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a b s t r a c t 

We propose an estimation scheme for local fiber bundle direction in the left ventricle directly from gray 

values of arbitrarily spaced cardiac diffusion weighted images (DWI). The approach is based on a para- 

metric and space-dependent mathematical representation of the myocardial fiber bundle orientation and 

hence the diffusion tensor (DT) for the ventricular geometry. By solving a nonlinear inverse problem de- 

rived from a maximum likelihood estimator, the degrees of freedom of the fiber and DT model can be 

estimated from the measured gray values of the DWIs. The continuity of the DT model allows to relax 

the restriction to the individual DWIs to match spatially like for voxelwise DT calculation. Hence, the 

spatial misalignment between image slices with different diffusion encoding directions, that is encoun- 

tered in-vivo cardiac imaging practice can be integrated into the estimation scheme. This feature results 

then in a negligible impact of the spatial misalignment on the reconstructed solution. We illustrate the 

methodology using synthetic data and compare it against a previously reported fiber bundle reconstruc- 

tion technique. To show the potential for real data, we also present results for multi-slice data constructed 

from ex-vivo cardiac diffusion weighted measurements in both mono- and bi-ventricular configurations. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is

capable to measure the fiber architecture of tissues non-invasively

( Basser et al., 1994 ). Based on the relation between gray values

within a pulsed gradient spin echo experiment ( Stejskal and Tan-

ner, 1965 ): 

g (i ) = g (0) exp 

(
−b 

(i ) T  

D b 

(i ) 
)

(1)

the tissue anisotropy information – represented as diffusion ten-

sor D ∈ R 

3 ×3 – can be connected with the diffusion encod-

ing directions b (0) 
, b (1) 

, · · · ∈ R 

3 and the measured gray values

g (0) , g (1) , · · · ∈ R 

+ . Since the diffusion tensor is symmetric posi-

tive definite, at least 6 gray value measurements plus one non-

weighted reference measurement are required to estimate all dif-

fusion tensor components, but usually between 10 to 20 are ac-
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uired in order to compensate for measurement noise. It has been

hown, that the diffusion tensor’s principal eigenvector correlates

ell with the tissue structure given single fiber populations within

he region of interest ( Scollan et al., 1998; Hsu et al., 1998 ). 

Full three-dimensional measurements of the myocardial fiber

tructure through DW-MRI suffer from long scan times. Hence,

t was mainly applied to ex-vivo heart samples, see e.g.

 Lombaert et al., 2012 ) and references therein. 

Recently, in-vivo DW-MRI acquisitions in a limited number of

lices along the heart were reported ( Gamper et al., 2007; Nguyen

t al., 2013; Nielles-Vallespin et al., 2013; Stoeck et al., 2015;

oulin et al., 2015 ). Hence, a three-dimensional reconstruction of

he fibers from sparsely distributed DW-MRI data is needed, which

as to deal not only with low signal-to-noise ratios, but also with

he spatial mismatch of the diffusion weighted images (DWIs). 

The image slices for cardiac DW-MRI are typically acquired at

xed positions with respect to the reference frame of the MR-

canner. Nevertheless, motion of the heart due to different breath-

ng levels and eddy current effects implies that every DWI corre-

ponding to each gradient encoding direction for a given slice has

 different location with respect the heart itself. 

http://dx.doi.org/10.1016/j.media.2017.03.005
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Fig. 1. Fiber angles definition. 
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Recently in Toussaint et al. (2013) , a regularized tensor inter-

olation method, based on curvilinear coordinates, was proposed

or reconstructing the left ventricular fiber architecture from a set

f in-vivo DWI-slices. Since its starting point is a voxelwise linear

stimation of the diffusion tensor, it relies on the perfect spatial

atching of the DWIs with respect to the ventricular geometry,

hich cannot be achieved in vivo. 

To reduce spatial mismatch, respiratory gating ( Sachs et al.,

994 ) with small acceptance windows are used during in-vivo

cquisition, therefore significantly prolonging total scan duration.

pecifically, current acquisition consists in 6 short axis slices using

bout ± 2.5 mm for acceptance window, implying 30–50% of data

cceptance rate ( Nielles-Vallespin et al., 2013; Nguyen et al., 2013;

on Deuster et al., 2015 ). 

The goal of this work is to propose a methodology that is able

o reconstruct the myocardial fiber orientation from DW-MRI data

y directly handling arbitrarily spaced DWIs. A reconstruction tech-

ique that may robustly deal with larger respiratory gating win-

ows would allow to reduce imaging time, improving the chance

f diffusion MRI to be applied in clinical studies. 

To achieve this, we build a continuous and parametrizable

odel of the cardiac fiber bundles angles, and therefore of the

iffusion tensor. We can then adapt the fiber angle field in an

ndividual-specific manner by estimating the degrees of freedom

f such model from the measured DWIs using a maximum likeli-

ood approach. We can therefore relax the restriction to the indi-

idual DWIs to match spatially, since the continuous representa-

ion of the fiber architecture allows to “glue” the information com-

ng from different spatial locations. A very preliminary version of

his method using solely a simple prolate spheroid geometry was

eported in Nagler et al. (2015) . In this article, we introduce sev-

ral additional and crucial methodological developments from the

odel selection and inverse problems fields, as well with more ex-

ended examples with synthetic data and with real DW-MRI mea-

urements. In all the presented tests, the superior performance of

ur approach with respect to the state-of-the-art curvilinear tensor

nterpolation becomes explicit. 

The rest of the paper is organized as follows. Section 2 jus-

ifies and describes the proposed diffusion tensor model and in-

roduces the estimation formulation. In Section 3 , we exemplify

he method using a synthetic fiber data set on a deformed pro-

ate spheroid geometry, and we compare the performance of the

roposed method against the curvilinear tensor-interpolation of

oussaint et al. (2013) . In Section 4 , the applicability of the method

n real DW-MRI measurements is shown by using multi-slice dif-

usion images subsampled from a high-resolution ex-vivo data set.

inally, a more detailed discussion of the results and some per-

pectives are presented in Sections 5 . 

. Methods 

In this section, we first describe the mathematical model of

he diffusion tensor (DT) and the parametrizable fiber angle fields.

ext, we introduce classical model selection concepts in order to

ystematically find a suitable parametrization for a given amount

f noisy data. This allows to choose a reasonable number of pa-

ameters of the model to avoid overfitting. Finally, we detail the

aximum likelihood fiber estimator algorithm used later in the

umerical examples. Throughout this article, we will use conven-

ion that scalar, vector or matrix/tensor quantities will have nor-

al, bold and calligraphic font, respectively. 

.1. The diffusion tensor model 

We start from the assumption that epicardial and endocardial

urfaces of the left ventricular geometry are available, from which
 three-dimensional tetrahedral mesh discretization of the domain

⊂ R 

3 with vertices x 1 , . . . , x p ∈ � has been constructed, with p

he number of vertices of the computational mesh. Then, we define

or every point within � the transverse isotropic DT model of the

orm: 

(ϑ, ϕ, λ, c , � ) = (λ1 − λ2 ) [ f (ϑ, ϕ, c , � ) � f (ϑ, ϕ, c , � ) ] + λ2 I. 

(2) 

here I is the identity matrix. The values λ = [ λ1 , λ2 ] > 0 are the

iffusivities in fiber and cross-fiber direction, respectively. The fiber

irections are defined as: 

f (ϑ, ϕ, c , � ) = cos (ϑ ) cos (ϕ) c + sin (ϑ ) cos (ϕ ) � + sin (ϕ ) c × � 

(3) 

here ϑ, ϕ : � → R are the local helix and transverse angle of the

bers and c , � : � → R 

3 the local circumferential and long-axial di-

ection , respectively. Furthermore, [ c , � , c × � ] forms an orthonor-

al system for all x ∈ �. A graphical sketch of the fiber angle def-

nition is given in Fig. 1 . 

.2. The parametrizable fiber angle model 

The next (and key) step in the fiber estimation framework

s to build a continuous, but parametrizable DT model, which is

ased on a spatial parametrization of the cardiac fiber angles. The

egrees-of-freedom (DOF) of the fiber angle fields will be adapted

or each data set by estimating the DOF of such model from the

easured DWIs. In the following lines we describe how we repre-

ent this model for a fixed number of DOF. 

We assume that the helix and transverse fiber angles distribu-

ions are discretized by piecewise continuous fields over “surface

atches”, see Fig. 2 . These patches are based on regular partitions

f the heart surface and do not necessarily agree with the classical

HA partitions. The angle fields are then characterized by a set of

OF � ∈ ] − 90 ◦, 90 ◦[ κh , � ∈ ] − 90 ◦, 90 ◦[ κt , κh , κt ∈ N , respectively,

orresponding to the angle values at the vertices of the patches,

ee Fig. 2 (b). The criteria for the adequate number of partitions

and hence of DOF) will be introduced in Section 2.3 . 

We assume therefore that the following relation holds for each

ertex of the computational mesh x j : 

( x j ) = τ (β, t( x j )) Z 

k h 
j 
�, ϕ( x j ) = Z 

k t 
j 
� (4)

here the sub-index j denotes the j − th row of the linear

perators Z 

k h , Z 

k t (this notation will be used throughout the
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Fig. 2. Visualization of patches and respective DOF used for fiber angle discretization on a sample surface. Black spheres indicate the DOF locations, and the surface patches 

are separated by colors. 

Fig. 3. Base to apex view on different patches resolution for the parametrizable angle models. Black spheres indicate the DOF locations, and the surface patches are separated 

by colors. Only the epicardial surface is shown for the sake of clarity, the split in the endocardial surface is analogous. Left side of the surfaces corresponds to the free wall, 

and right side to the septum. 
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manuscript). The matrices Z 

k : R 

κ(k ) → R 

p correspond to linear

harmonic lifting operators that first interpolate the angle DOF (e.g.

� or �) from the patches corners to the interior of the patches

(and therefore to the whole ventricular surface), and then from

the surface to the ventricular volume using a three-dimensional

Poisson interpolation, see scheme in Fig. 4 . A detailed explanation

on how Z 

k and also the local vectors c , � , n are computed can be

found in Nagler et al. (2016) . 

The function τ ( β , t ( x j )) models the nonlinear variation of the

helix angle through the wall by 

τ (β, t( x )) = 1 + β
(
t( x ) − t( x ) 2 

)
, (5)

where the scalar t ∈ [0, 1] represents the transmural coordinate

(0 for epi- and 1 for endocardium). The parameter β is an ad-

ditional DOF to be estimated from the data, and we restrict it to

β > −4 to ensure that τ > 0. The multiplicative approach (4) to-

gether with τ (β, { 0 , 1 } ) = 1 ∀ β assures that DOF and helix angle

values match on the heart’s surface. Reported evidence show that

a transmural nonlinearity of the helix angle can have a cubic-like

shape ( Streeter and Bassett, 1966 ) or a tanh-like shape ( Ennis et al.,

2008 ). The chosen form (5) , after the linear transmural interpola-

tion created by Z 

k h , can reasonably approach these cases. 

We point out that the resulting interpolated angle field is con-

tinuous in the whole left ventricle domain � due to the construc-

tion of Z 

k , which is strongly supported by histological studies of

cardiac muscle ( Streeter et al., 1969; Fernandez-Teran and Hurle,

1982 ). 
The number of DOF for each angle type is given by κ(k ) =
 ( k (k − 1) + 1 ) , with the index k referring to the patch having k

OF in both axial and circumferential directions, see Fig. 3 for ex-

mples. The formula for κ( k ) arises from the fact that there is one

ontinuous endo- and one epicardial surface and the degrees of

reedom at the apex are merged to one. The resolution k of the

atches will be chosen automatically depending on the available

ata, as it is explained in the next section. 

.3. Data-dependent parameter selection in estimation problems 

In the later methodological steps we use a maximum likelihood

pproach in order to estimate the DOF of the fiber model, together

ith the diffusivities of the diffusion DT. Denoting all parame-

ers to be estimated as α ∈ R 

κα , this approach is based on maxi-

izing the probability that the model (depending on the param-

ters) reproduces the measurements G ∈ R 

N . In numerical prac-

ice, the probability p ( G | α) is not directly maximized, but actually

ln p( G | α) =: J( α) is minimized, namely the maximum likelihood

stimate ̂ α corresponds to 

 = argmin 

α
J( α) (6)

or instance, by assuming an additive Gaussian noise in the mea-

urements, J ( α) leads to the classical least squares formulation. 

As in every inverse problem, the estimation results are sensi-

ive to the number of parameters chosen and to the amount of

ata available. A low number of parameters will lead to underfit-
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Fig. 4. Sketch of linear operator Z k , which is composed in two steps. 
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Fig. 5. Schematic illustration of operator A 

(i ) 
j 

. The black polygon represents the 

tetrahedral mesh, where the circles indicate the corresponding vertices lying within 

(red) or outside (black) the voxel. The scalar quantities on the nodes and those in- 

terpolated to the voxel center are represented with z ( x k ) and z 
(i ) 
j , respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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ing while a “high” number will overfit the model, decreasing the

stimation accuracy, in particular in the presence of noise. Conve-

iently, in the absence of a ground truth the maximum likelihood

stimation framework gives quantitative tools to choose the reso-

ution of the parameter space, depending on the available data. The

ost classical approach is the corrected Akaike Information Criteria

AICc): 

ICc ( ̂  α) = 2 J( ̂  α) + 2 κα
N 

N − (κα + 1) 
(7)

herefore, while increasing the number of parameters will re-

uce the value of J( ̂  α) , the second term penalizes this increase,

rading-off the goodness of fit and model complexity. For a given

et of maximum likelihood estimates ̂ α1 , ̂  α2 , . . . , ̂  α	 with dimen-

ions κα1 
, κα2 

, . . . , κα	
, respectively, the optimal parameter set ̂ α

k 
hould be selected such that the AICc values are minimal, i.e. 

 = argmin 

k =1 , ... , 	

AICc ( ̂  αk ) (8) 

The derivation of AICc can be found in the original references

 Akaike, 1974; Hurvich and Tsai, 1989 ). We further refer e.g. to

urnham and Anderson (2004) for an introduction of information

riteria. 

.4. The maximum likelihood fiber estimator (MLFE) 

In this section, we will detail the different steps of the MLFE,

onsisting of: 

• Steps 1–2: Setup of the interpolation operators from the values

at the patches corners into the image voxel centers. 
• Steps 3–4: Reconstruction of the non-diffusion weighted data

for the three-dimensional computational mesh. The reconstruc-

tion is based on a linear least squares approach which esti-

mates values of the non-weighted information at the patches

corners from the multislice non-weighted data. 
• Steps 5–8: Formulation and solution of the non-linear opti-

mization problems for fiber angle estimation using the diffu-

sion weighted data. This includes an initial optimization run to

identify the necessary restriction. Furthermore the final choice

of the patches resolution based on Akaike’s criteria. 

We assume that we have N 

(i ) ∈ N voxels of measured diffusion

eighted gray values g (i ) 
1 

, . . . , g (i ) 

N (i ) 
for each diffusion encoding di-

ection b ( i ) , i = 0 , . . . , N grad , with b (0) = 0 . To reduce the drawbacks
f partial volume effects and ambiguities of endocardial trabecula-

ions, like the papillary muscles, we consider only voxels with cen-

er lying inside the computational domain �. The MLFE consists of

he following steps: 

Step 1: Compute the operators mapping the DOF values to

the ventricular domain, i.e. Z 

k : R 

κ(k ) → R 

p , for each patch

refinement level k = 1 , . . . , 	, with 	 a preset maximum

number of patch refinements. A schematic illustration of the

linear operator is given in Fig. 4 and examples of different

patch refinements are illustrated in Fig. 3 . 

Step 2: Compute the linear interpolation mappings A 

(i ) : R 

p →
R 

N (i ) 
, i = 0 , . . . , N grad between the nodes of the mesh domain

x 1 , . . . , x p and the N 

( i ) voxels of the i -th DWI. An exemplary

schematic representation of operator A 

(i ) 
j 

is given in Fig. 5 . 

Step 3: Compute a reconstruction γ0 ∈ R 

p in the whole do-

main � from the given non-diffusion weighted gray values

g (0) 
1 

, . . . , g (0) 

N (0) 
through the following maximum likelihood es-

timation problems: 

For each patch refinement level k = 1 , . . . , 	, solve { 

ˆ z 
k 
, ˆ ς 

} 

= argmin 

z , ς 

J 0 k ( z , ς ) 

= argmin 

z , ς 

( 

N 

(0) 

2 

log 2 πς 

2 + 

1 

2 ς 

2 

N (0) ∑ 

j=1 

(
g (0) 

j 
− H 

k 
j z 

)2 

) 

(9) 
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a

s.t. 
(
V k 

)ᵀ 

z −
(
V k 

)ᵀ 

I k ( ̂  z 
k −1 

) = 0 , , k > 1 , (10)

where z represents the non-diffusion weighted values at the

patch corners (to be estimated from the multi-slice data)

and ς is the standard deviation of non-diffusion weighted

grayvalues. The matrix H 

k 
j 
= A 

(0) 
j 

Z 

k summarizes the DOF-

to-voxel interpolation, while V k corresponds to the matrix of

eigenvectors of the Hessian 

(
H 

k 
)ᵀ H 

k for the smallest eigen-

values under a given threshold λ0 
thres 

, as proposed e.g. by

Lieberman et al. (2013) . Additionally I k ( ̂  z 
k −1 

) is the evalua-

tion of the lower DOF-level estimate ˆ z 
k −1 

interpolated to the

k -th (finer) patch vertices. This approach is an elegant way

for reconstructing the model parameters which are hard to

identify from the data due to the chosen patch refinement

level but can be extrapolated from estimations on coarser

patch levels. We will discuss the choice of λ0 
thres 

(constant

among all k ) in Section 2.5 . Finally, choose the estimation

on patch k satisfying the minimal AICc 

ˆ k = argmin 

k 

AICc k = argmin 

k 

2 J 0 k ( ̂  z 
k 
, ˆ ς ) + 2 d 

N 

N − d − 1 

, 

with d = κ(k ) + 1 the total number of DOF, and reconstruct

the non-diffusion weighted values on the whole heart do-

main by γ0 = Z 

ˆ k ˆ z 
ˆ k 
. 

Step 4: Compute the scalar signal attenuation γi, j ∈ R for every

voxel j = 1 , . . . , N 

(i ) of every diffusion encoding direction i =
1 , . . . , N grad via 

γi, j = 

g (i ) 
j 

(A 

(i ) 
j 

γ0 ) 
. (11)

Step 5: Formulate the following optimization problem for every

combination of patches resolution for the helix and trans-

verse angles k h , k t = 1 , . . . , 	. We assume that the diffusion-

weighed measurements are independently normally dis-

tributed, i.e. γi, j ∼ N (μi, j , σ
2 ) , where μi, j the mean value

for the signal attenuation and σ the respective standard de-

viation. The expectation is modeled using Eq. (1) with the

diffusion tensor given by (2) . Combining it with the fiber an-

gle parametrization (4) , the parametrized signal attenuation

is described as: 

μi, j ( �, �, β, λ) = exp 

(
−b T

 

i D 

(
ϑ( �, β) , ϕ( �) , λ, c , � 

)
b i 

)
(12)

= exp 

(
−b T

 

i D 

(
A 

(i ) 
j 
T (β) Z 

k h �, A 

(i ) 
j 
Z 

k t �, λ, c , � 
)
b i 

)
. (13)

where T (β) = diag ([ τ (β, t( x 1 )) . . . τ (β, t( x p ))]) , and c , �

the re-orthogonalization of [ c ( x 1 ) . . . c ( x p )](A 

(i ) 
j 

) T and

[ � ( x 1 ) . . . � ( x p )](A 

(i ) 
j 

) T . 

Hence, we write the maximum likelihood estimate ̂ αk h ,k t 
=

[ ˆ �, ˆ �, ˆ β, ̂  λ, ˆ σ ] ∈ R 

κα , κα = κh + κt + 4 as the solution of

the following non-linear minimization problem ̂ αk h ,k t 
= argmin 

α
J k h ,k t ( α) (14)

= argmin 
α

( 

N 

2 
log 2 πσ 2 + 

1 

2 σ 2 

N grad ∑ 

i =1 

N (i ) ∑ 

j=1 

[
γi, j − μi, j ( �, �, β, λ) 

]2 · χi, j 

) 

(15)

with the indicator function χ i, j for selecting the measure-

ments satisfying γ i, j ∈ [0, 1], which the model (1) is capable

to reproduce. The integer resulting from N = 

∑ N grad 

i =1 

∑ N (i ) 

j=1 χi, j 

corresponds to the global count of voxels. 
We also add to the minimization the following bounds for

the parameters 

| �i | < 90 

◦, i = 1 , . . . , κh (16)

| �i | < ϕ max , i = 1 , . . . , κt (17)

−λ1 , −λ2 , −σ < 0 (18)

−β < 4 . (19)

where the reasoning and choice of bound ϕ max is detailed

below. 

Step 6: Solve the whole optimization problem formulated in

Step 5 for k h = k t = k̄ = 1 , . . . , 	, with an initial condition

α0 = ̂

 α
k̄ −1 , ̄k −1 

at each k̄ -th level. Then compute the eigenval-

ues of the Hessian of J 
k̄ , ̄k 

( α = ̂

 α
k̄ , ̄k 

) , and evaluate a threshold

λthres as explained in Section 2.5 . 

Step 7: For all patches k h , k t = 1 , . . . , 	, solve the whole op-

timization problem formulated in Step 5, but including the

linear equality constraint (
V k h ,k t 

)ᵀ 

( α − α0 ) = 0 , (20)

with V k h ,k t eigenvectors of the Hessian of J k h ,k t ( α = α0 ) , se-

lected as indicated in Section 2.5 , and the starting value set

as 

α0 = I k h ,k t ( ̂  αk h −1 ,k t , ̂  αk h ,k t −1 ) , (21)

with I k h ,k t (. ) the extension of the similar operator defined

in Step 3, but applied to all parameters contained in α, see

Appendix A for a detailed description. 
Step 8: Finally, choose the set of parameters ̂ αk h ,k t 

(computed

in Step 7) satisfying the minimal AICc 

{ ̂ k h , ̂  k t } = argmin 

k h ,k t 

AICc k h ,k t = argmin 

k h ,k t 

2 J k h ,k t ( ̂  αk h ,k t 
) + 2 κα

N 

N − κα − 1 

and reconstruct the fiber angle field on the whole heart

domain by ˆ ϑ ( x j ) = τ ( ̂  β, t( x j )) Z 

ˆ k t 
j 

ˆ � and ˆ ϕ ( x j ) = Z 

ˆ k t 
j 

ˆ �. The

maximum-likelihood fiber estimator (MLFE) is then given by

evaluating f ( ̂  ϑ , ˆ ϕ , c , � ) using Eq. (3) . 

emark 1. As it can be appreciated in Eq. (15) , the maximum like-

ihood formulation of the estimation problem does not depend at

ll on the particular choice of the parametrization of the angles.

n other words, it only sees a finite number of parameters to be

ptimized, independent to which basis functions these are associ-

ted to. Only in the notation of the optimization in Step 3, namely

q. (9) , it is assumed that the interpolators are linear with respect

o the degrees of freedom. This can be however generalized to ba-

is functions with nonlinear dependence of the parameters. There-

ore, any spatial parametrization can be used in the framework

ith minor modifications. 

emark 2. The only truly user-dependent parameter in the al-

orithm is ϕ max , which we choose in the examples below as

 max = 20 ◦, which is consistent with the histological observations

f Streeter (1979) and the values estimated from ex-vivo data

ets ( Lombaert et al., 2012 ). Numerically, we have observed that

 bound for the transverse angle is required when some inconsis-

encies e.g. in the registration of the DWIs are present. 

The maximal number of patches 	 has to be chosen large

nough to achieve an AICc minimum, while the values for
0 
thres 

, λthres are selected depending on the number of acquired im-

ge slices as it will be explained in Section 2.5 . 
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.5. Computation of the regularization thresholds 

From a certain patch refinement level k , degrees-of-freedom ap-

ear that may not influence the reproduction of the diffusion mea-

urements. Therefore, these parameters are hard to identify, but

hey are still required for the full three-dimensional reconstruction

f the fiber angle field across the whole ventricular domain. 

As an example, for N slices short axis DWIs only the same

mount of DOF in axial direction can be uniquely estimated. How-

ver, real DWIs are not perfectly aligned along the long-axis of the

entricle, and respiratory motion leads to a spread of slice posi-

ions across the ventricular geometry. Hence, it is very difficult to

etermine a priori the structure of DOF that may be optimal. More-

ver, the noise in the data may make the choice of DOF in axial

irection less than N slices more reliable. 

In spite of this issues, we require the MLFE to reasonably recon-

truct fibers in regions, where DWIs are not available from mea-

urements, but still using the ventricle-specific data only, without

ny prior information. 

As it was already introduced in the different steps in

ection 2.4 , we proceed by taking advantage of the maximum like-

ihood formulation itself in order to tackle this issue. Concretely,

hen solving the minimization problems in Section 2.4 , badly

osed search directions appear, represented by small eigenvalues

f the Hessian matrix (remember that the search directions in clas-

ical optimization algorithms are proportional to the inverse of the

essian). Therefore, restricting the solution along these directions

llows to deliver stable results. Doing so, not only the geometri-

al information – spatial location DOF versus DWIs positions – but

lso the sensitivity to the diffusion information – fiber versus gra-

ient encoding directions – are automatically considered. 

We recall that in Steps 3 and 7 search directions correspond-

ng to eigenvalues of the Hessian smaller than certain thresholds
0 
thres 

and λthres , respectively, are filtered out from the optimization.

ince in our experience unrealistic fiber angle oscillations start to

e noticeable at patch level k = N slices for the unrestricted case,

e define the thresholds as follows: 

λ0 
thres 

= Smallest eigenvalue of the Hessian in Step 3 at patch

k = N slices − 1 . 

λthres = Smallest eigenvalue of the Hessian in Step 5 at patch k̄ =
N slices − 1 , evaluated at the optimal solution at patch k̄ −
1 . Note that we exclude from the linear constraints (20) all

eigenvectors, whose maximal component corresponds to the

spatially constant parameters ( σ , λ, β). 

In Section 3.4 , the sensitivity of the results to these thresholds

ill be illustrated, justifying the aforementioned choice. 

Note that in Steps 3 and 7 the restricted search directions are

xed using the estimation of coarser patch refinements. This ap-

roach makes the whole MLFE algorithm purely data-driven with-

ut any need of a priori assumptions for the model parameters. 

.6. Numerical optimization 

To solve the minimization problem (14) –(20) we use a sub-

pace trust-region interior reflective algorithm ( Branch et al., 1999;

yrd et al., 1988 ), where the constraints are included via barrier

ethods ( Byrd et al., 1999; 20 0 0; Waltz et al., 20 06 ). The algo-

ithm is implemented within the Matlab optimization toolbox

 MATLAB, 2013 ), which takes into account the linear parameter

onstraints (16) - (20) directly using Lagrange multipliers. Since the

iffusion tensor model has an analytical form with respect to the

arameters to be estimated, we directly compute the gradient and

essian matrix of the cost function and use them during the min-

mization procedure. 
The numerical optimization scheme stops if the step size of the

pdate or the change in the resulting cost function value, and all

nequality conditions, are fulfilled with precision 10 −14 . To assure

he optimum was found, a second run was performed using the

esult of the first optimization as starting value. 

. Numerical examples with synthetic data 

In this section, we introduce a numerical example based on

ynthetic data. The purpose is to analyze the performance of the

LFE in terms of a ground truth fiber field, and to compare its

ccuracy with the state of the art method, the curvilinear tensor

nterpolation (CLTI) of Toussaint et al. (2013) . The CLTI is the only

lgorithm in the literature reported to reconstruct multi-slice DW-

RI from a specific individual only, without using fibers estimated

rom template diffusion data. 

.1. Reference fiber field 

We generated two reference fiber families on a prolate spheroid

eometry named smooth and perturbed , see Fig. 6 . The de-

ails of the construction of the reference geometry are given in

ppendix B . The perturbed fiber field is motivated from studies

eporting local changes in the myocardial fiber architecture after

nfarction ( Chen et al., 2003 ). 

Both fiber families are constructed first on the original analyti-

al spheroid geometry using formula (3) with zero transverse an-

le, i.e. f ( θ ( μ, ν , φ), 0, g 1 , g 2 ). The local coordinate system is de-

ned by the derivatives of the prolate spheroid coordinates g 1 =
 x /d φ and g 2 = −d x /d ν (see Equations (B.1) - (B.3) in Appendix),

ucceeded by a re-orthonormalization. The smooth and perturbed

ber families are defined by changing the helix angle only, namely

y θ smooth ( μ, ν) and θperturbed (μ, ν, φ) = θsmooth (μ, ν) h (φ, ν, μ) ,

espectively. These are given precisely as: 

• Quadratic variation of the helix angle in long-axis direction

z from −40 ◦ to −60 ◦ (epicardium) and 48 ° to 72 ° (endo-

cardium) : 

θsmooth (μ, ν) = 

tanh ( α( 2 ̃  μ − 1 ) ) 

tanh (α) ︸ ︷︷ ︸ 
nonlinear transmural variation 

×
( 

−60 

◦ + 20 

◦
(

z(μ, ν) 

z min 

)2 
) 

︸ ︷︷ ︸ 
apex-to base variation 

( 1 . 2 − 0 . 2 ̃  μ) ︸ ︷︷ ︸ 
offset for endocardium 

(22) 

where ˜ μ(μ) = 

μ−μ1 
μ2 −μ1 

the normalized in-wall coordinate, z min 

the minimal z-component of the nodes in � and α = 1 . 5 . 
• For the perturbed case a systematic shift on the helix angle re-

spectively the circumferential direction φ (with 50% transmu-

rality) was imposed via 

h (φ, ν, μ) 

= 

{ 

1 − 1 
2 

sin (2 φ − 180 

o ) for { φ, ν, μ} ∈ [90 

◦, 180 

◦] 

×[108 

◦, 144 

◦] × [ μ1 , 
μ1 + μ2 

2 
] 

1 elsewise, 

(23) 

see more blue fibers in Fig. 6 (c)-left. 
• To create a more realistic left ventricular geometry, we applied

a force on one side of the free wall within a quasi-static non-

linear structural simulation, which induces a geometrical asym-

metry. The fiber directions were not modified. This additionally

allows for including a non-zero transverse angle, see Fig. 6 (a)-

6 (c) right. Notice also that this distortion allows to test the CLTI
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Fig. 6. Glyph plot of synthetic fiber organization, namely smooth and perturbed, at the epi- and endocardial surface colored according the fiber angle. Endocardial cases are 

supported by the cut view of the domain (black). Perturbed area (within the black box) at endocardium (c) is located in the area with more horizontal (blue) helix angles . 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Gradient diffusion encoding directions. 

b (0) b (1) b (2) b (3) b (4) b (5) b (6) b (7) ⎡ ⎣ 

0 

0 

0 

⎤ ⎦ 

⎡ ⎣ 

1 

0 

0 

⎤ ⎦ 

⎡ ⎣ 

0 

1 

0 

⎤ ⎦ 

⎡ ⎣ 

0 

0 

1 

⎤ ⎦ 

⎡ ⎣ 

2 √ 
5 

1 √ 
5 

0 

⎤ ⎦ 

⎡ ⎣ 

− 2 √ 
5 

1 √ 
5 

0 

⎤ ⎦ 

⎡ ⎣ 

1 √ 
5 

2 √ 
5 

0 

⎤ ⎦ 

⎡ ⎣ 

− 1 √ 
5 

2 √ 
5 

0 

⎤ ⎦ 

b (8) b (9) b (10) b (11) b (12) b (13) b (14) b (15) ⎡ ⎣ 

1 √ 
2 

0 
1 √ 
2 

⎤ ⎦ 

⎡ ⎣ 

1 √ 
2 

0 

− 1 √ 
2 

⎤ ⎦ 

⎡ ⎣ 

0 
1 √ 
2 

1 √ 
2 

⎤ ⎦ 

⎡ ⎣ 

0 
1 √ 
2 

− 1 √ 
2 

⎤ ⎦ 

⎡ ⎣ 

1 √ 
3 

1 √ 
3 

1 √ 
3 

⎤ ⎦ 

⎡ ⎣ 

− 1 √ 
3 

1 √ 
3 

1 √ 
3 

⎤ ⎦ 

⎡ ⎣ 

− 1 √ 
3 

1 √ 
3 

− 1 √ 
3 

⎤ ⎦ 

⎡ ⎣ 

1 √ 
3 

1 √ 
3 

− 1 √ 
3 

⎤ ⎦ 

a  

o  

i

 

×  
approach in a configuration, where its assumption about the

geometry does not fully hold. 

Remark 3. The rule based model used in this manuscript consid-

ers a “piecewise” linear and continuous variation of the angles in

circumferential and long-axis directions. Hence, it cannot exactly

reproduce the nonlinear spatial variation on the surface of the ref-

erence fiber. However, we will see later that this does not prevent

from an excellent performance in the fiber reconstruction. 

3.2. Synthetic DWIs 

From the smooth and perturbed fiber families we construct

DWIs for N g = 15 diffusion encoding directions given in Table 1 ,

which were chosen in order to uniformly cover the whole sphere

at the usual resolution in real in-vivo acquisitions ( Jones et al.,

1999 ). We consider N slices = 5 equally distributed along the long
xis of the ventricle depicted in Fig. 7 (a), similar to recent reports

f 4 ( Harmer et al., 2013 ) and 6 ( Stoeck et al., 2014 ) slices in real

n-vivo DW-MRI acquisitions. 

At each of the slices, the voxel size is assumed to be 2 × 2

8mm 

3 . At the center of each voxel, the fiber angles and local



A. Nagler et al. / Medical Image Analysis 39 (2017) 56–77 63 

(a) Original (b) After added displacement and
registration (σδ = 7.5mm)

Fig. 7. Measurement slices positions. (a) Target positions (i.e. with out motion distortions), showing the voxel thickness. (b) Mid plane of all DWI slices including motion 

distortions, intersected with 3D geometry. 
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rthonormal system c , � were computed using the operator A 

(i ) ,

nd followed by the evaluation of reference diffusion tensor D ref 

rom (2) –(3) , with constant diffusivities as λ1 = 0.8 and λ2 = 0.5

diffusivities scaled by the constant b -value) for both smooth and

erturbed cases. At each voxel V (i ) 
j 

, j = 1 , . . . , N 

(i ) , we compute the

ignal intensity g (i ) 
j 

for each gradient direction b ( i ) via: 

 

(i ) 
j 

= g (0) 
j 

exp (−b 

(i ) T  

D ref b 

(i ) ) (24)

ith the uniform unweighted intensity g (0) 
j 

= 100 . 

The measurements were then perturbed as follows: 

patial mismatch. To include the inevitable spatial mismatch of

he in-vivo acquired DWIs for each slice caused by breathing, we

odel respiration-induced motion by applying a rigid body trans-

ation to the computational mesh � of amplitude δi, k and di-

phragm motion direction d , with δi,k ∼ N (0 , σ 2 
δ
) a random vari-

ble generated independently for every slice k = 1 , . . . , 5 and diffu-

ion gradient direction i = 0 , . . . , N g . Furthermore, we assume that

his is the only motion related distortion, meaning that the images

re acquired at a similar same moment of the cardiac cycle. 

The direction d was considered to be in foot-to-head direction,

hat was assumed to be given by rotations of the ellipsoid long

xis of 30 o and 15 o with respect to the y- and x-axis, respectively.

e used different standard deviations σ δ ∈ {0.0, 2.5, 5.0, 7.5}mm.

he value of 2.5mm is the most commonly reported acceptance

indow currently used in human in-vivo cardiac DW-MRI acquisi-

ions ( Nielles-Vallespin et al., 2013; Stoeck et al., 2014; 2015 ). Note

lso that the locations of the DWIs with respect to the global co-

rdinate system are kept fixed, as it is done in real acquisitions. 

egistration. Since the MLFE can handle non-matching DWIs, we

an therefore register each DWI to the “true heart location” be-

ore running the estimation. The registration was performed by the

pen source software elastix ( Klein et al., 2010 ) using binary masks

f the moved DWIs and the original 3D ventricular geometry. The

nal position of the slices with respect to the heart’s geometry are

xemplified for σδ = 7 . 5 mm in Fig. 7 (b). Note that this adds an-

ther source of imprecision to the data, as encountered in real ac-

uisitions, since the registration procedure is not capable to find

he exact positions of the DWI slices with respect to an indepen-

ently acquired 3D morphology. 
Notice that the final perturbation of the slices position with re-

pect to the ventricular geometry include both axial and in-plane

otion artifacts, see Fig. 7 (b) and 8 (b), respectively. Fig. 7 (b) only

hows schematically the intersections of the perturbed slices with

he 3D ventricular geometry. In Fig. 8 (b), the in-plane component

f the perturbation can be clearly recognized. 

Since we modify the slice position by the registration step, we

imultaneously have to adapt the orientation of the diffusion en-

oding directions. But in fact, since we are currently using a rigid

egistration, nothing has to be adapted at all, this is a trivial step. 

oise. We also consider adding Rician noise to g (i ) 
j 

with a com-

lex Gaussian deviation σ Gauss = 7 in order to emulate a more re-

listic testing scenario ( Gudbjartsson and Patz, 1995 ). The result-

ng signal-to-noise ratio (SNR) is about 14 for the non-diffusion

eighted images and about 7 for the diffusion encoded im-

ges. The chosen SNR is within the range of reported values

 von Deuster et al., 2015 ). Figs. 8 (b) and 8 (c) show the effects of

he motion artifact and noise for a mid-ventricular slice, respec-

ively. 

utliers. Due to imperfect registration of the DWIs with respect to

he 3D ventricle, the measured DWIs may include few gray val-

es from background voxels, which can deteriorate the estimation

uality of γ0 and 

̂ α. We will therefore utilize an outlier detec-

ion scheme as routinely used in estimation practice ( Upton and

ook, 1996 ). For our problem, we will apply the well-known in-

erquartile distance (IQD), so that all gray values lying outside the

ange (median ± 2 IQD) are neglected. 

.3. Comparison to curvilinear tensor interpolation method 

The performance of the proposed MLFE is compared to

he curvilinear tensor interpolation (CLTI), recently presented by

oussaint et al. (2013) . We refer to Section 5.4 for a discussion con-

erning other reported approaches for cardiac fiber estimation. 

In order to apply the CLTI to the numerical examples, we must

roceed in the following way, since the CLTI relies on the spa-

ial co-existence of the diffusion information. First, a mean image

s computed from the DWIs belonging to the same acquired slice

same colors in Fig. 7 (b)). Secondly, each DWI is registered in-plane

o the mean image. Subsequently, the mean DWI is in-plane regis-

ered onto the 3D acquisition of the left ventricular (LV) geometry,
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(a) σδ = 0., σGauss = 0 (b) σδ = 7.5, σGauss = 0 (c) σδ = 7.5, σGauss = 7

Fig. 8. Example of an apical DWI (red slice in Fig. 7 (a)), colored by gray value with (a) no noise, (b) motion perturbation and (c) motion perturbation and measurement 

noise. The black line represents the original slice position without motion perturbation. Note that only displacements in the in-plane direction of the short axis plane is 

observed, while the displacement in the long-axis direction is captured by the different diameters of the LV. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 9. Eigenvalue distribution against number of DOF in several patch refinement levels for the Hessian matrices of functional in Steps 5 in the smooth synthetic case using 

σδ = 7 . 5 mm for patches refinement levels 1 , . . . , 7 . Eigenvalue distribution used for threshold evaluation is highlighted with green. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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and the same registration displacement field is applied to each in-

dividual DWI. At each image voxel of the registered DWI data the

diffusion tensors are linearly estimated. Finally, the LV domain and

the diffusion tensors were diffeomorphically mapped onto an ideal

prolate spheroid, and the tensors are interpolated in spheroid co-

ordinates using a log-Euclidian metric. The final tensor field is ob-

tained after mapping back onto the original LV geometry by inver-

sion of the diffeomorphic transformation. The fiber field and diffu-

sivity values are obtained via principal component analysis of the

resulting tensor field. 

3.4. Estimation results 

We present now the estimation results for both smooth and

perturbed synthetic examples using the algorithm described in

Section 2.4 . The sequence of patches used in this examples are

computed analogously to the ones shown in Fig. 3 . 

In Fig. 9 , the eigenvalues computed in Steps 3 and 6 are visu-

alized for the smooth data set with σδ = 7 . 5 mm and the respec-

tive regularization thresholds. Though the threshold value for the

eigenvalues is set from a coarser patch, increasing the patches res-

olution increases the final number of DOFs, making the MLFE ca-

pable to capture more detailed fiber orientations without getting

spurious fiber angle oscillations. 
Consistently with the original data, the minimal AICc for the

on-diffusion weighted data was obtained for the very first patch

i.e. one DOF per surface). Then, the AICc maps (Step 8) of the re-

ulting maximum likelihood estimate for k h , k t = 1 , . . . , 	 = 9 fo-

using on the data with perturbation σδ = 7 . 5 mm is shown in

ig. 10 . Note that the AICc criterion suggests a fine patch resolu-

ion for the transverse angle in the smooth case, and it also sug-

ests a finer patch resolution for the helix angle in the perturbed

ase. Both choices are consistent with the ground truth, i.e. with

he jump of transverse angle in the deformed region, and the sys-

ematic shift of the helix angle in circumferential direction in the

erturbed case. 

Fig. 11 show histograms and global statistics for the angle er-

or ε between the ground truth fibers and the estimated fibers for

oth MLFE and CLTI. It can be generally appreciated that MLFE is

obust with respect to motion perturbation and registration impre-

ision of the slices and consistently more accurate than CLTI. 

To give the reader an impression about the sensibility of the

LFE method regarding the grayvalue and motion noise, the re-

ults are recomputed by leaving out the measurement noise, i.e.

Gauss = 0 . The global results respective total angle error ε, he-

ix angle error εHelix , transvers angle error εTrans , diffusivities and

aussian noise are given in Table 2 . As can be appreciated from

hese table, the motion distortion itself does not much effect the
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Fig. 10. AICc values plots (Step 8) for σδ = 7 . 5 mm. White star indicates the location of the minimum, and therefore that patch resolution was chosen for the results shown 

in the sequel and comparisons with CLTI. 

Fig. 11. Global statistics of angle error between ground truth and estimated fiber orientation for MLFE and CLTI methods for both smooth and perturbed synthetic data sets 

and different motion perturbations. 
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econstruction quality of the MLFE, since its effects are included in

he model. The grayvalue noise instead does mainly increase the

econstruction error of the transverse angle. 

The reconstruction quality of the MLFE and CLTI is further in-

estigated by analyzing the accuracy of the results for each of 17

HA regions ( Cerqueira et al., 2002 ), see Fig. 12 : when perturb-

ng the slices positions, changes in the regional mean errors are

round 2 o for non apical regions (AHA Region < 17), and around

 

o for the apex (AHA Region 17). In this figure it can also be ap-

reciated that the large errors in the CLTI (i.e. the sharp increase
fter 30 degrees of error in Fig. 11 ) come mainly from the fibers in

he apical region. 

In Fig. 13 , the estimated fiber organizations on the ventricular

eometry are presented. While the MLFE shows a similar fiber or-

anization for both levels of motion distortion, the CLTI results in

n highly oscillating fiber organization at the basal and apical parts

or higher motion distortion with transverse angles up to 90 °, con-

rming the previous findings from Figs. 11 and 12 . This can be ex-

lained due to the fact that the eigenvalue analysis of the CLTI re-

onstructed tensor results in a principal eigenvector (i.e. related to
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Table 2 

Summary of angle error between ground truth and estimated fiber orientation for the MLFE methods for 

both smooth and perturbed synthetic data sets using different noise and motion perturbations. 

σ δ σ Gauss ε [ °] εHelix [ °] εTrans [ °] λ1 = 0 . 8 λ2 = 0 . 5 σ

smooth 

0.0mm 0 2.65 ± 2.07 1.78 ± 1.45 1.61 ± 1.87 0.800 0.500 2.57e-03 

7.5mm 0 3.29 ± 2.32 2.55 ± 2.10 1.60 ± 1.68 0.798 0.501 6.42e-03 

0.0mm 7 4.92 ± 2.85 2.83 ± 2.17 5.15 ± 3.79 0.781 0.496 0.068 

7.5mm 7 4.61 ± 2.73 2.72 ± 2.11 6.19 ± 4.48 0.783 0.500 0.069 

perturbed 

0.0mm 0 2.89 ± 2.47 2.08 ± 2.06 2.24 ± 3.63 0.800 0.500 2.57e-03 

7.5mm 0 3.52 ± 2.65 2.79 ± 2.41 2.29 ± 3.75 0.798 0.501 6.4e-03 

0.0mm 7 5.21 ± 3.78 3.16 ± 3.17 6.91 ± 5.31 0.789 0.500 0.068 

7.5mm 7 5.66 ± 3.79 3.81 ± 3.45 6.33 ± 4.73 0.783 0.497 0.0685 

(a) MLFE smooth (b) CLTI smooth

(c) MLFE perturbed (d) CLTI perturbed

Fig. 12. Resulting mean fiber angle error between ground truth and estimated fiber orientation for MLFE and CLTI in each AHA region, for different motion artifacts . 

 

 

 

 

 

 

 

 

 

 

 

t  

m

4

 

v  

U  

l  

w  

i  

d  

G  

1 http://www.ccbm.jhu.edu/research/dSets.php . 
the biggest eigenvalue), which does not refer to the fiber direction

any longer. The only component of the MLFE that in our experi-

ence results in sensitive outputs is the choice of the regulariza-

tion threshold, what we analyzed in Fig. 14 . We show the result

for Z 

k h = Z 

6 , Z 

k t = Z 

1 using different eigenvalues for the regular-

ization threshold. We appreciate that some spurious oscillations of

the fiber orientation start at k̄ = N slices = 5 , justifying the choice

of the thresholds one refinement level before. 

4. Fiber estimation from ex-vivo human DW-MRI 

In this section, we present the results of the fiber angle esti-

mation based on an ex-vivo human DW-MRI data set, which has

been subsampled to meet typical in-vivo cardiac DW-MRI acqui-

sition parameters, as done for the synthetic example. The goal is
o assess the sensitivity of the MLFE and CLTI with respect to the

otion of the DWIs, when dealing with real DW-MRI data. 

.1. Data and model setups 

We obtained the diffusion weighted images (DWI) from the ex-

ivo human DW-MRI data openly available from the John Hopkin’s

niversity database 1 and segment a surface representation of the

eft ventricular domain from the non-diffusion weighted MRI data,

hich has a spatial resolution of 0.43mm × 0.43mm × 1.0mm, us-

ng MIMICS (Materialise, Leuven, Belgium). In a next step we pro-

uced a tetrahedral computational mesh of about 110k nodes using

msh ( Geuzaine and Remacle, 2009 ), see Fig. 15 (a). Analogously

http://www.ccbm.jhu.edu/research/dSets.php
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Fig. 13. Resulting fiber organization from MLFE and CLTI, colored according to angle error ε between ground truth and estimated fiber orientation, for motion distortion 

σδ = 0 . 0 (left) and σδ = 7 . 5 (right). 

Fig. 14. Top view on resulting fiber organization of MLFE for Hessian eigenvalue thresholds chosen as smallest eigenvalue of different patches k̄ . Shown examples are from 

the smooth synthetic data sets with motion distortion σδ = 7 . 5 . Fibers are colored according to angle error ε between ground truth and estimated fiber orientation. Previous 

results in this section correspond to k̄ = N slices − 1 = 4 . 
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Fig. 15. Ventricular geometry for setup of the fiber model using a coarser mesh size for the sake of clarity. (a) Computational mesh and (b) local orthonormal coordinates 

in circumferential direction (left) and long axis direction (right). 

Fig. 16. Exemplary grayvalue images for non-diffusion (top) and diffusion weighted (bottom) data at a midventricular position. Each figure shows the original (EV) data 

(left), downsampled data with no motion artifact (IVL, σδ = 0 . 0 mm) (middle) and downsampled data with respiratory motion of (IVL, σδ = 7 . 5 mm) (right, geometry and 

DWIs in the figure are not co-registered). For better comprehension of the motion distortion the contour of the 3D ventricular mesh (black line) is drawn. 
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to the distorted ellipsoid, we compute a local orthonormal coordi-

nate system at every node of the computational mesh, visualized

in Fig. 15 (b). 

4.2. Generation of measurements 

Starting with the full information from the ex-vivo DWI data

set (EV), i.e. 0.43mm × 0.43mm × 1.0mm voxel size for 20 diffu-
ion encoding directions, we generated “in-vivo like” data (IVL) by

onsidering 5 equidistant slices for each of the 20 DWIs of voxel

ize 2mm × 2mm × 8mm. The signal value was generated by av-

raging the signal intensities of the original voxels, which lie in-

ide the downsampled voxel. We then perturbed the slices posi-

ion as described in Section 3.2 . The diaphragm motion direction d

as chosen as d = [ −0 . 2113 , −0 . 8660 , 0 . 4532] T , where the heart’s

ong axis is [0, 0, 1] �. We consider two measurement scenarios,
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Fig. 17. Eigenvalue distribution for the Hessian matrices for IVL (real) data using σδ = 7 . 5 mm for patches refinement levels 1 , . . . , 6 (left and right, respectively). Eigenvalue 

distribution used for threshold evaluation is highlighted with green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 18. Reconstruction of non-diffusion weighted data g (0) 
1 

, . . . , g (0) 

N (0) for σδ = 7 . 5 mm. (a) AICc curve for patch refinements Z 1 , . . . , Z 10 . Minimal value, used for the MLFE, is 

highlighted (black star). (b) Short axis cuts of the 3D-reconstruction γ0 . 
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ne without perturbation σδ = 0 mm and one with σδ = 7 . 5 mm. A

omparative view of (EV) with both IVL data sets can be seen in

ig. 16 . Analogously to Section 3.2 we register the binary masks

f IVL data and left ventricular geometry onto each other. Then,

he outlier detection scheme described in the same section is ap-

lied for the gray values of the non-diffusion weighted and diffu-

ion weighted images. 

.3. Estimation results 

The estimation results for the IVL data using the algorithm pre-

ented in Section 2.4 are now presented. The sequence of patches

sed here is already illustrated in Fig. 3 , and the eigenvalue curves

omputed for the thresholds evaluation are presented in Fig. 17 . 

In Fig. 18 the AICc curve for the non-diffusion weighted estima-

ion (Step 3 - Section 2.4 ), together with the three-dimensional re-

onstruction of the non-diffusion weighted data is depicted. Note

hat the systematic increase in the signal in the free-wall (com-

ared to the septum), as it is noticeable in the original high res-

lution data in Fig. 16 , is reconstructed satisfactorily. The com-

uted AICc maps for both inspected cases are visualized in Fig. 19 ,

hile the endocardial and epicardial angle distributions are plot-

ed schematically as bullseye maps in Fig. 20 . Moreover, to quan-
ify the loss of information due to the data reduction from the EV

o the IVL data set, we re-perform the estimation with the high

esolution data using the patch resolution following from the AICc

nalysis in the IVL case and denote it as “EV-equivalent”. The helix

ngle values at both endo- and epicardium vary between 70 °/20 °
nd −70 ◦/ −20 ◦, respectively, however with different ranges. In the

picardium, the fibers get more vertical when moving from base

o apex, and when moving from the posteroseptal to the anterior

ateral regions. In the endocardium, this behavior changes: fibers

et more vertical from the free wall to the septum, while the vari-

tion in the long-axis direction is less remarkable. These general

haracteristics confirm an important variability of the helix angle. 

The estimated fibers of the MLFE having the minimal AICc value

re shown in Fig. 21 , for both σδ = 0 mm and σδ = 7 . 5 mm data.

he fibers are colored by the angle between the fiber alignment

esulting from the IVL and EV-equivalent analysis. As it can be ap-

reciated, the main differences between IVL and EV-equivalent oc-

ur in the regions where few or no IVL-data is available, e.g. at

he base and apex. Naturally, in both cases regions of lower dif-

erences are associated with the slices locations in the IVL data.

ote also that angle differences between IVL-EV-equivalent are

ore homogeneously distributed in space due to the spread in the

lice displacement attributed to motion. As it can also be appreci-
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Fig. 19. Computed AICc values for the in-vivo like data set. White star indicates the location of the minimum. 

Table 3 

Estimated spatially constant parameters and comparison with voxel-wise estimation. 

EV voxel IVL - σδ = 0 . 0 mm EV eq. IVL - σδ = 7 . 5 mm EV eq. 

λ1 [10 −6 cm 2 

s 
] 9.45 9.19 9.45 9.18 9.46 

λ2 [10 −6 cm 2 

s 
] 6.52 6.27 6.50 6.23 6.50 

λ3 [10 −6 cm 2 

s 
] 5.48 = λ2 = λ2 = λ2 = λ2 

β −0 . 7 −0 . 42 −0 . 35 −0 . 38 

σ [10 −2 ] 6.09 8.91 6.23 8.90 
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ated in Fig. 21 (c), when analyzing the difference between IVL with

σδ = 0 mm and σδ = 7 . 5 mm, both results differ in less than 10 °,
with few exceptions of around 20 °. 

Finally, the estimated spatially-constant parameters are pre-

sented in Table 3 , for all two IVL estimations and their EV equiv-

alents. For comparison, the mean diffusivities estimated voxelwise

from the full data set are also indicated. Note that the fiber and

cross-fiber diffusivities of model and voxelwise reference result in

comparable ranges. The transmural variation of the helix angle is

shown in Fig. 22 , showing almost a linear behavior. 

Finally, we include a comparison between MLFE and CLTI for

the IVL data set with perturbed slices positions, see Fig. 23 . We

can clearly appreciate that the slices motion induces spurious fiber

directions in the CLTI reconstruction (see fibers inside the black

boxes), while the MLFE achieves in keeping them smooth. More-

over, it is also clear to see in general that the CLTI fibers are more

horizontal than the reconstructed by the MLFE by analyzing the

helix angles. 

4.4. Results on a bi-ventricular geometry 

We show now that our fiber estimation method can be ex-

tended to bi-ventricular cases. As it is well known, the subsampled

in-vivo like data of the previous section does not permit to capture

the transmural variations of the right ventricular fiber angles due

to its reduced wall thickness compared with the voxel size. There-

fore, we exemplify the bi-ventricular estimation on the full 3D ex-

vivo data set only. 

As done in the monoventricular case in the previous section, we

run the bi-ventricular estimation with a fixed patch resolution, see

Fig. 24 (a), and we only perform the maximum likelihood estima-

tion from Step 6. The reconstructed bi-ventricular fiber organiza-

tion is shown in Fig. 24 (b). In the left ventricle the fibers are col-

ored by the angle difference between the EV-equivalent estimation

from last section and the biventricular estimation. In general, the

angle differences are under 10 o , which are most likely to appear

due to the different patches used in both cases. Naturally, larger
ngle differences of 20 o to 25 o appear in the transition between

he ventricles since the bi-ventricular rule-based model enforces

 different fiber topology in this location. There, the fibers of the

ight ventricle smoothly interdigitate into fiber organization of the

eft ventricle, while in the monoventricular geometry the fibers are

orced to be tangent to the left ventricular epicardium. 

.5. Comparison to the EV tensor data 

Even though a ground truth fiber distribution is not available,

e can assume that the fiber field closest to the true one is the

rst eigenvector of the high resolution 3D EV data. Hence, we can

ompare the fiber estimations of both CLTI and MLFE to this ref-

rence data set. To this end, we interpolate the fiber orientations

f the EV tensor data, given by JHU, to the left ventricular domain

nd then compute the angle difference with respect to the MLFE

nd CLTI estimates. The results of this computation is depicted in

ig. 25 . As it can be clearly noticed, the difference to the EV fiber

eld of the MLFE is significantly smaller than the CLTI. In fact, only

t the endo- and epicardial surfaces and the apical area, bigger

rrors are noticeable. The remaining areas show angle differences

maller than 10 °. Beware, that the differences at the endocardial

egion might respond to endocardial trabeculations, see the more

erturbed fiber alignment at the endocardial area for the EV tensor

ata. These errors do not solely occur at the endo- and epicardial

im, but also throughout the left ventricular domain. 

. Discussion 

.1. Results for the synthetic data examples 

For both synthetic examples, the maximum likelihood fiber es-

imator (MLFE) allowed a much more precise reconstruction of the

ber field than the state of the art, i.e. the curvilinear tensor inter-

olation method (CLTI), see Figs. 11 –12 . In particular, the impact of

he misalignment and consequent registration errors in the MLFE
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Fig. 20. Bullseye plot for resulting helix angle for epicardial (left) and endocardial (right) ventricular surface. 
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re minimal, and depending on the regions they may even get im-

roved (see Fig. 12 ). This is exactly what we intend with the MLFE.

f the DWIs move, they basically obtain another measurements but

rom the same fiber family, making it robust to DWIs motions. In

ther words, MLFE “glues” the DWI information using the general

nowledge that there are fiber bundles in the background. In con-
rast, the CLTI reconstruction quality is strongly compromised by

otion artifacts. This feature of the MLFE may have an important

mpact in the DW-MRI acquisition, since the respiratory navigator

cceptance window for in-vivo acquisitions can be considerably re-

axed without compromising the fiber estimation accuracy. As a

irect implication this may also allow the acquisition time to be
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Fig. 21. Resulting fiber organization colored by: (a)-(b) difference to respective ex-vivo data estimate, (c) difference angle between (a) and (b). 

Fig. 22. Resulting transmural helix angle variation for the four estimation cases detailed in Table 3 . On the right side the green curve conceals the red one. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 23. Estimated fiber organization for IVL data with σδ = 7 . 5 mm colored by helix angle. Black boxes focus on the spurious fiber oscillations. 
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substantially reduced and hence make cardiac fiber measurements

feasible for clinical studies. 

In practice, it is accepted that magnitude MRI signals have Ri-

cian distribution of the noise. The proposed estimator, as formu-

lated through a nonlinear least-squares problem, assumes that the

signal attenuation statistics are Gaussian for the sake of simplicity.
e saw in the numerical examples that the Gaussian assumption

llowed an excellent reconstruction of parameters and of the fibers

ven when we perturb the diffusion weighted images with consid-

rable Rician noise. 

We also would like to remark the advantages that the formu-

ation as a maximum likelihood estimation provides. It not only
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Fig. 24. Bi-ventricular fiber estimation. Left: patch structure on the biventricular geometry. Right: estimated fibers, in the left ventricle colored by difference angle between 

mono- and biventricular cases. Transition of left to right ventricle is highlighted by the red boxes. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 25. Comparison of EV fibers to the MLFE and CLTI using IVL σδ = 7 . 5 mm data. Colors in (b) and (c) correspond to the angle difference between the estimated and the 

EV fibers. 
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tion time to be reduced to some minutes. 
ives a robust way to reconstruct the data using general knowl-

dge of the phenomena in question, like in this case the histolog-

cal one, but also to take advantage of theoretically well founded

ools in statistics, like the Akaike’s information criteria. This al-

ows to choose the parametrization of the model according to the

mount and quality of the available data, hence avoiding under- or

ver-parametrization improving the estimation accuracy. Moreover,

hese tools help to identify systematic changes over random noise,

y requiring larger amounts of degrees-of-freedom, like for exam-

le for the transverse angle in both synthetic cases and in the helix

ngle in the “perturbed” one. 

.2. Results for the real data example 

For the sake of estimating the main fiber direction, the trans-

erse isotropic diffusion tensor assumption in Equation (2) ap-

ears to be reasonable in an approach when analyzing the real

ata high resolution DW-MRI data set. The second and third mean

iffusivities in the high resolution data are very close to each

ther ( 6 . 52 · 10 −6 and 5 . 48 · 10 −6 ) compared to the first diffusivity

 9 . 45 · 10 −6 ). Of course, an extension to a fully anisotropic tensor

ould allow to differentiate the second and third directions. Our

LFE opens the door to perform systematic studies in larger, in-

ivo data sets to study inter- and intra-specimen variability and to
ntend to detect perturbed dependencies for both helix and poten-

ially sheet angle directions. 

.3. Computational aspects 

Putting aside the segmentation of the myocardium and the

WIs registration, which will be the common processing proce-

ure for all approaches, our current implementation of the MLFE

equires in terms of computing time: 

◦ For the generation of the interpolation operators for all patches,

i.e. Step 1 in Section 2.4 , it takes less than 15 minutes until a

total number of 	 = 9 patch level refinements on an Intel(R)

Xeon(R) E5630 @ 2.53GHz, 12 GB RAM in a serial computation.

Note that the generation of each column of the interpolation

operators is independent of each other, therefore this time can

still be reduced in a parallel framework. 

◦ Once the linear operators are computed, several optimizations

have to be run in order to find the patch combination that

minimizes the AICc. In the examples of this manuscript, this

part takes around 1–2 hours. It is noted that the AICc may be

minimized sequentially for each variable and still achieving the

same minimum, compare Figs. 10 and 20 . This involves a com-

plexity O(2	) instead of O(	2 ) , allowing the AICc optimiza-
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Hence, the whole fiber estimation would take a computation

time compatible with clinical practice and also negligible, when

compared to large-scale cardiac bio- and multi-physical simula-

tions. Of course, this outlook does not consider the potential im-

provements in hardware architecture. 

5.4. Other approaches to estimate/extrapolate fiber data 

Optimization of parametrized fiber models. Some cardiac fiber angle

models have already been optimized using 3D-DW-MRI (ex-vivo)

data. Calibration of a constant surface helix angle against DW-MRI

data was done by sampling several helix angles and choosing the

best fitting respective the first eigenvector ( Bayer et al., 2012 ), or

linear regression from helix angles computed from imaging data

( Muñoz et al., 2010 ). This implies an over-regularization of the

fiber field, like it is done in MLFE in k = 1 patch refinement level.

Moreover, it also does not take into account the fact that diffusion

information is non-directional, so the estimated fiber angles de-

pend on the chosen convention for the fiber sign. Extending those

works, in Nagler et al. (2013) we developed a parametrizable angle

representation (similar to the one presented here), and the RBM

fibers interpolated component-wise to the first eigenvector of the

3D-DW-MRI data. 

The nonlinear estimation framework on a simple (non-

deformed) ellipsoid geometry has been presented at a very pre-

liminary stage ( Nagler et al., 2015 ). In this work we have addressed

the lack of studying for example the choice of the refinement level

of the patches, introduction of regularization, and applicability on

real DW-MRI with different types of slice misalignment. Therefore,

the current manuscript represents a considerable improvement in

terms of the methodology and extension of the results with respect

to the preliminary works. 

For the sake of completeness, alternative parametrization are

the generalized helicoid model ( Savadjiev et al., 2012 ) or the mov-

ing frames approach ( Piuze et al., 2015 ). 

For all of these approaches the start-point of analysis were the

eigenvectors of a tensor per voxel, which is only available from co-

existent and spatially aligned diffusion images in each voxel, and

hence they optimize directly on the helix (and transverse) angles

from the first eigenvector of the data. It is important to remark

that doing so, the estimated angles depend on the chosen conven-

tion for the sign of the eigenvector. We remark that our approach

is independent of this fact by construction. Moreover, we allow for

sparsity of diffusion data, what none of such methods is able to

handle. 

Template-based methods. Some authors have proposed to recon-

struct the fiber organization for arbitrarily geometries by mor-

phing a high resolution ex-vivo DW-MRI data set ( Sundar et al.,

2006; Vadakkumpadan et al., 2012, 2013 ). Therefore the deforma-

tion field, gained via a registration of the template to a target ge-

ometry, is applied to the tensor information. Alternatively, statis-

tical shape predictors were generated by correlating the geome-

try with respective fiber orientations ( Lombaert and Peyrat, 2013;

Lekadir et al., 2014 ). The correlation is performed using regres-

sion techniques applied to the geometry and fiber organization of

a small ex-vivo DW-MRI data set. Based on the statistical shape

model the fiber organization is determined for an arbitrary given

domain. These approaches do not use specific diffusion measures

of the specific heart, and rely on potential correlations of the shape

and the fibers field. However, later in Lekadir et al. (2016) , the au-

thors introduced a way to additionally take advantage of multi-

slice diffusion data measured on a specific patient. 

Again, these approaches also rely on the spatial coexistence of

the diffusion information by working directly with the eigenvec-

tors of the diffusion tensors estimated voxel-wise. Moreover, the
esults may be biased through the training sample or template,

hich is also subjected to noise, and hence specific features of the

easured fiber field in a specific patient may be blurred by the

raining set. Finally, it is important to remark that these family of

lgorithms need user interaction for the definition of a number of

ree parameters (e.g. six in Lekadir et al. (2016) ). 

In contrast to these techniques, the MLFE does not need any

raining set or definition of a priori values for the parameters, and

ence are estimated using the patient-specific data only, avoiding

iasing by the priors. Moreover, the MLFE is sensitive to one pa-

ameter only, the regularization threshold, which can take only few

ossible values that are easy to choose around a suggested value

epending on the number of image slices (the maximum number

f patches 	 is purely instrumental for finding the AICc minimum,

nd ϕ max has a fully physiological motivation). 

.5. Perspectives 

mprovements of the MLFE-framework. The framework can be ex-

ended to the estimation of the sheet direction, by the analysis of

xperimental in-vivo and ex-vivo animal data sets, since inhomo-

eneities across the ventricle can be a marker for myocardial re-

odeling ( Helm et al., 2006 ). Doing so, our framework can help

o better understand the full cardiac fiber architecture in different

atho-physiological states. 

Concerning the algorithmic part, other parameterizations can be

ested, for example different basis functions for the angles, gaus-

ians and/or global polynomials. This would also have implications

n the type of regularizations to be implemented. Ideally, an auto-

atic choice of the regularization threshold or weighting (depend-

ng on the chosen parametrization strategy) could be developed in

rder to control a common model’s output (for example, spatial

erivatives of the reconstructed fiber angle field), in order to min-

mize the user interaction. 

Another potential improvement of the MLFE is to allow for local

OF refinements depending on AICc values computed by ventricle

egion, instead of a global AICc/DOF relation as computed above. 

We would also like to remark that the MLFE is capable to

stimate the measurement noise level of the diffusion data. No-

ice also that due to coil geometry SNR is spatially varying, hence

nowledge on spatial distribution of measurement noise can con-

equently be used in the MLFE framework for enhancing estima-

ions. 

pplications. The found helix angle variability in the real data ex-

mple allows to study the effects of such variabilities in biophysical

ardiac models (active/passive mechanics, electrophysiology). After

n inter- and intra-specimen fiber angle variability study in larger

eart samples, the fiber model presented can conveniently serve

o consider these variabilities, since the location of the degrees-of-

reedom are chosen using the same anatomical landmarks in each

eart. Therefore, estimated fiber angles in one heart can be directly

ransferred to other geometries and the variability of biophysical

imulation outputs can be easily studied. Alternatively, fiber angles

an be directly “transferred” from other hearts, if diffusion mea-

urements are not available. 

The ability of the MLFE to handle arbitrarily spaced DWIs allows

n increase of the reconstructed fiber precision for the same scan

ime, compared with previously reported algorithms. This flexibil-

ty of the choice of the diffusion encoding directions and slices

ay allow in the future to speed-up the acquisition of diffusion

R sequences. Moreover, due to the focus on the fiber direction

he amount of diffusion encoding direction at a given accuracy

ight be reduced. Beyond that a study quantifying the influence

f the amount of diffusion encoding directions, number of slices

nd other acquisition parameters onto the estimation result would
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e an important step towards reducing the acquisition time. More-

ver, this algorithmic flexibility of MLFE permits to include and di-

ectly compare data from different scan sessions, or from different

agnetic fields strengths and estimating different noise levels. 

Another benefit of the method is that it adapts to any shape of

he heart, since we do not require to morph the left-ventricular

hape onto a prolate spheroid, naturally allowing the study to

athological ventricular shapes. 

Furthermore, another potential application is fibrosis detection.

xcellent correlation between the signal decay and gadolinium en-

anced images ( Nguyen et al., 2015 ) has recently been shown. The

LFE can be used for example to differentiate healthy and fibrotic

issue, by estimating the spatial distribution of the eigenvalues of

he diffusion tensor. 

. Summary and conclusions 

We have presented a three-dimensional fiber reconstruction

cheme, which can directly handle arbitrarily spaced diffusion

eighted MR images. This allows for an increase of the recon-

tructed fiber precision for the same scan time, compared to previ-

usly reported algorithms. This flexibility of choice of the diffusion

ncoding directions and slice positions may allow to speed-up the

cquisition of diffusion MR sequences in the future. Several appli-

ations can emerge from this new methodology for fully exploiting

iffusion information in heart, enhancing non-invasive characteri-

ation of myocardial tissue properties. 
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ig. 26. Descriptive overview of synthetic (a) prolate spheroid geometry, (b) generated m

ion of the references to colour in this figure legend, the reader is referred to the web ve
ppendix A. Start value interpolation 

To compute the starting value α0 = I k h ,k t ( ̂  αk h −1 ,k t 
, ̂  αk h ,k t −1 ) =

�0 , �0 , β0 , λ0 , σ0 

]
we will first define: 

 

ˆ �1 , ˆ �1 , ˆ β1 , ̂  λ1 , ˆ σ1 

] 
= ̂

 αk h −1 ,k t 

 

ˆ �2 , ˆ �2 , ˆ β2 , ̂  λ2 , ˆ σ2 

] 
= ̂

 αk h ,k t −1 

hen, we compute the starting value as [
�0 , �0 , β0 , λ0 , σ0 

]
= 

[ 
I k h ( ̂  �1 ) , I k t ( ̂  �2 ) , 

1 

2 

(
ˆ β1 + 

ˆ β2 

)
, 

1 

2 

(
ˆ λ1 + 

ˆ λ2 

)
, 

1 

2 

(
ˆ σ1 + ˆ σ2 

)]
here the operators I k h and I k t are identical to Step 3 of

ection 2.4 . 

ppendix B. Reference fiber field 

The synthetic geometry is first defined using the well known

rolate spheroid coordinates given by the following parametriza-

ion 

 (μ, ν, φ) = f sinh (μ) sin (ν) cos (φ) (B.1) 

 (μ, ν, φ) = f sinh (μ) sin (ν) sin (φ) (B.2) 

(μ, ν, φ) = f cosh (μ) cos (ν) (B.3) 

ith f the focus factor, μ ∈ [ μ1 , μ2 ] the wall-depth coordinate, ν ∈
90 °, 180 °] the inclination angle and φ the rotation angle . We com-
ute the constants μ1 (Endocardial surface), μ2 (Epicardial surface)
nd the focus f by choosing a volume of V = 130ml, a wall thickness
f the ventricle at the base of d = 7mm and a ventricular endocar-
ial length diameter of b = 90mm, which results in the cross section

adius of a = 

√ 

3 V 
2 πb 

≈ 26 mm, see schematic overview in Fig. 26 (a).

sing the relations 

asal Endocardium: x (μ = μ1 , ν = 90 ◦, φ = 0 ◦) = f sinh (μ1 ) 
def = a 

(B.4) 

asal Epicardium: x (μ = μ2 , ν = 90 ◦, φ = 0 ◦) = f sinh (μ2 ) 
def = a + d 

(B.5) 
esh and (c) utilized local coordinate system g 1 (black) and g 2 (red). (For interpreta- 

rsion of this article.) 
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Apical Endocardium: z(μ = μ1 , ν = 180 

◦) = f cosh (μ1 ) 
def = b 

(B.6)

we obtain μ1 = tanh 

−1 ( a 
b 
) ≈ 0 . 3 , f = 

a 
sinh (μ1 ) 

≈ 86 . 1 and μ2 =
sinh ( a + d 

f 
) ≈ 0 . 38 

Using the surface parametric representation of the spheroid

(B.1) - (B.3) , we generated a surface and then a volumetric cartesian

mesh using GmsH ( Geuzaine and Remacle, 2009 ), see Fig. 26 (b). 
Note that for assigning the fibers (helix angles and local coordi-

nate system) to the mesh nodes from formulas in Section 3.1 , we
also need the inverse transformation: 

μ(x, y, z) = cosh 
−1 

(
1 

2 f 

(√ 

x 2 + y 2 + (z + f ) 2 −
√ 

x 2 + y 2 + (z − f ) 2 
))

(B.7)

ν(x, y, z) = cos −1 
(

1 

2 f 

(√ 

x 2 + y 2 + (z + f ) 2 −
√ 

x 2 + y 2 + (z − f ) 2 
))
(B.8)

φ(x, y, z) = atan2 (y, x ) (B.9)
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