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The representation of binary relations has been intensively studied and many different 
theoretical and practical representations have been proposed to answer the usual queries 
in multiple domains. However, ternary relations have not received as much attention, even 
though many real-world applications require the processing of ternary relations.
In this paper we present a new compressed and self-indexed data structure that we 
call Interleaved K 2-tree (IK 2-tree), designed to compactly represent and efficiently query 
general ternary relations. The IK 2-tree is an evolution of an existing data structure, the 
K 2-tree [6], initially designed to represent Web graphs and later applied to other domains. 
The IK 2-tree is able to extend the K 2-tree to represent a ternary relation, based on the idea 
of decomposing it into a collection of binary relations but providing indexing capabilities 
in all the three dimensions. We present different ways to use IK 2-tree to model different 
types of ternary relations using as reference two typical domains: RDF and Temporal 
Graphs. We also experimentally evaluate our representations comparing them in space 
usage and performance with other solutions of the state of the art.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Graphs are a natural way to represent data. A way to model simple graphs is to see them as binary relations between 
two data sets, taking advantage of the good number of theoretical and practical results the research about binary relations 
has produced. In fact, the efficient representation of binary relations has been extensively studied and, at present, many 
theoretical and practical representations of binary relations have been proposed to answer the usual queries in multiple 
domains. Theoretical representations provide optimal solutions for a large number of operations and many practical data 
structures are in use [4,13]. General binary relation representations are used everywhere: to represent text, binary matrices, 
Web Graphs and, in general, simple graphs.
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Ternary relations are also very common, but they have not received so much attention. Many real-world data can be 
considered as a ternary relation and handled using a ternary relation representation. In addition to pure 3-dimensional 
data, many binary relations become ternary relations when other dimension of the data (usually time) is considered, for 
example a Web Graph is a snapshot of the Web pages as binary relations at a specific time instant, but the evolution of 
the Web graph over time makes the relationship among web pages three-dimensional. In the same way, in general, any 
collection of 2-dimensional representations where each one captures a different version of the same data (or an instant of 
its temporal evolution), can be seen as a ternary relation. Among those collections we can point out evolving web graphs, 
evolving social networks, etc.

Ternary relations can be also found in other cases, for example, a bi-dimensional matrix of values can be modeled as 
a ternary relation with the values as a third dimension; a simple graph with labels in its edges is also a ternary relation 
with the labels as a third dimension; digital images can also be seem as binary relations among rows and columns of pixels 
and the color of each pixel; etc. These representations arise in many areas: general raster data, images, time-evolving raster 
representing oil patches or in general moving regions can therefore be seen as a ternary relation.

An interesting example of ternary relations are the RDF graphs used on the semantic web to represent knowledge. RDF 
databases are ternary relations because they are collections of 3-tuples composed by the values for subject, object and 
predicate.

In spite of the multiple applications, not much effort has been put to the efficient representation of general ternary 
relations [3]. In most of the cases, data that could be represented and managed as a general ternary relation is managed 
using domain-oriented representations and, therefore, general representations and operation sets are usually overlooked. 
Examples of domain-specific representations include RDF-3X [14] for RDF graphs, or image representations such as tiff and 
Geotiff [16] for both general images and raster data.

The absence of general ternary relation representations can also be related to the variability in domain-specific opera-
tions over the data. Pure 3-dimensional queries are required in many applications, but, in many cases, there are specific 
requirements for the different dimensions. An example of this is the representation of time-evolving graphs, or in general 
time-evolving binary relations: the usual operations on the “spatial” dimensions are well-defined, but in the “temporal” 
dimension of the ternary relation the operations involved include time-instant and time-interval constraints with special 
characteristics related to the time domain. A similar reasoning can be applied to ternary relations that correspond to gen-
eral raster data, or any matrix of values: the “spatial” dimension has specific semantics but the constraints and query 
capabilities in the third dimension differ from those in the other two.

A usual strategy for the representation of ternary relations, using representations for binary relations, is called vertical 
partitioning [1]. The idea is to reduce the ternary relation to a collection of binary relations, hence reducing the problem 
to efficiently storing and querying several binary relations, one for each value of the partitioning variable. This approach can 
lead to much simpler solutions, but faces the challenge of efficiently managing query constraints that involve the dimension 
used as partitioning variable, since the partition in separate binary relations will usually provide no indexing capabilities on 
the partitioning dimension and hence poor efficiency in that kind of queries.

The K 2-tree is a compressed and self-indexed structure initially designed for Web graphs [6,8]. It was later used in 
other domains [2,10] for the compact representation and efficient querying of binary relations. Its quadtree-like structure 
makes symmetric the operations over the two dimensions. This is a valuable property that other classical approaches do 
not provide. For example, an inverted index will provide fast access to the relations of the elements of one dimension 
(direct-neighbors), but to recover the neighbors of the element of the other dimension (reverse-neighbors) another inverted 
index will be needed to avoid sequential navigation.

A collection of K 2-trees has been used as an effective representation of RDF graphs using a vertical partitioning ap-
proach [2]. The great compression capabilities and efficient queries provided by the K 2-trees made that representation 
really competitive against other solutions of the state of the art. In this paper we will show how the IK 2-tree goes farther 
providing better performance due to its capability to index the three dimensions in the same data structure.

Summarizing, we introduce in this paper the Interleaved K 2-tree (IK 2-tree). The IK 2-tree is a compressed and self-
indexed structure to represent and query general ternary relations that gathers in a single tree the three dimensions, 
providing indexing capabilities over all of them. The IK 2-tree is inspired by the vertical partitioning approach, and con-
siders one of the dimensions as a partitioning dimension that is handled differently, but is able to provide efficient access 
to any of the three dimensions. The IK 2-tree is particularly suited to represent relations where general “spatial” constraints 
are imposed on the two main dimensions and “range” or “interval” constraints are imposed on the third dimension. We will 
show the extended capabilities of the IK 2-tree when compared with simple approaches based on a collection of indepen-
dent K 2-trees to represent RDF graphs. We will experimentally apply the IK 2-tree to obtain a compressed and self-indexed 
representation of real RDF datasets, comparing them with state-of-the-art solutions and also with previous approaches based 
on collections of K 2-trees.

Finally we show how the IK 2-tree can be used to represent time evolving graphs, using the changes between two 
different time instants as the base for the representation.
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Fig. 1. An example of a binary relation represented with a K 2-tree.

2. Related work

2.1. The K 2-tree

The K 2-tree [6] is a compact data structure to represent binary relations, conceptually represented by a binary adjacency 
matrix M , where M[i, j] is 1 if element i is related with element j and 0 otherwise. It was originally designed to represent 
Web graphs. The K 2-tree takes advantage of the sparsity of the matrix (large areas of zeros) and the clustering (proximity) of 
the ones. It achieves very low space (less than 5 bits per link) over Web graphs, allowing large graphs to fit in main memory. 
It also supports efficient navigation over the compressed graph [6], efficiently answering direct and reverse neighbor queries, 
individual cell and range queries.

The K 2-tree conceptually subdivides the adjacency matrix into K 2 submatrices of equal size. Each of the K 2 submatrices 
is represented with one bit in the first level of the tree, following a left to right and top to bottom order. The bit that 
represents each submatrix will be 1 if the submatrix contains at least one cell with value 1. Otherwise, if it is an empty 
area, the bit will be a 0. The next level of the tree is created by expanding the 1 elements of the current level, subdividing 
the submatrix they represent. In this way, K 2 children are created in the next level to represent the new subdivisions. This 
method continues recursively until the subdivision reaches the cell-level. Fig. 1 shows an example of this tree for K = 2. 
The first 1 of the first level (root) means the upper-left 8 × 8 submatrix has at least a cell with value 1. The second bit of 
the root is a 0, which shows that the upper-right submatrix does not contain any relation between nodes, and so on.

The K 2-tree is stored with only two bitmaps: T for the intermediate levels of the K 2-tree, following a levelwise traversal, 
and L for the bits of the last level (Fig. 1).

Retrieving direct or reverse neighbors requires obtaining the cells with value 1 for a given row or column in the ad-
jacency matrix. Both operations are symmetric. They are solved in the K 2-tree by a top-down traversal over the tree for 
the two appropriate branches of each node. The example shows the bits of the tree traversed in order to obtain the direct 
neighbors of row 5 (i.e., the ones in the 5th matrix row).

This navigation over the K 2-tree is efficiently performed over the bitmaps T and L. Given a 1 at position x in T , the 
children of x are K 2 bits placed in T : L starting at position rank1(T , x) × K 2, where rank1 counts the number of ones in 
T [1..x]. Rank operations are performed in constant time by using an additional rank structure, created over the bitmap T , 
that requires sublinear space in addition to T [12].

In the worst case the space in bits is K 2e(logK 2
n2

e + O (1)), where n is the number of nodes and e the number of ones. 
Retrieving direct or reverse neighbors in the worst case is O (n) time, although the time is much better in practice.

The implementation of the K 2-tree allows using different K values depending on the level of the tree (hybrid approach) 
or compressing the last levels of the conceptual tree using a vocabulary of submatrices encoded with a statistically com-
pressor. Direct Access Codes [7] (DAC) are used to provide direct access to each code. A dynamic variant of the K 2-tree 
that combines good compression ratios with fast query and update times has been proposed [5]. Other variants compress 
efficiently not only large regions of zeros but also regions of ones [9].

The K 2-tree can be generalized to represent datasets of any number of dimensions building a K n-ary tree instead of the 
original K 2-ary, and adapting the traversal algorithms accordingly. This generalization, a K 3-tree or K n-tree, has however 
implicit scalability problems as n increases due to the structure of the conceptual tree. Since each node of the conceptual 
tree contains always K n children, and the bits for all of them must be stored even if only a few of them are ones, lots of 
additional space may be necessary to store this information in many nodes. The K 2-tree is able to provide a very small 
representation of a binary relation taking advantage of sparsity and clusterization of the ones, but in 3-dimensional or 
generally in n-dimensional datasets it is very difficult to find domains where the ones are highly clustered. Because of this, 
a K n-tree is unfeasible in general n-dimensional datasets.
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2.2. Representation of RDF databases

The Resource Description Framework (RDF [11]) is a standard for the representation of information. It models information 
as a set of triples (S, P , O ) where S (subject) is the resource being described, P (predicate) is a property of the resource 
and O (object) is the value of the property for the subject. RDF was originally conceived as a basis for the representation of 
information or metadata about documents.

RDF provides a framework for the conceptual representation of information. As we said, it represents the information 
as a set of triples (S, P , O ). These triples can also be seen as edges in a labeled directed graph. The vision of a set of RDF 
triples as a graph is called RDF graph in the original recommendation [11].

RDF datasets can be queried using a standard language called SPARQL [15]. This language is based on the concept of 
triple patterns: a triple pattern is a triple where any of its components can be unknown. In SPARQL this is indicated by 
prepending the corresponding part with ?. Different triple patterns are created simply changing the parts of the triple 
that are variable. The possible triple patterns that can be constructed are: (S, P , O ), (S, P , ?O ), (?S, P , O ), (S, ?P , O ), 
(?S, P , ?O ), (S, ?P , ?O ), (?S, ?P , O ) and (?S, ?P , ?O ). For instance, (S, P , ?O ) is a triple pattern matching with all the 
triples with subject S and predicate P , therefore it would return the values of property P for the resource S . (S, ?P , ?O ) is 
a similar query but it contains an unbounded predicate: the results of this query would include all the values of any property 
P of subject S .

SPARQL is a complex language, similar to the SQL of relational databases, and it supports multiple selection clauses, 
ordering and grouping, but its main features are based on the triple-pattern matching and join operations, that involve 
merging the results of two triple patterns. For example, (?S, P1, O 1) �� (?S, P2, O 2) is a join operation between two triple 
patterns where the common element ?S is the join variable. The result of this join operation would contain the resources 
S whose value for property P1 is O 1 and their value for P2 is O 2.

2.2.1. Alternatives for the representation of RDF graphs
RDF is only a conceptual framework that does not enforce any physical representation of the data. The recent popularity 

of RDF has led to the appearance of many different proposals for the actual storage of information in RDF, known as RDF 
stores. Some approaches to represent RDF triples are based on relational databases [17]. Nevertheless, multi-indexing native 
solutions are more frequently used [14,18].

A technique usual in RDF is vertical partitioning [1]. In this approach, since the number of predicates in an RDF datasets 
usually has a moderate size, the set of predicates is used as a “partitioning variable” and the complete RDF dataset is 
partitioned into a collection of bi-dimensional datasets, each containing the triples associated with one of the predicates. 
Following this philosophy, an approach for RDF based on a collection of K 2-trees was already studied and shown to be 
competitive with the state of the art [2].

3. Our proposal: the IK 2-tree

Consider a ternary relation Y defined as a set of triples {(xi, y j, zk)} ⊆ X ×Y × Z . Our structure, called Interleaved K 2-tree 
or IK 2-tree, is designed to represent the relation in a single structure, but following a vertical partitioning approach where 
one of the dimensions will be considered a “partitioning dimension” or “partitioning variable” and will be managed in a 
different way. Usually the smaller dimension, that is, the one with less possible values, will be considered as the partitioning 
dimension, but additional considerations on the required operations may be taken into account. We will consider in our 
examples that Y is the partitioning dimension. The IK 2-tree starts from the representation of the ternary relation as a 
collection of |Y | binary relations, one for each different value y j ∈ Y . We may consider an adjacency matrix representation of 
the binary relation, where rows represent the values of the variable X , while columns represent the values of the variable Z . 
A one in a cell (xi, zk) of the adjacency matrix y j implies the existence of the triple (xi, y j, zk).

Each adjacency matrix could be stored through an independent K 2-tree in order to compose a complete system contain-
ing the full ternary relation. This would lead to a simple vertical partitioning approach with no indexing capabilities over 
the partitioning dimension. The IK 2-tree is able to combine this vertical partitioning philosophy with a representation that 
conceptually divides the ternary relation in several binary relations as explained, but gathers all of them in a single tree 
structure, providing indexing capabilities in the three dimensions.

3.1. Conceptual data structure

The Interleaved K 2-tree can be considered as a combination of a collection of K 2-trees into a single tree structure that is 
able to group the information of all the trees, providing efficient access to multiple K 2-trees at once and at the same time 
efficient and simple navigation algorithms similar to those of a single K 2-tree. The IK 2-tree will be a K 2-ary tree, where 
each node of the new tree will contain information about all the different values of the partitioning variable. In fact, the 
IK 2-tree will contain in each node one bit for each of the individual K 2-trees that would have a valid node in that path. 
This means that the IK 2-tree can be seen as a reorganization of the bits of a collection of K 2-trees in a single structure, 
following a specific arrangement so that the structure can be efficiently navigated and accessed.
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Fig. 2. A ternary relation represented with the Interleaved K 2-tree.

The K 2 nodes in the first level of the IK 2-tree will always contain |Y | bits each, one per each different value y j ∈ Y . 
Inside a node, the j-th bit will be a 1 if the submatrix that is represented by that node has at least a 1 for the y j value. 
Otherwise, this position will contain a 0. In other words, the j-th bit in a node will be a 1 iff the K 2-tree that would 
represent the values for y j would contain a 1 in the node at the equivalent path.

Each node of the IK 2-tree that contains at least a 1 in its associated bitmap will have exactly K 2 children nodes. The 
number of bits in each child is given by the number of bits with value 1 in its parent. Hence, for a node Ni with m ones, 
each one of its K 2 children will contain m bits, one per value y j with at least a one in the matrix corresponding to Ni .

Fig. 2 shows an example of the IK 2-tree structure, representing a simple ternary relation. The ternary relation is already 
represented after a vertical partitioning is applied to the smaller dimension Y , that contains only 3 possible values and is 
used as partitioning variable. The adjacency matrices for each value of Y are shown on the top of the figure. On the bottom 
the complete IK 2-tree structure is shown. A value K = 2 was chosen for that example, so 4 root nodes appear in the first 
level of the tree (these can be seen as 4 child nodes of an omitted root node). Each node in the root of the tree contains 
three bits, one per value of Y . The first bit of the first root node (N0) contains a 0, meaning the top-left submatrix of the 
adjacency matrix for y0 does not contain any one. However, the second bit of N0 is a one because the top-left submatrix of 
y1 contains at least a one.

Given a node of this tree, its children are built recursively considering only the information on the root node and the 
information in the corresponding sub-matrix following the quadtree-like subdivision. Assuming we have a root node of the 
tree of size |Y | with m ones, its K 2children will be created, following the matrix subdivision, but each child will contain only 
m bits, that is, the number of active values of the parent. The remaining |Y | − m elements in the root node correspond to 
values of Y that do not contain any element in the corresponding submatrix; therefore they do not need to be decomposed. 
Therefore, if all the values in the bitmap of a node are zero then that node will not produce any child. The process continues 
recursively as in the original K 2-tree, building the conceptual tree top-down until the leaves are reached. Notice that each 
element in a node will be a bit, corresponding to a different value of Y in increasing order. This will allow us to keep track 
of the actual values of Y represented by each bit during the navigation of the tree.

3.2. Physical representation and basic navigation

The conceptual IK 2-tree is stored following the same ideas used by original K 2-trees. A breadth-first traversal of the tree 
is performed, reading the bitmaps in each level of the tree from left to right into a final bitmap representation. The last 
level of the tree will be stored as a bitmap L, and the other levels will be stored together in a single bitmap T . The reason 
for the use of 2 bitmaps is the same that in the K 2-tree: rank operation support is needed in the upper levels of the tree 
to support navigation to the children of a node, while in the last level it is not necessary.

The IK 2-tree construction process yields simple navigation algorithms over the conceptual tree, following the same ideas 
than a single K 2-tree. Although nodes in the IK 2-tree have a variable size (depending on the active values in the parent), 
the navigation over the tree is quite similar. Notice that a one in a node is still producing K 2 bits in the lower level, and a 
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zero is producing no bits. This is identical to the K 2-tree, with the only difference that the bits induced by a node in the 
next level may not be consecutive now because nodes can have several bits, and the bits of a node will be placed together.

The original K 2-tree structure has the interesting property that the position of the first child of a node can be computed 
directly. Since each one of the tree produces K 2 children, and the elements are stored in the bitmap ordered by levels, the 
first children of a node in the position i in the bitmap is in the position rank1(T , i − 1) ∗ K 2 of the bitmap T : L.

In the IK 2-tree, a node is defined by its starting position in the bitmap and the length of its bitmap. This information 
is trivially encoded in the root nodes, and must be kept during the top-down navigation of the tree. The position of the 
children of a node in the bitmap can be computed through a simple formula. Consider a node starting at position i with b
bits. First we must count the number m of ones it contains. If m = 0 it has no children. If m > 0, its children will have m
bits each. Its first child node will start at position rank1(T , i − 1) ∗ K 2 + adjust , where adjust = |Y | ∗ K 2. Trivially, starting 
at this position, the next K 2 ∗ m bits are representing the children of that node (K 2 nodes of size m, storing the m bits of 
each child node consecutively). Note that the formula is almost the same as in the original K 2-tree, except by the adjusting 
factor adjust accounting for having |Y | ∗ K 2 bits in the first level instead of K 2 as in the K 2-tree. Like in a K 2-tree, when 
the position of a node exceeds |T | the navigation continues in L as if the bitmaps were consecutive.

3.2.1. Leaves compression with DAC
In the original K 2-tree compression could be improved significantly by collapsing a few of the lower levels of the tree 

and statistically compressing the resulting small subtrees. This improvement can also be applied to the IK 2-tree with a few 
adjustments. Note that in the IK 2-tree each node has an arbitrary number of bits, and each one of that node produces 
K 2 nodes in the next level. Hence, it is more difficult to encode a submatrix vocabulary of complete nodes, since a node 
in the third level (starting from the bottom of the tree) collapses a cube of dimensions K 2 × K 2 × m where m is the 
number of ones of that node. In order to obtain a collection of equally-sized submatrices that can be easily stored in a 
vocabulary, the K 2 × K 2 submatrix that each one of a node would individually produce is stored. This means that the 
considered submatrices are a subregion of an individual adjacency matrix. All of these submatrices are used to compute 
a global submatrix vocabulary, that will be stored as a compressed sequence represented using DAC. Notice also that this 
slightly modifies the structure of the original proposal, since now in the compressed representation of L all the bits that 
represent the children of a node in the next-to-last level of the conceptual tree will be placed together (represented as 
a dictionary entry). In the original these bits were scattered in the bitmap L to allow the m bits of a node to be placed 
consecutively.

Note that, taking into account that each individual submatrix corresponds to an specific value of the variable Y , those 
submatrices could be encoded using a different vocabulary for each y j . This would in practice lead to the creation of Y
vocabularies, each identical to the vocabulary representation that an individual K 2-tree for the corresponding value would 
store. However, in the IK 2-tree usually all the matrices will be encoded with the same vocabulary in order to avoid storing 
Y independent matrix vocabularies.

3.3. Query algorithms

The query algorithms supported by the IK 2-tree are based on the basic navigation operations defined earlier, and consist 
of simple top-down traversals of the tree to retrieve the values in the appropriate nodes of the conceptual tree for each 
query. The main operations supported by the IK 2-tree involve arbitrary range constraints in each of the dimensions. We will 
consider our basic operations denoted by a triple pattern (x, y, z), where each item in the triple represents a fixed value, 
a range constraint or an unbounded value in one of the dimensions.

Constraints that are applied over the “regular” dimensions X and Z are handled using the simple K 2-tree algorithms 
for tree traversal: at each step of the navigation, the branches that intersect with the queried region are determined easily 
thanks to the fixed-size space partitioning used by the K 2-tree. On the other hand, constraints that involve the partitioning 
dimension Y are handled in a completely different way, due to the asymmetric representation used in the IK 2-tree. Since 
the method to solve constraints in the other dimensions is already known, we will categorize queries according to the 
constraints imposed to the partitioning dimension. We will distinguish three main kinds of queries: those in which the 
partitioning variable is fixed to a specific value (“fixed partitioning variable”), queries in which the partitioning variable can 
take any value (“unbounded partitioning variable”) and queries where the partitioning variable is restricted to a continuous 
range (“fixed-range partitioning variable”). Each query type will be solved using a slightly different method depending on 
the type of constraint used.

3.3.1. Query patterns with fixed partitioning variable
When the partitioning variable is fixed (a single value) we must perform in the IK 2-tree the equivalent of a query in 

a single K 2-tree. This is independent of the filters in the other dimensions, that only determine the branches that are 
explored. Let us consider the simplest query, the pattern (xi, y j, zk) that searches for an individual triple in the dataset 
(that is, whether (xi, y j, zk) belongs to the ternary relation). To answer this query, a single branch is explored in each level 
of the tree. In the corresponding node for each level of the tree, the bit corresponding to the value y j is checked. If it is a 
zero, the element was not found and the algorithm returns. Otherwise, the children of the current node are located and the 
navigation continues in the corresponding child node; the node traversed is determined by the constraints in dimensions X
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and Z . When we navigate to the child, we must keep track of the offset in the bitmap that represents the location of the 
bit y j : this is computed by counting the number of ones in the parent up to the bit representing y j in it. This counting 
operation can be easily computed in constant time using additional rank operations at each basic navigational step of the 
conceptual tree.

Fig. 2 shows the nodes involved to solve the query (x6, y1, z0). In the root, the node N5 is explored (because it corre-
sponds to (x6, z0)) and the second bit (corresponding to y1) is checked. It is a one and it is the first one of the node, so in 
its children the position for y1 is the first one. The corresponding node for (x6, z0) is N6 and the first bit is checked. The 
process continues until the leaves, where the only bit of N7 is checked and it is a one, so the triple (x6, y1, z0) exists in the 
dataset.

Any other queries involving a fixed value in the partitioning dimension are solved in the same way, applying the K 2-tree 
basic navigation techniques to answer queries involving ranges in the other two dimensions. The only modification when a 
range or an unbounded constraint is applied in the other dimensions is that several branches may need to be checked for 
each explored node with a one in the value corresponding to y j .

Even though the algorithms are very similar in the IK 2-tree and the K 2-tree, notice that queries with fixed y in the 
IK 2-tree require additional rank operations for the navigation. These operations represent most of the traversal cost of the 
tree; hence the added operations may make the IK 2-tree significantly slower than a single K 2-tree in this kind of queries.

3.3.2. Unbounded partitioning variable
The second type of queries involve no constraint in the partitioning variable. Again, we consider the simplest query of 

this type, the pattern (xi, ?, zk), where ? denotes an unconstrained dimension; hence the pattern matches all the values of 
Y related to the pair of elements (xi, zk). Following the same principles used for fixed-partitioning-dimension queries, all 
queries involving ranges or unbounded values in the other dimensions can be straightforwardly adapted from this one. The 
process to answer this query is similar to the previous one, starting at the root and selecting the appropriate node at each 
level of the tree. Navigation will only stop if the current node is a leaf node, that is, if no values of Y exist for the current 
node. In the upper levels of the tree, this means that the current node contains no ones in its bitmap. In this case, navigation 
ends and no results are returned. Otherwise, the child node is recursively traversed until the last level is reached. In each 
level, a node may be smaller than its parent since only the values of Y that contain a one in the corresponding submatrix 
will be represented in the children of each node. In order to keep track of the association between bits of the node and 
values in Y , a list of the active values has to be managed and updated in each level. If we name A j the list of active values 
in the node N j , in a root node N j , its list A j will always be Y . The list of active values Ak of a child of a node N j , Nk , 
contains m elements, where m is the number of ones in the node N j , where Ak[i] = A j[rank(N j, i)] (the rank operation in 
the node denotes counting the number of ones in the fragment of T /L corresponding to N j). In this assignment, the i-th 
position of the children active list always contains the value corresponding to the i-th one in the parent node. It is easy to 
see that, given the active list of the parent (A j) and the node N j the list of the active values for the children of the nodes 
can be computed by a sequential checking over the bits of the node.

For instance, returning to the example of Fig. 2, the query (x2, ?, z2) starts by checking the first node of the tree, N0, 
with a list of active values A0 = {0, 1, 2}, because it is a root node (so it initially contains all the different values for the 
variable Y ). The values for the variables X and Z determines that the explored child is N3. Since in N0 only the second and 
third bits have value one, the list of active values for N3 is A3 = {1, 2} which determines that the first bit of N3 (which is 
a one) corresponds to y1 and the second bit (a zero) corresponds to y2. As N3 continues having at least a one value, the 
process continues traversing down the tree until the leaves level, where node N4 is explored. The list of active values of 
the node N4 is computed from the bitmap of N3 and the list of active values A3. In that way, only the first bit of N3 is a 
one, so A4 = {A3[1]} = {1}. Then, the bit one located in N4 corresponds to y1 and the final result of the query (x2, ?, z2) is 
{(z2, y1, z2)}.

3.3.3. Fixed-range partitioning variable
The third type of query that may be of interest in a ternary relation involves a range of values in the partitioning variable. 

In the simplest of these queries, we have a pattern (xi, [y jl − y jr], zk), that is, a range of possible values in the partitioning 
variable. These queries can be solved using a combination of the procedures explained for the fixed-value and unbounded 
case. We need to keep track of the offsets in the bitmap of each node that correspond to the query range, which can be 
easily computed as in the fixed-value case, requiring in this case two additional rank operations at each node to keep track 
of the start and end of the range. Additionally, we need the same list of active values A to keep track of the y j values 
associated to each bit in the node, in order to properly answer the query.

Notice that, like in the case of fixed-value queries, the overhead required to perform navigation in the IK 2-tree will 
make it slower than querying a single K 2-tree. However, when ranges are involved, queries cannot be answered directly in 
a single K 2-tree but would require instead to perform a synchronized traversal of multiple K 2-trees in order to return a 
result. These operations depend on the number of queried K 2-trees, and are in general very inefficient for a large number 
of them. Hence, queries with fixed-range partitioning dimension are expected to be much more efficient in an IK 2-tree 
than in a simpler approach based on a collection of independent K 2-trees as the size of the ranges increases. Queries with 
unbounded partitioning variable can be considered as a special case of the fixed-range queries, and would be in practice 
the best-case scenario when comparing the IK 2-tree with a collection of independent K 2-trees.
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Table 1
Space comparison for different RDF datasets (in MB).

Dataset |Triples| |Predicates| MK 2-tree IK 2-tree RDF-3X

Jamendo 1,049,639 28 0.74 0.74 37.73
Dblp 46,597,620 27 82.48 84.04 1,643.31
Geonames 112,235,492 26 152.20 156.01 3,584.80
DBpedia 232,542,405 39,672 931.44 788.19 9,757.58

4. Using the IK 2-tree to represent RDF databases

A representation of RDF databases using a collection of K 2-trees has already been proposed [2], and it was experimentally 
shown to be competitive with the state of the art. In this section, we aim to take advantage of the increased indexing 
capabilities of the IK 2-tree in this domain, where many relevant operations involve unbounded-partitioning-variable queries, 
that is, they include RDF triple patterns with an unbounded predicate.

We build an IK 2-tree representation and the equivalent representation based on multiple K 2-trees. We follow a hybrid 
approach using K = 4 in the first five levels of the tree and K = 2 in the rest of the levels; the same values are used 
always for the IK 2-tree and for the multiple K 2-tree. The last levels of the trees (submatrices of size 8 × 8) are statistically 
compressed using DACs [7]. Notice that the multiple K 2-tree approach compresses each matrix using an independent vo-
cabulary, which can model the distribution of each adjacency matrix better than the single vocabulary of submatrices 8 × 8
used in the IK 2-tree. However, the single vocabulary of the IK 2-tree is an advantage if the number of predicates is large 
because it avoids storing too many small vocabularies.

4.1. Experimental framework and results

In our experiments we analyze the results using four datasets corresponding to different domains and with very different 
characteristics. The Jamendo dataset1 is a repository of music; Dblp2 stores Computer Science journals and proceedings; 
Geonames3 is a geographic database; and DBpedia4 is an encyclopedic dataset extracted from Wikipedia. All our tests are 
run on an AMD-PhenomTM-II X4 955@3.2 GHz, quad-core, 8 GB DDR2, running Ubuntu 9.10. The code was developed in C, 
and compiled using gcc (version 4.4.1) with full optimizations enabled -O9.

Table 1 shows the size of the different RDF datasets and the compression results obtained by the IK 2-tree, the multiple 
K 2-tree (MK 2-tree) and RDF-3X. The first columns show the number of triples and the number of predicates that each 
dataset contains. The number of predicates determines the number of independent K 2-trees that would be used in the 
multiple K 2-tree approach, and also the number of bits in each of the root nodes of the IK 2-tree.

The multiple K 2-tree approach obtains slightly better space results in the datasets Jamendo, DBLP and Geonames. How-
ever, in the DBpedia dataset the IK 2-tree obtains much better compression. The difference in space is due to the fact that a 
matrix vocabulary is used to statistically compress the lower levels of the conceptual trees, since the plain bitmaps of the 
IK 2-tree are strictly identical to those of the individual K 2-trees. The IK 2-tree uses a global vocabulary, while the multiple 
K 2-tree approach stores a different vocabulary per K 2-tree; hence, the IK 2-tree saves some redundancy in the DBpedia 
dataset, where many small vocabularies must be created for a large number of predicates, while in the smaller datasets 
the specific vocabularies are able to obtain better compression than the global one in the IK 2-tree. Notice that in all the 
datasets both representations obtain much better compression than RDF-3X.

Regarding query efficiency, in order to compare the relative efficiency of the IK 2-tree with a multiple K 2-tree approach 
we test all the basic RDF triple patterns. We built a collection of 500 queries for each query pattern, and measured average 
query times for each query pattern in each of the representations. Table 2 shows the results for the Geonames dataset (as a 
representative domain with few predicates) and for DBpedia (as an example with many predicates).

For bounded-predicate queries, the multiple K 2-tree is the fastest representation, and the query times of the IK 2-tree 
are about twice those of the multiple K 2-tree. This is consistent with the expected results: in query patterns with bounded 
predicates, the query can be answered simply performing a row, column or full-range query over a single predicate, and 
therefore only a single K 2-tree must be accessed in the multiple K 2-tree representation. In these queries, the IK 2-tree is 
expected to obtain higher query times due to the increased complexity in the low-level navigation operations over the 
IK 2-tree: it must execute additional rank operations at each traversed node in order to count the number of ones in the 
current node bitmap and therefore obtain the number of bits in its children. In general, RDF-3X is much slower than the 
other approaches.

For patterns with unbounded predicates, instead, the IK 2-tree is able to clearly outperform the multiple K 2-tree repre-
sentation. This difference is much more noticeable in the DBpedia dataset (lower sub-table), due to the much larger number 

1 dbtune.org/jamendo.
2 dblp.l3s.de/dblp++.php.
3 download.geonames.org/all-geonames-rdf.zip.
4 wiki.dbpedia.org/Downloads351.

http://dbtune.org/jamendo
http://dblp.l3s.de/dblp++.php
http://download.geonames.org/all-geonames-rdf.zip
http://wiki.dbpedia.org/Downloads351
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Table 2
Time evaluation of simple patterns for RDF, in μs per result.

Category Pattern Geonames

MK 2-tree IK 2-tree RDF-3X

Bounded predicate (S, P , O ) 1.8 3.9 2,346.5
(S, P ,?) 64.9 110.4 4,882.3
(?, P , O ) 0.1 0.3 0.6
(?, P ,?) 0.4 0.5 0.7

Unbounded predicate (S,?, O ) 5.3 4.4 6,118.6
(S,?,?) 95.0 69.7 229.7
(?,?, O ) 240.0 187.0 2,473.1

Category Pattern DBpedia

MK 2-tree IK 2-tree RDF-3X

Bounded predicate (S, P , O ) 3.2 6.2 2,532.4
(S, P ,?) 358.7 608.5 4,117.3
(?, P , O ) 0.6 1.6 143.9
(?, P ,?) 0.7 1.6 0.9

Unbounded predicate (S,?, O ) 7,186.1 155.2 6,330.6
(S,?,?) 3,925.2 911.2 272.3
(?,?, O ) 10,918.1 1,444.6 1,377.9

of predicates, because if a multiple K 2-tree approach is used all the K 2-trees in the collection must be queried to retrieve 
their results; when using the IK 2-tree representation, results are obtained much more efficiently in a single traversal of 
the data structure. In the Geonames dataset, representative of dataset with fewer predicates, the IK 2-tree obtains still a 
significant improvement in this family of queries and obtains the best query times in all the query patterns. In the DBpedia 
dataset, even though the IK 2-tree is much more efficient than the multiple K 2-tree, it is still slower than RDF-3X on the 
query patterns involving unbounded subjects or objects, even though it is relative close in query times to it. In the next 
section we will analyze the reasons for this and introduce an alternative query technique to improve efficiency of these 
queries in datasets with a larger partitioning variable such as DBpedia.

5. A lazy evaluation

The IK 2-tree is designed to be much more efficient than a simpler approach based on a collection of independent 
K 2-trees when answering queries involving the partitioning dimension in a ternary relation. Particularly, in the previous 
section we showed that its query times for RDF datasets were much better than a multiple K 2-tree in unbounded-predicate 
queries, especially when the number of different predicates (i.e. the size of the partitioning variable) is large. In spite of this 
improvement, the IK 2-tree still failed to beat a state-of-the-art representation of RDF datasets in some unbounded-predicate 
query patterns.

The navigation algorithms over the IK 2-tree that we have introduced are still inefficient when performing unbounded-
partitioning-variable queries: at each basic navigational step over the conceptual tree we still have to keep track of a list of 
active predicates that will be updated during traversal. To maintain and update this list, all the bits of each node must be 
checked, and the corresponding values for the next level are updated for each one found. This process can be very expensive 
for nodes containing many predicates. Notice also that this process may be not only expensive but also unnecessary, since 
the complete branch may not yield any result when the traversal completes. Therefore, all this greedy process of computing, 
for each level, which value of Y corresponds with each bit of the current node could be avoided for many branches that do 
not produce any result.

In this section we propose a lazy evaluation strategy for the navigation of the conceptual IK 2-tree. This strategy delays 
the computation of real values, storing only the minimum amount of information during a top-down active values of the 
predicate in each node until a result is found in the branch. This navigation strategy is designed to optimize the performance 
of queries with unbounded partitioning variable in datasets with a large partitioning dimension.

The lazy evaluation approach subdivides the search process in two steps: first, a top-down traversal of the tree retrieves 
the results of the query and then a bottom-up traversal of the tree is performed to recover the Y values for each result 
when necessary. The main difference in the top-down traversal of the tree is that the list of active values is not computed at 
each node. Instead of computing the complete list, the only value that is computed is the number of bits set to one, like in 
a fixed-partitioning-variable query. This count of the number of ones in a node Ni can be easily performed with additional 
rank operations to obtain rank1(N j) = rank1(T , init + |N|) − rank1(T , init), where init is the position of the first bit of Ni in 
the tree (T ). Hence, the top-down traversal only takes into account the number of values of Y that are active in each node, 
but not the actual values of Y associated with each bit.

Once the leaves of the conceptual tree are reached, the real values of Y must be computed in a bottom-up traversal of 
the tree. The main advantage of this technique is that this additional computation is only performed for the branches that 
have actually led to a valid result. This bottom-up traversal starting at a leaf node performs the inverse mapping of the one 
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Fig. 3. First step of the top-down traversal of the lazy evaluation.

computed in the eager evaluation: at each node, the list of relative values within that node is computed. In that way, a bit 
one in the position m of a leaf node has initially associated the value ym; this value will be mapped in the upper levels of 
the tree, updating it in each step of the bottom-up traversal until its real value is obtained at the root of the tree. Given a 
node with a list of relative values, they are transformed by checking the bitmap of the parent node. A relative value y j in a 
node will be mapped to the position of the j-th one in the bitmap of the parent node. The process continues by recursively 
updating the lists of relative values, mapping each value with its position in the parent, until the root is reached. When the 
root is reached, the actual position of the node determines the final value of Y corresponding to each item. The selection of 
the j-th one in the bitmap of the parent node can be efficiently computed with a select1 operation, that reverses the rank
operations performed in the greedy computations.

An additional optimization of this process can be performed for such queries where dimensions X , Z or both are un-
bounded, or when a range of values is queried in X or Z . In those query patterns, several branches are explored, so many 
results could have common ancestor nodes, that have to be explored many times (once for the mapping of relative values 
of each result). When many branches are expanded in a query, a merge sort of the relative lists for all the children of a 
node can be performed, obtaining a single list of relative values which is mapped once using the bitmap of the parent node. 
In this way, several lists of results can be kept at each step of the traversal, all of them sorted by their Y value; the lists 
of sibling nodes are progressively merged during the bottom-up traversal before updating them with the contents of the 
parent node, hence avoiding redundant mapping operations.

To illustrate the lazy strategy we present a complete example of the query algorithms using lazy evaluation for a dataset 
with three different values for the variable Y through a set of figures. Fig. 3 shows the initial top-down traversal performed 
over the tree. For each node, only the number of active values are stored (in order to know the size of the children). In this 
way, node N0 contains 2 bits with one value so its children has 2 bits each one. N1 contains one bit with one value so its 
leaves only contain one bit. On the other hand, the two bits with value one of N2 produce leaves with two bits each one. 
At the end of this process, four results are obtained, which are highlighted in the figure. Their values for the variable X and 
Z are given by the branch of the tree which they are located. Their values for the Y variable are unknown and a relative
value is computed as their position in the leaf node they belong. For instance, the leaf (x2, y1, z2) is related to the second 
value of Y because is located in the second position of the leaf node. In this point the down-top traversal starts, shown 
in Fig. 4. First, a merge sort is performed to join the lists of results which belong to the same parent node. The element 
(x0, y0, z0) is in an independent branch. However, the other three results {(x2, y1, z2), (x2, y0, z3), (x2, y1, z3)} are merged 
in the same list: y0 has one result associated (x2, z3) and y1 contains two results (x2, z2), (x2, z3). Next step consists of 
transforming the current relative values in basis to the parent nodes. Then, as Fig. 5 shows, the list y0 with the element 
(x0, z0) is transformed to y1 since the first bit one in the parent N1 is in the second position. However, the list y0 : (x2, z3)

continues associated to the y0 value since the first one in the parent N2 is in the first position. The same happens with 
y1 : (x2, z2), (x2, z3) which is transformed to y1 because the second one of the parent node N2 is in the second position. 
The three lists of this level share the same parent node so they are merged by Y value. Finally, in Fig. 6, the lists are 
transformed with the information of N0. The first one of N0 is in the second position and the second one is in the third 
position, so the final results will be (x2, y1, z3), (x0, y2, z0), (x2, y2, z2), (x2, y2, z3).

5.1. Evaluation on RDF datasets

To measure the efficiency of the lazy evaluation strategy we compare it with the basic navigation strategy in the RDF 
dataset DBpedia, the dataset with a large number of predicates. We focus only on the query patterns that involve an 
unbounded partitioning variable (unbounded predicate), and particularly on the query patterns (S, ?, ?) and (?, ?, O ), in 
which many branches of the conceptual tree were traversed and the IK 2-tree was slower than RDF-3X in our previous 
experimentation. We do not show the results for the query pattern (S, ?, O ) because in this query pattern only a single 
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Fig. 4. Reaching the leaf level of the lazy evaluation.

Fig. 5. Starting the bottom-up traversal of the lazy evaluation.

Fig. 6. Reaching the root in lazy evaluation.

Table 3
Time, in μs per result, of basic and lazy evaluation in patterns with unbounded predicate on DBpedia.

Query MK 2-tree Interleaved K 2-tree Lazy IK 2-tree RDF-3X

(S,∗,∗) 3,925.2 911.2 232.7 272.3
(∗,∗, O ) 10,918.1 1,444.6 430.8 1,377.9

branch of the conceptual tree is expanded; hence the advantages of these technique become negligible and the additional 
navigation cost of the lazy evaluation would dominate the overall query time. The same experimental setup and query sets 
were used in these experiments, adding the lazy IK 2-tree algorithms to the results.

Table 3 shows the results obtained. The lazy evaluation improves significantly the results for the studied query patterns, 
and achieves query times up to 5 times faster than the original eager algorithm, becoming the fastest representation in 
both query patterns. This new evaluation technique, combined with the original eager algorithms, make the IK 2-tree faster 
than RDF-3X in all the unbounded-predicate queries in our experiments, therefore making the IK 2-tree the most consistent 
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alternative in space and query times. Note also that the application of a lazy evaluation technique can be easily deter-
mined depending on the characteristics of the dataset and the query; hence simple heuristics can be used to determine the 
appropriate evaluation strategy for each case.

6. Differential IK 2-tree

In the previous sections we introduced the IK 2-tree as an alternative for the representation of a collection of binary rela-
tions, showing that it is much more efficient than the equivalent collection of K 2-trees when many of these K 2-trees would 
be accessed in a single query. In this section we explore an alternative application of the IK 2-tree to the representation of 
binary relations and their changes, that is, the evolution of binary relations along time. Our proposal is a “differential” rep-
resentation of the data that attempts to achieve maximum compression representing only the changes in the data instead 
of a complete snapshot of the data at each time instant.

Let us consider a temporal graph that models the evolution of a binary relation over time, that is, a ternary relation over 
X × Y × T , where X and Y are sets of nodes (and usually X = Y ) and T is a set of time instants at which a relation changed 
(that is, an edge in the graph appeared or disappeared). Notice that, when following a vertical partitioning approach, we 
will consider in this domain that time (T ) is our partitioning variable, and X and Y are our regular dimensions.

The operations of interest in this domain involve usual queries on graph nodes, that is, direct or reverse neighbors of 
specific nodes, or checking whether there was a connection between two specific nodes. These basic graph queries will 
be increased in a temporal graph with a temporal constraint. Time-instant queries refer to a specific time instant t in T , 
and ask for the state of the graph at that specific t . Time-interval queries refer to one or more intervals in time, which 
were the neighbors of node x between times t5 and t13. Time-interval queries can have different semantics that determine 
the expected results from a query: weak time-interval queries ask for the relations that occurred at any point during the 
interval, whereas strong time-interval queries would only return the relations that were active at all points of the time 
interval.

In [10] several proposals based on collections of K 2-trees were introduced. These proposals based on K 2-trees allow 
simple query in simple binary relations, but querying a collection of K 2-trees used to represent a temporal graph proved 
to be very inefficient in time-interval queries, due to the need to synchronize access to an arbitrary number of K 2-trees in 
time-interval queries, leading to poor performance as the time dimension increased in size, and being overcome by simpler 
strategies based on the pure compression of log changes per node.

A first approach to represent a temporal graph using K 2-trees would store independent K 2-trees for each time instant, 
each storing a complete snapshot of the graph. This approach essentially uses T (time) as a partitioning variable and stores 
the state of the graph at each time instant. This approach relies on the compression capabilities of the K 2-tree to efficiently 
store the data, but it is unfeasible in domains with very large graphs and relatively few changes. An IK 2-tree representation 
of the same snapshots would be more efficient in queries but still too large.

The IK 2-tree, based on vertical partitioning but providing efficient access to ranges in the partitioning dimension, is 
well-suited to represent time-evolving binary relations in a “differential” way. Its ability to represent a collection of K 2-trees 
in a single data structure allows it to follow a space-efficient philosophy, storing only changes in the graph, and its indexing 
capabilities in the time dimension aim to provide query efficiency close to that of a naive snapshot-based representation. 
To demonstrate the efficiency of the IK 2-tree to handle ternary relations in comparison with previous, simpler approaches 
based on collections of independent K 2-trees, we present here an experimental comparison between both alternatives for 
the compact representation of temporal graphs.

Let us consider a representation of a time-evolving graph based on a collection of K 2-trees. In our proposal, we will 
represent each time instant (except t0) as a change log. That is, at t0 we store a complete snapshot of the graph (all triples 
(x, y, t0) in the ternary relation). At tk , for k > 0, we store (xi, y j, tk) in tree k iff the relation between xi and y j changed 
between tk−1 and tk , that is, we store for each edge of the graph the time instants when the edge appears or disappears. 
Notice that, because of how K 2-trees are built, in each differential K 2-tree an internal node in a K 2-tree Ki will be set to 1 
if and only if there has been at least one change in the region it covers between ti−1 and ti .

Our representation can be seen as a “differential” approach that represents the complete state of the graph at the 
beginning but only the changing occurring in the successive time instants. Considering a typical domain, where the number 
of changes in a graph at any time instant is much smaller than the overall number of edges, the expected space results 
would be much smaller than those of a naive snapshot-based approach. Fig. 7 shows a “differential” representation of a 
graph using a collection of differential snapshots, each encoded using a simple K 2-tree. The original full snapshots for 
each time instant are shown at the top (black cells represent items in the adjacency matrix); in the middle we show the 
corresponding “differential” snapshots for the time instants 1 and 2, and finally the K 2-tree representations for the full 
snapshot at t0 and the differential snapshots at t1 and t2 are shown at the bottom.

Despite its increased compression, if we use a simple collection of K 2-trees to store the snapshots, the query efficiency 
of this proposal is severely limited by the efficiency to solve constraints in the time dimension. Using this representation, 
a relation exists between xi and y j at time tk iff there is an odd number of triples (xi, y j, tm), where m ∈ [0..k]. Therefore, 
any query involving a time instant must be able to efficiently query the representation of the graph at all times before that 
time in order to count the number of changes. This count operation can be implemented with an x-or operation involving 
all the K 2-trees corresponding to the interval [t0, tk], that requires a synchronized traversal of all the trees in the interval. 
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Fig. 7. Representation of a temporal graph with “differential” K 2-trees.

To answer time-interval queries (x, y, I = [t�, tr]) we need to perform a similar operation adapted to the semantics of the 
query. To answer weak time-interval queries semantics, that return all elements active at any point in the interval, a cell will 
be returned if it was active at t� or if it changed its state at any point between t� and tr . We can compute this performing 
an x-or operation to check if the cell was active at t� and an or operation in the interval [t�, tr] to check for changes within 
the query interval. Again, this operation must be checked for each node expanded in the K 2-trees depending on the range 
R determined in the other dimensions. Operations are similar for strong time-interval queries, required a synchronized 
traversal of multiple K 2-trees performing logical operations on the collection: in strong queries we return only elements 
active during the complete interval, so we must check that the element was active at t� and that no changes occurred in 
[t�, tr].

Therefore, using a simple approach based on multiple K 2-trees, a purely differential approach like the one just proposed 
faces the usual limitations in vertical partitioning: queries involving the partitioning variable, time, may have poor efficiency. 
In addition, the proposed representation requires any query in the temporal graph to access a variable number of K 2-trees, 
and that number depends not on the length of a query interval but simply on the time instant of the query.

A proposal based on the IK 2-tree for the same representation requires essentially the same space, as explained pre-
viously. The IK 2-tree can be seen as a combination of the multiple K 2-trees in a single data structures, combining their 
corresponding nodes in the final conceptual tree, so that their bits are placed together in the final physical representation 
and can be accessed more efficiently. This makes the IK 2-tree able to allow simpler access to a sequence of values in the 
third dimension. In our case, this means that once a single leaf node in the tree is accessed (an edge in the graph), all 
the changes for that edge will be stored consecutively and the complex synchronized traversals of multiple K 2-trees are 
reduced to much simpler counting operations in the IK 2-tree bitmap.

Fig. 8 shows the representation of the same graph in Fig. 7 using a “differential” IK 2-tree representation. In each leaf 
of the IK 2-tree we store a bit for each change in the associated edge. In the internal nodes of the IK 2-tree we store a bit 
for each time instant where at least one cell covered by that node suffered a change. For example, node N1 represents 
row 6, column 5 of the adjacency matrix. This cell is active at t0 and does not change at any other instant; hence its bitmap 
contains a single 1 in the first position, corresponding to t0 (the actual mappings of the bits are t0 and t2, as we can see 
in the bitmap of N0). On the other hand, node N2, that represents row 7, column 5, is active at t0 and becomes inactive at 
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Fig. 8. “Differential” IK 2-tree representation of the graph in Fig. 7.

Table 4
Temporal graphs used in our experiments.

Collection Size (MB) Snapshots Change rate Nodes/snapshot Edges/snapshot

CommNet 225.9 10,000 25% 10,000 20,000
Monkey Contact 4,303.9 220 1% 3,200,000 2,500,000
Power Law 22,377.1 1,000 2% 1,000,000 2,900,000

t2; therefore its bitmap contains two bits set to 1, one for each change. Notice that in this case the IK 2-tree representation 
provides a huge advantage to perform the counting operations required by queries, since the changes for each node are 
consecutive in the final bitmap representation. As we will see, all queries can be rewritten in terms of counting operations 
that are solved by means of rank operations in the bitmaps of the K 2-tree:

• To answer a time-instant query, (x, y, ti), we navigate the IK 2-tree like in a fixed-value query. In each internal node, we 
only stop navigation in the branch if the bitmap of the current node has all bits set to 0 until (and including) the bit 
corresponding to ti : this case indicates that all cells in the current submatrix were 0 at t0 and never changed. When 
we reach a leaf node, we can know whether the cell was active at ti counting the number of ones between t0 and ti , 
which can be easily computed with 2 rank operations on the bitmap L. Notice that we need to add rank support to L, 
which is not needed in basic K 2-trees, but the small increase in space provides a much more efficient query method. 
The cost of a time-instant query does not depend anymore on ti , the number of time instants before the current one. 
However, in order to provide efficient rank support on L we may disregard some of the improvements to compression 
that could be achieved using for instance a statistical compression of the last levels using DAC.

• To answer time-interval queries, we behave exactly like in time-slice queries: we navigate until we reach the leaves, 
and in the leaves we check the number of changes using just rank operations. As explained, the operations to obtain 
results depend on the semantics: in weak queries we need to count the number of changes up to the beginning of the 
interval (i.e. check if the relation was active at the beginning) or whether a change occurred in the interval (i.e. the 
relation appeared at some point in the interval). On strong queries, we need to make sure that the relation was active 
at the beginning of the interval and no changes occurred in the complete interval. In both cases, operations are reduced 
to simple rank operations to count ones in the bitmap of the leaf node.

6.1. Experimental comparison with independent K 2-trees

To demonstrate the indexing capabilities of the IK 2-tree for the representation of the temporal evolution of graphs or 
binary relations, we compare it with a simple collection of “differential” K 2-trees for the representation of different real 
and synthetic time-evolving graphs.

We analyze the temporal evolution of three different graphs: the CommNet dataset is a synthetic graph simulating a 
small, highly active network where relations are created randomly and last for a few time instants; the Monkey Contact
dataset is a collection of snapshots taken from a real social network; the Power Law dataset is also a synthetic graph where 
edges follow a power-law degree distribution, where the first nodes in numbering order contain much more relations than 
the others. The three datasets are represented using our IK 2-tree and also using multiple K 2-trees that encode the same 
change logs (MK 2-tree).

Table 4 summarizes some basic information of the datasets. It aims to give a raw estimation of the size of the dataset. 
The first column shows a simple estimation of the “base size” of the dataset, given by the size of all the edges in all of 
the snapshots of the graph, each stored as a pair of integers. The next columns represent the number of snapshots (time 
instants) considered in the sequence, the change rate (percentage of edges that appear/disappear at each time instant, over 
the average number of edges) and finally the (average) number of nodes and active edges per snapshot of the graph.

Table 5 shows a comparison in space between the IK 2-tree and a collection of independent K 2-trees. As reference and 
baseline for comparison, we also include the number of snapshots in each dataset and an additional column with the 
“differential size” of the dataset. This size is the space of a plain representation of the first complete snapshot (as pairs of 
integers) and a representation of each change as a tuple (source, destination, appear/disappear); a smaller differential size 
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Table 5
Space comparison on different temporal graphs (in MB).

Dataset |Snapshots| “Diff. size” MK 2-trees IK 2-tree

CommNet 10,000 716.4 137.28 136.51
Monkey Contact 220 222 281.11 281.03
Power Law 1,000 33.5 4.55 4.54

Table 6
Time comparison: direct neighbors of a node on temporal graphs (in ms/query).

Patterns CommNet Monkey Contact Power Law

MK 2-tree IK 2-tree MK 2-tree IK 2-tree MK 2-tree IK 2-tree

Instant 86.78 1.7 0.27 0.14 17.60 1.28
Weak 87.19 1.84 0.27 0.14 20.72 1.56
Strong 88.02 1.82 0.26 0.16 19.73 1.44

Table 7
Time comparison: reverse neighbors of a node on temporal graphs (in ms/query).

Patterns CommNet Monkey Contact Power Law

MK 2-tree IK 2-tree MK 2-tree IK 2-tree MK 2-tree IK 2-tree

Instant 89.07 1.79 0.28 0.15 19.86 1.43
Weak 90.96 2.07 0.26 0.15 18.36 1.46
Strong 93.75 2.05 0.26 0.16 19.98 1.50

indicates a graph with few nodes and/or few changes, and acts as a simple baseline for the space efficiency of a compact 
representation based on encoding lists of differences.

For the comparison we build “equivalent” versions of the MK 2-tree and the IK 2-tree, using the same values of K (K = 4
in the first level and K = 2 in the remaining levels), without applying a statistical compression in the lower levels. In our 
results the IK 2-tree is even smaller than a collection of independent K 2-trees, due to the fact that we use an unmodified 
K 2-tree structure that stores some internal information about the size of the matrix and additional parameters of the 
internal tree structure; this information becomes redundant in this case, since we have a collection of K 2-trees representing 
graphs of the same size and with the same internal structure. If the redundant information in the K 2 -trees were omitted, 
the IK 2-tree would be slightly larger than the individual K 2-trees, since the only real difference in the size of the data 
structures would be due to the addition of a rank structure to the last level of the conceptual tree, in order to perform 
efficiently counting operations.

Tables 6 and 7 show the query performance achieved for the three datasets with the IK 2-tree, in contrast with the 
multiple K 2-tree approach. We ask for direct and reverse neighbors of a given node at a time instant or time interval with 
strong and weak semantics. Each query set contains 2000 queries. Nodes and time instants are selected randomly on the 
size of the node set and the number of snapshots respectively. Different query sets are built for direct and reverse neighbors. 
Finally, for time-interval queries, we show the results for a fixed interval length of 100, hence limiting starting points of the 
interval so that the complete length of the interval will be valid. Note that the length of the interval has almost no effect 
on query times in the multiple K 2-tree representation when using a differential approach. In the IK 2-tree query times do 
change with interval length, but the query cost is more related to the number of matched results than to an increased cost 
in querying for long intervals.

The experimental results show the superiority of the IK 2-tree in all queries. The results are consistent in all the datasets 
and query types, with the IK 2-tree being much faster to obtain the results. In the Monkey Contact dataset the difference 
is much smaller than in the other two datasets, due to the reduced number of snapshots existing in the collection (just 
over 200), which means that the number of instants that must be accessed are a significant percentage of the overall 
representation. As soon as the number of snapshots increases, the relative efficiency of the IK 2-tree against a multiple 
K 2-tree approach also increases. This result is expected, since a purely differential representation in a collection of trees 
forces the query algorithms to traverse multiple trees simultaneously even to answer time-instant queries regarding the 
multiple K 2-tree approach in terms of querying efficiency in the context of temporal graphs. The huge improvement in the 
performance of time-specific constraints shows the relative efficiency of the IK 2-tree against a simpler solution based on a 
simple collection of independent K 2-tree structures.

Notice that in a “differential” representation the IK 2-tree is much faster even in time-instant queries because all our 
queries (even time-instant queries) require traversing a series of time points to be answered. Particularly, in this differential 
approach the cost of the query depends more on the time point used in the query than on the length of the query interval: 
if the time-instant query refers to an early time point ti (or time interval [t�, tr]), we only need to check the changes in 
the interval [0, ti] (or [0, tr]); on the other hand, a time-instant query that asks for a time point t j > ti requires us to check 
more time instants and compute a higher number of changes. This is confirmed in our experiments, since time points and 
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time intervals are selected randomly and the cost of time-instant and time-interval queries is very similar in Table 6 and 
Table 7, with only minor differences. The flexibility of the IK 2-tree opens the possibility of exploring new representations 
such as this one, where instead of a simple vertical partitioning of the datasets we perform an oriented, smarter partitioning 
focused on increasing compression or improving query support.

7. Conclusions

The IK 2-tree is a compact data structure able to represent in very compact space ternary relations, providing indexing 
capabilities over the 3 dimensions and supporting different constraints in all of them with simple algorithms. The IK 2-tree 
is especially well suited to ternary relations where one of the dimensions is smaller than the other two, since it follows 
a vertical partitioning approach that treats one of the dimensions in a different way. Nevertheless, the IK 2-tree is able to 
answer queries involving fixed values or ranges in the partitioning dimension efficiently.

Our experimental evaluation shows that the IK 2-tree is able to provide very compact representations in real-world 
datasets. In particular, our experiments show that a representation of RDF datasets using the IK 2-tree improves on previous 
results based on K 2-trees and is competitive with state-of-the-art proposals.

We also introduce several variations of the IK 2-tree that improve on the basic structure and increase its applications. 
A lazy evaluation strategy is presented, that provides a more efficient query technique in datasets where the partitioning 
dimension is relatively large. A differential IK 2-tree representation is introduced to manage the state of a time-evolving 
binary relation, storing the changes at each time instant in a compact way while providing efficient methods to retrieve the 
actual status of the relation at any point in time.
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