candidate
is the blank node itself.

Lines 22 Apply the previous two steps iteratively until no new �xed blank nodes are found or all
blank nodes have been �xed, at which point return the graph, the set of �xed blank nodes,
and the candidates found.

Algorithm 5 Finding candidate mappings for blank nodes
1: function findCandidates(G ) . G an RDF graph

2: G′ ← removeRedundantBnodes(G) . call Algorithm 4

3: F ← {b ∈ bnodes(G′) | @(p, b′) ∈ I × B : (b, p, b′) ∈ G′ or (b′, p, b) ∈ G′ } . set of fixed blank nodes

4: initialise cands . a map from blank nodes to sets of terms

5: for b ∈ bnodes(G′) do
6: if b ∈ F then cands[b] ← {b } . can only map to itself

7: else cands[b] ← terms(G′) . initially any blank node can map to any term

8: if F = bnodes(G′) then return (G′, F , cands) . G′ is lean

9: do

10: B ← bnodes(G′) \ F
11: for b ∈ B do

12: for x ∈ cands[b] such that x , b do

13: for (b, p, o) ∈ G′ do . ∃p, ∃o
14: if (o ∈ ILF and (x, p, o) < G′) or (o ∈ B and @o′ : (x, p, o′) ∈ G′) then
15: cands[b] ← cands[b] \ {x } (break)
16: if x ∈ cands[b] then
17: for (s, p, b) ∈ G′ do . ∃s, ∃p
18: if (s ∈ IF and (s, p, x ) < G′) or (s ∈ B and @s′ : (s′, p, x ) ∈ G′) then
19: cands[b] ← cands[b] \ {x } (break)
20: F ′ ← F . used to see if anything has changed

21: F ← F ∪ {b ∈ B | cands[b] = {b }} . fixed blank nodes are those that can only map to themselves

22: while F ′ , F and F , bnodes(G′)
23: return (G′, F , cands)

If all the blank nodes are �xed (i.e., if Algorithm 5 terminates with F = bnodes(G)), then the
graph is lean and we are done. Otherwise, we must continue to further steps.

Algorithm characteristics. We now brie�y discuss some properties of the algorithm.

Lemma 5.7. Algorithm 5 terminates in Θ(β) iterations (starting Line 9) for G in the worst case,
where β := |bnodes(G)|.

Proof. In each iteration, a new blank node must be �xed. Once �xed, a blank node cannot be
un�xed. Hence the number of iterations is bounded by the number of blank nodes. Again, the upper
bound is tight, for example, due to the path graph of the form y

p
−→ x1

p
−→ x2 . . .

p
−→ xn (xi ∈ B for

1 ≤ i ≤ n, y ∈ IL), where n iterations are needed to terminate, starting by �xing x1 and iterating
towards the right one step at a time. �

Each iteration has quadratic behaviour with respect to the number of triples in G in the worst
case. Hence the overall algorithm (excluding the call to Algorithm 4 on Line 2) hasO(β2τγ 2) runtime
in the worst case, similar to Algorithm 4. In fact, the processes have some similarities in that we are
comparing the edges of blank nodes with other terms, except that in the case of Algorithm 5, we
consider blank nodes on edges as variables, whereas in the case of Algorithm 4, we do not; likewise
in Algorithm 4 we are looking for blank nodes to remove, whereas in Algorithm 5 we are looking
for blank nodes that are �xed or otherwise looking at what terms they could be mapped to. Hence
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although the processes are similar, we could not �nd a way to neatly combine the two processes,
although it was possible to share some indexing steps.

Next we show that cands does indeed represent a set of candidate mappings for the endomor-
phisms of G.

Lemma 5.8. Let cands be the result of applying Algorithm 5 over an RDF graph G. Then for any
b ∈ bnodes(b) and any µ ∈ End(G), it holds that µ(b) ∈ cands[b].

Proof. For the purposes of proof by contradiction, let us assume that there exists a b ∈
bnodes(G), an x ∈ terms(G), and a µ ∈ End(G) such that µ(b) = x and x < cands[b]. If x < cands[b],
at least one of the following must hold per Algorithm 5:

• there is a triple (b,p,y) ∈ G, for some p ∈ I, y ∈ IL, such that (x ,p,y) is not in G;
• there is a triple (y,p,b) ∈ G, for some p ∈ I, y ∈ I, such that (y,p,x) is not in G;
• there is a triple (b,p,y) ∈ G, for some p ∈ I, y ∈ B, such that (x ,p, z) is not in G for any
z ∈ terms(G);
• there is a triple (y,p,b) ∈ G, for some p ∈ I, y ∈ B, such that (z,p,x) is not in G for any
z ∈ terms(G).

Let t denote a triple of the form (b,p,y) or (y,p,b) that does not have a corresponding triple for
x as outlined above. Now, when we apply µ({t}), rewriting b to x , we create a new triple not in
G; hence µ is not a valid endomorphism for G – we arrive at a contradiction per the de�nition of
End(G) – and thus the lemma holds. �

Algorithm 5 thus helps �nd a selective set of candidates to which blank nodes can be mapped
by endomorphisms. In fact, in many real world cases, we would except this algorithm to �x all
blank nodes, as per Example 5.6, in which case we are e�ectively �nished. However, this will not
be the case for all graphs, where we may have to begin a potentially exponential search process to
identify valid endomorphisms.

5.3 Finding a core endomorphism for connected blank nodes
In the previous section, we used the ground information in the direct neighbourhood of a blank
node to �x certain blank nodes and identify an initial list of candidates that blank nodes could map
to. In some cases, all blank nodes will be �xed and hence the only valid endomorphism – more
speci�cally, the only core endomorphism – will be the identity map on blank nodes; in such cases,
the graph is lean. However, in other cases, some blank nodes will still have multiple candidates,
and those candidates may not lead to a valid homomorphism since we have yet to consider the
connectivity of blank nodes. We thus now look at methods to compute core endomorphisms taking
into consideration the connectivity of blank nodes.

Example 5.9. On the left, we provide a simpli�ed sub-graph of the RDF graph from Example 5.6.12

On the right, we provide the candidates produced by Algorithm 5. We see that no blank nodes are
�xed but that some blank nodes are deemed not to be candidates of other blank nodes.

12We emphasise that for the purposes of illustration, this is a di�erent sub-graph: it is not the output for the original graph
of a previous algorithm.
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_:a1 _:a2
ex:next

_:a3
ex:next

_:a4
ex:next

ex:Chile

ex:presidency

ex:presidency ex:presidency

ex:presidency

b cands[b]

_:a1 _:a1, _:a2, _:a3
_:a2 _:a2, _:a3
_:a3 _:a2, _:a3
_:a4 _:a2, _:a3, _:a4

However, if we consider the endomorphisms of this graph – in other words if we consider this
graph as a query with blank nodes as variables applied against itself – we see that each blank node
can only map to itself. To illustrate this, let’s say, for example, we tried to map _:a2 to _:a3 and
other blank nodes to themselves; in this case, we create a loop that did not exist in the original
graph from _:a3 to itself, and hence we do not have a valid endomorphism. �

The previous example turns out to be lean; let’s look at an example that is not and give an idea
of what we wish to achieve in the next stage of the process.

Example 5.10. We return to the graph from Example 4.9 with the original edges.

_:a _:b
:p

_:c
:p

_:d

:p

_:e

:q

:q
_:f

:p

:q

_:g

:p

_:h
:p

:q

_:i
:p

:p

b cands[b]

_:a _:a, _:c, _:g, _:i
_:b _:b, _:d, _:f, _:h
_:c _:a, _:c, _:g, _:i
_:d _:b, _:d, _:f, _:h
_:e _:e

_:f _:b, _:d, _:f, _:h
_:g _:a, _:c, _:g, _:i
_:h _:b, _:d, _:f, _:h
_:i _:a, _:c, _:g, _:i

With this con�guration of edges – unlike the similar graph of Example 5.2 – no blank nodes in this
case are trivially redundant. From the candidates on the right, we see that one blank node (_:e) is
�xed while the rest are not.

If we consider the endomorphisms of this graph, we could start by mapping _:g to _:a, _:h to _:b,
and _:i to _:c, e�ectively folding the bottom half of the graph into the top half while preserving
edges as shown to the right in the following; the result is a proper endomorphism as shown to the
left in the following.

_:a _:b _:c _:d _:e _:f _:g _:h _:i

_:a _:b _:c _:d _:e _:f _:a _:b _:c

_:a _:b
:p

_:c
:p

_:d

:p

_:e

:q

:q
_:f

:p

:q

We can subsequently map _:c to _:a and _:f to _:d, e�ectively folding the right side of the
resulting graph into the left half while preserving edges; again we have a proper endomorphism.
The composition of the two endomorphisms is itself an endomorphism, as shown on the left below;
the result of applying this endomorphism to the original graph is illustrated on the right below.
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_:a _:b _:c _:d _:e _:f _:g _:h _:i

_:a _:b _:a _:d _:e _:d _:a _:b _:a

_:a _:b
:p

_:d

:p

_:e

:q

:q

Finally we can, e.g., map _:b into _:d, giving the core endomorphism on the left and the resulting
lean graph on the right below.

_:a _:b _:c _:d _:e _:f _:g _:h _:i

_:a _:b _:a _:b _:e _:b _:a _:b _:a

_:a _:b
:p

_:e
:q

Note that in practice, it may not be necessary to apply this process step-by-step; rather, it may
be possible to �nd a �nal core endomorphism directly. �

We consider two strategies for computing core endomorphisms from a graph with connected
(non-�xed) blank nodes.

The �rst strategy, which we call breadth-�rst (BFS), computes all endomorphism (aka. solutions)
for the connected blank nodes and then simply selects the endomorphism with the fewest unique
blank nodes from its domain in its codomain.13 The implementation applies a standard nested-loop
join strategy that is often used for enumerating answers to conjunctive queries in databases. Starting
with the most selective triple (pattern) in the query, evaluation continues in a “left-deep” fashion;
all results for the �rst pattern are returned and then joined with the next pattern, and so forth,
until all patterns are exhausted and all solutions are generated from which a core endomorphism
can be chosen and returned.

One may observe that the �rst strategy enumerates all solutions but that, in reality, we are only
searching for one. Hence we propose a more customised second strategy that we call depth-�rst
(DFS), which looks at one solution at a time. The strategy again starts with the most selective triple
(pattern) in the query, but this time the intermediate solutions are ranked and the �rst solution is
sent immediately to the second pattern, which extends the solution and again ranks the results and
passes the best to the third pattern, and so forth. The ranking of intermediate solutions is designed
as a heuristic to try �nd a solution with as few blank nodes as possible as quickly as possible: it
�rst chooses intermediate solutions with the fewest unique blank nodes (from the domain) in the
codomain, and if tied, chooses those that map the fewest blank nodes to themselves. When the last
pattern is reached, if any proper endomorphism is found (i.e., one with fewer unique blank nodes
in the codomain than the domain), the recursive search immediately returns that endomorphism;
otherwise, during the search, if a branch hits a “dead-end” where the intermediate solution cannot
be extended any further, the recursion returns to the higher level which continues with the next
best pattern selected by the heuristic. If no proper endomorphism is found during the search, the
graph is lean and we can return whatever endomorphism (i.e., automorphism) we did �nd. However,
if a proper endomorphism is found, we have no guarantee it is a core endomorphism; hence we
rewrite the graph to remove the redundant blank nodes found thus far, and restart the process with
the rewritten graph, until such a point that we have found a graph with no proper endomorphism.

13There is a corner-case to be careful of here: blank nodes that are not connected act as ground terms to which blank nodes
in the “query” can be matched “for free”; hence it is not su�cient to simply say the mapping with the fewest blank nodes in
the codomain since blank nodes that have been �xed and are not in the domain of the query should not count as a blank
node in the codomain.
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The bene�t of the DFS strategy is that, unlike the BFS strategy, we do not need to keep potentially
exponentially many (intermediate) solutions in memory; rather we just need to track the interme-
diate solutions for one branch of the search space. Likewise, if there is a core endomorphism, the
DFS strategy with its solution-ordering heuristics is guided towards �nding it, potentially avoiding
having to explore exponentially many solutions. Also, the DFS strategy allows for simplifying the
graph iteratively, which may help to reduce the search space quickly. On the other hand, if there
are no proper endomorphisms, in both strategies all solutions need to be explored; while DFS still
bene�ts in terms of space versus BFS, it has a similar workload.

In Algorithm 6, we go through the two strategies for �nding a core endomorphism over the con-
nected blank nodes in an RDF graph given the candidates and rewritten graph provided previously
by Algorithm 5.
Lines 1–8 This high-level function will return a core forG . It �rst calls Algorithm 5, which removes

redundant blank nodes, tries to �x others, and �nds the candidates for remaining blank
nodes. If all blank nodes are �xed, or if the resulting graph does not contain any connected
blank nodes, then this graph can be returned directly. Otherwise if the graph returned by
Algorithm 5 contains any connected blank nodes, �rst a method is called to �nd a core
endomorphism from the graph, and second the graph is rewritten per the endomorphism
and returned; here σ is a con�guration variable that selects either the BFS or DFS strategy.

Lines 10–12 This starts the process of �nding a core endomorphism over the connected blank
nodes. We extract the triples from G where both the subject and object are blank nodes –
resulting in what we call the query – and then reorder the query using a selectivity heuristic
based on a product of the number of candidates that the subject and object blank nodes
have and the number of triples in G with the same predicate, placing more selective triples
in Q �rst; we also add a constraint to ensure that blank nodes are “grouped” in the query
to avoid cross-products where possible. In fact, Q need not necessarily be connected and
may contain multiple blank node splits; this is a deliberate choice since it simpli�es the
process of identifying proper and core endomorphisms, particularly in the DFS strategy.

Lines 13–14 Here we call either the BFS or DFS strategy (indicated by σ ) and return the core
endomorphism that it returns.

Lines 15–16 In the BFS method, we pass a mapping to the recursive search function containing
the identity map for all �xed blank nodes; this is necessary to ensure that the count of
blank nodes in the codomain of the mapping is accurate for selecting a core endomorphism,
prioritising mappings to a blank node that is already �xed.

Lines 17–24 Here we have the recursive BFS method, where the next pattern is popped from
Q and used to extend the intermediate solutions found thus far (using the function join,
which we describe later). If there are more patterns left, the method is called recursively for
the subsequent patterns with the extended solutions. When no patterns are left, all solu-
tions/endomorphisms have been computed and a core endomorphism is selected arbitrarily
and returned. Note that M ′ can never be empty since it must contain at least the identity
mapping of blank nodes; hence we never need to check for empty solutions.

Lines 25–31 This is the high-level recursion for the DFS strategy. The method calls the recursive
search process with an initial mapping that is the identity for �xed blank nodes, again needed
to ensure that the count of blank nodes in the codomain is accurate when choosing solutions.
The recursive search function will return an endomorphism. If a proper endomorphism
exists, the method will return a proper endomorphism, where the original graph G will be
rewritten and the algorithm – including extraction and reordering of the query – will be
called again. This continues until no proper endomorphism is found, at which point the
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endomorphisms found are recursively merged and returned. The result of this process is
then a �nal core endomorphism.

Lines 32–43 This is the lower-level recursive search for the DFS strategy that will return a proper
homomorphism for the graph if and only if one exists; otherwise it will return an automor-
phism. Unlike BFS, the DFS search only passes one solution recursively. The process again
pops the �rst pattern from Q and extends the current solution µ with the results for that
pattern. The extended solutions are ordered according to the heuristic. If there are further
patterns to evaluate, the search will try each solution in order of the heuristic and call
the function for the next pattern; if any proper homomorphism is found, it is immediately
returned to allow the graph to be rewritten before proceeding.

Lines 44–48 This auxiliary function extends the given results M by the results for the next pattern
q with respect to G; it also checks the candidates to ensure that the produced results are
compatible with the ground information processed previously in Algorithm 5. Although
not shown in the function for reasons of brevity, we follow a standard nested-loop strategy
for evaluating the joins and use in-memory maps to perform e�cient lookups.

We now give an example that provides an intuition of how both strategies work.

Example 5.11. Let us brie�y reconsider Example 5.10. Our query will look like the following
when ordered by selectivity (based on the higher selectivity of :q and _:e):14

Q =
(
(_:b, :q, _:e), (_:d, :q, _:e), . . . , (_:i, :p, _:f), (_:i, :p, _:h)

)
We will �rst generate all intermediate solutions M1 for (_:b, :q, _:e), such that:

M1 =
{
{(_:b, _:b), (_:e, _:e)}, {(_:b, _:d), (_:e, _:e)}, {(_:b, _:f), (_:e, _:e)}, {(_:b, _:h), (_:e, _:e)}

}
In the BFS strategy, we will extend these mappings by the compatible solutions for the next pattern
(_:d, :q, _:e), arriving at M2 with sixteen results as follows:

M2 =
{
{(_:b, _:b), (_:d, _:b), (_:e, _:e)}, . . . , {(_:b, _:h), (_:d, _:h), (_:e, _:e)}

}
This process continues through all patterns until all solutions are computed. Any solution with the
fewest number of domain blank nodes appearing in the codomain is given as a core solution (see
Example 5.10 for one such solution).

In the DFS strategy, we use heuristics to order solutions in M1 such that:

M1 =
(
{(_:b, _:d), (_:e, _:e)}, {(_:b, _:f), (_:e, _:e)}, {(_:b, _:h), (_:e, _:e)}, {(_:b, _:b), (_:e, _:e)}

)
We order by blank nodes in the codomain, but since this is equal for all initial solutions, we
then order by fewest self mappings and then by arbitrary order. We take the �rst such solution,
µ1,1 = {(_:b, _:d),(_:e, _:e)}, and send it to the second pattern, where we then generate:

M2 =
{
{(_:b, _:d), (_:d, _:b), (_:e, _:e)}, {(_:b, _:d), (_:d, _:d), (_:e, _:e)},

{(_:b, _:d), (_:d, _:f), (_:e, _:e)}, {(_:b, _:d), (_:d, _:h), (_:e, _:e)}
}

After ordering M2, we will get

M2 =
(
{(_:b, _:d), (_:d, _:d), (_:e, _:e)}, {(_:b, _:d), (_:d, _:b), (_:e, _:e)},
{(_:b, _:d), (_:d, _:f), (_:e, _:e)}, {(_:b, _:d), (_:d, _:h), (_:e, _:e)}

)
14We allow a small fudge here: _:e would be �xed and thus not part of the query, but rather only part of the data; however,
for the purposes of illustration, we ignore this for the moment.
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The �rst solution µ2,1 = {(_:b, _:d), (_:d, _:d), (_:e, _:e)} maps to the fewest unique blank nodes.
This solution is passed to the next pattern, and the process continues. After the �rst four patterns,
_:b, _:d, _:f and _:g will all be mapped to _:d, and _:e will be mapped to itself. The �fth pattern will
be (_:a, :p, _:b), where since _:b already maps to _:d, _:a will map to itself or to _:g; the heuristic
ordering will prefer _:g since it is not a self-mapping and neither _:a nor _:g appear in the codomain
thus far. The heuristic will then guide the three remaining corners to map to _:g. This will yield
the proper endomorphism on the left and the resulting graph on the right.

_:a _:b _:c _:d _:e _:f _:g _:h _:i

_:g _:d _:g _:d _:e _:d _:g _:d _:g

_:g _:d
:p

_:e
:q

We now have a core endomorphism (the resulting graph is isomorphic with that from Exam-
ple 5.10). However, we have no guarantee that our heuristic will �nd a core endomorphism �rst time;
hence we must re-apply the process again over the resulting graph until we �nd that there are no
proper endomorphisms, con�rming that the graph is lean and the solution is a core endomorphism.

In the above example, the DFS heuristic neatly �nds its way to a core endomorphism; it is worth
noting that in other cases, backtracking may be necessary, and indeed when the input graph is
already lean, all solutions will still need to be checked through to con�rm leanness. �

As per this example, the DFS strategy pauses the search when a proper endomorphism is found
to rewrite the graph before continuing, which requires the additional higher-level recursion in
evaluateDFS; as per the previous example, this strategy works well when the rewriting greatly
simpli�es the graph, whereas the other option would be to continue exhaustively through all
solutions without rewriting (similar, in principle, to BFS). Our current DFS heuristic is greedy – it
tries to minimise the number of blank nodes at each step – but it will not always lead to a global
minimum of blank nodes; for example, it is not di�cult to construct counterexamples where at the
start, the heuristic gets unlucky with its �rst intermediate solution, which leads it to a non-core
proper endomorphism. An interesting question then is if it would be possible to design a similar
heuristic that guarantees to �nd a core endomorphism as the �rst solution, which would then
obviate the need for the additional recursion in evaluateDFS; we leave this as an open question.
In any case, the maximum number of rewritings is bounded by the number of blank nodes in Q ,
where we would expect the DFS strategy to terminate after zero or one rewritings in most cases.

Algorithm characteristics. We now brie�y discuss some properties of the algorithm.

Lemma 5.12. For any RDF graphG, Algorithm 6 terminates under either the BFS or DFS strategies.

Proof. With respect to BFS, we are using a standard left-deep join process to enumerate the
answers to a conjunctive query: we evaluate the query one pattern at a time until all patterns have
been processed, at which point the algorithm terminates.

With respect to DFS, �rst looking at searchDFS, we progress one solution at a time for each
pattern. As aforementioned, we know that there exists at least one such solution: the identity map
for blank nodes in Q . Hence we will reach the point where Q

′ is empty and will return at least that
solution. With respect to evaluateDFS, we will only recurse if the homomorphism found is proper,
meaning that it will simplify the graph by removing the triples involving at least one blank node.
Hence the number of recursive calls is bounded by the number of blank nodes in G. �

Indeed, both algorithms have exponential runtime behaviour. However, our hypothesis is that
for most real-world graphs, these algorithms will have acceptable runtimes. We will discuss perfor-
mance issues further in the evaluation section.
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Algorithm 6 Computing a core of the RDF graph
1: function leanσ (G ) . returns a core of the RDF graph G ; σ denotes strategy: bfs or dfs

2: if bnodes(G) is empty then return G
3: (G′, F , cands) ← findCandidates(G) . call Algorithm 5

4: if F = bnodes(G′) then return G′ . if all blank nodes are fixed, G is lean

5: if there exists (s, p, o) ∈ G′ such that s, o ∈ B then

6: µ ← {(b, b) | b ∈ F }
7: µ ← findCoreEndomorphismσ (G′, cands, µ) . call Algorithm 6

8: return µ(G′)
9: return G′

10: function findCoreEndomorphismσ (G ,cands,µ ) . G an RDF graph, candsfrom findCandidates(G)

11: Q ← {(s, p, o) ∈ G | s, o ∈ B} . all triples with connected blank nodes

12: Q← orderBySelect ivity(Q, G, cands) . order Q into a list of triples with most selective first

13: µ ← evaluateσ (G, cands, Q, µ) . returns a core solution; σ denotes a strategy (BFS or DFS)

14: return µ
15: function evaluateBFS(G ,cands,Q,µ ) . generates all solutions; chooses core endomorphism

16: return searchBFS(G ,cands,Q,{µ })
17: function searchBFS(G ,cands,Q,M ) . M is a set of blank node mappings (i.e., intermediate solutions)

18: q ← Qmin . first element of query

19: M ′ ← join(q, G, cands, M ) . extend M by results for q w.r.t G (and cands)

20: Q
′ ← Q \ q

21: if Q
′ is not empty then

22: searchBFS(G ,cands,Q′,M ′) . recurse in a breadth-first manner for M ′

23: else

24: return some µ ∈ M ′ with fewest blank nodes from dom(µ) in codom(µ) . µ is a core endo.

25: function evaluateDFS(G ,cands,Q,µ ) . will maintain only one solution at a time chosen from heuristics

26: µ ← searchDFS(G′, cands, Q, µ)
27: while |dom(µ) | , |codom(µ) | do . while we have some non-leanness

28: µ′′ ← {(b, b) | cands[b] = {b }} . compute fixed blank nodes again

29: µ′ ← findCoreEndomophismDFS(µ(G), cands, µ′′) . rewrite graph and recurse

30: µ ← µ′ ∪ {(b, x ) ∈ µ | b < dom(µ′)} . merge the two mappings (e�ectively µ′(µ(·)))
31: return µ
32: function searchDFS(G ,cands,Q,µ ) . µ an intermediate solution chosen from heuristics

33: q ← Qmin . first element of query

34: M ← join(q, G, cands, {µ }) . extend µ by results for q w.r.t G (and cands)

35: M← orderByCodom(M ) . order M by fewest blank nodes in codomain, then fewest self mappings

36: Q
′ ← Q \ q

37: if Q
′ is not empty then

38: while M is not empty do . can never be empty to start with; must always have identity solution

39: µ′ ← searchDFS(G, cands, Q
′, Mmin) . recurse in a depth-first manner for µ′

40: if dom(µ′) , codom(µ′) then . if µ′ is a proper endomorphism

41: return µ′ . . . . return it to rewrite graph with

42: M← M \Mmin . . . . otherwise move to next solution

43: return Mmin . will be proper homomorphism if and only if one exists

44: function join(q,G ,cands,M ) . evaluate the given pa�ern joining with solutions in M
45: Mq ← {µ | µ(q) ∈ G } . get initial solutions for q in G
46: M ′q ← {µ ∈ Mq | for all b ∈ bnodes({q }), µ(b) ∈ cands[b]} . check cands to ensure compatibility

47: M ′ ← M ′q ./ M . ‘./’ denotes standard (inner) join operator

48: return M ′
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We now discuss the correctness of the algorithm.

Theorem 5.13. The result of applying Algorithm 6 to G is a core of G.

Proof. Algorithms 4 and 5 resolve all unconnected blank nodes by either �xing or removing
them, producing G ′, where we already proved that there exists an endomorphism µ ∈ End(G) such
that µ(G) = G ′. The identity mapping for �xed blank nodes is used as the initial mapping that
seeds a core endomorphism, per Lemma 5.5. Thereafter, both the BFS and DFS strategies extend
this initial solution, including the �xed blank nodes in the count for selecting a core endomorphism
for G ′, not just considering the blank nodes in Q .

For the BFS strategy, the algorithm computes all solutions in a straightforward brute-force
(nested-loop) manner and chooses the core endomorphism as the solution with the fewest blank
nodes; hence the mapping µ returned by evaluateBFS is a core endomorphism for G ′ and µ(G ′) is
thus a core of G following Lemma 3.28.

For DFS, the mapping µ returned by the recursive search function searchDFS will be a proper
endomorphism of G if one exists; otherwise all solutions will be checked and an automorphism
returned. If a proper endomorphism is found, the graph will be rewritten and the process recursively
applied. This will terminate per Lemma 5.12 and will produce a core endomorphism of G ′ per
Lemma 3.28. Again, we thus have that µ(G ′) is a core of G per the latter lemma. �

5.4 Pruning the depth-first search using automorphisms
Inspired by Section 4.3, we can also consider applying a pruning optimisation to the DFS strategy
based on automorphisms. Every complete solution found in the DFS strategy that maps blank nodes
to blank nodes in a one-to-one manner is an automorphism—in other words, every solution that is
not a proper endomorphism (triggering a rewriting) is an automorphism. Instead of giving the full
algorithm, we instead illustrate this process with an example.

Example 5.14. On the left, we look at an example of a 4-clique of blank nodes, with all edges
given in both directions with label :p.

_:a _:b
:p

_:c

:p
:p

_:d

:p
:p

:p

_:a _:b _:c _:d

0 _:a _:b _:c _:d

1 _:b _:a _:d _:c

2 _:b _:a _:c _:d

3 _:b _:c _:d _:a

4 _:b _:c _:a _:d

5 _:b _:d _:a _:c

6 _:b _:d _:c —
7 . . . . . . . . . . . .

On the right, we provide a list of solutions found by the DFS strategy thus far, where solution 0 is
the trivial automorphism (and thus can be added straight away). In this case, the 4-clique is lean
so DFS will not �nd a proper endomorphism, but instead will typically have to check through all
solutions to ensure that they are all automorphisms and that the graph is lean. Thus we can see up
to solution 5 that all solutions found thus far are automorphisms.

Let us now assume we are after computing solution 5 in the DFS, and we return to the part of
the search where _:a 7→ _:b and _:b 7→ _:d (i.e., our path thus far is [_:b, _:d]) looking for another
option to map _:c to other than _:a, where we can consider _:c itself (_:b or _:d would create a
self-loop not in the graph). However, in the set of automorphisms, note that mapping between 1
and 3, _:b and _:d map to themselves and _:a maps to _:c and vice-versa. Mapping between these
two automorphisms, we thus know that we can �x _:b and _:d and swap _:a and _:c and end up
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with precisely the same graph. Thus, since at this point in the DFS search we have [_:b, _:d] �xed,
having visited _:a and found only automorphisms, we can prune the _:c branch.

Likewise as the process continues, we would expect to �nd more automorphisms and to prune
more frequently. This becomes more valuable for larger graphs. �

We only apply this optimisation in the case of DFS: in the case of BFS, we will not gener-
ate solutions until the end of the breadth-�rst process, meaning that we will not know of any
automorphisms until it is, for practical purposes, too late to prune.

5.5 Equi-canonicalising algorithm
Finally, in Algorithm 7, we wrap up by giving the process of computing an equi-canonical form of
any RDF graph G. If G does not contain blank nodes, we can return it immediately; otherwise we
�rst lean it per Algorithm 6 and then apply the iso-canonicalisation process of Algorithm 3.

Algorithm 7 Computing an equi-canonical version of an RDF graph
1: function eqiCanonicalise(G ) . G an RDF graph

2: if bnodes(G) is empty then return G
3: G′ ← lean(G) . calls Algorithm 6

4: return isoCanonicalise(G′) . calls Algorithm 3

The correctness of this algorithm follows directly from Theorem 3.21 and the correctness results
for Algorithms 3 and 6.

6 EVALUATION
Having detailed our algorithms for computing an iso-canonical form and an equi-canonical form
of an RDF graph, we now evaluate their performance in practice. Both of these algorithms have
exponential worst-cases, but our hypothesis is that the types of graphs that produce worst-cases
would not be commonly found in typical settings.

Along these lines, we have implemented our methods as a Java package called BLabel made
available under Apache Licence 2.0.15 This package uses the Guava library for hashing methods.16

We �rst experiment with a large corpus of RDF graphs crawled from the Web, testing the various
algorithms introduced. Thereafter, we present the results of experiments on more challenging
synthetic cases – some of which evoke exponential runtimes – to stress-test the algorithms.

To test the correctness of our software, we developed a test framework that takes an input
graph and produces four isomorphic shu�es of the input graph by randomly reordering triples
and renaming blank nodes, verifying for all shu�es that:

(1) our labelling algorithm produces the same iso-canonical graph over all shu�es with and
without automorphism-based pruning enabled;

(2) our BFS and DFS leaning algorithms, with and without ordering and pruning optimisations
enabled, produce the same equi-canonical graph for all shu�es;

(3) applying the same leaning algorithm over the result of the previous step does not change
the graph; i.e., the output of the previous step is deemed lean.

15The code repository is available from http://blabel.github.io/, as well as instructions and resources to help reproduce
results.
16https://github.com/google/guava
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We ran this test framework over the real-world and synthetic graphs introduced in the following,
where we found that either (i) no result was returned due to a timeout or out-of-memory exception,
or (ii) a result was returned and the above tests passed. In other words, we test over a large collection
of graphs of various morphologies and sizes, verifying that when our methods return a result, that
that result is consistent according to the checks described above.17

6.1 Experiments on real-world graphs
To evaluate our algorithms on a large, diverse collection of real-world graphs, we take the Billion
Triple Challenge 2014 (BTC–14) dataset.18 We �rst removed all crawling meta-information that is
not part of the native Web data, but is rather added by the crawler to the corpus; hence our methods
are applied over the RDF graphs as found natively on the Web. The dataset contains a total of 43.6
million RDF graphs crawled from 47,560 pay-level-domains (a domain that must be paid for, such
as dbpedia.org, bbc.co.uk, but not, e.g., es.dbpedia.org or news.bbc.co.uk, which would be mapped
to the former two domains, respectively). The dataset is encoded in the N-Quads syntax [8], where
the �rst three elements represent a standard RDF triple and the fourth element encodes the URL of
the document from which the triple was extracted. The corpus consists of approximately 4 billion
quads mentioning a total of 132.5 million unique blank nodes across all graphs.

We sort the data by the fourth quad element in order to group the triples of a given document
together. Of the 43.6 million graphs, we found that 9.9 million graphs (22.7%) contain blank nodes.
The largest graph contains 7.3 million triples and 254,288 blank nodes.19. The graph with the most
blank nodes contains 1.9 million triples and 494,992 blank nodes.20

In the following experiments, we will load each individual RDF graph independently and apply
the designated algorithm to it before moving to the next graph. We run each algorithm over all
graphs in a given experiment. We use a timeout of 10 minutes per graph at which point the process
is interrupted and the next graph processed. When measuring times, since many graphs may take
less than 1 ms to process, we take the overall time of processing all graphs rather than taking the
sum of the times for the individual runs; along these lines, we ran a control that just parsed the
data and loaded the graphs and the blank nodes they contain, logging the size of the graph and the
number of blank nodes without further processing, which took 15.2 hours.21

The experiments were run in a single-threaded manner on an Intelr E5-2407 Quad-Core 2.2GHz
machine with 30 GB of heap space and a 3.5-inch SATA hard drive.

6.1.1 Iso-canonical experiments. First we tested Algorithm 3 for the BTC–2014 dataset, comput-
ing the iso-canonical form for each graph in turn, where we tested three hashing functions in the
128–160 bit range: MD5, Murmur3_128 and SHA1. These con�gurations include the automorphism
pruning strategy described in Section 4.3; we also ran experiments with pruning disabled for the
fastest hashing function to test its e�cacy (we denote this con�guration Murmur3_128*).

17This test framework revealed a bug in the automorphism-based pruning when labelling blank nodes that was present
for the previous conference version of this paper [27]. Hence the evaluation results in this version of the paper should be
considered as superseding those previously published where di�erences are present.
18This was the most recent version of this dataset available at the time of writing.
19http://www.berkeleybop.org/ontologies/ncbitaxon.owl
20http://www.berkeleybop.org/ontologies/owl/CHEBI
21In the previous conference version of this paper, we reported a control over the same data of 4 hours; however, this did
not perform any logging nor did it count blank nodes. We thus argue that this new control is fairer as it allows to subtract
the (notable) overhead of generating and logging statistics for the evaluation.
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Table 2. High level statistics for iso-canonicalising the BTC–14 graphs

Hash Bits Total (h) Adjusted (h) Average (ms) Slowest (ms) Timeouts

MD5 128 23.9 8.8 3.2 48,692 0
Murmur3_128 128 23.6 8.4 3.1 42,925 0
SHA1 160 25.6 10.4 3.8 50,630 0

Murmur3_128* 128 202.3 187.1 68.1 600,000 971
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Fig. 2. Histogram of runtimes for iso-canonicalising the BTC–14 graphs

In Table 2, we provide the high-level results. With pruning enabled, the process ran successfully
for all graphs without encountering a timeout. We see that the total time taken was between 23.6–
25.6 hours for such con�gurations, but when we adjust by removing the control time for loading
the data and logging results (15.2 hours), we see that the total additional time spent computing the
iso-canonical graphs was between 8.4–10.4 hours, which equates to between 3.2–3.8 ms per graph
(considering only the 9.9 million input graphs that have blank nodes). Comparing the hash functions,
we can see that SHA1 is the slowest (perhaps due to having more bits) while Murmur3_128 is
slightly faster than MD5. The slowest graph in each case was the largest graph – with 7.3 million
triples and 254,288 blank nodes – taking 42.9–50.6 seconds to process.

Table 2 also provides the results for labelling with pruning disabled (Murmur3_128*). In this case,
971 graphs failed to be processed within the timeout; the overall results include such cases, which
are considered as taking 10 minutes. In adjusted time, the experiment without pruning enabled
took more than 21× longer than the experiment for the same hash function with pruning enabled.

Aside from the average time taken per graph, which may be dominated by millions of trivially
simple graphs with a handful of blank nodes, it is interesting to see how many graphs took longer
than a few milliseconds to compute. Along these lines, Figure 2 presents a histogram for the
runtimes, illustrating how many graphs fell within the presented runtime intervals; note that both
the bins on the x-axis and the values on the y-axis are scaled logarithmically and > denotes the
timeout. The results only include graphs with blank nodes. For all con�gurations, about 98.8% of
graphs are processed within 10 ms, and 99.9% are processed within a second. On the other hand,
with pruning enabled, 6,026–6,057 graphs took between 1–10 seconds and 516–621 graphs took
between 10–100 seconds (recall that the slowest graph took 42.9–50.6 seconds). With pruning
disabled, 246 graphs took between 100–600 seconds and 971 timed out.
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Finally, we counted the number of graphs that were found to be isomorphic based on hashes over
their iso-canonical forms, where we found that of the 9.9 million RDF graphs with blank nodes, 9.4
million (95%) were unique modulo isomorphism.

From these results we can conclude that:
• the vast majority of the 9.9 million real-world graphs studied are relatively trivial to compute

an iso-canonical form for, �nishing in a few milliseconds;
• with pruning enabled, no graph took longer than 41 seconds and no failures were encoun-

tered; however, there are several thousand graphs that take longer than a second, and a
few hundred that take longer than 10 seconds;
• with pruning disabled, the performance drastically su�ers for about one thousand of the

real-world input graphs (but pruning has little e�ect otherwise on the vast numbers of
simpler graphs where blank nodes can be trivially distinguished);
• the selection of hashing function can make a moderate di�erence for performance, where,

from those implemented by the Guava library, we found Murmur3_128 to be the fastest
hash function in the 128–160 bit range,
• about 5% of the documents in the graph were duplicates when considering isomorphism;

these could be, for example, syntactically identical copies of the same RDF document in
multiple Web locations.

6.1.2 Equi-canonical experiments. Next we perform experiments for equi-canonicalising the
same BTC–14 graphs, where we tested four leaning variants: BFS, DFS with automorphism-based
pruning (see Section 5.4), DFS without pruning (denoted DFS*), and DFS with pruning but with
random ordering. With respect to DFS with random ordering, instead of selecting intermediate
solutions with the fewest blank nodes, we randomly select intermediate solutions; this serves as a
baseline to measure the bene�t of the ordering heuristic we use in the standard DFS strategy.

We also wish to see if labelling gets easier when the graph is leaned beforehand. Hence we also
present results for subsequently computing the iso-canonical form over the output of the leaning
algorithm, where we select the standard DFS strategy (with pruning) and the Murmur3_128 hashing
function (the fastest hashing function from the previous experiments); given that the iso-canonical
computation is independent of the leaning strategy, we can estimate the additional time taken for
labelling by subtracting the runtimes for the analogous experiments with and without labelling.

We encountered a lot of problems running the experiments with the BFS strategy. The process
continuously timed-out and also ran out of heap space. The experiment had processed 1.8 million
graphs with blank nodes, where 19 had timed out; at this point the experiment threw an out-of-
memory exception and did not recover. Hence we did not manage to complete the experiment
for all 9.9 million graphs, but we can conclude that the time and space required for the rather
brute-force BFS strategy can make it prohibitively expensive when leaning some real-world graphs.

Table 3 presents the results for the DFS strategies. We �nd an adjusted runtime of 14.7 hours for
leaning in the best case, averaging 5.3 ms per graph; relative to performing (only) an iso-canonical
labelling, this is about 1.8× more expensive compared with the fastest labelling algorithm. In fact,
in the case of leaning, we now encounter graphs whose computation surpasses the 10 minute
timeout, albeit in relatively few number; we manually inspected the 3 timeout cases for the best-case
con�guration, where two such graphs were from berkeleybop.org with 494,992 and 297,241 blank
nodes respectively, and another graph contained a 16-clique of blank nodes22 (we analyse such
22http://cliopatria.swi-prolog.org/packs/rdf-mt.ttl: the graph is produced by reasoning over an input graph where all 16
blank nodes are equated to the same IRI, where two partitions of 10 and 6 blank nodes are indistinguishable from ground
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Table 3. High level statistics for equi-canonicalising the BTC–14 graphs

Experiment Total (h) Adjusted (h) Average (ms) Timeouts

DFS 29.8 14.7 5.3 3
DFS* 29.9 14.7 5.3 3
DFS-Random 32.0 16.8 6.1 5

DFS+Label 33.4 18.2 6.6 3
Label — 3.5 1.3 0
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Fig. 3. Histogram of runtimes for equi-canonicalising the BTC–14 graphs

cases in more detail in the next section). As before, Table 3 counts the graphs that time-out as
taking 10 minutes. We see that the pruning optimisation makes little di�erence to overall runtimes,
while randomising the search heuristic adds about a 14% overhead in adjusted times.

Applying labelling after leaning adds a 24% overhead in adjusted times; subtracting the time
taken for DFS leaning, the Label row shows the overhead for labelling, which is about 41.6% of the
adjusted time taken for labelling without any prior leaning process (see Murmur3_128 in Table 2).

In Figure 3, we present a histogram with the runtimes for the four experiments (and the estimated
labelling overhead), where > denotes the selected timeout of 10 minutes. Not considering labelling,
in all three DFS experiments, 97.5% of graphs are leaned within 10 ms; on the other hand, 94.6%
are leaned and labelled within 10ms. Across all con�gurations, 99.9% of graphs are leaned (and
labelled) within a second, around 5,000 graphs in each case take 1–10 seconds, while 35–92 graphs
take 10–100 seconds and 7–9 take 100–600 seconds.

Referring back to Figure 2, we can see that while 516 graphs took longer than 10 seconds to
label without prior leaning for Murmur3_128, after leaning, only 3 graphs take longer than 10
seconds to label with the same hash function (note: this does not consider the additional 3 graphs
that timed-out during leaning and for which we thus do not have a labelling time).

Finally, of the 9.9 million RDF graphs with blank nodes, we found 600,839 to be non-lean (6.1%).
These non-lean graphs had a total of 314.8 million input triples with 25.2 million unique blank
nodes, which were reduced to 273.7 million output triples (86.9%) with 15.2 million unique blank

information; subsequent owl:sameAs reasoning creates an undirected clique of pair-wise such relations between all such
blank nodes. In our previous paper [27], which included experiments over the same data, we con�dently proclaimed that
cases such as 16-cliques of undistinguishable blank nodes are unlikely to occur naturally in practice; we did not notice this
graph since we only presented results for iso-canonical labelling, which has no problems with such inputs.
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nodes (60.4%). The graph that was most reduced by leaning23 – in terms of the absolute number
of both blank nodes and triples removed – had 1,396,851 input triples with 331,365 unique blank
nodes, which was reduced to 588,800 output triples (42.2%) with 119,747 unique blank nodes (36.1%).
The total number of unique documents modulo equivalence was 9.4 million (95%), which was only
442 graphs fewer than the analogous number modulo isomorphism.

From these results we can conclude that:
• the vast majority of the 9.9 million real-world graphs studied are relatively trivial to compute

an equi-canonical form for, �nishing in a few milliseconds;
• however, several thousand graphs take longer than a second, and tens of graphs take longer

than 10 seconds, with three non-trivial graphs timing out after 10 minutes;
• leaning is about 1.8× as costly as labelling, where computing the equi-canonical form is

about 2.2× times as costly as the iso-canonical form, on average;
• unlike labelling, pruning by automorphism has little impact on leaning;
• however, the ordering heuristic that guides the DFS search towards a core homomorphism

has a positive impact on performance;
• labelling after leaning (i.e., excluding the cost of leaning) is considerably faster, on average,

than labelling raw graphs; we can conclude that prior leaning can simplify some complex
graphs, making them subsequently easier to label;
• about 6.1% of graphs were found to be non-lean; however, only 442 graphs that were

not redundant according to isomorphism were found to be redundant with respect to
equivalence, which suggests that real-world RDF graphs tend to either be isomorphic copies
of each other (e.g., syntactically identical copies in multiple locations) or not equivalent at
all—this can probably be considered a negative result for the paper since it suggests that in
practice, an iso-canonical form is su�cient in most cases where, e.g., a crawler detecting
duplicates can catch the vast majority using the iso-canonical form; all the same, this is an
interesting result and the leaning algorithm has other applications aside from duplicate
detection in such settings.

6.2 Experiments on synthetic graphs
The vast majority of the millions of RDF graphs experimented with in the previous section are
quite trivial to process: we see this as a general trend in real-world data where blank nodes will
often be unconnected or will be associated with discriminating ground information, making the
search space for leaning and labelling quite small. However, we also saw a few examples of more
di�cult cases appearing in the BTC–14 dataset, including an RDF graph with a 16-clique of blank
nodes. In general, we are thus interested to stress-test our algorithm with more di�cult cases.

For this, we apply our algorithms over a selection of synthetic graphs often considered in the
graph isomorphism literature; we source our graphs from the Bliss benchmark [30], which was
originally de�ned for evaluating graph isomorphism.24 More speci�cally, we take �ve well-known
classes of undirected graphs at various sizes and represent them as RDF graphs (using a single
predicate with edges in both directions). We also take a set of Miyazaki graphs, which were
constructed to be a particularly tough case for graph isomorphism [44].

We thus consider the following six classes of graph:
Grid 2D A k ×k grid of blank nodes where each of the k2 blank nodes is associated with a unique

coordinate (a,b) (for 1 ≤ a ≤ k , 1 ≤ b ≤ k) and a pair of blank nodes are connected if and

23http://es.openfoodfacts.org/data/es.openfoodfacts.org.products.rdf
24http://www.tcs.hut.�/Software/bliss/benchmarks/index.shtml
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only if they have a distance of one: the resulting graph has k2 blank nodes, with 2k(k − 1)
undirected edges and 4k(k − 1) triples.

Grid-3D A k ×k ×k grid of blank nodes where each of the k3 blank nodes has a unique coordinate
(a,b, c) (for 1 ≤ a ≤ k , 1 ≤ b ≤ k , 1 ≤ c ≤ k) and a pair of blank nodes are connected if and
only if they have a distance of one: the resulting graph has k3 blank nodes, with 3k2(k − 1)
undirected edges and 6k2(k − 1) triples.

Cliqe A graph of k blank nodes that are then pairwise connected by edges (excluding self-loops),
also known as a complete graph: the resulting graph has k blank nodes and k (k−1)

2 undirected
edges and k(k − 1) triples.

Rook A k × k grid of blank nodes, also known as a lattice graph,25 where each of the k2 blank
nodes is associated with a unique coordinate (a,b) (for 1 ≤ a ≤ k , 1 ≤ b ≤ k) where a
pair of blank nodes is connected if and only if they are on the same row or column. The
resulting graph has k2 blank nodes, with k2(k − 1) undirected edges and 2k2(k − 1) triples.

Triangle The line graph26 of the k-clique, also known as a triangular graph: the resulting graph
has k (k−1)

2 blank nodes, k(k−1)(k−2)
2 edges and k(k − 1)(k − 2) triples.

Miyazaki This class of graphs was constructed by Miyazaki [44] to invoke checking an exponen-
tial number of labellings in Nauty-style algorithms for deciding graph isomorphism, even
when automorphisms are pruned; the constructed (undirected) graphs are 3-regular27 and
4-colourable28. Each graph has 20k blank nodes, 30k edges, and 60k triples.

A timeout of ten minutes was set. The experiments were run on a laptop with 1GB of heap-space
and an Intelr i7-5600 2.6GHz processor. Experiments are run in a single-threaded manner where
the data are loaded into memory before the runtime clock is started. As before, we �rst present
results for labelling the RDF graphs to compute the iso-canonical form, and then present results for
leaning the RDF graphs (and labelling them) to compute the equi-canonical form.

6.2.1 Iso-canonical experiments. For computing iso-canonical labels, we use Murmur3_128: the
fastest hashing method per Table 2. We perform testing both with (Murmur3_128) and without
(Murmur3_128*) automorphism-based pruning.

We plot the results in Figure 4 for the six classes of graphs previously introduced. In each plot,
the x-axis denotes graphs with varying levels of k for the class in question and the y-axis shows the
total time in milliseconds using log-scale. The maximum y value indicates the 10 minute timeout,
where points on the top line of the plot indicate an error for that value of k . Note that as k grows
linearly, the number of triples and blank-nodes in the resulting graph often grows much faster,
depending on the class of graph; for example, in a Grid-3D graph, for a given value of k , the number
of blank nodes is k3 and the number of triples is 6k2(k − 1). From these plots we can see that the
automorphism-based pruning is an important optimisation: when compared with pruning disabled,
the con�guration with pruning enabled is faster in all cases, and allowing larger instances of more
challenging classes of graphs – classes with inherently many automorphisms – to be processed.

In Table 4, for each class of graph, we summarise the largest instance that was successfully
processed within the limitations of the experiment (1GB of memory, 10 minutes of time) by the
Murmur3_128 con�guration with pruning enabled. In particular, the table indicates the class, the

25In our previous work we referred to them as lattice graphs [27] following the source Bliss paper [30], but this can be
confused with a more general class of graphs of the same name. The name “rook graph” comes from the intuition that the
connectivity of the graph represents the mobility of the rook piece in chess over the grid of nodes.
26The line graph of an undirected graph is constructed by converting the edges of the original graph into nodes in the line
graph and connecting the nodes in the line graph if and only if the corresponding edges in the original graph share a node.
27 . . . all nodes have a degree of 3.
28 . . . one can assign four colours to each node such that no adjacent nodes have the same colour.
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Fig. 4. Iso-canonical results for synthetic graphs

largest value of k processed successfully, the number of triples for that value of k , the number of
blank nodes for that value of k , the time take to process that graph, and the error incurred (if any)
when processing the next largest instance. We can see that with this con�guration (found to be
optimal in previous experiments), for some classes of graph, the iso-canonicalisation process can
handle quite large instances, processing, for example, instances of Grid-2D and Grid-3D with tens
of thousands of triples within a minute, and instances of Cliqe of size up to k = 32 within the 1GB
memory limit. However, when looking at the hardest cases – Miyazaki graphs – we see that the
process times-out for moderately sized graphs. One may note that there are large leaps in the time
required for some classes, where for example in the Triangle class at k = 17, the process succeeded
within 12.3 seconds but failed to process k = 18 within 600 seconds; we highlight again that the
size of the graphs grows much faster than the value of k and that the process has an exponential
worst-case complexity, where these factors may combine to explain such jumps. We also see that
the class Cliqe runs of memory when k = 33; we believe this is due to the pruning optimisation
that stores the orbits for tracking automorphisms.
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Table 4. Largest graphs labelled by Murmur3_128

Class k Triples BNodes Time (s) Error

Grid-2D 100 39,600 10,000 43.6 All succeeded
Grid-3D 19 38,988 6,859 27.2 All succeeded
Cliqe 32 992 32 18.5 Memory (k = 33)
Rook 16 7,680 256 132.3 Time (k = 17)
Triangle 17 4,080 136 12.3 Time (k = 18)
Miyazaki 8 480 160 136.2 Time (k = 10)

From these results we can conclude that:
• computing the iso-canonical labelling is feasible for moderately-sized synthetic instances,

where using automorphisms to prune the search tree of labellings helps reduce the search
space in cases of graphs that are (strongly) regular;
• the size of synthetic cases successfully labelled easily covers the di�cult cases found in

real-world graphs (in particular, the 16-clique we discovered);
• however, there are certain constructions of graph – where we have looked at Miyazaki

graphs – that incur the exponential worst case and thus fail for relatively modestly sized
graphs in the order of 600 triples and 200 blank nodes.

6.2.2 Equi-canonical experiments. We now present the results for leaning instances of the same
classes of graph. We experiment with BFS, DFS, DFS* (pruning disabled), DFS-Rand and Label
(labelling with Murmur3_128 after DFS leaning).29

In fact, the six synthetic classes of graphs we use present some interesting cases since Grid-2D
and Grid-3D can be leaned down to a graph of two blank nodes and two triples, Rook graphs of
rank k can be leaned down to a k-clique, certain instances of Triangle graphs can also be leaned30,
and our Miyazaki instances can be leaned down to a cycle of three blank nodes and six triples31;
on the other hand, Cliqe graphs are always lean. Thus, within these six synthetic classes, we
have a mix of lean graph instances and non-lean graph instances.

The results are summarised in Figure 5. All con�gurations succeeded on all Grid-2D instances,
while only DFS succeeded for all Grid-3D and Miyazaki graphs. Other con�gurations and classes
encountered an exception for some instance: in every case the BFS strategy threw an out-of-memory
exception since it tries to materialise and store all solutions in memory, whereas the DFS variants
mostly tended to time-out. Overall, while for certain classes of graph we see that the DFS pruning
and search heuristics have little impact on performance (such as in the case of Grid-2D, or indeed in
the case of Cliqe where the instances are already lean), in other classes of graph, these heuristics
become essential: the DFS con�guration succeeds for the most instances in all classes of graph,
where in the Grid-3D and Miyazaki classes, the bene�ts of incorporating these heuristics into the
DFS approach are most evident.

From the Label series, we can see that when leaning succeeded, labelling the resulting graph
was relatively trivial. In comparison with Figure 4 for the labelling results, we see that leaning
29Since Label requires a prior leaning step, we only present such results where leaning succeeded. We do not present
DFS+Label since it would be mostly indistinguishable from DFS in the runtime results.
30We are admittedly not sure what pattern the cores of the Triangle instances follow, but empirically it appears that graphs
where k is odd are lean whereas graphs where k is even are not.
31This is actually a speculation based on the empirical results of DFS rather than something we can prove at the moment; in
fact, this implies that the instances of the graphs we take from the Bliss benchmark are 3-colourable, not just 4-colourable.
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Table 5. Largest graphs leaned by DFS

Class k Triples BNodes Time (s) Error

Grid-2D 100 39,600 10,000 3.8 All succeeded
Grid-3D 13 12,168 2,197 9.1 Memory (k = 14)
Cliqe 10 90 10 413.7 Time (k = 11)
Rook 4 96 16 1.5 Time (k = 5)
Triangle 6 120 15 474.6 Time (k = 7)
Miyazaki 50 3,000 1,000 0.6 All succeeded

is much harder for most classes of graph, particularly Cliqe, Rook and Triangle. However, in
the case of Miyazaki, computing the equi-canonical form by �rst removing redundancy from the
graph is much more e�cient (all instances up to k = 50 were leaned and labelled in under a second)
than computing the iso-canonical form over the raw graph (where the process times-out already at
k = 10) since the cores of such graphs are simple and thus trivial to label.

Finally, in Table 5, we present details of the largest instances of each class of graph that could be
successfully leaned by the DFS con�guration. We see that most of the failures again tended to relate
to a timeout, though some out-of-memory exceptions were also encountered. Again, relatively
large instances of Grid-2D and Grid-3D could be processed, though leaning did fail for relatively
small instances of Rook and Triangle graphs. Referring back to the real-world experiments, we
found a graph representing a 16-clique of blank nodes, where we can also see from this table that
such graphs are out of reach of the current DFS algorithm, which could only process Cliqe until
k = 10. On the other hand, in comparison with the labelling results in Table 4, we see that much
larger instances of Miyazaki graphs can be leaned.

From these results we can conclude that:
• computing the equi-canonical form of an RDF graph is more di�cult in general for these

instances than computing the iso-canonical form;
• however, the DFS con�guration can e�ciently lean Miyazaki graphs, whose cores are then

trivial to label—hence in some cases, it may be more e�cient to compute the equi-canonical
form than the iso-canonical form;
• the size of synthetic cases that were successfully leaned does not cover all di�cult cases

found in real-world graphs, where we are quite far from being able to process the 16-clique
found in real-world data using the DFS con�guration;
• in cases where the input RDF graph is already lean, there is no signi�cant di�erence between

the leaning strategies since all such strategies need to check through all endomorphisms to
ensure that none are proper.
• the DFS ordering heuristic greatly extends the size of instance that can be processed for

certain classes of graph, particularly when the target core is quite small;
• likewise isomorphism-based pruning helps when leaning certain classes of graphs (though

perhaps not to the same extent as seen in the labelling process).

7 RELATEDWORK
In the following, we discuss works relating to blank nodes in RDF graphs, canonicalising RDF
graphs, signing RDF graphs, etc., as relevant to the current contribution.
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Fig. 5. Equi-canonical results for synthetic graphs

Carroll [9] proposed methods to canonicalise RDF graphs with blank nodes in such a manner
that they could be digitally signed; thus the goals of his work are quite similar to the present
contribution. The method Carroll proposes for signing the graph is based on writing it to N-Triples,
temporarily mapping all blank nodes to a global blank node, sorting the triples lexically, and then
relabelling the blank nodes sequentially as the sorted �le is scanned, preserving a bijection between
the original input and output blank nodes. In cases where blank nodes are not distinguished by
this method, Carroll proposes to inject new triples on such blank nodes that uniquely “mark” them
but in such a way that the semantics ignores these triples. While perhaps a practical compromise,
the end result is that the approach circumvents the problem of isomorphism rather than solving it:
isomorphic RDF graphs may end up with di�erent signatures depending on what triples are added.

Sayers and Karp [50] likewise proposed methods to compute the digest of an RDF graph, similar
in principle to the idea of computing a signature for an RDF graph. The algorithm is claimed to
run in O(γ ), for γ the size of the graph. This already suggests that the algorithm is not sound and
complete with respect to the isomorphism of RDF graphs. Rather the authors propose to either
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assume all blank node labels as �xed, or to use a similar method to Carroll [9] where additional
triples are assigned to blank nodes to arti�cially distinguish them. Hence they side-step problems
with blank nodes but have similar problems as for the case of Carroll [9].

Tummarello et al. [55] subsequently proposed methods to sign fragments of an RDF graph. The
fragments in question are called Minimally Self-contained Graphs (MSGs), which are identical
to the graphs contained in our notion of a blank node split (see De�nition 4.6) except that each
ground triple is considered to form its own split. The authors do not directly deal with the problem
of canonicalisation, but rather propose to re-use the method of Carroll [9]; thus the proposed
framework does not robustly handle all isomorphic cases of RDF graphs.

Giereth [14] proposed a similar framework that allows for encrypting (and decrypting) selected
parts of an RDF graph using standard cryptographic methods; the parts in question can be an
RDF term, an RDF triple, or an RDF sub-graph. The author notes that blank nodes can cause
complications when encrypting sub-graphs of the original RDF graph but – in a similar vein to
the proposals of Carroll [9] and Sayers and Karp [50] – the author proposes to arti�cially add new
triples to distinguish individual blank nodes in the encryption/decryption process.

More recently, Arias-Fisteus et al. [2] proposed methods to canonicalise Notation3 (N3) graphs,
which extend RDF graphs with syntax for universally quanti�ed variables and more complex
formulae. The core of their approach is very similar in principle to the hashing methods described
in Algorithm 1. However, they propose a polynomial-time solution, which they claim to be complete
and correct; if this were the case, we could conclude GI= P, solving a long-open problem. The
authors acknowledge that the results of a similar hashing process to Algorithm 1 can fail to
distinguish blank nodes, as per Example 4.11, and propose a solution to this problem based on
the hash partition of blank nodes. However, in this solution, they assume that it does not matter
which blank node is selected from the partition; in other words, they assume that in Figure 1, all
leafs will always produce the same labelled graph and thus they take the �rst leaf. As previously
discussed, however, counterexamples for such polynomial-time algorithms have been found [7].
Such counterexamples are used in the construction of the Miyazaki class of graphs used earlier,
where the approach of Arias-Fisteus et al. will fail to identify isomorphic instances of such classes
of graph.32 It is important to emphasise, however, that known counterexamples are exotic, and
thus such an approach – while not formally correct – will work �ne for almost all practical cases,
though it could be vulnerable to deliberate attacks (depending on the application).

Kasten et al. [32] later proposed a framework for signing RDF graphs that is capable of dealing
with isomorphic cases through use of a prior canonicalisation step. However, they do not propose
a novel canonicalisation procedure, but rather study the practicality of using the existing methods
proposed by Carroll [9], Sayers and Karp [50] and Arias-Fisteus et al. [2]. While noting that these
methods propose polynomial-time canonicalisation methods, they do not observe that such methods
may fail on isomorphic instances of certain classes of graph.

Hö�g and Schieferdecker [26] proposed another framework for computing a hash-based digest
of an RDF graph, with focus on the issue of blank nodes. Their method is based on the notion
of MSGs introduced by Tummarello et al. [55], where starting with a blank node appearing as
a subject, the algorithm creates a string by recursively traversing through the predicates to the
objects, thus capturing the structure of the entire MSG; this string can then be ordered and hashed.
The authors claim that their algorithm runs in time O(nn ), and thus is consistent with isomorphism
being a GI-complete problem. However, from our understanding of the proposed approach, this
analysis is not correct and the algorithm has a polynomial-time worst-case, essentially performing
a depth-�rst traversal of the MSG for each unique subject that it contains. Likewise we believe that

32In the case of Miyazaki with k = 6, for example, we found 228 distinct leaf graphs.
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the authors do not consider ties in the ordering of strings caused by non-trivial automorphisms or
di�cult counterexamples such as Miyazaki graphs. We highlight, however, that these appear to
have been initial results and were published at a workshop venue.

Lantzaki et al. [34] compute minimal deltas between RDF graphs based on an edit distance metric.
They propose two algorithms: one views the computation as a combinatorial optimisation problem
to which the Hungarian method can be applied; the other is based on computing a signature for
blank nodes based on the constant terms in their direct neighbourhood. Although their goal of
computing deltas and our goals di�er somewhat, the signature method that they propose for blank
nodes is similar to a non-recursive version of Algorithm 1; they also present results for detecting
isomorphism (where the delta is zero). However, their approach is to implement polynomial-time
algorithms that o�er an approximation of a delta, rather than a complete algorithm as in our case.

Jena [39] o�ers a method for checking isomorphism between two RDF graphs. However, the
method is designed for pairwise isomorphism-checks rather than for producing a (globally-unique)
iso-canonical labelling. Hence, for example, the methods provided by Jena would not be suitable for
detecting isomorphically duplicated RDF graphs in a large collection such as the BTC–14 dataset;
with our methods, one can compute a unique iso- or equi-canonical hash for each graph to track
duplicates, whereas with Jena, a quadratic number of pairwise isomorphism checks are needed.

Kuhn and Dumontier [33] propose a method to compute a cryptographic hash of an online
document – such as an RDF graph – which they then propose to encode in what they call a “trusty
IRI”, such that the content used to mint that IRI can be veri�ed using that IRI. Thus, for example, an
IRI can implicitly serve to verify an RDF graph that is intended to be the description of the resource
it identi�es. In their discussion, they mention the complications of computing hashes over RDF
graphs containing blank nodes, where their solution is to simply mint fresh Skolem IRIs for each
blank node; hence, their method does not guarantee to produce the same hash for isomorphic RDF
graphs and likewise implicitly assumes that the Skolems produced for hashing are known to the
person who wishes to verify the graph. As such, trusty IRIs could be a useful application of the
work presented herein, allowing to compute trusty IRIs in a consistent manner for isomorphic RDF
graphs, additionally allowing the veri�cation of RDF graphs with blank nodes.

We previously conducted an extensive survey of blank nodes [28, 37], covering their theory and
practice, their semantics and complexity, how they are used in the standards and in published data,
etc. In an analysis of the BTC–12 corpus (a similar dataset as the BTC–14 corpus used herein, but
two years antecedent), we found that although the maximum treewidth of blank nodes was 6, most
graphs do not contain cycles of blank nodes.33 We also found that in a merge of the BTC–12 corpus,
6% of the blank nodes were redundant under simple entailment [28]; for this, we used a signature
method similar to the naive algorithm proposed earlier, but for a �xed depth. To apply leaning, we
also used some methods that inspired the current approaches, but with a slightly di�erent focus:
in that paper, we focussed on leaning RDF data in bulk using on disk methods aimed at the vast
majority of simple cases, whereas herein we focus on general algorithms for leaning individual
graphs in-memory aimed to support more di�cult cases.

Popular RDF syntaxes like Turtle or RDF/XML are tree-based and require explicit blank node
labels for blank nodes to form cycles. The observation that many RDF graphs have acyclical
blank nodes and that the complexity of (implementing) various operations over such graphs drops
signi�cantly has led to calls for de�ning a pro�le of RDF that disallows cyclical blank nodes [37].
Booth [6] refers to this proposed pro�le as “Well Behaved RDF”. Although disallowing blank node
cycles would simplify matters greatly, in this paper we show that in terms of labelling and leaning,
many real-world graphs, even with quite complex blank node structures (including lots of cycles

33In the BTC–14 corpus, the 16–clique would have a treewidth of 15.
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and non-trivial treewidth), can be processed quite cheaply. Our results support the conjecture that
exponential cases are unlikely to be found in “real-world” RDF graphs, and thus that a special
pro�le of RDF may not be necessarily warranted if the argument is purely for e�ciency reasons.

Compared to these previous works, to the best of our knowledge, our proposal is the �rst
that correctly produces an iso-canonical form for all RDF graphs without having to arti�cially
distinguish blank nodes with fresh ground edges, and is the �rst work to look at computing a
general equi-canonical form for RDF graphs.

8 CONCLUSIONS
In this paper, we proposed methods to compute both an iso-canonical form and an equi-canonical
form of an RDF graph. We propose that such forms could serve a variety of applications for RDF
graphs, such as for digitally signing RDF graphs [9, 50, 55], or computing trusty IRIs [33], or
Skolemising blank nodes in a consistent manner [11], or for �nding duplicate RDF graphs in large
collections or otherwise comparing RDF graphs [32, 34], and so forth.

The iso-canonical form of an RDF graph will produce the same result for a pair of input RDF
graphs if and only if they are isomorphic (barring some extremely unlikely hash collision). Our
approach for computing this iso-canonical graph is to apply a canonical labelling scheme to the
blank nodes in the RDF graph where we �rst compute initial hashes for the blank nodes based on
ground information in the RDF graph; if these initial hashes fail to distinguish the blank nodes,
we then apply a search process – inspired by the Nauty algorithm – to �nd the lowest possible
isomorphic RDF graph based on a total ordering of RDF graphs that does not use blank node
labels and that applies certain restrictive rules to narrow the search space; we then discuss how
detected automorphisms can be used to further prune the search process. Thereafter, we discussed
how global labels can be computed for blank nodes – e.g., for the purposes of Skolemisation – by
computing a hash of the output iso-canonical graph and encoding it into the blank nodes labels
such that each such label encodes the information of the iso-canonical graph containing it. Despite
the worst-case exponential behaviour of our proposed algorithms, in experiments we showed
that real-world graphs can be processed, on average, in about 3 milliseconds, and that moderately
sized synthetic graphs can be processed in reasonable time; however, we showed that there are
specialised classes of graphs that do incur exponential time.

Likewise the equi-canonical form will produce the same result for pairs of simple-equivalent
RDF graphs. Our approach is to �rst lean the RDF graph and then compute the iso-canonical form
of the resulting core. To lean the RDF graph, we propose a method based on the idea of trying
to �nd a core endomorphism: a mapping from blank nodes in the graph back to the graph itself
that is minimal in the number of unique blank nodes it maps to. To begin with, we process the
unconnected blank nodes in the graph and produce a list of candidate mappings based on ground
information. If there remain some connected blank nodes with multiple candidates, we then propose
a breadth-�rst strategy and a depth-�rst strategy for �nding a complete core endomorphism, where
the former strategy computes all homomorphisms and selects the one with the fewest blank nodes
in its codomain, while the latter tries to directly construct the core endomorphism using some
search heuristics. Again, these methods have worst-case exponential behaviour. In experiments
over real-world graphs, we found that the BFS strategy incurred many timeouts, but that for the
DFS strategy, while attempting to process 9.9 million RDF graphs with blank nodes, only 5 failed to
be processed within a ten minute timeout, where on average each graph took about 8 milliseconds.
We likewise looked at synthetic cases where we found that the DFS strategy – which performs
iterative simpli�ed rewritings on the graph – is particularly bene�cial when the output core of the
graph is small, and can e�ciently process some cases that were exponential for our iso-canonical
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methods. In general, however the number of instances of synthetic graphs that could be leaned
were fewer than those that could be labelled in the analogous iso-canonicalisation experiments.

There are various ways in which the current work could be improved. When computing the
iso-canonical form of an RDF graph, we currently apply a search process inspired by the Nauty
algorithm, where other alternatives – such as Bliss – have been explored in the graph isomorphism
literature and could likewise be applied and studied in the context of RDF. Also there have been
some results on computing di�cult cases such as Miyazaki graphs in a more e�cient manner [53].
It would also be interesting to study classes of graphs for which it is known that all leafs in the search
tree will produce the same graph; assuming such a classi�cation could be performed e�ciently, we
could forego the exponential search tree of Figure 1 over such instances, instead taking the �rst
leaf as the canonically-labelled graph (in a similar manner to the algorithm of Kasten et al. [32]).

On the other hand, when computing the equi-canonical form of an RDF graph, we apply the
leaning and labelling steps separately, where it may be possible to re-use some of the work done
in the former step for the latter; as a trivial example, we could pass the automorphisms found in
the former step to help prune the search in the latter. In our DFS strategy, it may be interesting to
investigate (the possibility of) search heuristics that guarantee to identify the core endomorphism
in the �rst iteration, obviating the need to verify, for example, that the intermediate output is lean.

Aside from such algorithmic improvements, it would also be interesting to investigate paralleli-
sation of the above processes, taking advantage of – for example – modern multi-core processors
or perhaps even GPU processing.

More broadly speaking, there are various directions in which this work could be extended that
go beyond computing iso-canonical and equi-canonical RDF graphs.

When comparing RDF graphs, one could further consider equivalence under entailment regimes
that interpret datatypes or special (ontological) vocabulary, such as proposed by the RDF(S) [21]
and OWL 2 [17] standards. Much like in the present work, the goal would be to deterministically
compute a redundancy-free “core” of an RDF graph that permits the same models under more
complex interpretations [45]. Likewise, rather than study equivalence relations between graphs,
various asymmetric relationships – such as deciding entailment [21] or computing deltas [34]
between graphs – are also of practical relevance, where some of the methods described herein –
such as for e�ciently computing the core of a graph – could be brought to bear on such problems.

Such methods would still not take into the account that there are various (non-isomorphic/non-
homomorphic) possibilities in terms of representing equivalent content as a graph. For example, we
recently studied various ways in which the Wikidata knowledge-base [56] could be encoded as RDF
using various forms of rei�cation: various representational forms of encoding higher-arity relations
as graphs [25]. This general idea of varying representations being able to encode the same “content”
has given rise to the related notions of information preservation [13], design independence [54] and
representational independence [10], whereby particular algorithms aim to be as agnostic as possible
to the particular representation chosen in the data-modelling process. A more speculative direction,
then, would be to de�ne and implement methods for comparing or canonicalising RDF graphs in a
representationally independent manner, for example, to consider (i) invertibility [13]: can two RDF
graphs be mapped to each other under a given mapping language, and (ii) query preservation [13]:
can the same answers be generated over both graphs for a given query language?

Finally, the methods presented in this paper could be used for canonicalising a variety of structures
other than RDF graphs. For example, in the area of data exchange, we previously discussed how many
such methods are based on the notion of computing core solutions [49], where the equi-canonical
methods proposed herein could be adapted to such settings. Likewise, the current work directly
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suggests strategies for canonicalising SPARQL queries, both in terms of removing redundancy
and computing canonical labels for variables, which would help solve the equivalence problem for
queries [36] but without requiring pairwise-comparison. Graph models used in other settings, such
as the property graph model [1], could likewise be canonicalised with adaptations of the methods
proposed herein. More generally, any (semi-)structured representation that can be encoded to (and
decoded from) an RDF graph – through a deterministic translation that preserves the isomorphism
(or equivalence) relation – can be canonicalised using our framework.

To conclude, although the problems we tackle – computing iso-canonical and equi-canonical
forms for RDF graphs – are intractable, in this paper we provide complete algorithms for both
cases that, although exponential in the worst-case, we have demonstrated to be practical for a
large collection of real-world RDF graphs and indeed a wide variety of more challenging synthetic
instances. Thus, if we can try to generalise the experiences gained this paper, although blank nodes
do complicate various comparisons and operations on RDF graphs, we can observe that the sorts
of worst-cases predicted in theory are not likely to occur naturally in practical settings, and that
e�cient – albeit worst-case exponential – algorithms, such as those presented in this paper, are
achievable for many such problems. Generalising further, we can argue that complexity classes and
worst case analyses – though useful – do not by themselves refute the practicality of sound and
complete methods for solving a particular problem: worst-case analyses never tell the full story.
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A PROOF OF THEOREM 3.3
The following proof appeared in the conference version of this work [27].

Proof. The proof relies on a polynomial-time many-one reduction both to and from the GI-
complete problem of deciding graph isomorphism for undirected graphs.

The reduction from standard graph isomorphism to RDF isomorphism can be done quite straight-
forwardly. More speci�cally, let G = (V ,E) denote an undirected graph and let ν : V → B denote
an injective (one-to-one) mapping from the vertexes of G to blank nodes. For the undirected graph
G, we can create a surrogate RDF graph G such that (v,v ′) ∈ V if and only if (ν (v),p,ν (v ′)) ∈ G,
where p is an arbitrary �xed IRI. Now given two undirected graphs G and H and their RDF versions
G and H respectively, it is not di�cult to show that G � H (under graph isomorphism) if and only
if G � H (under RDF isomorphism). Hence RDF isomorphism is GI-hard.

The reduction from RDF isomorphism to standard graph isomorphism is trickier. We need
a polynomial-time method to encode two RDF graphs G and H as standard graphs enc(G) and
enc(H ) such that G � H (under RDF isomorphism) if and only if enc(G) � enc(H ) (under standard
isomorphism). We provide an example of one such encoding mechanism that satis�es the proof.

First, let SO denote the set of ground terms that appear in the subject and/or object position of
some triple in G and let P denote the set of IRIs appearing as a predicate in G. We assume that the
sets SO and P correspond for both G and H , otherwise isomorphism can be trivially rejected.

We �rst give an example input and output. The encoding scheme will encode the RDF graph on
the left as the undirected graph on the right (we keep the intuitive “shape” of both graphs intact
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for reference). The idea is to use 3-cliques to represent blank nodes in G, n-cliques (for n > 3) to
represent nodes in SO , and path graphs to indicate the direction and predicate of each edge. During
the encoding, we assume that each clique and path graph we create has a �xed external node that is
used to connect it to other parts of G; for path graphs, the external node is a terminal node.

_:a _:b
:p

:c

:q

:p

:p

We start with an empty undirected graph G.
First add a fresh 3-clique to G for every blank node in G.
De�ne a total ordering ≤ over SO (e.g., lexical) such that for all x ∈ SO , we can compute

sorank(x) := card{y | y ∈ SO and y ≤ x}. In the example above, taking a lexical ordering,
sorank(:c) = 1 and sorank(:p) = 2. Add a fresh (sorank(x) + 3)-clique to G for each term x ∈ SO .

We now encode the RDF edges, capturing predicates and direction. De�ne a total ordering over
P and let prank(p) denote the rank of p in P such that prank(p) := card{q | q ∈ P and q ≤ p} (e.g.,
with lexical ordering, prank(:p) = 1, prank(:q) = 2). For each (s,p,o) ∈ G, add two path graphs of
length prank(p) + 1 and |P | + 1 to G and connect their external nodes. Connect the external node
of the clique of s to the short path and the external node for the clique of o to the long path.

Once all triples are processed, the encoding is completed in time polynomial in the size of G.
Letting G and H denote the graphs encoded from G and H – where we again assume that SO

and P are �xed for G and H – we �nally argue why G � H (under RDF isomorphism) if and only if
G � H (under graph isomorphism).

We �rst argue that G � H implies G � H since if G � H , then G and H di�er only in blank node
labels, which the encoding ignores.

To show that G � H impliesG � H , we show that each RDF graph has an encoding that’s unique
up to isomorphism. In particular, G can be decoded back to a G ′ such that G � G ′. The decoding
relies on two main observations:

(1) No (≥ 3)-cliques can be created in the encoding other than as part of a bigger clique for
another vocabulary term, nor can such a clique grow. Maximal cliques can thus be detected
in G and mapped to fresh blank nodes or back to terms in SO .

(2) No nodes with a degree of 1 can be introduced other than as the terminals of the paths
used to encode RDF edges. Such nodes can thus be detected and walked back (to the node
with degree 3) to decode the predicate in P and the direction.

The existence of this decoding shows that two non-isomorphic RDF graphs cannot be encoded
to isomorphic standard graphs under �xed vocabulary: the translation preserves isomorphism.34

This polynomial-time encoding thus completes the proof of Theorem 3.3. �

Received June 2016; accepted March 2017
34Decoding is not part of the reduction. In particular, listing all maximal cliques may not be possible in polynomial time.
Instead our goal is to merely demonstrate the existence of an unambiguous decoding to establish that isomorphism is
preserved between both forms.
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