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Abstract A new approach to tackle Einstein equations for an isotropic and homo-
geneous Friedmann–Robertson–Walker Universe in the presence of a quintessence
scalar field is devised. It provides a way to get a simple exact solution to these equa-
tions. This solution determines the quintessence potential uniquely and it differs from
solutions which have been used to study inflation previously. It relays on a unifica-
tion of geometry and dark matter implemented through the definition of a functional
relation between the scale factor of the Universe and the quintessence field. For a pos-
itive curvature Universe, this solution produces perpetual accelerated expansion rate
of the Universe, while the Hubble parameter increases abruptly, attains a maximum
value and decreases thereafter. The behavior of this cosmological solution is discussed
and its main features are displayed. The formalism is extended to include matter and
radiation.
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1 Introduction

One way to study the effect of dark energy in a cosmological model is by describ-
ing it by means of a scalar field with a potential energy. This field, sometimes called
quintessence field or phantom scalar field, has beenwidely explored in inflationary the-
ory (the literature is vast, see for exampleRefs. [1–7]). Severalmodels for quintessence
fields have been explored, for example, scalar fieldswith general potential [8] exponen-
tial potentials [9,10], non minimally coupled scalar-tensor theories [11], Brans-Dicke
theory [12], dark matter [13–15], or complex scalar fields [16], among others.

The equations which describe the model can be solved approximately by consider-
ing that the potential energy of the field is always much larger than its kinetic energy,
producing inflation. During the past years, exact analytical solutions were studied
for models with perfect fluids [17–21], matter or dust fluids [22–28], for non-minimal
coupling [29,30], and for non-spatially flat Friedmann–Robertson–Walker spacetimes
[31,32].

Our approach also studies an analytic exact solution for quintessence field models,
although it is different in its approach. It is based on a simple and interesting feature of
the Friedmann–Robertson–Walker–Quintessence (FRWQ) equations. A direct identi-
fication between the scale factor of the Universe and the quintessence field allows for
a unique determination of the quintessence potential and produces equations that may
be solved exactly. The solution shows an accelerated expansion of the Universe dif-
ferent from other inflationary theories. It can be also proved that this solutions admits
the inclusion of matter or radiation in a consistent fashion.

First we start studying the solution for quintessence field highlighting the main
features of this approach. Then, in Sec. III, we include a component to the Universe
showing that the same anstaz allow us to solve the cosmological equations.

To write the equations for the FRWQ model, we start with the Lagrangian density
L for the evolution of the spacetime metric gμν(xα) in interaction with a scalar field
φ(xβ). This is L = √−g

[
(R − 2�)/2G + Lφ

]
, where g stands for the determinant

of the metric gμν , G = 8πG/c4 (with G as the gravitational constant and c the speed
of light) and � is the cosmological constant. Here, Lφ is the Lagrangian density for
the scalar field

Lφ = ε

(
1

2
gμνφ,μ φ,ν −V(φ)

)
, (1)

where V(φ) is (up to now) an unspecified potential for the scalar field φ, and ε is a
parameter that classifies the nature of the scalar field, i.e., ε = 1 yields the Lagrangian
density for usual scalar fields while ε = −1 defines the Lagrangian for a quintessence
field [33]. The line element for an isotropic and homogeneous Friedmann–Robertson–
Walker (FRW) spacetime is [1]

ds2 = dt2 − a(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2)

that defines the metric, where a(t) is the scale factor of the Universe, and k is the cur-
vature constant that takes the values k = −1, 0, 1 denoting negative, zero or positive
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curvature of the Universe. Furthermore, it is worth noting that the quintessence field
is described by the same Lagrangian density as the tlaplon field [34] which describes
propagating torsion.

The action S = ∫ L d4x , gives rise (upon variation with respect to the metric tensor
gμν) to gauge invariant (generally covariant) and constrained Einstein field equations
coupled to matter Gμν +�gμν = G Tμν , where Gμν is the Einstein tensor and Tμν is
the energy–momentum tensor of matter Tμν = gμνLφ − 2 ∂Lφ/∂gμν . Assuming that
the scalar field φ depends on time only, the Einstein equations, in terms of the line
element (2), get two second order dynamical equations and one first order constraint.
The dynamical equations read (setting G = 1)

2
ä

a
+

(
ȧ

a

)2

+ k

a2
− ε

(
1

2
φ̇2 − V (φ)

)
= 0, (3)

and

φ̈ + 3
ȧ

a
φ̇ + dV (φ)

dφ
= 0 , (4)

where we have introduced V (φ) = V(φ) + ε�. The constraint equation is

3

(
ȧ

a

)2

+ 3
k

a2
+ ε

(
1

2
φ̇2 + V (φ)

)
= 0 . (5)

Equation (4) is obtained by varying the action S with respect to φ, producing the
Klein–Gordon equation for the scalar field �φ + dV(φ)/dφ = 0. On the other hand,
another useful equation can be obtained manipulating Eqs. (3) and (5) to give 3ä/a =
ε
(
φ̇2 − V

)
.

For ε = −1, the set (3)–(5) becomes the FRWQ system. This set of equations has
been already studied for different scenarios and matter configurations [35–37]. The
FRWQ system is usually employed to study inflation under standard approximations
φ̇2 � V (φ) and φ̈ � dV/dφ [1]. That solution represents exponential (inflationary)
expansion of the Universe.

2 Exact Solution

The purpose of this manuscript is to show that there is an exact solution that may be
obtained by defining a specific relation between the space–time curvature (represented
by the scale factor a) and dark energy (represented by the quintessence field φ).

As the scalar field depends on time, then φ ≡ φ(a), V = V (φ) ≡ V (a), and
φ̇ = (dφ/da)ȧ. Therefore, Eq. (5) becomes

ȧ2
[
3

a2
+ ε

2

(
dφ

da

)2
]

= −εV (a) − 3
k

a2
. (6)
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To solve this equation, one needs a specific form of the scalar field potential. However,
notice that for ε = −1 a non–trivial solution can be obtained if the left-hand side of
the previous equation is forced to vanish. This choice will be justified a posteriori.

Using this ansatz, the quintessence scalar field φ is related to the scale factor a by

φ = √
6 ln a , (7)

that also determines the quintessence potential as

V = 3k

a2
. (8)

The reader must realize that this kind of ansatz cannot be performed for usual scalar
fields ε = 1, as in this case, is not possible to solve the left-hand side for real scalar
fields. We need to mention that other attempts of relating the quintessence field to the
metric have been proposed [38], where the derivatives of scalar fields define a general
metric. This approach does not produce the kind of unified dynamics studied here.

It is a straightforward matter to show that under the solutions given by Eqs.(7)–(8),
both Eqs. (3) and (4) give rise to the same following equation

ä

a
+ 2

(
ȧ

a

)2

− k

a2
= 0 , (9)

in terms of a (or an equivalent equation written in terms of φ). This huge compacti-
fication in the dynamics is the justification on the ansatz that allows to solve Eq. (6).
In other words, the whole set of Eqs. (3)–(5) describing FRWQ is now unified in the
sole Eq. (9), where every dynamical field is expressed in terms of the scale factor.

Remarkably, Eq. (9) can be solved exactly, describing a cosmological model where
gravity and dark energy are intimately intertwined into a single structure (7). This
result is due to the fact that (5) is, loosely speaking, the “energy conservation equation”
derived from the dynamical equations (3) and (4).

We can infer directly fromEq. (9) that this cosmological model presents accelerated
expansion ä > 0 for k = 1 if the (positive) initial expansion velocity ȧ(0) is restricted
to be

0 < ȧ(t = 0) <
1√
2

, (10)

being a particular initial condition of the system. Notice that in this case, the
quintessence scalar field becomes a dilaton field with the potential

V (φ) = 3 exp

(
− 2φ√

6

)
. (11)

For the other cases, either k = 0 or k = −1, this cosmological model does not produce
accelerated expansion. Although with different cosmological models with respect to
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the one presented in this work, several potentials with the form of (11) have been
considered extensivelly in the literature [22,23,39–41], showing that these models
are integrable even in the case when the Hubble parameter is written in terms of the
quintessence scalar field [24,39,42,43].

On the other hand, Eq. (9) can be integrated to find a conservation law. This result
to be

E = a4
(
k

2
− ȧ2

)
, (12)

for general k, and where E is a constant. In the case E = 0, then the dynamics is
restricted to ä = 0. We can see that for k = 1 and under the initial condition (10),
the constant E is positive. The previous equation can be integrated to find the general
solution of Eq. (9)

t =
∫ a

0

a2da
(
ka4/2 − E

)1/2 , (13)

that can be exactly written in terms of elliptical integrals for k = 1. As an aside, notice
that defining u = a3/3, Eq. (9) becomes

ü = k (3u)1/3 , (14)

showing that this kind of cosmology behaves as a particle [44] driven by to the force
k (3u)1/3.

Let us study the behavior of the solutions of ȧ, ä and theHubble parameter H = ȧ/a
for certain initial conditions a(t = 0) � 1 and ȧ(t = 0) � 1. Let us start the analysis
for k = 1. First, we notice that from Eq. (12) the initial conditions of a and ȧ (or H )
determine E . As initially ȧ is small, then from Eq. (12) we get that 0 < E � 1. Also,
from Eq. (13) we see that our solution has the lower limit a > (2E)1/4. From the
evolution equation (9), we see that if the expansion is accelerated ä ≥ 0, then ȧ grows
with time reaching the value 1/

√
2 asymptotically, where the accelerated expansion

ends. Close to 1/
√
2, the scale factor grows linearly with time. Thereby, in previous

times, the time derivative of the scale factor is always positive. The exact behavior of
the expansion is obtained from (12)

ȧ(t) =
√
1

2
− E

a(t)4
, (15)

where the time-dependence of a is obtained from Eq. (13). The behavior of ä can be
obtained from Eqs. (9) and (12). As long as k = 1 and ȧ(0) < 1/

√
2, the expansion

is accelerated ä > 0. Using Eqs. (9) and (12), we can obtain that

ä = 2E

a5
, (16)
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and the initial condition for ä(0) is determined by a(0). Solution (16) shows that
although in this model the Universe is subjected to an accelerated expansion, the
acceleration decreases as a−5. Finally, we can study the Hubble parameter, obtaining
from Eq. (15) that

H =
√

1

2a2
− E

a6
. (17)

As ȧ > 0, then the Hubble parameter grows reaching the maximum value (54 E)−1/4

for a = (6E)1/4. In this point, ȧ = 1/
√
3 and ä = (486 E)−1/4. Then, it decreases

with time as ȧ approaches 1/
√
2. An approximatted solution of Eqs. (9) and (12) can

be obtained using the above information. As E � 1, it is starightforward to obtain
that

a = t√
2

+ 2
√
2E

3t3
+ O(E2) . (18)

This shows that the acceleration of the expansion for k = 1 goes as

ä ≈ 8
√
2E

t5
> 0 . (19)

On the other hand, similar analisis can be performed to the k = 0 case. From
Eqs. (9) and (12) we infer that E < 0. In this case we can direct integrate to obtain

a =
(
3
√−E t

)1/3
, (20)

producing a desaccelerating expansion rate given by

ä = −2
(
3
√−E

)1/3

9t5/3
. (21)

Lastly, for the k = −1 model, we get from Eqs. (9) and (12) that E < 0. Eq. (12)
also gives the upper limit to the dynamics (−2E)1/4 > a. As E is small by initial
conditions, the dynamics of this case is not very interesting.

3 Model of Universe with Different Components

One may wonder if this kind of solution holds for a Universe with single components.
For these cases, the Eqs. (3)–(5) must be extended to include the effect of matter or
radiation. The pertinent equations for such purposes are

2
ä

a
+

(
ȧ

a

)2

+ k

a2
− ε

(
1

2
φ̇2 − V (φ)

)
= −p, (22)
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3

(
ȧ

a

)2

+ 3
k

a2
+ ε

(
1

2
φ̇2 + V (φ)

)
= ε , (23)

φ̈ + 3
ȧ

a
φ̇ + dV (φ)

dφ
= 0 , (24)

and

ε̇ + 3
ȧ

a
(ε + p) = 0 , (25)

where ε is the energy density of the corresponding component, whereas p is its pres-
sure. The whole previous system is consistent, and the closure is given by the equation
of state p = wε, with w a dimensionless number. For matter-dominated era of the
Universe w = 0, while for the radiation-dominated era, w = 1/3.

Newly, the system can be written in unified form for the gravitational and
quintessence fields if we take the solution (7) [ε = −1 and φ = √

6 ln a]. In this
way, the quintessence potential acquires the form

V = 3k

a2
− ε . (26)

This ansatz solves identically Eq. (23). Besides, Eqs. (22) and (24) become the fol-
lowing equation

ä

a
+ 2

(
ȧ

a

)2

− k

a2
+ ε

2
(1 + w) = 0 , (27)

where we have made use of Eq. (25). Besides, the solution of Eq. (25) is

ε = ε0a
−3(1+w) , (28)

with the initial value of ε0. Then, this FRWQ model with single component is deter-
mined by the equation

ä

a
+ 2

(
ȧ

a

)2

− k

a2
+ ε0(1 + w)

2a3(1+w)
= 0 . (29)

The previous dynamics can be integrated for w �= 1 to give

E = a4
[
k

2
− ȧ2 − ε0

3a1+3w

(
1 + w

1 − w

)]
, (30)

where E is again a constant. The solution can be obtained through the integral (which
can be solved in terms of elliptical integrals)

t =
∫

da

[
k

2
− E

a4
− ε0

3a1+3w

(
1 + w

1 − w

)]−1/2

, (31)
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formatter-dominatedUniverse (w = 0) and radiation-dominatedUniverse (w = 1/3).
Againwe can study the behavior of the solutions for initial conditions a(t = 0) � 1

and ȧ(t = 0) � 1. From Eq. (29) we infer that E � 1 for w = 0 and w = 1/3.
We can readily see that the only case that produce accelerated expansion ä > 0 is for
k = 1. For this case is enough to choose E > 0, and the dynamics is restricted to a
lowest limit given by

a

[
1 − 2ε0

3a1+3w

(
1 + w

1 − w

)]
> (2E)1/4 . (32)

Similar to the previous case, as E � 1, an approximated solution can be found
a(t) = a1(t) + E a2(t) + O(E2), where a1 can be found as the solution of integral
(31) with k = 1 and E = 0

ȧ1 ≈
√
1

2
− ε0

3a1+3w

(
1 + w

1 − w

)
, (33)

whereas a2 satifies the equation

(
a41 ȧ1

)
ȧ2 = ε0a2

2a−2+3w
1

(
1 + w

1 − w

)(
1

3
+ w

)
− 1

2
. (34)

In an opposite way, for the k = 0 and k = −1 cases the dynamics do not present
accelerated expansion.

4 Conclusions

We have shown that the previous solutions produce a functional relation between the
Universe scale factor a and the dark matter quintessence field, uniquely determining
the scalar field φ = φ(a) (Eq. (7)), and the quintessence potential (Eqs. (8), (26)).
This approach constitutes a new solution of the FRWQ system, as implies a new ansatz
that can produce a new dynamic different to previous ones where the scalar field and
the potential are reconstructed from the equations of motion [45]. This solution is
different to previous models as the relation between spacetime and the fields is a priori
invoked to solve the dynamics.

For the case of only quintessence fields, it can be easily seen that the evolution of
the scale factor a for k = 1 is such that its velocity reaches asymptotically the value
1/

√
2. Therefore, the evolution is always positively accelerated, while the Hubble

parameter grows until it reaches a maximum value and it decreases from then on. This
behavior is appropiated for an initial value of ȧ constrained to be less than 1/

√
2. In

this case, the Universe attains the terminal velocity 1/
√
2, at a → ∞ behaving as an

attractor point for the Universe. If ȧ is larger than 1/
√
2 initially, then the Universe

experiences a decelerated expansion with ȧ also approaching to 1/
√
2 at the attractor

point (a → ∞, ȧ → 1/
√
2). On the contrary, we can see from (9) that for k �= 1 the

Universe always experiences a decelerated expansion ä < 0.
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Also, we have shown that the ansatz (7) and (8) still holds when matter or radiation
are included in the scheme. Again the most interesting dynamics is achieved for k = 1
showing that the system presents positive acceleration and that it can be solved for
E � 1.

The current approach takes advantage of the simplest ansantz we can assume to
solve the cosmological equations exactly for a quintessence field without using the
slow-roll approximation. This ansatz allows us to obtain some properties of the model
in a straightforward way. For example, for the case discussed in Sec. II, the e-foldings
during inflation can be obtained as

N =
∫ t f

ti
Hdt =

∫ φ f

φi

H

φ̇
dφ ≈ −√

6φi , (35)

as φ f � φi and φ̇ = √
6H by Eq. (7). As we can find the solution a ≈ t/

√
2 given by

(18) for E � 1, then φi ≈ √
6 ln(ti/

√
2), and N 
 1 as the initial time approaches

to 0.
The features of these inflationary models with and without matter and radiation,

such as e-foldings, passage from deceleration to acceleration, existence or not of fine-
tuning problems, etc., will be explored further in forthcoming works.
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