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Abstract

There are many examples in the literature of non-cooperative games in which

players prefer not to have additional information in order to improve their payoff.

We present a general game in which, if one of the players improves his payoff upon

obtaining more information, the other player’s payoff worsens in such a way that

there is a net social loss due to having more information. How can we ensure this

does not occur? The results of this paper are (1) the mathematical expression of

the (social) value of information in a quadratic non-cooperative game, and (2) the

conditions that ensure the social value of information is non-negative.
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1 Introduction

The information value problem poses the question of the amount a decision-maker is

willing to pay for increasing the quantity of available information and thus improve his

decision. The answer will depend on which of two basic contexts are under considera-

tion: a decision-maker who has no interaction with other players, or one who does have

strategic interaction (typically a non-cooperative game). In general terms, the value
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of information is always non-negative for a decision-maker without interaction as in

the classic work of Blackwell is shown (Blackwell 1951, [5]), but in a game situation

it can be negative. This article presents the non-negativity conditions for the value of

information in the case of a game with quadratic cost functions.

There are many examples in the literature of non-cooperative games in which play-

ers prefer not to have additional information in order to improve their payoff (see

for example Kamien 1990, [14]; Neyman 1991, [18]; Gossner 2000, [9]) for the gen-

eral Bayesian games case; and Bean 1997, [3]; Korilis 1999, [15] for a non-cooperative

transportation network).

We present a general quadratic bayesian game in which, if one of the players im-

proves his payoff upon obtaining more information, the other player’s payoff worsens

in such a way that there is a net social loss due to having more information. How

can we ensure this does not occur? The results of this paper are (1) the mathematical

expression of the (social) value of information in a quadratic non-cooperative game,

and (2) the conditions that ensure the social value of information is non-negative.

Because the class of games presented here have resource constraints, our model is

similar to the classic Problem of the Commons popularized and extended by Garrett

Hardin in his 1968 Science essay The Tragedy of the Commons, [10]. Given the struc-

ture of this class non-cooperative games, the Nash equilibrium solution causes an over

utilization of the common resources with a consequent loss of society. Although in our

case, it is not possible to talk about an over-utilization of the information resource,

we can however deal with the fundamental problem, how to ensure that the use of

information has a social positive value.

Because the quadratic nature of the loss functions we consider, a large class of games

of this type may be found in the literature. For example, the equilibrium solution to the

classic Cournot duopoly (Fudenberg and Tirole 1991, [8], p. 215) can be obtained as

a Nash equilibrium solution of the this game in which each player must approximate

the demand of a single homogeneous good. In Hinich and Enelow’s spatial voting

theory (1984, [12]) the authors model voters’ objective function as an approximation

of their ideal policy. Pursuit-evasion (Isaacs 1965, [13], p. 67) can also be modeled as

an approximation game.

The article is structured as follows: in the following section, we model the problem

of decision-making in the absence of strategic interaction and showed that, in this

case, the value of information is always non-negative. The model of the information

that is developed in this section is extended in the following section (Section 3) to

the case where the players must decide in the presence of strategic interaction. This

section demonstrates the existence and uniqueness of Nash equilibrium, and identifies
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conditions under which the social value of the information is non-negative.

2 The Case Without Strategic Interaction

2.1 Some Examples

In this section we introduce the model of the problem of Bayesian decision without

strategic interaction that we extend in the next section to the Bayesian game and,

moreover, we show that the value of information in the case of an agent without

strategic interaction is always non-negative.

Example 2.1 (Unconstrained Discrete Case). In a decision-maker context without

strategic interaction, suppose that he must estimate the demand of a product which

is represented by a random variable taking two different values: ωH for high demand

or ωL for low demand. However, the agent is faced to two situations depending on the

availability of information. In the first situation, he has only an a priori information

about de demand ω; we say the the agent is uninformed. In the second situation, he

has, in addition to the a priori information, a signal ξ of ω, such that it reports two

values ξH and ξL, indicating an high and low demand respectively; we say that the

agent is informed.

The a priori mass function of ω is given by a function g defined as g(ωH) .= θ, where

θ ∈ ]0, 1[, and g(ωL) .= 1 − θ. The signal is distributed according to the marginal

mass function h as follows: h(ξH |ωH) = α, h(ξL|ωH) = 1 − α, h(ξL|ωL) = β and

h(ξH |ωL) = 1 − β. As with the θ parameter, α, β must be in the open interval ]0, 1[.

The marginal mass function h can be represented in the following matrix form(
α 1− α

1− β β

)
.

Now, we try to answer the question about the value of the signals for the agent.

How much is the agent willing to pay for this information service? To answer this

question, the agent needs to define a loss function to measure how close is his estimate

demand to the actual demand, and so to measure the information value. In the bayesian

theory, is customary to define this loss function as an approximation problem (see

Berger 1985, [4], p. 136) as follows: let x and y be the best demand estimation in the

uninformed situation and in the informed situation respectively, the loss function is

given by E(x − ω)2 and E(y − ω)2 for each case, and the value of the information is

given by the difference E(x− ω)2 −E(y − ω)2.

Since the information value depend on the best approximation in each situation,

they are calculated by the agent as follows. In the uninformed situation, the best
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approximation is given by

x = E(ω) = g(ωH)ωH + g(ωL)ωL = θωH + (1− θ)ωL,

while in the informed situation, the agent calculate first an a posteriori mass function

of ω, i.e. an actualized mass function g of ω, given the signal ξ. Next, with the actu-

alized mass function of ω, he calculates the best approximation. In bayesian theory is

customary to denote this a posteriori (actualized) mass function as g(ω|ξ). The best

approximation, in the informed situation, is given by

yH = E(ω|ξH) = g(ωH |ξH)ωH + g(ωL|ξH)ωL,

in case the agent observes signal ξH , and

yL = E(ω|ξL) = g(ωH |ξL)ωH + g(ωL|ξL)ωL,

in case the agent observes signal ξL. We write the best solution as y
.= (yH , yL). Now,

the a posteriori mass function of ω is given by

g(ωi|ξj) =
h(ξj |ωi)g(ωi)∑

i,j∈{H,L} h(ξj |ωi)g(ωi)
for all i, j ∈ {H,L},

which corresponds to the Bayes Theorem (see Berger 1985, [4], p. 126). As example,

we calculate g(ωH |ξH)

g(ωH |ξH) =
h(ξH |ωH)g(ωH)

h(ξH |ωH)g(ωH) + h(ξH |ωL)g(ωL)
=

αθ

αθ + (1− β)(1− θ)
.

To simplify the algebraic manipulation, we assign to ωH the value 12, the high

demand, and to ωL the value 6. Furthermore, we define α
.= β and write β at all. With

these assumptions, the best approximation in each situation is obtained by

x =
1
6
(1 + θ),

in the uninformed case, and

yH = 6
3 θ β − θ − β + 1
2 θ β − θ − β + 1

and yL = 6
3 θ β − 2 θ − β

2 θ β − θ − β
,

in the informed situation. Whereas the information value can be obtained in terms of

θ and β, as the following picture shows

By observing Figure 1, we note that the information value is higher when θ = 1/2

(and β is near of 0 or 1), because it means that the agent has a a priori information

that is indifferent between the high and the low demand. Likewise, the information

value is lower if β = 1/2 (and θ ∈ ]0, 1[), because, in this case, the signals report no

additional knowledge about the demand. �
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Figure 1: Information Value of the Unconstrained Discrete Case

Example 2.2 (Unconstrained Gaussian Case). Let us consider the approximation

problem of a random demand like in Example 2.1, but in the continuous context with

gaussian probability densities. The agent wants to approximate the random variable ω

representing, the future demand for a particular product, who has a a priori knowledge.

Suppose that the agent is faced with two situations. In the first situation, the agent

does not have any additional information to a priori knowledge of ω (the agent is

uninformed). In the second situation, the agent has a signal ξ of the random variable

ω (i.e. the agent is informed). Let ω be the random demand distributed as a normal

with a priori density g given by

g(ω) .=
1√

2πσω

exp
(
−(ω − ω)2

2σ2
ω

)
,

i.e. ω is distributed as normal with mean ω and standard deviation equal to σω. Besides

the signal ξ is distributed as normal with mean ω and standard deviation σξ, then it

has a density

h(ξ|ω) .=
1√

2πσξ

exp

(
−(ξ − ω)2

2σ2
ξ

)
.

From the bayesian decision theory, we know that the best approximation of ω is

given by x = ω in the case of ignorance and y(ξ) = E(u|ξ), in the case where the agent

has a signal ξ. In the latter case, the best approximation y can be calculated as follows

(see Berger 1985, pp. 127 and 161, [4]):

y(ξ) = E(ω|ξ) =

∫
R ωh(ξ|ω)g(ω)dω∫
R h(ξ|ω)g(ω)dω

=
σ2

ξ

σ2
ω + σ2

ξ

ω +
σ2

ω

σ2
ω + σ2

ξ

ξ.

Let us observe that the best approximation y is a linear function of the signal ξ.

With these calculations, we obtain the information value of the signal like in Example

2.1 given by
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1
2
(E(x− ω)2 −E(y − ω)2) =

1
2

σ4
ω

σ2
ω + σ2

ξ

.

Note, like in Example 2.1, the information value is always non-negative, and it is

higher if the standard deviation of the a priori density function, σω, of ω is high or

the standard deviation of the signal, σξ, is low. �

The following example develops the approximation problem in a broader context

of probabilities spaces.

Example 2.3 (Unconstrained Generalized Incomplete Case). Let us suppose Ω to be

a (non empty) set of states of the nature and a structure of information B defined as a

σ-algebra in Ω. Moreover, we define the probability space in the usual manner (Ω,B,P)

and the events space as L2(Ω,B,P), that is, the set of B-measurable random variables

defined in Ω with finite variance. Let us consider two sub-σ-algebras of B, E and F , such

that E ⊆ F ⊆ B. This can be interpreted as the information structures less informative

(E) and more informative (F). The strategies space is defined as L2(Ω, E ,P), a subspace

of L2(Ω,B,P) in the case less informative and L2(Ω,F ,P) in the case more informative.

Notice that the strategies space can be also identified with the space of available

information, that is, all the random variables with finite variance depend on the signal

are also possible strategies of available to the agent.

We now obtain the formulations of Examples 2.1 and 2.2 from this general model in

probabilities spaces. In Example 2.1, based on discrete random variables, Ω is the set

{ωH , ωL} × {ξH , ξL} and the σ-algebra B is the power set of {ωH , ωL} × {ξH , ξL}.
The sub-σ-algebra E (in the uninformed situation) is given by the σ-algebra trivial,

i.e. {∅,Ω}, whereas the sub-σ-algebra F (in the informed situation) is generated by

the set1 {(ωH , ξH), (ωL, ξH)}, i.e. the agent can differentiate between the signal ξH or

ξL, but not the true state of the nature ωH or ωL. Let us observe that E ( F ( B.

Furthermore, the probability measure is given by

P({(ωi, ξj)})
.= h(ξj |ωi)g(ωi) for all (ωi, ξj) ∈ Ω,

where g and h are defined as before.

In Example 2.2 of continuous gaussian random variables, Ω is R2, with elements

(ω, ξ) ∈ Ω; the σ-algebra B is B(R2), the set of Borel subset of R2; the sub-σ-algebra

E is given by {∅,Ω}; and the sub-σ-algebra F by {{∅, R} ⊗ B(R)}. The probability

measure is given by and
1A σ-algebra in Ω generated by a subset A of Ω, written by σ(A), is defined as the intersection of

all the σ-algebra in Ω that contain A. See Dudley 1989, [7], p. 64.
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P(B) .=
∫

B
h(ξ|ω)g(ω)dωdξ for all B ∈ B(R2),

where g and h are the probability densities defined in the respective Example uncon-

strained gaussian case.

Finally, in both cases, the loss function to be minimized is given by

f(v) .=
1
2
E(v − ω)2,

where ω is a random variable of the probabilities space (Ω,B,P). In the uninformed

case, ω is being approximated by the strategy x, that is an element of the strategies

subspace L2(Ω, E ,P); whereas in the informed case, the sub-σ-algebra F rather than

E is considered. From probability theory, we know that the optimal solution of the

problem on the σ-algebra E (resp. F) is given by x = E(ω|E), where E(·|E) is the con-

ditional expectation given the information structure E (see Dudley 1989, [7], Theorem

10.2.9). �

2.2 Non-Negativity of the Information Value

We now consider the general case and show that the Information Value is always non-

negative. Let V be a Hilbert space (an events space, modeled as L2(Ω,B,P) in the

previous example), endowed with an inner product 〈v, w〉 for all v, w ∈ V (modeled

as E(vw) in the example), which gives rise to the norm | · | .= 〈·, ·〉1/2 on V . Further,

let us define the closed subspace E (resp. F ) as the strategies space (modeled as

L2(Ω, E ,P) and L2(Ω,F ,P) respectively in the preceding example).

Let K be the set of strategies imposed by the available resources, which is a convex,

closed subset of V , and consider V = VK the family of closed subspaces E of V ,

satisfying KE
.= K ∩E 6= ∅. Here KE is the set of feasible strategies. Furthermore,

let the loss function f : V → R ∪ {+∞} being a convex, lower semicontinuous (lsc)

function such that domf
.= {x ∈ V : f(x) < +∞} 6= ∅. Let us consider a function

h : V × V → R ∪ {+∞} such that for all x ∈ V , for all E,F ∈ V, E ⊆ F , it satisfies

h(F, x) ≤ h(E, x). (2.1)

A very interesting case occurs when h(E, x) = iKE
(x) is the indicator function

defined on V , by iKE
(x) = 0 if x ∈ KE , and +∞ elsewhere. Given E ∈ VK and setting

fE(x) .= f(x) + h(E, x),

we are concern with the following optimization problem without strategic interaction

min{f(x) + h(E, x) : x ∈ V }, (P1(E))
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which is an unconstrained minimization problem. Its optimal value is denoted by2

minP1(E). For any closed subspace F of V containing E ∈ VK (thus F ∈ VK), it is

defined the information value of F with respect to E as

I1(E,F ) .= minP1(E)−minP1(F ).

This value expresses the maximum amount the agent is willing to pay for obtaining

additional information, and the next theorem asserts that the agent always prefers to

have more information, since additional information has no cost, as expected.

Theorem 2.4 (Non-negativity of I1). Let E,F ∈ VK and f, h as above satisfying (2.1)

with E ⊆ F and minP1(F ) > −∞. Then, the information value is non-negative, that

is, I1(E,F ) ≥ 0.

Proof. It follows from

I1(E,F ) = min P1(E)−minP1(F ) ≥ minP1(F )−minP1(F ) = 0.

Some illustrative examples will be exhibited in Subsection 2.3.

2.3 Computing the Information Value

We now compute the information value when the loss function has a particular qua-

dratic form in the case without strategic interaction. To that end some notations are

needed. Let V be the events space as before, and R be the resources space, with V

and R being Hilbert spaces. Let A : V → R be the technology operator which is

linear and bounded; it transforms strategies into resources. Given b ∈ R(A) = A(V ) a

resource, the convex closed set of resource constrains is given by K = {x ∈ V : Ax = b}.
We define VK , as before, to be the family of closed strategies subspaces E of V , so

that (the feasible strategies) KE
.= K ∩ E 6= ∅. In order to define the loss function,

we consider a linear bounded operator M : V → V and an objective u ∈ V that the

agent wants to approximate by using the feasible strategies.

We are concern with the problem

min{1
2
|Mx− u|2 : x ∈ KE} (Q1(E))

We impose the following hypothesis on Q1(E):

Hypothesis (H1): For each E ∈ VK , the problem Q1(E) has a solution (Theorem

1.1. of Aubin 1993 in [1]).

2Sufficient conditions ensuring existence of solutions to problem (P1(E)) can be found in Aubin

1993, Theorem 1.1, [1].
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Lemma 2.5. If x ∈ KE is a solution to Q1(E), then

〈M∗Mx−M∗u, v〉 = 0 for all v ∈ N (A) ∩ E.

Proof. By setting f(x) = 1
2 |Mx − u|2 we get ∇f(x) = M∗Mx − M∗u, and since

x−x ∈ N (A)∩E, we apply Lemma A.4 with C = KE to obtain the desired result.

Before going further, we need to introduce the following concepts. For a given

E ∈ VK , we say that A : V → R, as above, is limiting observable through E if

A∗(R) ⊆ E, or equivalently, if N (A)⊥ ⊆ E since A∗(R) = N (A)⊥ by Theorem 5.22.6

of Naylor 1982, [16]. Similarly, we say that A is complementary limiting observable

through E if A∗(R)
⊥ ⊆ E, or equivalently, if N (A) ⊆ E.

Moreover, we say that E reduces a linear bounded operator T : V → V if T (E) ⊆
E and T (E⊥) ⊆ E⊥. It means that T is completely characterized by its restrictions to

E and E⊥ (see de paragraph before de Theorem 5.22.4 of Naylor 1982, [16]). It often

happens that these restrictions of T are simpler than T itself. Notice that, T ∗(E) ⊆ E

⇐⇒ T (E⊥) ⊆ E⊥, by definition of T ∗ and the equality E = E⊥⊥ since E is a closed

subspace. Consequently, when T is selfadjoint, that is, T ∗ = T , the reduction of T

through E is equivalent to the invariance of E under T , that is, T (E) ⊆ E. The next

example shows an instance of A which clarifies our notion of observability.

Example 2.6 (Constrained Generalized Incomplete Case). Take A : V → R defined

by

A(x) .= E(ax) (a ∈ V )

as the technology operator. It is not difficult to prove that,

N (A)⊥ ⊆ E ⇐⇒ a ∈ E.

This justifies our notion of observability, which says roughly speaking that a is ob-

servable if a ∈ E, i.e., A is observable through E. Here, A∗ : R → V , is defined by

A∗λ = λa, and thus A∗(R) = N (A)⊥.

Proposition 2.7. Let E ∈ VK , A be the technology operator such that either A is

limiting observable through E or complementary limiting observable through E. If x is

a solution to problem Q1(E), then

PEM∗Mx− PEM∗u ∈ N (A)⊥

Thus, if M∗M(E) ⊆ E, we have

M∗Mx− PEM∗u ∈ N (A)⊥.
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Proof. Because of Proposition 2.5, we have

〈M∗Mx−M∗u, PE∩N (A)v〉 = 0 for all v ∈ V .

But, if N (A) ⊆ E or N (A)⊥ ⊆ E then PE∩N (A) = PEPN (A) by Lemma A.1. Thus

〈PEM∗Mx− PEM∗u, PN (A)v〉 = 0 for all v ∈ V ,

which implies that

PEM∗Mx− PEM∗u ∈ N (A)⊥,

proving the result.

The following theorem is important by itself. Given two closed subspaces, one in-

cluding the other, such a theorem expresses under some mild assumptions that a solu-

tion associated to one subspace can be obtained from a solution corresponding to the

other.

Theorem 2.8. Let E,F ∈ VK , A be the technology operator such that A∗ is limiting

observable through E with E ⊆ F . Assume that the closed subspaces E, F and N (A)

reduce M∗M . If x and y are solutions to Q1(E) and Q1(F ) respectively, then

M∗My = M∗Mx + PF M∗u− PEM∗u.

Consequently, if M∗M : V → V is an isomorphism, then

y = x + (M∗M)−1(PF M∗u− PEM∗u).

Proof. From the previous proposition and the reduction property of E and F by M∗M ,

it follows that

M∗Mx− PEM∗u ∈ N (A)⊥ and M∗My − PF M∗u ∈ N (A)⊥.

Then

〈M∗Mx−M∗My + PF M∗u− PEM∗u, z〉 = 0 for all z ∈ N (A).

Since PF M∗u− PEM∗u ∈ E⊥ ⊆ N (A) and

M∗M(x− y) ∈ M∗M(N (A) ∩ F ) ⊆ M∗M(N (A)) ⊆ N (A),

a preceding equality implies

M∗Mx−M∗My + PF M∗u− PEM∗u ∈ N (A),

and therefore

M∗Mx−M∗My + PF M∗u− PEM∗u = 0.

Obviously, if N (A) = {0} there is nothing to prove.
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We are now in a position to give a formula for the information value of F with

respect to E.

Corollary 2.9. Assume that E,F , A,M satisfy the assumptions of the previous

theorem with E ⊆ F . If x, y are solutions to Q1(E) and Q1(F ) respectively, and

M∗M : V → V is an isomorphism, the value of information is expressed by

I1(E,F ) =〈PF⊥M∗u, (M∗M)−1(PF M∗u− PEM∗u)〉

+
1
2
|M(M∗M)−1PF M∗u|2 − 1

2
|M(M∗M)−1PEM∗u|2.

Proof. We apply the previous theorem to have

I1(E,F ) =
1
2
|Mx− u|2 − 1

2
|My − u|2

= −〈Mx− u, M(M∗M)−1(PF M∗u− PEM∗u)〉

− 1
2
|M(M∗M)−1(PF M∗u− PEM∗u)|2.

Let us denote by α the first term of the right hand side and by β the second one. Then,

since PF M∗u− PEM∗u ∈ E⊥ and x ∈ E, one obtain

α = −〈x, PF M∗u− PEM∗u〉+ 〈u, M(M∗M)−1(PF M∗u− PEM∗u)〉

= 〈PF M∗u + PF⊥M∗u, (M∗M)−1(PF M∗u− PEM∗u)〉

= 〈PF M∗u, (M∗M)−1PF M∗u〉 − 〈PF M∗u, (M∗M)−1PEM∗u〉

+ 〈PF⊥M∗u, (M∗M)−1(PF M∗u− PEM∗u)〉

= |M(M∗M)−1PF M∗u|2 − 〈PF M∗u, (M∗M)−1PEM∗u〉

+ 〈PF⊥M∗u, (M∗M)−1(PF M∗u− PEM∗u)〉.

On the other hand,

β = −1
2
|M(M∗M)−1(PF M∗u− PEM∗u)|2

= −1
2
|M(M∗M)−1PF M∗u|2 + 〈M(M∗M)−1PF M∗u, M(M∗M)−1PEM∗u〉

− 1
2
|M(M∗M)−1PEM∗u|2

= −1
2
|M(M∗M)−1PF M∗u|2 + 〈PF M∗u, (M∗M)−1PEM∗u〉

− 1
2
|M(M∗M)−1PEM∗u|2.

Hence,

I1(E,F ) = α + β

=
1
2
|M(M∗M)−1PF M∗u|2 − 1

2
|M(M∗M)−1PEM∗u|2

+ 〈PF⊥M∗u, (M∗M)−1(PF M∗u− PEM∗u)〉,
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which is the desired result.

Corollary 2.10. Assume that E,F , A satisfy the assumptions of the previous theorem

with E ⊆ F . If M is the identity operator in V , the value of information is expressed

by

I1(E,F ) =
1
2
|PF u|2 − 1

2
|PEu|2. (2.2)

Example 2.11 (Unconstrained Generalized Incomplete Case). In this Example, we

calculate the information value in the context of probability spaces by using Formula 2.2

of Corollary 2.10. In this context, the agent minimizes on E = L2(Ω, E ,P) (respectively

on F = L2(Ω,F ,P) the loss function

f(v) .=
1
2
E(v − u)2,

where u ∈ V = L2(Ω,B,P). From Example 2.3, we already know that the optimal

solution to this problem is x = E(u|E) in the uninformed case (resp. y = E(u|F) in

the informed case). The approximation problem can be expressed in abstract form as

minimizing

f(v) .=
1
2
|v − u|2,

where u ∈ V and v ∈ E or F depending on the uninformed or informed situation re-

spectively. From functional analysis, we know that the optimal solution to this problem

is x = PEu (resp. y = PF u), where PE (resp. PF ) is the orthogonal projector from V

into E (resp. F ). This linear bounded projector is idempotent (PE ◦ PE = PE) and

self-adjoint (〈PEv, w〉 = 〈v, PEw〉 for all v, w ∈ V ). In the context of the probabili-

ties space, this projector takes the form E(·|E) to approximate onto E, or E(·|F) to

approximate onto F respectively (see Dudley 1989, [7], Theorem 10.2.9). Hence,

0 ≤ I1(E,F ) =
1
2
E(E(u|F)2)− 1

2
E(E(u|E)2).

�

Example 2.12 (Unconstrained Gaussian Case). We use Formula 2.2 of Corollary 2.10

to calculate the information value in the case of continuous gaussian variables. Indeed,
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0 ≤ I1(E,F ) =
1
2
E(E(u|F)2)− 1

2
E(E(u|E)2)

=
1
2
E

(
σ2

ξ

σ2
ω + σ2

ξ

ω +
σ2

ω

σ2
ω + σ2

ξ

ξ

)2

− 1
2
E(ω2)

=
1
2

σ4
ω

σ2
ω + σ2

ξ

,

which is the same to the one obtained in Example 2.2. �

Example 2.13 (Unconstrained Discrete Case – revisited). In this Example, we calcu-

late the information value obtained in Example 2.1 by using Formula 2.2 from Corollary

2.10 in the Hilbert spaces context. Nevertheless, we first determinate the matrix form

of the operators PE and PF , likewise we find the matrix form of the norm included in

it. We do not apply the formula directly in the discrete probability space context, but

we develop the same model in an equivalent formulation in vectorial spaces with finite

dimension. The aim of this Example is to illustrate and understand the abstract form

of our formulation in Hilbert spaces, and furthermore to show how it solves a wide

family of practical situations, where the variables are discrete and mostly finite.

First, we express in matrix form the norm | · | of Formula 2.2 and then we obtain the

expression of the orthogonal projectors PE and PF . Recall that in Example 2.11, the

space V is given by L2(Ω,B,P), where Ω is given by the product {ωH , ωL}×{ξH , ξL};
B is the power set in Ω and the probability measure defined by

P({(ωi, ξj)})
.= h(ξj |ωi)g(ωi) for all (ωi, ξj) ∈ Ω.

Let us define following events on this space: the event high demand signal by

{(ω, ξ) : ξ = ξH}, that is equal to {(ωH , ξH), (ωL, ξH)}; likewise we define the event

low demand signal by {(ω, ξ) : ξ = ξL}. Furthermore, we define the following random

variables as the characteristic function of the respective sets by

1•j(ω, ξ) .=

{
1, if ξ = ξj ;

0, otherwise.

Furthermore, we define the random variables as the characteristic function of the

atoms sets of Ω as follows

1ij(ω, ξ) .=

{
1, if ω

.= ωi and ξ = ξj ;

0, otherwise.
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With these definitions, we can express V as a space generated by the linear combi-

nation of members of the finite set {1HH ,1HL,1LH ,1LL}, so that we can write each

random variable of V as v(ωi, ξj) =
∑

i,j 1ij(ωi, ξj)vij , where we use the notation vij

for the value v(ωi, ξj) and i, j ∈ {H,L}. Likewise, the sub-space F is generated by the

set {1•H ,1•L}. Now, we can write the inner product of V as

〈v, w〉 .= E(vw)

=
∫

Ω
v(ω, ξ)w(ω, ξ)h(ξ|ω)g(ω)dωdξ

=
∑

i,j∈{H,L}

1ij(ωi, ξj)vijwijhjigi

=
∑

i,j∈{H,L}

vijwijhjigi,

which we can write (with notation abuse) as vT Bw, where B is a diagonal matrix given

by

B
.= diag(θα, θ(1− α), (1− θ)(1− β), (1− θ)β).

Then, we can say that the space V is the equivalent to the space (denoted by

V ≡ R4), while

E ≡ span{(1, 1, 1, 1)} and F ≡ span{(1, 0, 1, 0), (0, 1, 0, 1)}.

Furthermore, the loss function can be expressed as

f(v) .=
1
2
|v − u|2 ≡ 1

2
(v − u)T B(v − u).

We now determine the orthogonal projector PF . This is done by using the inequality

of Lemma A.4, which becomes an equality on subspace E. Let u be any element from

V . Then the projection of u
.= (uHH , uHL, uLH , uLL) on F , which we call y, must

satisfy

〈y, u− y〉 ≡ yT B(u− y) = 0 for all y ∈ F .

This equality is valid particularly for the elements ei of the base F , from which we

obtain the following system of two equations

〈ei, u− y〉 ≡ eT
i B(u− y) = 0 for all i ∈ {H,L},

and in turn obtain the following result:

yH =
αθ

θα + (1− θ)(1− β)
uHH +

(1− θ)(1− β)
θα + (1− θ)(1− β)

uLH



Computing de Value of Information 15

and

yL =
(1− α)θ

θ(1− α) + (1− θ)β
uHL +

(1− θ)β
θ(1− α) + (1− θ)β

uLL.

Then, PF can then be written in matrix form as

PF =


αθ

θα+(1−θ)(1−β) 0 (1−θ)(1−β)
θα+(1−θ)(1−β) 0

0 (1−α)θ
θ(1−α)+(1−θ)β 0 (1−θ)β

θ(1−α)+(1−θ)β

αθ
θα+(1−θ)(1−β) 0 (1−θ)(1−β)

θα+(1−θ)(1−β) 0

0 (1−α)θ
θ(1−α)+(1−θ)β 0 (1−θ)β

θ(1−α)+(1−θ)β

 .

which is the orthogonal projector into the subspace F . It is easy to prove that this

matrix satisfies the definition of an orthogonal projector, namely it is idempotent

(PF ◦ PF = PF ) and self-adjoint (〈PF v, w〉 = 〈v, PF w〉 for all v, w ∈ V ). Likewise, it

can be the orthogonal projector PE , which is given by

PE =


αθ θ(1− α) (1− θ)(1− β) (1− θ)β

αθ θ(1− α) (1− θ)(1− β) (1− θ)β

αθ θ(1− α) (1− θ)(1− β) (1− θ)β

αθ θ(1− α) (1− θ)(1− β) (1− θ)β

 .

Thus, it can be computed PEu and PF u, and the information value I1(E,F ), which

are here omitted, because they are the same as in Example 2.1. �

2.4 Extension to a Convex Quadratic Problem

In what follows, we show that our model considered in the previous section is not much

restricted. To that end, we first give the following definition.

Definition 2.14. Given a bounded linear operator Q defined on the real Hilbert space

V . We say that Q is positive if

〈Qv, v〉 ≥ 0 for all v ∈ V .

The following theorem collects (Theorems 12.32 and 12.33 of Dixit 1979, [6]) the

main properties of positive operators. We recall that Q∗ stands for the adjoint operator

of Q.

Theorem 2.15. Let V be a Hilbert space and Q : V → V be a bounded linear operator.

The following assertions holds:

(a) If Q is positive then Q = Q∗ and the spectrum σ(Q) ⊆ [0,+∞);

(b) if Q is positive then there exists an unique bounded linear operator M which is

positive satisfying Q = M∗M . Moreover, M is invertible provided Q is so.
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Let us consider the cost function

f̃(v) .=
1
2
〈Qv, v〉 − 〈b, v〉 (v ∈ V ),

where Q is as above and b ∈ V . By applying the previous theorem we show that any

function of the above form can be reduced to our model.

Proposition 2.16. Let f as above with Q having inverse, then there exists an invertible

positive linear bounded operator M , such that

f̃(v) =
1
2
|Mv − u|2 − 1

2
|u|2,

with u = M−1b. As a consequence, the value of information associated to f̃ and to f

coincides, where

f(v) =
1
2
|Mv − u|2.

Proof. We simply apply the previous result to get M satisfying

〈Qv, v〉 = |Mv|2 and 〈b, v〉 = 〈Mv, u〉, (2.3)

from which the conclusion follows.

3 The Case with Strategic Interaction

3.1 Some Examples

Example 3.1 (Constrained Gaussian Case). Consider two players who are attempting

to approximate a common objective denoted by ω. Afterwards, we consider different

objectives. The loss function of player i (i ∈ {1, 2}) is given by the distance between

this objective and xi, his best approximation. However, each player’s approximation

can be affected by the action mijxj of the other player. The effect mijxj of player j

on player i may be interpreted as the action taken by player j to disturb player i’s

approximation. If ω is a random variable, the cost function of player i is expressed as

1
2
E(xi + mijxj − ω)2 with i 6= j.

Further, we consider that the players share a limited common resource, typically

human or materials resources. This restriction of the resource is modeled as E(a1x1 +

a2x2) = b, where ai represents the ability of player i to transform resources into outputs

and b the quantity of resources available to both players.

To illustrate the conditions that ensure a non-negative information value, we con-

sider three cases of static bayesian games. In the first case (Case A), both players have
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no information about and this knowledge is common to both players. In Case B, only

one of the players has a signal ξ containing information on ω. Finally, in Case C both

players have the same signal ξ. Case B is thus an asymmetric information bayesian

game, whereas cases A and C are bayesian games with symmetric information.

To determine the three games’ respective equilibria we begin by specifying more

precisely certain items introduced above. Like in Example 2.2, the objective ω is a

real random variable that has an a priori normal density function with mean 0 and

standard deviation 1. This information is common to both players in all cases.

In case A, player i knows that the opponent j plays an optimal strategy xj and

also both know that they have no more information than the common knowledge.

Therefore, if player 2’s best strategy is x2, then the reaction of player 1 (x1) to player

2’s strategy satisfies

f1(x1, x2) = min{1
2
E(x1 + m12x2 − ω)2 : E(a1x1 + a2x2) = b}.

Given the strategy x2, player 1 tries to find the optimal solution to the previous

minimization problem. Thanks to the conditions of the first order, then there is a price

of resource p, so that x1 + m12x2 − pa1 = 0 and further E(a1x1 + a2x2) = b, that in

this Case is a1x1 + a2x2 = b. Similarly, because player 2 optimizes his loss function,

he obtains strategies satisfying x2 + m21x1 − pa2 = 0. These three linear equations

together uniquely determine equilibrium strategies x1 and x2.

To make the effect of symmetry/asymmetry of information available to both players

clear, we assume without loss of generality, that a1 and a2 are constant and equal to

a with a 6= 0; b = 1 and m21 = m12 = m with m 6= 1. In this way we can isolate the

effect of the asymmetry of information from the other parameters. The loss functions

of both players are obtained from the solution of the equilibrium conditions and take

the following value3

f1(x1, x2) = f2(x1, x2) =
1
8

(
1 + m

a

)2

+
1
2
.

In Case B, player 1 observes the signal ξ. We assume that the marginal density of

signal ξ is also normal, with mean ω and standard deviation 1. Both players, in this

instance, know that player 1 has the signal ξ. If we suppose that the strategy of player

1 is linear affine and takes the expression x1 = α1 +β1ξ1, then the equilibrium solution

satisfies the condition x1 + mx2 − pa = 0 and the resource constrain ax1 + ax2 = b.
3Obtaining these loss functions involves certain manipulations that were performed using the soft-

ware program Maple V. The optimal equilibrium solutions (xi) are not presented here as they do not

contribute significantly to our analysis.
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This equations with the optimality condition of player 2, i.e. x2 +mx1− pa = 0, gives:

f1(x1, x2) =
1
8

(
1 + m

a

)2

+
1
4

and f2(x1, x2) =
1
8

(
1 + m

a

)2

+
1
4
((m− 1)2 + 1).

Case C, in which both players observe ξ, is solved in analogous fashion with the

following result:

f1(x1, x2) = f2(x1, x2) =
1
8

(
1 + m

a

)2

+
1
4
.

Having set out the foregoing results we now propose the following game. Assume

that each player has the option of using the additional observation ξ and knows that

the opponent can use the same information or not. As before, both players play si-

multaneously. The gain from using the information obviously depends on whether the

other player is also using it or not. Thus, player 1 can opt to use not the information

(Decision I) or to use it (Decision II), and player 2 must also decide whether use it

(Decision 2) or not (Decision 1). The gain or loss to player i from using the information

is obtained as the difference between the respective values of the cost function for the

equilibrium strategies with and without the additional information. If, for example4,

m =
√

3 + 1 and we define then the payoff matrix of the game as shown in Table 1.

Player 2

1 2

Player 1 I (0, 0) (−1
2 , 1

4)

II (1
4 ,−1

2) (1
4 , 1

4)

Table 1: Payoff matrix of the information game

Observe that this game has a pure strategy Nash equilibrium that consists in both

players preferring to use the additional information. In other words, the Nash equilib-

rium is (II, 2).

In this paper we are interested in the problem represented in Table 1. Assume,

then, that player 1 cannot use the available information or that the observation is

too expensive for him to obtain it. In this situation, player 2 will use the available

information to achieve a decrease 1
4 in his costs while bringing about an increase 1

2

in player 2’s costs. In other words, while player 2 gains unilaterally, player 1 loses

twice what player 1 gains. But of particular significance is that player 1’s unilateral

decision has a social cost equal to 1
4 . How can we ensure that this does not occur?

What conditions must be imposed on the information available to the players and/or
4This value of m does not limit the generality of the analysis.
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the interaction between them to ensure the social benefits of the information are non-

negative? �

Example 3.2 (Constrained Generalized Incomplete Case). Let us first show how to

represent the information structure available to the players in the context of prob-

abilities spaces. The measure space (Ω,B) of the previous Example 3.1 is given by

(R2,B(R2)) where B(R2) are the Borel subset of R2. Depending of the case A, B or

C, each player has a sub-σ-algebra of B(R2) representing the information structure

available to him.

In Case A, both players are uninformed, that is, the information structure is the

sub-σ-algebra {∅,Ω} for each player. In Case B, player 1 has an signal represented by

the information structure {{∅, R} ⊗ B(R)}, while the player 2 is uninformed. In Case

C, both players receive the same signal, so that they have the information structure

{{∅, R}⊗B(R)}. With these information structures, the probability measure is defined

as in Example 2.3. �

3.2 Definition of the Social Information Value

For i = 1, 2, let Vi be the event space for player i, which is Hilbert, both endowed with

the inner product denoted by the same symbol 〈·, ·〉. Let R be the resources space

as Hilbert space too. For each i = 1, 2, let Ai : Vi → R be the technology operator

of player i, being bounded and linear that transforms the strategies into resources.

Similarly, for i 6= j, let the (i, j)-interaction operator Mij : Vj → Vi which is

bounded and linear. The element u = (u1, u2) ∈ V1 × V2, where ui is the individual

objective of player i, is given. Let E1 ⊆ V1, E2 ⊆ V2, be the strategies spaces

of player 1 and 2, which are closed subspaces; the available resource b ∈ R(A) =

A(V1 × V2) is given, where A : V1 × V2 → R is defined by A(x1, x2) = A1x1 + A2x2.

Set V
.= V1 × V2. This is a Hilbert space too endowed with the inner product

〈v, w〉 .= 〈v1, w1〉 + 〈v2, w2〉 if v1 = (v1, v2) ∈ V1 × V2, w = (w1, w2) ∈ V1 × V2. The

bounded linear operator M : V → V defined by M(v1, v2) = (v1 + M12v2, v2 + M21v1),

is the interaction operator between both players. Let us denote by E
.= E1 × E2

and KE
.= {x ∈ E : Ax = b}.

The Nash equilibrium problem on E, Q2(E), consists in finding x = (x1, x2) ∈ KE

such that

f1(x1, x2, u1) ≤ f1(x1, x2, u1) for all x1 ∈ E1, A1x1 + A2x2 = b

f2(x1, x2, u2) ≤ f2(x1, x2, u2) for all x2 ∈ E2, A1x1 + A2x2 = b

}
(Q2(E))

Such an x is called a Nash equilibrium solution. The remainder of this section considers

the following loss functions
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fi(x1, x2, ui)
.=

1
2
|xi + Mijxj − ui|2 (i 6= j).

Obviously, the function fi is convex in xi. For a given (x1, x2) ∈ KE , we set KE1

.=

{x1 ∈ E1 : A1x1 + A2x2 = b}, KE2

.= {x2 ∈ E2 : A1x1 + A2x2 = b}, which are convex

and closed sets. Obvioulsy KE1 ×KE2 ⊆ KE .

The next proposition characterizes the Nash equilibrium solutions as solutions to a

variational inequality problem, and it will be used to find a explicit formula for the

information value.

Proposition 3.3. Let x ∈ KE. Then, x is a Nash equilibrium solution to problem

Q2(E) with the quadratic loss functions previously given if and only if

〈Mx− u, x− x〉 ≥ 0 for all x = (x1, x2) ∈ KE1 ×KE2.

Proof. If x = (x1, x2) ∈ KE is a Nash equilibrium solution to Q2(E), then x1 (resp. x2)

minimizes f1(·, x2, u1) (resp. f2(x1, ·, u2)) on KE1 (resp. KE2). Then, by using Lemma

A.4, we obtain

〈x1 + M12x2 − u1, x1 − x1〉 ≥ 0 for all x1 ∈ KE1

and

〈x2 + M21x1 − u2, x2 − x2〉 ≥ 0 for all x2 ∈ KE2 .

Summing up the two expressions, it gives

〈Mx− u, x− x〉 ≥ 0 for all x ∈ KE1 ×KE2 .

Conversely, assume that x ∈ KE satisfies the previous variational inequality. In par-

ticular, if x = (x1, x2) with x1 ∈ KE1 then

〈x1 + M12x2 − u1, x1 − x1〉 ≥ 0 for all x1 ∈ KE1 (3.1)

and analogously,

〈x2 + M21x1 − u2, x2 − x2〉 ≥ 0 for all x2 ∈ KE2 . (3.2)

By virtue of Lemma A.4, (3.1) and (3.2) assert that x is a Nash equilibrium solution

to Q2(E).

3.3 Computing de Social Information Value

We now define the (Social) information value for the problem Q2(E). Let F1, F2 be

two closed subspaces of V such that E1 ⊆ F1 and E2 ⊆ F2. Let x = (x1, x2) ∈ KE ,
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y = (y1, y2) ∈ KF (with F = F1×F2) be Nash equilibrium solutions to problem Q2(E)

and Q2(F ) respectively. We define the (social) information value of problem Q2

of F with respect to E by

I2(E,F ) .= f1(x1, x2) + f2(x1, x2)︸ ︷︷ ︸
Solution in E

− (f1(y1, y2) + f2(y1, y2))︸ ︷︷ ︸
Solution in F

.

The next result expresses the information value in terms of the interaction operator

of the game.

Lemma 3.4. The information value of problem Q2(E) can be written by

I2(E,F ) =
1
2
|Mx− u|2 − 1

2
|My − u|2.

Proof. By taking into account the definition of M , we write

I2(E,F ) =
1
2
|x1 + M12x2 − u1|2 +

1
2
|x2 + M21x1 − u2|2

−
(

1
2
|y1 + M21y1 − u1|2 +

1
2
|y2 + M21y1 − u2|2

)
=

1
2
|x1 + M12x2|2 +

1
2
|x2 + M21x1|2

− 〈x1 + M12x2, u1〉 − 〈x2 + M21x1, u1〉+
1
2
|u1|2 +

1
2
|u2|2

−
(

1
2
|y1 + M12y2|2 +

1
2
|y2 + M21y1|2

)
−
(
−〈y1 + M12y2, u1〉 − 〈y2 + M21y1, u2〉+

1
2
|u1|2 +

1
2
|u2|2

)
=

1
2
|Mx− u|2 − 1

2
|My − u|2.

This proves the desired equality.

Now, our aim is to establish an explicit formula for the information value. To that

end, we need an extension of the notion of observability introduced in Section 2.

Given E1 ⊆ V1 and E2 ⊆ V2 as above, bounded and linear operators Ai : Vi → R

(i = 1, 2) we say that (A1, A2) is limiting observable through E1 × E2 if

(N (A1) × N (A2))⊥ ⊆ E1 × E2. It is equivalent to say that each Ai is limiting

observable in the sense introduced in Subsection 2.3, i.e., if N (Ai)⊥ ⊆ Ei for

i = 1, 2, since N (A1)⊥ × N (A2)⊥ = (N (A1) × N (A2))⊥, Due to the inclusion

N (A1) × N (A2) ⊆ N (A) where A(x1, x2)
.= A1(x1) + A2(x2), we conclude that, if

(A1, A2) is limiting observable through E1 ×E2 then A is limiting observable through

E = E1 × E2, i.e., N (A)⊥ ⊆ E.

The next example shows an instance of A1, A2 justifying the notion of observability

just introduced.
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Example 3.5. Let us consider as before A1x1 = E(a1x1), A2x2 = E(a2x2), where

(a1, a2) ∈ V1×V2, and A(x1, x2) = E(a1x1 + a2x2). It is not difficult to prove that (set

E = E1 × E2),

N (A1)⊥ ×N (A2)⊥× ⊆ E1 × E2 =⇒ (a1, a2) ∈ E1 × E2 ⇐⇒ N (A)⊥ ⊆ E.

The first implicancy become an equivalence if N (A1) × N (A2) = N (A). Here, A∗ :

R → V , is defined by A∗λ = λ(a1, a2), and thus A∗(R) = N (A)⊥.

Lemma 3.6. Assume that (A1, A2) is limiting observable through E1 × E2 = E. If

x ∈ KE is a Nash equilibrium solution to problem Q2(E), then

PEMx− PEu ∈ (N (A1)×N (A2))⊥.

Moreover, if M(E) ⊆ E, then

Mx− PEu ∈ (N (A1)×N (A2))⊥.

Proof. Thanks to Proposition 3.3, we have that

〈Mx− u, x− x〉 ≥ 0 for all x = (x1, x2) ∈ KE1 ×KE2 .

Thus

〈Mx− u, z〉 = 0 for all z ∈ (N (A1)×N (A2)) ∩ E.

It implies that

〈Mx− u, PE∩(N (A1)×N (A2))v〉 = 0 for all v ∈ V .

We apply Lemma A.1 to obtain 〈PEMx−PEu, PN (A1)×N (A2)v〉 = 0 for all v ∈ V , from

which the conclusion follows.

Remark 3.7. The invariance of E under M is implied by requiring that Mij :

Mij(Ej) ⊆ Ei, i 6= j as one can easily showed.

On the other hand, the condition M(N (A)) ⊆ N (A1) × N (A2) imposed in the next

theorem, is implied by the two assumptions

M12(N (A2)) ⊆ N (A1), M21(N (A1)) ⊆ N (A2),

provided N (A1)×N (A2) = N (A).

Theorem 3.8. Let, for i = 1, 2, Ei ⊆ Vi, Fi ⊆ Vi be closed subspaces. Set E = E1×E2,

F = F1×F2, and assume that: E ⊆ F , (A1, A2) is limiting observable through E1×E2,

M(E) ⊆ E, M(F ) ⊆ F and M(N (A)) ⊆ N (A1) × N (A2). If x and y are Nash

equilibrium solutions to Q2(E) and Q2(F ) respectively, then
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(a) My = Mx + PF u− PEu;

(b) The social information value is given by the Formula

I2(E,F ) =
1
2
|PF u|2 − 1

2
|PEu|2; (3.3)

which is non-negative, i.e.

(c) I2(E,F ) ≥ 0.

Proof. (a): By the previous Lemma,

Mx− PEu ∈ (N (A1)×N (A2))⊥ and My − PF u ∈ N (A1)×N (A2))⊥.

Then

〈z,Mx− PEu−My + PF u〉 = 0 for all z ∈ N (A1)×N (A2).

Since x− y ∈ N (A),

PF u− PEu ∈ E⊥ ⊆ N (A1)×N (A2), M(x− y) ∈ N (A1)×N (A2),

we immediately obtain

My = Mx + PF u− PEu.

(b): From Part (a), we have

2I2(E,F ) = |Mx− u|2 − |My − u|2 = −|PF u− PEu|2 − 2〈Mx− u, PF u− PEu〉

= −|PF u|2 − |PEu|2 + 2〈PF u, PEu〉+ 2〈u, PF u− PEu〉,

since PF u−PEu ∈ E⊥ and M(E) ⊆ E. Writing u = PF u+PF⊥u, the previous equality

reduces

I2(E,F ) =
1
2
|PF u|2 − 1

2
|PEu|2.

(c): It follows from the inequality (see (2) of Lemma A.1)

|PEu| = |PEPF u| ≤ |PE ||PF u| ≤ |PF u|.

Example 3.9 (Unconstrained Generalized Incomplete Case). The first condition to

assure the non-negativity of the information value is about the invariance of the sub-

spaces E and F under the interaction operator M .

Then, we introduce the concept of observability of the interaction operator. In game

theory, a stochastic parameter of a game is defined as a type of a player (see Harsanyi

1967, [11]), i.e. a stochastic variable that is known by the player, while the type of the

opponent musts be estimated, in the bayesian sense, by the own types of the player.
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Now, a large class of linear bounded operators M can be expressed as λEPE + λEPE⊥

(see Naylor 1982, [16], p. 398), where λE is an element of R. For this reason, the

invariance of E under M means that the operator M is totally determined by E. In

other words, if the types of players determine totally the operator M , then the subspace

E is invariant under the operator M . If this is valid for the subspace F too, we say

that interaction operator M is observable.

For instance, in Example 3.1, the operator M takes the form

M(v1, v2)
.= (v1 + M12v2, v2 + M21v1)

and Mij is given by Mijvj
.= mijvj , where mij ∈ R, i.e. Mij corresponds to the

multiplication for a real number. In this case, if there is symmetry of information (i.e.

E1 = E2) between the players, then the interaction operator is observable.

The second condition is about the capacity of each player to observe their own

technology matrix. To make this concept clear, we say that an event v of V is ob-

servable if player i has complete information about it, i.e. v is a member of Ei. Now

we extend this concept to the observability of the technology matrix. The following

Example clarifies this concept

Recall that the technology matrix A is given by

A(x1, x2)
.= E(a1x1 + a2x2).

It is not difficult to prove that, if the events ai are observable to the player i,

then N (A)⊥ ⊆ E. In fact, if ai is observable to player i, i.e. ai ∈ Ei, we prove that

E⊥ ⊆ N (A). For this, let consider an event (y1, y2) of V , so that E(y1x1 + y2x2) = 0,

i.e. (y1, y2) ∈ E⊥. Then E(a1y1 + a2y2) = 0, because each element ai is observable.

From here (y1, y2) ∈ N (A) is obtained. �

Example 3.10 (Constrained Gaussian Case). As we have seen in Example 2.12, we try

to use Formula 3.3 of Theorem 3.8 to obtain the social information value between the

Nash Equilibrium solutions (I, 1) and (II, 2) of Example 3.1. In this case, the operator

M and the technology matrix A are both observable, then we can apply Formula 3.3

of Theorem 3.8.

I2(E,F ) =
1
2
|PF u|2 − 1

2
|PEu|2

=
1
2
|PF1u1|2 +

1
2
|PF2u2|2 −

1
2
|PE1u1|2 −

1
2
|PE2u2|2

=
1
2
E(E(ω|F1)2 + E(ω|F2)2)−

1
2
E(E(ω|E1)2 + E(ω|E2)2)

=
1
2
(E(

1
4
ξ2) + E(

1
4
ξ2))− 0 =

1
2
.
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Let us note that Theorem 3.8 ensures the value of information is independent on the

interaction operator M , on the restriction of resources determined by the technology

matrix A, and on the available resource b. It only depends on the objectives ui and the

subspace information available E and F . �

Example 3.11 (Duopoly with Differentiated Products). Following Dixit 1979, [6] and

Singh and Vives 1984, [17], consider a two-firm industry producing two differentiated

products indexed by i. To simplify the exposition, we assume that production is cost-

less. We assume the following (inverse) demand for product i is given by the price

ω −mivi −mvj with mi > 0,m2
i > m2,

where vi ≥ 0 is the production level each firm and i 6= j. Thus, we assume that each

product is produced by a different firm facing the given demands. The assumption

m2
i > m2 implies that the effect of increasing vi on the price of product i is larger than

the effect of the same increase on the price of product j. A common technic to describe

this is to say that own-price effect dominates the cross-price effect.

We note that each firm i choose the production level to maximize their utility. In

this example, this is posed as an equilibrium problem, i.e.

fi(vi, vj)
.= min{vi(mivi + mvj − ω) : vi ≥ 0} with i, j = 1, 2; i 6= j.

Let us observe that the social cost f̃ can be obtained by the sum of each cost, i.e.

f̃(vi, vj)
.= f1(v1, v2) + f2(v1, v2),

that is expressed as f̃(v) = 〈Qv, v〉 − (ωv1 + ωv2), where Q is given by(
m1 m

m m2

)
,

and v
.= (v1, v2). We note that the matrix Q is invertible, since it is supposed that the

own-price effect dominates the cross-price effect, i.e. m2
i > m2. �

A Auxiliary results

Lemma A.1. Let be V a real Hilbert space, and E1, E2 closed subspaces of V . If either

E2 ⊆ E1 or E⊥
2 ⊆ E1, then the following assertions hold:

(1) E1 = (E1 ∩ E2)⊕ (E1 ∩ E⊥
2 ) and

(2) PE1∩E2 = PE1PE2 = PE2PE1.
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Proof. (1) Let x ∈ E1. Obviously x = x′ ⊕ x′′, with x′ ∈ E2, x′′ ∈ E⊥
2 .

• Assume first that E2 ⊆ E1. Then x′ ∈ E1 and thus x′′ = x− x′ ∈ E1 −E1 = E1.

Then x = x′ + x′′ with x′ ∈ E1 ∩ E2 and x′′ ∈ E1 ∩ E⊥
2 . Morover, if x′ + x′′ =

y′ + y′′ with x′, y′ ∈ E1 ∩ E2 and x′′, y′′ ∈ E1 ∩ E⊥
2 , then x′ − y′ ∈ E1 ∩ E2 and

x′′− y′′ ∈ E1 ∩E⊥
2 . In particular, x′− y′ ∈ E2 ∩E⊥

2 = {0}, i.e., x′ = y′, and then

x′′ = y′′.

• In case E⊥
2 ⊆ E1, by noticing that E⊥

2 is also a closed subspace of V , we simply

replace E2 by E⊥
2 in the previous case.

(2) Let be u ∈ V . By definition, we have

x = PE1∩E2u ⇐⇒

{
x ∈ E1 ∩ E2

〈u− x, v〉 = 0 for all v ∈ E1 ∩ E2.

Since x ∈ E1 ∩ E2, we obtain

〈u− x, v〉 = 0 for all v ∈ E1 ∩ E2 ⇐⇒ 〈PE2u− x, v〉 = 0 for all v ∈ E1 ∩ E2

⇐⇒ 〈PE2u− x, v〉 = 0 for all v ∈ E1.

The last equivalence was obtained from Part (1). Hence, x = PE1PE2u, and then

PE1∩E2u = PE1PE2u, proving the first equality of Part (2). For the second equality we

simply remind that every projection operator is selfadjoint and idempotent, and the

fact (PE1PE2)
∗ = P ∗

E2
P ∗

E1
.

Remark A.2. Let E, F be closed subspaces of V such that E ⊆ F , then F⊥ ⊆ E⊥.

From the previous lemma, it follows that

E⊥ = (E⊥ ∩ F )⊕ (E⊥ ∩ F⊥) and PE⊥∩F = PE⊥PF .

Corollary A.3. If E⊥
2 ⊆ E1, then

E1 = (E1 ∩ E2)⊕ (E1 ∩ E⊥
2 ) and E2 = (E2 ∩ E1)⊕ (E2 ∩ E⊥

1 ).

Consequently,

PE1∩E2 = PE1PE2 = PE2PE1 .

Proof. Since E⊥
2 ⊆ E1 implies E⊥

1 ⊆ E2, we obtained the result after applying the

preceding lemma twice.

Finally, we formulate the necessary first order optimality condition, who prove

can be found in any general textbook of mathematical programming (see for example

Bazaraa et al. 1979, Theorem 3.4.3, [2]).
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Lemma A.4. Let be C ⊆ V be a closed and convex set, and f : V → R a function

continuously differentiable on an open set containing C. If x minimizes f on C, then

〈∇f(x), x− x〉 ≥ 0 for all x ∈ C.

If further f is convex, then any x ∈ C satisfying the previous inequality minimizes f

on C.
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