
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FíSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

ADDRESSING PROBLEM SIZE IN STACKELBERG SECURITY GAMES

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN SISTEMAS DE INGENIERÍA

VÍCTOR DANIEL SIMÓN BUCAREY LÓPEZ

PROFESOR GUÍA:
FERNANDO ORDOÑEZ PIZARRO

MIEMBROS DE LA COMISIÓN:
JOSÉ CORREA HAUESSLER
EUGENIO DELLA VECCHIA

ALAIN JEAN-MARIE
MILIND TAMBE

Este trabajo ha sido parcialmente �nanciado por CONICYT

SANTIAGO DE CHILE
2017



ii



ABSTRACT
AUTHOR: VÍCTOR DANIEL SIMÓN BUCAREY LÓPEZ
DATE: 2017
ADVISOR: FERNANDO ORDOÑEZ PIZARRO

ADDRESSING PROBLEM SIZE IN STACKELBERG SECURITY GAMES

In this thesis we present algorithmic and modeling contributions for Stackelberg games that
help address challenges due to problem size. Stackelberg games consider that one player,
called leader, commits a strategy �rst and the other player, named follower, observes this
strategy and plays a best response.

In this thesis we address the problem size that arises due to large leader action space, or
because the interaction between the leader and the follower is evolving over time. In the last
case, we model this interaction as a stochastic game.

In Chapter 1, we present a situation where a defender, the leader in the Stackelberg
game, has to pair up resources to do patrol labor. In this case the set of pure strategies
is exponentially large. We show a mixed integer programming formulation with polynomial
number of variables and an exponentially sized set of constraints that can be separated in
polynomial time. Moreover, we design sampling methods to retrieve implementable strategies
for the defender. We show a case study in border patrolling labor of Carabineros de Chile.
We show that our model with the cut-generation scheme outperforms other models, scaling
up to large size instances.

In Chapter 2 we show a method to scale up an algorithm to compute optimal strategies in
the context of opportunistic crime modelling, via a multi-layer clustering. Inside each cluster
the algorithm can scale up in reasonable times. This methodology can be adapted to any
problem where geographical aspects are important and the number of targets is large.

In Chapter 3 we face the problem of computing stationary policies that form a strong
Stackelberg equilibrium in stochastic games. We �nd a family of instances where both, Value
Iteration and Policy iteration converge to a strong Stackelberg equilibrium. We show via a
counterexample that this is not always possible. Also, we show computationally that Value
Iteration applied to security games instances seem to always converge to a unique strong Stac-
kelberg equilibrium. Finally, we study mathematical programming formulations to compute
a Stackelberg equilibrium in stochastic games.

Finally, in Chapter 4 we study a dynamic game, where a central agency aim to avoid the
overexploitation of water, controlling the marginal cost of water extraction in agriculture.
We model this situation as a stochastic game where the leader is the central agency and
the followers are farmers who seek to maximize an instantaneous reward function at each
period. In our setting, the leader maximizes the total discounted reward of the whole set of
farmers. We �nd that we can achieve better levels of water in the steady-state by controlling
the marginal cost. Finally, we propose a robust optimization approach to include uncertainty
in our model.

iii



iv



RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN SISTEMAS DE INGENIERÍA
POR: VÍCTOR DANIEL SIMÓN BUCAREY LÓPEZ
FECHA: 2017
PROF. GUÍA: FERNANDO ORDOÑEZ PIZARRO

ADDRESSING PROBLEM SIZE IN STACKELBERG SECURITY GAMES

En esta tesis presentamos contribuciones algorítmicas y de modelación para Juegos de Stac-
kelberg para problemas de gran tamaño. Juegos de Stackelberg es un tipo de juego en el que
un jugador, llamado líder, utiliza una estrategia y luego el otro jugador, llamado seguidor,
observa esta estrategia y juega una mejor respuesta. En el contexto de seguridad, el líder se
le denomina defensor, y al seguidor se le denomina atacante.

En el Capítulo 1, presentamos una situación en donde el defensor tiene que emparejar
recursos para poder desarrollar labores de patrullaje. En este caso, el conjunto de estrategias
puras es de tamaño exponencial. Presentamos una formulación en programación lineal entera
mixta con un número polinomial de variables y un número exponencial de restricciones que
pueden ser separadas en tiempo polinomial. Además, se diseñó un método de sampleo para
recuperar estrategias implementables para el defensor. Por otra parte, mostramos un caso de
estudio basado en el patrullaje fronterizo de Carabineros de Chile. Finalmente mostramos que
nuestro modelo con el generación de cortes funciona considerablemente mejor que cualquier
modelo en la literatura.

En el Capítulo 2, se muestra una manera de escalar un algoritmo basado en Aprendizaje
de Máquinas, realizando multiples capas de clusters de territorios en donde en cada cluster
el algoritmo resuelve en tiempos razonables.

En el Capítulo 3 se realiza un estudio sobre existencia de estrategias estacionarias que
formen equilibrios de estrategias fuertes. Se detecta una familia de instancias en las cuales
algoritmos de programación dinámica pueden encuentran el único equilibrio de Stackelberg
fuerte. En este caso, se demuestra que Iteración de políticas y de valores convergen a los
únicos valores de equilibrio. Se muestra vía contraejemplo que no siempre programación
dinámica puede encontrar equilibrios de Stackelberg. Computacionalmente se encuentra que
la estructura de juegos de seguridad presentara características que hace aplicable la teoría de
operadores para encontrar equilibrios de Stackelberg. Finalmente se estudian formulaciones
basadas en programación matemática para calcular equilibrios de Stackelberg.

Finalmente, en el Capítulo 4 mostramos un juego dinámico, en donde un agente central
tiene como objetivo la sobreexplotación de agua en el contexto agrícola, controlando los costos
marginales de extracción que enfrentan los agricultores. Modelamos esta situación como un
juego estocástico en donde se busca un equilibrio de Stackelberg en donde el líder es la agencia
central, y los seguidores son los agricultores. Computacionalmente se encuentra que se pueden
alcanzar mejores niveles de agua en el estado estacionario controlando los costos marginales
a través de las tasas de descuento del líder, aunque los agricultures sean miopes. Finalmente,
nosotros proponemos una formulación de programación robusta para incluir incertidumbre
en nuestros modelos.

v



vi



Dedicado a la memoria de
Adela Godoy Inostroza.

Te extraño.

vii



viii



Acknowledgements

In the �rst place, I would like to thank my family. To my mother, for being the main
source of love and support throughout all these years. Undoubtedly, it was you who taught
me to �ght for my dreams. To embrace love. To share love. I am so proud of you.

To Juan, who has always supported my crazy adventures. For being such a great compa-
nion.

To Daniela, for her love and a�ection throughout these years, and sharing with me, this
beautiful adventure called parenthood. To my little son, Pablo, for being my main and most
important motivation in this life.

While doing this Ph.D., I was able to forge and strengthen bonds of friendship, that
have been nourishing in every single way. To my dear namesake Víctor Verdugo, for his
unconditional support, for being a true friend, for being a counselor and a mentor at times
I needed him; To my dear friend Dana, for being a great mate, for her a�ection and of
course, for giving me alfajores; To Angie who came to refresh this last period with her joy
and laughter; To Felipe Carrasco for allowing me to be his friend, and for all those pleasant
breaks we took; To Carlos Casorrán, for being such a great friend and academic partner; To
Andrea M. for all her support in Santiago, Rosario and Los Angeles. I would also like to
thank my friends Gaby, Felipe, Rayen and Cristóbal, who supported and helped me in times
of need. I feel I became a better person thanks to all of you

I want to thank all the researchers that trained and educated me during these years doing
the Ph.D. To Eugenio, for his patience as a teacher, for his advice and tips. It's a real privilege
to work with such a valuable and beautiful person like you. To Alain and Mabel for receiving
and treating me as another colleague, for their tours and fun talks. When I grow up, I want
to be like you! To Milind for letting me be a part of his researching group for a couple of
months. How amazing is to share with people of world's �rst level. I learnt so much from you
and your people.

I also want to thank several people I had to discuss and work with during this period. To
Chao Zhang, Ayan Mukhopadhyay, Arunesh Sinha, Yundi Qian, Yevgeniy Vorobeychik, Hugo
Navarrete, Karla Rosas, Oscar Figueroa, Andreas Wiese, Roberto Cominetti, José Correa,
Mario Bravo, Renaud Chicoisne, Renny Márquez, Andrea Canales, Álvaro Brunel, Javier
Ledezma, Ricardo de La Paz, Eduardo Lara, Eduardo Zuñiga, Verónica Diaz, Cristiam Gil,
Sebastián Davila, Richard Weber. Thank you, for your ideas and contributions.

ix



Thanks to the Industrial Engineering Department of the Universidad de Chile. From
the co�ee shop people, who always o�ered me a nice chat about football and music, to
the teachers, students and workers, all of you have made of this spot a great place to be.
Especially to Paulina and Evelyn for all the interesting scienti�c outreach project that I have
been involved in Comunidad Ingenio, and for all the interesting conversations that we had in
this 7 last years.

Finally, I would like to thank Fernando, for being an excellent advisor, an amazing friend
and a true mentor. Thank you so much for the advices, the lessons, the patience and for chee-
ring me up during the hard times. Even though your tasks as the Director of the Department
consumed lots of your time, you were always willing to help me.

This thesis is dedicated to my grandmother Adela, who was always next to me, spiritually.
I know it. I really wish you were here.

x



Agradecimientos

En primer lugar quiero agradecer a mi familia. A mi mamá por ser la fuente principal de
amor y apoyo durante estos años. Sin duda, de ti aprendí a luchar por lo que uno quiere, a
entregar amor. Estoy muy orgulloso de ti. A Juan por apoyarme en todas mis locuras y ser
una gran compañía. A Daniela, por el cariño de todos estos años, y por compartir conmigo
esta hermosa aventura de ser papás. A mi hijo Pablo, porque es el principal motor de mi
vida.

Esta etapa de doctorado hizo forjar y reforzar amistades que han sido muy nutritivas en
todo sentido. A mi tocayo Víctor Verdugo por siempre estar ahí, por ser un verdadero amigo,
consejero y guía en muchas ocasiones; a Dana por ser una gran compañera y por entregarme
mucho cariño y alfajores; a María Angélica que vino a refrescar esta última etapa con su
alegría y risa; a Felipe Carrasco por permitirme ser su amigo y los gratos breaks que nos
tomamos; a Carlos Casorrán por ser un gran amigo y hermano académico; a Andrea M. por
todo su apoyo y cariño en Los Angeles, Santiago y Rosario. También quiero agradecer a mis
amigos Gaby, Cristobal y Felipe, que me apoyaron y entregaron contención en momentos
importantes. Siento que soy una mejor persona gracias a ustedes.

También quiero agradecer a los investigadores que en estos años de doctorado me formaron.
A Eugenio, por la paciencia al enseñar y sus consejos, es un lujo trabajar con gente tan
valiosa y linda como tú. A Alain y Mabel por recibirme como un colega más, por sus paseos
y entretenidas charlas. Cuando grande quiero ser como ustedes. A Milind por dejarme ser
parte de su grupo de investigación un par de meses. Es genial compartir con gente de primer
nivel mundial. Aprendí mucho contigo y con tu gente.

Quiero agradecer también a distintas personas con las que me tocó discutir y trabajar en
este periodo. A Chao Zhang, Ayan Mukhopadhyay, Arunesh Sinha, Yundi Qian, Yevgeniy
Vorobeychik, Hugo Navarrete, Karla Rosas, Oscar Figueroa, Andreas Wiese, Roberto Comi-
netti, José Correa, Mario Bravo, Renaud Chicoisne, Renny Márquez, Andrea Canales, Álvaro
Brunel, Javier Ledezma, Ricardo de La Paz, Eduardo Lara, Eduardo Zuñiga, Verónica Diaz,
Cristiam Gil, Sebastián Davila, Richard Weber. Gracias por sus ideas y sus aportes.

Muchas gracias al Departamento de Ingeniería Industrial de la Universidad de Chile. Desde
la gente de la cafetería que siempre me ofreció una grata discusión de fútbol y música, hasta
los profesores, alumnos y funcionarios con los que hacen que este lugar sea un excelente lugar.
También no puedo dejar de agradecer a Comunidad Ingenio con quienes he participado de
proyectos apasionantes como lo es la divulgación cientí�ca. En particular agradecer a Paulina
y Evelyn por sus gratas e interesantes conversaciones.

xi



Finalmente quiero agradecer a Fernando, por ser un excelente guía, un gran amigo y un
verdadero mentor. Muchas gracias por tus consejos, enseñanzas, paciencia y subirme el ánimo
en los momentos más duros. A pesar de que tus labores de director de departamento no te
dejaban mucho tiempo, tuviste siempre la disposición de ayudarme.

Esta tesis va dedicada a mi abuela Adela, que sé que siempre estuvo conmigo en espíritu.
Como me encantaría que estuvieras acá.

xii



Table of Contents

Introduction 1

1. Coordinated defender strategies for border patrols 4

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Problem Formulation and Notation . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1. Stackelberg Security games . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2. Resource Combination in a SSG . . . . . . . . . . . . . . . . . . . . . 9

1.3. Decomposition Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1. (COMB) is an equivalent SSG formulation . . . . . . . . . . . . . . . 13
1.3.2. Cutting Odd-Set Constraints . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3. Recovering an implementable strategy . . . . . . . . . . . . . . . . . 18

1.4. Case Study: Carabineros de Chile . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1. Payo� estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2. Building software for Carabineros . . . . . . . . . . . . . . . . . . . . 26
1.4.3. Robustness of our approach . . . . . . . . . . . . . . . . . . . . . . . 27

1.5. Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.1. Performance of (COMB) . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2. Performance of the alternative sampling method . . . . . . . . . . . . 30

1.6. Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2. Abstractions to handle large scale models. 32

2.1. Layer Generating Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2. Multi-Layer Generating Algorithm . . . . . . . . . . . . . . . . . . . . . . . 36
2.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. Solving Stackelberg equilibrium in stochastic games 39

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1. General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2. Math programming to solve Stochastic Games . . . . . . . . . . . . . 43

3.3. Motivational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4. Numerical Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5. Special case: Myopic Follower Strategies (MFS) . . . . . . . . . . . . . . . . 53

3.5.1. Stackelberg operator and Value function iteration . . . . . . . . . . . 54
3.5.2. Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6. General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



3.6.1. De�nition of the Stackelberg Operator in the general case . . . . . . . 61
3.6.2. Numerical Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.3. Value Function and Policy Function for the general case . . . . . . . 65
3.6.4. What does it fail? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7. Mathematical Programming approach . . . . . . . . . . . . . . . . . . . . . . 70
3.8. Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8.1. Performance of algorithms: (MFS) case. . . . . . . . . . . . . . . . . 73
3.8.2. Stackelberg Security Games . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.3. General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.8.4. Sensitivity analysis in β . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9. Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. Stackelberg games of water extraction 81

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2. A �rst study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3. Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4. Robust approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5. Conclusions and future (current) work . . . . . . . . . . . . . . . . . . . . . 86

Conclusion 86

Bibliography 89

xiv



List of Tables

1.1. Tabular representation for the feasible schedule in Figure 1.8. . . . . . . . . . 23

3.1. Transition matrix and payo�s for each player. . . . . . . . . . . . . . . . . . 49
3.2. Bi-matrix games in τ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3. Bi- matrix games at stage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4. Transition matrix and payo�s for each player in the numerical example 2. . . 62
3.5. Bi- matrix games at stage 14 for numerical example 2. . . . . . . . . . . . . 62
3.6. Bi- matrix games at stage 15 for numerical example 2. . . . . . . . . . . . . 62
3.7. Iterations 14 and 15 for numerical example 2. . . . . . . . . . . . . . . . . . 63
3.8. Transformation of the matrix in numerical example 2 to a Leader-controller

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9. Solution times and iterations performed by algorithms in myopic instances. . 74
3.10. Resolution time and iterations performed by algorithms in Leader Controller

Instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.11. Resolution time and iterations performed by algorithms in General instances,

for instances where T is not detected to be not contractive. . . . . . . . . . . 77
3.12. Transition matrix and payo�s for each player in the Numerical Example 3. . 79

4.1. Parameters in our preliminar study. . . . . . . . . . . . . . . . . . . . . . . . 83

xv



List of Figures

1.1. Variables z ∈ [0, 1]|E| that satisfy (1.26) and (1.27) but violate (1.28) for m = 2. 12
1.2. Variables z ∈ [0, 1]|E| and c ∈ [0, 1]|J | that do not satisfy (1.29) and (1.30) with

m = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3. Construction to identify implementable mixed strategy x given vectors z, c,g

feasible for (COMB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4. Representation of the algorithm which detects the Odd min cut set. The dashed

edges shows the min cut of this graph. . . . . . . . . . . . . . . . . . . . . . 18
1.5. Example of the warm start algorithm. . . . . . . . . . . . . . . . . . . . . . . 21
1.6. A Carabinero conducts surveillance. . . . . . . . . . . . . . . . . . . . . . . . 23
1.7. Harsh border landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.8. Feasible schedule for a week. Elaborated by Carlos Casorrán. . . . . . . . . . 23
1.9. Three crime �ow networks, one per type of crime. Elaborated by Carlos Casorrán. 25
1.10. Robustness of the solution method to variations in the parameters λ and h . 28
1.11. Performance for m = 2, m = 3 and m = 10: Solving time (s.) vs. number of

nodes in graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.12. Kullback-Leibler distance between z∗ and ẑ over instances of di�erent size . . 30

2.1. Layers of targets generated by the Greedy Multi-Layer Algorithm algorithm. 37

3.1. Expected reward for each player and SSE in the game played in state s1 at
stage τ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. Expected reward for each player and SSE in the game played in state s2 at
stage τ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3. Expected reward for each player and SSE in the game played in state s1 at
stage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4. Expected reward for each player and SSE in the game played in state s2 at
stage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5. Value Function vs time in numerical example 1. . . . . . . . . . . . . . . . . 53
3.6. Value Function vs time in numerical example 2. . . . . . . . . . . . . . . . . 64
3.7. Value Function vs time in numerical example 2 in the myopic case (βB = 0). 64
3.8. Value Function vs time in numerical example 2 in Leader-controller case. . . 65
3.9. Convergence of vA starting from di�erent starting values (v0

A, v
0
B). . . . . . . 69

3.10. Convergence of vB starting from di�erent starting values (v0
A, v

0
B). . . . . . . 69

3.11. Performance of VI and PI in myopic instances. . . . . . . . . . . . . . . . . . 74
3.12. Performance of VI and PI in Leader Controller instances. . . . . . . . . . . . 75

xvi



3.13. Performance of value function iteration and policy iteration in security games
instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.14. Percentage of instances where the Algorithm 12 returns unde�ned. . . . . . . 77
3.15. Performance of value function iteration and policy iteration in General random

instances generated, for instances where it is not detected that the operator T
is not contractive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.16. Sensitivity analysis in solution times for VI algorithm when βA changes. . . . 78
3.17. Sensitivity analysis in solution times for PI algorithm when βA changes. . . . 79
3.18. Impact of βA and βB on the convergence in VI in Numerical Example 3. . . . 79

4.1. Groundwater level and consumption for βA ∈ {0.2, 0.7, 0.9}. . . . . . . . . . 83
4.2. Policies for βA ∈ {0,2, 0,7, 0,9}. . . . . . . . . . . . . . . . . . . . . . . . . . 84

xvii



xviii



Introduction

Many real life situations involve the interaction between the decisions of di�erent agents.
Game Theory is a way of modeling situations with multiple self-interested decision makers
and in the last 90 years it has become a proli�c research �eld with applications in economy,
biology, public policy among others. Stackelberg games [60] are a particular class of games
where a leader player moves �rst and then the follower observes the strategy committed by
the leader and decides their own actions, both maximizing their own utility.

Stackelberg games are widely used in security applications [57]. In these applications the
leader takes the role of the defender, e. g. the security forces, and the follower takes the role
of an attacker, e. g. a terrorist adversary. This way of modeling interactions in security takes
into account the ability of an attacker to gather information about the defense strategy before
planning an attack while the defender always has to implement a strategy [44]. Many real-
world applications were developed following this methodology. Namely, ARMOR in LAX,
the airport of Los Angeles, California, [48]; IRIS, a software scheduling assistant for the
Federal Air Marshals (FAMs) [59]; or TRUST, a system to schedule randomized patrols for
fare inspection in transit Systems [71].

There are many extensions of this basic model. One of them arises when there is uncer-
tainty in the type of follower (attacker) that the leader (defender) has to face, or equivalently
the uncertainty about the payo�s in the game, addressing the concept of Bayesian Stackel-
berg Game [18]. This approach assumes no relationship among the di�erent types of follower.
Another approach is to suppose that followers can interact among them and play a Nash equi-
librium given a �xed strategy commited by the leader. We use both concepts of multi-follower
games along this thesis.

Another way to extend this model is to consider stochastic games. Stochastic games are a
generalization of Markov Decision Processes (MDPs) to the case where at each state of the
process there are two or more controllers [27]. This concept can be used to extend the security
model to cases where the interaction between the defender and the attacker is performed
in di�erent steps of times and in di�erent circumstances. For instance, in [71] the authors
model the interaction between the defender and the possible attackers as a stochastic game
to represent failures in the execution of strategies for the defender. In [69, 70] authors model
games where the followers are not completely rational, that is, they do not always play a best
response. In this cases bounded rationality is modeled with a probability function response,
assigning smaller probability to actions returning lower expected rewards.

Problem size due to large scale is another important feature. For example in the case

1



where a defender has a set of m resources to cover n targets, the set of strategies for the
defender has a size of

(
n
m

)
. In [37] this problem is tackled by representing the set of strategies

with variables that models the frequency under which each objective is covered, reducing the
size of the optimization problem to a one with a polynomial number of variables. Another
example of algorithm to aim scalability in large size instances is presented in [32] where a
branch and price method is presented, exploiting the special structure of the schedules in the
context of FAMS. In this thesis we address problem size due to large scale set of actions for
the defender, because either the set of targets is developed in a wide geographical area, or
the interaction is evolving through the time.

This thesis is divided in four chapters. In Chapter 1 we develop a Bayesian Stackelberg
game where the leader can team up resources to do patrolling work. In this case the strategy
space is exponentially large. We develop a compact model with polynomial number of varia-
bles and exponential number of constraints and an algorithm to separate this exponentially
large set of constraints in polynomial time. This method substantially improves solution run-
ning times and the scalability of this application. We also applied this methodology in a real
case to protect the borders in the Chilean context. We propose a methodology to estimate
the payo� matrix of this game. This chapter is an extended version of the working paper [11].

In Chapter 2 we use a model to do abstractions improving the performance in algorithms
to face opportunistic crime. We develop a mixed integer program to do districting in order
to create multi-layer geographical clusters. This chapter is part of [73].

In Chapter 3 we face the problem of computing Stackelberg equilibria in stochastic games.
To attack the problem, we de�ne a suitable operator and a family of problems where there
exists stationary policies forming Stackelberg equilibrium. We also discuss about the applica-
bility of mathematical programming approach and dynamic programming algorithms to �nd
Stackelberg equilibria. We study a stochastic game where a security agent has to patrol a set
of locations through the time and an attacker has to decide whether to attack and where.
This chapter is an extended version of the working paper [12].

Finally, in Chapter 4, we show a model to apply the methodology of Stackelberg equili-
brium in stochastic games in an extraction water game in agriculture. The point is to show
the methodology developed in Chapter 3 is useful in domains other than security. This game
models a situation when an agency wants to put prices in the extraction water cost and
then agents observes this price and plays a Nash equilibrium. The main idea is to achieve a
sequence of good Nash equilibria to keep robust levels of water and avoid overexploitation of
the natural resource. This chapter is an extended version of the working paper [34].

Main Contributions

In Chapter 1 we introduce a new model to combine resources in the context of Stackel-
berg Security Games. We also develop a compact formulation making use of the matching
polyhedron structure. Furthermore, we design an approximate sampling method to retrieve
implementable strategies from the optimal solution of our compact formulation. Finally, we
propose a new constraint generation algorithm to scale up our formulation.

2



In Chapter 2 we present a hierarchical algorithm to approximate a large set of targets in
a large geographical area by clustering according to capacity constraints. We exhibit some
heuristics to solve this problem at scale.

In Chapter 3 we show a family of stochastic games where dynamic programming algorithms
�nd a Strong Stackelberg Equilibrium in stationary policies. We de�ne a Stackelberg operator
for this family of instances and for the general case. We use this operator to prove that
Value Iteration and Policy Iteration converge for this family of instances. We discuss the
applicability of the models and algorithms proposed in security settings and natural resources
management (Chapter 4).

3



Chapter 1

Coordinated defender strategies for

border patrols

1.1. Introduction

Security is a worldwide concern that in many situations requires the coordinated use of
diverse types of resources. For instance, police patrols a city using di�erent resources: patrol
cars, motorbikes, police on horse, on foot, or even using a helicopter. These di�erent types
of resources have di�erent capabilities (patrolling range, ability to move through di�erent
terrain, ability to interact with the population) and a coordinated use of these specialized
resources is used in providing an overall security level. Pooling resources from di�erent units
also helps sustain preventive patrolling activity without burdening any single unit.

Securing national borders is a natural concern of a country to defend it from the illegal
movement of contraband, drugs and people. The European Union (EU) created the European
Border and Coast Guard in October 2016 in response to the recent increase in migrant �ows
into the EU [19]. In the United States the Department of Homeland Security states as a
primary objective that of �protecting [the] borders from the illegal movement of weapons,
drugs, contraband, and people, while promoting lawful entry and exit� claiming it is �essential
to homeland security, economic prosperity, and national sovereignty� [22].

The task of patrolling the border requires monitoring of vast stretches of land 24/7. A way
to help provide this monitoring is to combine resources from di�erent locations in a joint e�ort
to coordinate a global patrol plan. It is crucial to balance the e�ectiveness of a global border
plan with the cost and di�culty of locally coordinating resources in undermanned areas.
The European Border and Coast Guard lists as one of its prime objectives �organising joint
operations and rapid border interventions to strengthen the capacity of the member states to
control the external borders, and to tackle challenges at the external border resulting from
illegal immigration or cross-border crime�.

In this chapter we consider the problem of patrolling a border in the presence of strategic
adversaries that aim to cross the border taking into account the defender patrolling strategies.

4



We model the situation as a Stackelberg game where the defender acts as the leader executing
a preventive border patrol, which is observed prior to the optimal response by the strategic
adversary, which acts as the follower. Due to the size of the border patrol problem the
defender coordinates local resources to achieve a global defender strategy. Stackelberg Games,
introduced by [60], are an example of bilevel optimization programs, [10], where top level
decisions are made by a player � the leader � that takes into account an optimal response �
of a follower � to a nested optimization problem.

Recent research has used Stackelberg games to model and provide implementable defender
strategies in real life security applications. In these applications, a defender aims to defend
targets from a strategic adversary by deploying limited resources to protect them. The de-
fender deploys resources to maximize the expected utility, anticipating that the adversary
attacks a target that maximizes its own utility. Examples of Stackelberg security games ap-
plications include assigning Federal Air Marshals to transatlantic �ights, [33], determining
U.S. Coast Guard patrols of port infrastructure [55], police patrols to prevent fare evasion in
public transport systems [71], as well as protecting endangered wildlife [67].

One of the challenges that has to be addressed in solving these Stackelberg games for
real-world security applications is problem size. When the defender action is to allocate
limited resources to various targets, the set of possible defender actions can be quite large,
i.e the di�erent combinations in which the resources can be assigned to the targets. The
size of this set of actions is exponential in the number of resources and targets. In [37] a
relaxation of the Stackelberg security game is formulated which determines the frequency
with which each target is protected. This polynomial formulation (in the number of targets
and security resources) is shown to be exact when there are no constraints on what constitutes
a feasible defender action, but it is only an approximation in the general case. Decomposition
approaches have been developed for the general case, when feasible defender actions satisfy
additional constraints. For instance a column generation approach is introduced in [32] and a
cutting plane approach in [68]. A branch and cut approach based on Benders' decomposition
is introduced in [72]. A specialized exact decomposition method that exploit speci�c problem
structure was introduced in [31].

In this work we tackle the problem of globally planning pairings between police precincts
and given those pairs, locally planning the targets within the corresponding territory that
need to be protected. To avoid explicitly enumerating the exponentially many defender pure
strategies, we propose a mixed integer formulation for a Stackelberg security game on a
network with a polynomial number of variables and exponentially many constraints that can
be separated in polynomial time. The network is composed of nodes which represent police
precincts and edges that determine whether or not a pairing between two precincts is allowed.
Within each precinct, a set of targets needs to be protected but a target within a precinct can
only be protected by a joint patrol originating from a precinct pair. The decision variables in
our formulation are two coverage distributions, one on the edges of the network and one on
the targets that need to be protected. Further, we provide two sampling methods that, given
the optimal coverage distribution on edges and targets, recover the defender's implementable
strategy, i.e., a valid pairing of precincts, and a set of targets to protect.

In addition, we provide a case study of our proposed methodology in a real border patrol

5



application we develop in collaboration with the national police force in Chile (Carabineros de
Chile). We explain the setting in detail as well as describe a parameter estimation procedure
we use to determine payo�s for the players in our game. A sensitivity analysis is conducted
to test the validity of our method and thorough computational experiments are conducted
to measure the performance of our approach.

The rest of the chapter is as follows. Section 1.2 introduces the notation and problem
formulation. In Section 1.3 we present the solution method proposed which is based on a
constraint generation approach of an equivalent reformulation of our problem. In this section
we also present the sampling methods to retrieve an implementable patrolling strategy from
the optimal solution obtained. Section 1.4 is devoted to our case study of border patrol.
In section 1.5, we provide computational experiments to measure the performance of our
formulation. Finally, we present our conclusion and discuss future work in Section 1.6.

1.2. Problem Formulation and Notation

In this section we �rst introduce the general framework of Stackelberg games, the notation
and a review of benchmark models. Then, we present a Stackelberg game that seeks to select
coordinated defender strategies given heterogeneous resources when facing strategic attackers.

1.2.1. Stackelberg Security games

We consider a general Bayesian Stackelberg game, where a leader is facing a set K of
followers, as introduced in [46]. In this model the leader knows the probability πk of facing
follower k ∈ K. We denote by I the �nite set of pure strategies for the leader and by J
be the �nite set of pure strategies for each of the followers. A mixed strategy for the leader
consists in a vector x = (xi)i∈I , such that xi is the probability with which the leader plays
pure strategy i. Analogously, a mixed strategy for follower k ∈ K is a vector qk = (qkj )j∈J
such that qkj is the probability with which follower k plays pure strategy j. The payo�s for
the agents are represented in the payo� matrices (Rk, Ck)k∈K , where Rk ∈ R|I|×|J | gives
the leader's reward matrix when facing follower k ∈ K and Ck ∈ R|I|×|J | is the reward
matrix for follower k ∈ K. The Rk

ij (C
k
ij) entry gives the reward for the leader (follower) of

taking the leader action i and the k-th follower action j. With these payo� matrices, given
a mixed strategy x for the leader and strategy qk for follower k, the expected utility for
follower k is given by

∑
i∈I
∑

j∈J C
k
ijxiq

k
j while the expected utility for the leader is given by∑

k∈K πk
∑

i∈I
∑

j∈J R
k
ijxiq

k
j .

The objective of the game is for the leader to commit to a payo�-maximizing strategy,
anticipating that every follower will best respond by selecting a payo�-maximizing strategy
of its own. The solution concept used in these games is the Strong Stackelberg Equilibrium
(SSE), introduced in [39]. In an SSE, the leader selects the strategy that maximizes payo�
given that every follower selects a best response breaking ties in favor of the leader when the
follower is indi�erent between several strategies.

6



The problem of �nding the strong Stackelberg equilibrium can be formulated as the follo-
wing bilevel bilinear problem [46]:

maxx,q
∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijxiq

k
j (1.1)

s.t. x>1 = 1, x ≥ 0, (1.2)

qk ∈ arg max

{∑
i∈I

∑
j∈J

Ck
ijxir

k
j : rk

>
1 = 1, rk ≥ 0

}
∀k ∈ K. (1.3)

The �rst level problem�or leader's problem� optimizes the leader's expected reward in (1.1)
by selecting the mixed strategy (1.2) and taking into account the optimal follower response
(1.3). The second level problems�or follower problems�in (1.3) requires each follower k ∈ K
to commit to a mixed strategy qk which is a best response to the leader's strategy, x, in that
it maximizes follower k's payo�. Note that, since the problem in (1.3) is a linear optimization
problem on the simplex, for any leader strategy x and any k ∈ K, there is a best response
to follower k's problem that is a pure strategy, that is a vector qk ∈ {0, 1}|J | such that∑

j∈J q
k
j = 1.

This observation allows us to consider that followers only respond with optimal pure
strategies. Therefore, the bilevel program above can be reformulated as the following Mixed
Integer Linear Program (MILP), referred to as (D2) [46]:

(D2) maxx,q,s,f
∑
k∈K

πkfk (1.4)

s.t. x>1 = 1, x ≥ 0, (1.5)

qk
>
1 = 1, qk ∈ {0, 1}|J | ∀k ∈ K (1.6)

fk ≤
∑
i∈I

Rk
ijxi +M(1− qkj ) ∀k ∈ K, ∀j ∈ J (1.7)

0 ≤ sk −
∑
i∈I

Ck
ijxi ≤M(1− qkj ) ∀k ∈ K, ∀j ∈ J, (1.8)

Constraints (1.5) and (1.6) indicate that the leader selects a mixed strategy and each
follower responds with a pure strategy. The constant M in Constraints (1.7) and (1.8) is
a large positive constant relative to the highest payo� value that renders the constraints
redundant if qkj = 0. In Constraint (1.7), fk is a bound on the leader's reward when facing
the follower of type k ∈ K. This bound is tight for the strategy j ∈ J selected by that
follower. In Constraint (1.8), sk is a bound on follower k's expected payo�. This bound is
tight for the best response strategy for that follower. Together, Constraints (1.7) and (1.8)
ensure that the leader's strategy and each follower's strategies are mutual best responses.
The objective function maximizes the leader's expected reward.

A Stackelberg game in a security setting can represent the interaction between the defender
(or leader) that decides how to deploy security resources to protect n targets, and attackers
(or followers) that then decide which of the n targets to attack. In these games, which we refer

7



to as Stackelberg Security Games (SSG), the strategy set for the attackers consists of the n
targets that can be attacked J = {1, . . . , n}. The strategy set for the defender consists of all
possible ways of deploying resources to protect up to m < n targets simultaneously. That is
I = {K | K ⊂ J, |K| ≤ m} and therefore |I| =

∑m
i=1

(
n
i

)
. Furthermore, in these (SSG) we

assume that the rewards only depend on whether the attack on a target is successful (if it is
unprotected) or not (if the target is protected). Thus, we denote by Dk(j|c) the utility of the
defender when facing an attacker of type k ∈ K on covered target j ∈ J and by Dk(j|u) the
utility of the defender when facing an attacker of type k ∈ K on unprotected target j ∈ J .
Similarly, the utility of an attacker of type k ∈ K when successfully attacking an unprotected
target j ∈ J is denoted by Ak(j|u) and that attacker's utility when attacking a covered target
j ∈ J is denoted by Ak(j|c). Since a defender strategy i ∈ I corresponds to a subset of J
of cardinality at most m, we express as j ∈ i the condition that defender strategy i patrols
target j. The relationship between the payo�s in a security game to those in a general game
are as follows:

Rk
ij =

{
Dk(j|c) if j ∈ i
Dk(j|u) if j /∈ i (1.9) Ck

ij =

{
Ak(j|c) if j ∈ i
Ak(j|u) if j /∈ i. (1.10)

This reward matrix structure is exploited in [37] to build a compact representation of the
problem. This representation seeks to avoid enumerating the large leader strategy space I
by introducing for each target j ∈ J a coverage variable cj that represents the frequency of
coverage for that target. Therefore each coverage variable satis�es cj =

∑
i∈I:j∈i xi, i.e., the

frequency of coverage of a target can be expressed as the sum of probabilities over strategies
that assign coverage to that target. A bilinear bilevel formulation for SSGs is the following:

maxc,q
∑
j∈J

∑
k∈K

πkqkj
{
cjD

k(j|c) + (1− cj)Dk(j|u)
}

(1.11)

s.t. c ∈ [0, 1]|J |, (1.12)

c>1 ≤ m, (1.13)

qk = arg max

{∑
i∈I

∑
j∈J

rkj
(
cjA

k(j|c) + (1− cj)Ak(j|u)
)

: rk
>
1 = 1, rk ≥ 0

}
∀k ∈ K.

(1.14)

The defender maximizes the expected pro�t in (1.11) by committing to a coverage strategy
c that satis�es (1.12) and (1.13), that is cj is a value between 0 and 1 for each target j and
that the total coverage induced by c is bounded by the number of available resources. As
before, (1.14) indicates that every attacker k ∈ K chooses a strategy qk that maximizes their
pro�t taking into account the coverage strategy c selected by the defender.

8



Further, the above bilevel program can be reformulated as a MILP, as shown in [37]:

(ERASER)

maxc,q,s,f
∑
k∈K

πkfk (1.15)

s.t. qk
>
1 = 1, qk ∈ {0, 1}|J | ∀k ∈ K, (1.16)

c>1 ≤ m, c ∈ [0, 1]|J |, (1.17)

fk ≤ Dk(j|c)cj +Dk(j|u)(1− cj) + (1− qkj ) ·M ∀j ∈ J,∀k ∈ K, (1.18)

0 ≤ sk − Ak(j|c)cj − Ak(j|u)(1− cj) ≤ (1− qkj ) ·M ∀j ∈ J,∀k ∈ K, (1.19)

s, f ∈ RK .

Constraints (1.16) enforce that an attacker of type k ∈ K attacks a single target j ∈ J .
Constraints (1.17) ensure that the total coverage probabilities on the targets does not exceed
the number of available resources. In Constraints (1.19) and (1.18), M is a large positive
constant relative to the highest payo�. For the target j ∈ J attacked by attacker k ∈ K,
Constraint (1.18) provides a tight bound on the defender's expected payo� when facing an
attacker of type k ∈ K. For any other target, the RHS of Constraint (1.18) is arbitrarily large.
Similarly, Constraint (1.19) ensures that for each attacker k ∈ K, sk is a lower bound on that
attacker's payo� and provides the optimal payo� for that attacker for the target that attacker
attacks. The objective function maximizes the defender's expected utility. The authors in [37]
further show that every feasible coverage probability vector corresponds to a mixed strategy,
i.e., a deployment of resources to targets, and an optimal coverage probability vector and an
optimal attack vector for each attacker type corresponds to an SSE of the game.

1.2.2. Resource Combination in a SSG

We now formulate a problem were the defender �rst teams up the resources from di�erent
precincts to form m combined patrols and then decides where to deploy these combined
patrols. Let V be the set of police precincts. We let E ⊂ V ×V be the set of edges representing
the set of possible precinct pairings, forming an adjacency graph G = (V,E). We denote by
δ(v) ⊂ E the set of edges incident to precinct v ∈ V , similarly for any U ⊂ V , δ(U) ⊂ E
denotes the edges between U and V \U , and E(U) ⊂ E denotes the edges between precincts
in U . We can then represent the possible combinations of m precincts pairs as the set of
matchings of size m, which is given by:

Mm :=

y ∈ {0, 1}|E| :
∑
e∈E

ye = m,
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V

 . (1.20)

For every precinct v ∈ V , let Jv be the set of targets to patrol that are inside that precinct.
Note that {Jv}v∈V is a partition of the set of targets J , i.e., ∪v∈V Jv = J and Ju ∩ Jv = ∅ for
all u 6= v. The set of defender strategies selects the m precinct pairings and also the target
where each resource team is deployed. The combined patrol from the pairing of precincts u

9



and v can only be deployed to a target in Ju ∪ Jv. For each edge e = (u, v) ∈ E we de�ne
Je = Ju ∪ Jv. It follows that the set I of defender strategies can be expressed as

I =

(y,w) ∈ {0, 1}|E| × {0, 1}|J | : y ∈Mm,
∑

j∈∪v∈UJv

wj ≤
∑

e∈E(U)∪δ(U)

ye ∀U ⊆ V,
∑
j∈J

wj = m

 .

(1.21)
For (y, w) ∈ I, the variable ye indicates whether edge e is selected for a precinct pairing and
wj indicates whether target j is patrolled. The �rst condition indicates that the coverage
provided to any subset of targets is bounded by the coverage on all incident edges to this
subset of targets. The second condition enforces that total coverage is equal to the required
number of resources.

For any pairing of resources and deployment strategy decided by the defender (y, w) ∈ I,
an attacker of type k ∈ K, appearing with probability πk, responds optimally, that is, attacks
the target j ∈ J that yields the largest payo� for the attacker. The defender therefore has to
select the pairing and deployment strategy (y, w) ∈ I that maximizes its own payo�, taking
into account this best attacker response. This Stackelberg security game can be represented
by explicitly enumerating all strategies and formulating the MILP (D2) whose solution gives
the optimal mixed strategy for the defender. Unfortunately, this approach is computationally
challenging as the resulting MILP considers one variable x(y,w) for each (y, w) ∈ I, which
is an exponential number of variables in terms of targets and edges. Below we introduce a
compact MILP formulation with a polynomial number of variables and exponentially many
constraints. We show the equivalence and the correctness of a decomposition algorithm for
this new formulation in the next section.

The compact formulation is derived similarly to (ERASER) and is based on the observation
that if rewards are given by (1.9) and (1.10) then the utility of each player only depends on
cj, the coverage at a target j ∈ J . Where this coverage is determined by the sum of x(y,w)

the probability of selecting defender strategy (y, w) ∈ I for all strategies that cover target j.
Similarly we can express the coverage probability of edge e ∈ E by ze, the sum of x(y,w) over
defender strategies that cover edge e. That is, we de�ne variables cj and ze as follows

cj =
∑

(y,w)∈I :wj=1

x(y,w) j ∈ J (1.22)

ze =
∑

(y,w)∈I : ye=1

x(y,w) e ∈ E . (1.23)

Given a graph G = (V,E) with V the set of precincts and E the feasible pairings between

10



precincts, we propose the following formulation:

(COMB)

maxc,z,q,s,f,g
∑
k∈K

πkfk (1.24)

s.t. qk
>
1 = 1, qk ∈ {0, 1}|J | ∀k ∈ K,

(1.25)∑
j∈J

cj =
∑
e∈E

ze = m ∀v ∈ V,

(1.26)∑
e∈δ(v)

ze ≤ 1 ∀v ∈ V,

(1.27)∑
e∈E(U)

ze ≤
|U | − 1

2
∀U ⊆ V, |U | ≥ 3, |U | odd

(1.28)∑
e∈E:j∈Je

ge,j = cj ∀j ∈ J

(1.29)∑
j∈Je

ge,j = ze ∀e ∈ E

(1.30)

fk ≤ Dk(j|c)cj +Dk(j|u)(1− cj) + (1− qkj ) ·M ∀j ∈ J,∀k ∈ K,
(1.31)

0 ≤ sk − Ak(j|c)cj − Ak(j|u)(1− cj) ≤ (1− qkj ) ·M ∀j ∈ J,∀k ∈ K
(1.32)

c ∈ [0, 1]|J |, z ∈ [0, 1]|E|, s, f ∈ RK , g ∈ [0, 1]|E||J | . (1.33)

Constraints (1.25) ensure that the each attacker k ∈ K attacks a single target j ∈ J
with probability 1. Constraint (1.26) indicates that the defender uses all his resources in
a feasible solution and that in order to form his resources he pairs up precincts without
exceeding the number of resources he wants to deploy. Constraint (1.27) indicates that a
precinct's contribution to a pairing cannot exceed 1. Constraints (1.28) correspond to the
Odd Set Inequalities, as introduced in [24], and together with (1.26) and (1.27) enforce that
the coverage probabilities on the edges belong to the convex hull of the matching polytope
of size m. Constraints (1.29) and (1.30) enforce the conservation between marginal coverages
in nodes and edges. Finally, Constraints (1.31) and (1.32) are the same as in (ERASER) and
ensure that c and q are mutual best responses. The objective function in our formulation,
maximizes the defender's expected utility.

For the correctness of problem (COMB) we need to be able to recover the variables x(y,w)

for (y, w) ∈ I that represent the defender probability distribution over its set of feasible ac-

11



tions from the variables c, z, q, s, f , g in (COMB). In particular, we need to �nd variables
x ∈ [0, 1]|I| that satisfy constraint (1.23). We now show that the odd set inequalities (1.28)
are necessary, giving an example of z variables for which there does not exist a probabi-
lity distribution over I that would satisfy (1.23). Consider the example in Figure 1.1, which
shows non-negative values for z variables that satisfy constraints (1.26) and (1.27) for m = 2
but that violate the odd set inequalities (with the set U = {3, 4, 5}). We observe that this
solution cannot be expressed as a convex combination of pure matchings of size 2, making it
impossible to retrieve an implementable defender strategy x.

2

3

4

1

5

00

1
2

1
2

1
2

1
2

Figure 1.1: Variables z ∈ [0, 1]|E| that satisfy (1.26) and (1.27) but violate (1.28) for m = 2.

Similarly, Constraints (1.29) and (1.30) also play a vital role in that they establish a link
between the coverage variables on the edges and on the targets. This becomes much more
apparent if one applies Farkas' Lemma [25] on the linear system de�ned by (1.29), (1.30) and
g ≥ 0 to understand which conditions on c and z guarantee feasibility of the system. Applying
Farkas provides the following conditions on c and z which o�er a more direct interpretation:∑

e∈E:e∈E(U)∪δ(U)

ze ≥
∑

j∈∪u∈UJu

cj ∀U ⊆ V, (1.34)

∑
j∈J :j∈∪u∈V :δ(u)∩E′ 6=∅Ju

cj ≥
∑
e∈E′

ze ∀E ′ ⊆ E. (1.35)

Constraint (1.34) states that given a subset of nodes, the coverage provided on all targets
inside these nodes cannot exceed the weight of the edges incident to these nodes. Constraint
(1.35) indicates that given a �xed set of edges E ′, the weights on those edges is a lowerbound
on the coverage of the targets in nodes to which those edges are incident. Figure 1.2 shows an
example of variables z ∈ [0, 1]|E| and c ∈ [0, 1]|J | that satisfy all constraints in (COMB) but
(1.29) and (1.30). The numbers on the nodes represent total coverage on targets in that node,∑

j∈Ju cj and the numbers on the edges represent the coverage probabilities on the edges, ze.
The solution in Figure 1.2 violates (1.34) for U = {1, 2}. It is also not possible to �nd in this
example an implementable defender strategy x ∈ [0, 1]|I| related to these variables z and c.

1.3. Decomposition Model

In this section we show the equivalence of problem (COMB) to the (D2) formulation
for Stackelberg security games. Furthermore we present a decomposition algorithm to solve
(COMB) and we �nish by presenting methods to generate implementable defender strategies
x ∈ [0, 1]|I| by sampling solutions from (COMB).

12



1

1

2

1

3

0

4

0
1 0

0 1

Figure 1.2: Variables z ∈ [0, 1]|E| and c ∈ [0, 1]|J | that do not satisfy (1.29) and (1.30) with
m = 2.

1.3.1. (COMB) is an equivalent SSG formulation

To set the notation, we consider a combined resources SSG problem with defender action
set given by (1.21) and defender and attacker utilities given by (1.9) and (1.10), respectively.
We show that (COMB) is equivalent to (D2) for a SSG with resource combination by showing
that a feasible solution from one leads to a feasible solution in the other with same objective
value and viceversa. We �rst prove the following technical lemma.

Lemma 1.1 Given (y, w) ∈ I then the following holds

wj = 1⇒
∑

e∈E:j∈Je

ye = 1 (1.36)

ye = 1⇒
∑
j∈Je

wj = 1. (1.37)

Proof. Since (y, w) ∈ I with wj = 1, if we denote v(j) the precinct that contains j ∈ Jv(j),
we have

1 = wj ≤
∑

k∈Jv(j)

wk ≤
∑

e∈δ(v(j))

ye =
∑

e∈E:j∈Je

ye ,

which proves (1.36). Here the �rst inequality comes from wk ∈ {0, 1}, the second from the
de�nition of set I, and the last equality represents two equivalent ways of expressing the sum
over the edges incident on v(j). For the second implication, let ye1 = ye2 = · · · = yem = 1
be the set of arcs that are set to one in the matching y. Let A(y) be the set of precincts v
that are not paired by ye1 . . . yem (i.e. A(y) = {v : δ(v) 6∈ ∪mk=1ek}). Then, for any v ∈ A(y)
the de�nition of I implies

∑
k∈Jv wk ≤

∑
e∈δ(v) ye = 0. Similarly, for any arc ek = (uk, vk) we

have, from the de�nition of I, that
∑

j∈Jek
wj ≤ yek +

∑
e∈δ({uk,vk}) ye = yek = 1. Here the

sum in the second term is zero because e ∈ δ({uk, vk}) are not in matching y. With these
inequalities we can separate

m =
∑
j∈J

wj =
∑
v∈A(y)

∑
j∈Jv

wj +
m∑
k=1

∑
j∈Jek

wj ≤
m∑
k=1

yek = m ,

which completes the proof because the m terms
∑

j∈Jek
wj are both less than 1 and sum to

m.

13



Theorem 1.2 Problem (COMB) given by (1.24)-(1.33) is equivalent to (D2) given by (1.4)-
(1.8).

Proof. We begin with a solution (x, q, s, f) feasible for (D2). Given this x we de�ne c ∈
[0, 1]|J | and z ∈ [0, 1]|E| as in (1.22) and (1.23), respectively. Furthermore we de�ne ge,j as
follows:

ge,j =

{ ∑
(y,w)∈I:ye=1,wj=1 x(y,w) ∀j ∈ J,∀e ∈ E such that j ∈ Je

0 o/w .
(1.38)

We now show that this (c, z, q, s, f, g) is feasible for (COMB) and has the same objective
value. Indeed, the objective function (1.24) and constraints (1.25) in (COMB) are the same
as (1.4) and (1.6) in (D2). In addition constraints (1.33) are satis�ed from the de�nition of
c, z and g and the fact that x is a probability distribution.

Since the utilities are given by (1.9) and (1.10), we have that∑
(y,w)∈I

Rk
(y,w)jx(y,w) =

∑
(y,w)∈I:wj=1

Rk
(y,w)jx(y,w) +

∑
(y,w)∈I:wj=0

Rk
(y,w)jx(y,w)

= Dk(j|c)
∑

(y,w)∈I:wj=1

x(y,w) +Dk(j|u)

1−
∑

(y,w)∈I:wj=1

x(y,w)


= Dk(j|c)cj +Dk(j|u) (1− cj) .

The last equality uses the de�nition of cj (1.22). This equality is used to say that (1.7) implies
(1.31). Analogously for the attackers utility we have that (1.8) implies that (1.32) also holds.

From the de�nition of ge,j we can write∑
j∈Je

ge,j =
∑
j∈Je

∑
(y, w) ∈ I

ye = 1, wj = 1

x(y,w) =
∑
j∈Je

∑
(y,w)∈I

x(y,w)yewj

=
∑

(y,w)∈I

x(y,w)ye
∑
j∈Je

wj =
∑

(y,w)∈I

x(y,w)ye = ze .

Where the next to last equality follows from (1.37) in Lemma (1.1) and the last equality is
the de�nition of ze in (1.23). This shows that (1.30) is satis�ed. Similarly simplifying the∑

e∈E:j∈Je ge,j and now using (1.36) in Lemma (1.1) and de�nition (1.22) gives that (1.29) is
satis�ed. In the same logic it follows that∑

e∈E

ze =
∑
j∈J

cj =
∑
e∈E

∑
j∈Je

ge,j =
∑
e∈E

∑
(y,w)∈I

x(y,w)ye =
∑

(y,w)∈I

x(y,w)

∑
e∈E

ye = m .

This proves that (1.26) is satis�ed. Finally we observe above that the vector z ∈ [0, 1]|E|

satis�es z =
∑

(y,w)∈I x(y,w)y where x is a probability distribution over I and the vectors y
correspond to m-matchings in the set V . Therefore z ∈ convex hull(Mm), and therefore z
satis�es the constraints (1.27) and (1.28) that characterize the m-matching polytope. This
completes this �rst part of the proof.

14



We now consider a solution (c, z, q, s, f, g) feasible for (COMB) and construct a solution
(x, q, s, f) that is feasible for (D2) with the same objective function. Variables q, s and f are
the same, this shows that the objective (1.4) and constraint (1.6) in (D2) are satis�ed as they
correspond to (1.24) and (1.25) respectively. To build x we �rst recognize that by constraints
(1.27) and (1.28), the vector z ∈ convex hull(Mm). Therefore, there is a �nite set of integer
m-matchings Mz ⊆Mm such that we can express z =

∑
y∈Mz

λyy, where λy are the convex
combination weights of the integer m-matchings y ∈ Mz. That is λy ≥ 0 for all y ∈ Mz

and
∑

y∈Mz
λy = 1. Given this decomposition of z, we perform the following construction,

illustrated in Figure 1.3.

Step 1. For every edge e ∈ E consider a column of height 1. Divide this 1 × |E| rectangle in
horizontal segments, one for each integer matching y ∈Mz, with each segment of width
λy. For each segment, corresponding to matching y, block out the edges that are not
used in matching y (marked `NO' in Figure 1.3).

Step 2. For every edge e ∈ E, further subdivide the area in its column and matchings that
contain e using the values of gej for all j ∈ Je. Since

∑
j∈Je gej = ze =

∑
y∈Mz

λyye,
from (1.30) and the decomposition of z, this partition uses all the area in the column
of e that was not blocked out.

Step 3. De�ne x by identifying the largest width horizontal lines formed in this diagram, ig-
noring blocked out squares. These horizontal lines are contained in a matching y and
for each edge e in the matching (ye = 1), include part of some geje . The matching y
indicates the precinct pairings and the targets je ∈ Je identify the protected targets of
the strategy. Let the width of this horizontal line be x(y,w), where w ∈ {0, 1}|J | is the
indicator vector of the protected targets {je}{e:ye=1}.

For example, in Figure 1.3, we notice that matching y2 includes edges e1, e3, . . . , e|E|.
Furthermore a constant width horizontal line (shaded) can be identi�ed using portions of
g14, g38, . . . , g|E|11. This shaded horizontal line corresponds to using precinct parings according
to matching y2 and protecting targets w = {4, 8 . . . , 11}, whose width we label as x(y2,w).

We now show that all the (y, w) identi�ed in Step 3 satisfy (y, w) ∈ I. First we have by
construction that y ∈ Mm. In addition for each edge e = {ue, ve} used in y we identify a
single target je ∈ Je = Jue ∪ Jve so that wje = 1. Therefore the vector w considers exactly m
targets selected. For any U ⊆ V , we have∑

j∈∪v∈UJv

wj ≤
∑

je ∈ Jue ∪ Jve
{ue, ve} ∩ U 6= ∅

wje =
∑

e : {ue,ve}∩U 6=∅

ye =
∑

e∈E(U)∪δ(U)

ye .

This proves that (y, w) ∈ I. Also, by construction, the horizontal lines corresponding to
defender strategies cover the box completely, since the entire area of the 1× |E| that is not
blocked out is covered by some gej > 0. Therefore Step 3 can be performed at any height
of the box. This implies that the values x(y,w) constructed in Step 3 are non-negative and
sum to one, therefore they form a probability distribution over (y, w) ∈ I. This means that
the vector x constructed satis�es (1.5). To show that constraints (1.7) and (1.8) are satis�ed
just we need to show that the x constructed satis�es cj =

∑
(y,w)∈I : wj=1 x(y,w). This result is

then used in a similar derivation than in the �rst part of the proof to show that (1.31) and
(1.32) implies (1.7) and (1.8).

15



Figure 1.3: Construction to identify implementable mixed strategy x given vectors z, c,g
feasible for (COMB).

Consider a target j ∈ J and e such that j ∈ Je with gej > 0. We have from Step
2 in the construction above that the full amount of gej is assigned to some area in the
column e intersected with matchings that use that column. That area can be partitioned
into many strategies (y, w) but each of them has ye = 1 and wj = 1. Therefore we have that
gej =

∑
(y,w)∈I x(y,w)wjye. We have then

cj =
∑
e:j∈Je

gej =
∑
e:j∈Je

∑
(y,w)∈I

x(y,w)wjye =
∑

(y,w)∈I

x(y,w)wj
∑
e:j∈Je

ye =
∑

(y,w)∈I

x(y,w)wj .

Here the �rst equality comes from (1.29), the second from the observation above, and the
last from (1.36).

1.3.2. Cutting Odd-Set Constraints

While the (COMB) formulation requires far fewer variables than the (D2) formulation
for problems that combine resources, it still considers an exponential number of odd set
inequalities (1.28). In this subsection we show how to separate the odd set inequalities in
(COMB) following the methodology in [45].

We begin by noting that the odd set inequalities (1.28) are equivalent to the following

16



constraint: ∑
v∈U

sv +
∑
e∈δ(U)

ze ≥ 1, |U | ≥ 3, |U | odd. (1.39)

This can be shown by adding slack variables sv, v ∈ V for every Constraint (1.27). Summing
Constraints (1.27) over a �xed subset of nodes U yields:∑

v∈U

∑
e∈δ(v)

ze +
∑
v∈U

sv = |U |, sv ≥ 0 ∀v ∈ V. (1.40)

Using the fact that ∑
u∈U

∑
e∈δ(u)

ze = 2
∑

e∈E(U)

ze +
∑
e∈δ(U)

ze

and (1.40) we can simplify the odd set inequalities (1.28) to obtain (1.39).

Thus, a solution (z∗, {s∗v = 1−∑e∈δ(v) z
∗
e}v∈V ) violates an odd set inequality if there exists

a subset of nodes U with odd cardinality such that
∑

v∈U s
∗
v +
∑

e∈δ(U) z
∗
e < 1. To detect such

condition is equivalent to detect a global min cut of odd cardinality in a suitable graph
G′ = (V ′, E ′) where V ′ = V ∪ {S}, being S a dummy node and E ′ = E ∪ {(v,S)|v ∈ V }.
The capacities are set ze for each e ∈ E and sv for each of the form (v, S). The minimum
cut of this network can be computed with the Gomory Hu algorithm and �nding the odd
cardinality set with minimum capacity. If the capacity of the minimum odd cardinality set is
smaller than one then the set of nodes U not containing S violates constraint 1.39. A simple
implementation of the Gomory Hu algorithm is given by [29]. This procedure is described in
Algorithm 1.

Algorithm 1 Min odd-cut set

1: Graph G = (V,E), z ∈ R|E|+

2: Create a graph G′ = (V ′, E ′) where V ′ = V ∪ {S} and E ′ = E ∪ {(v,S)|v ∈ V }, and
capacities r̄e′ = ze′ for edges e′ ∈ E and r̄e′ = sv for edges e′ = (v,S) ∈ E ′\E.

3: Compute a Gomory - Hu tree GT = (VT , ET ) in the graph G′ and set r = +∞
4: for e ∈ ET do

5: Calculate the cut U induced by deleting e in ET .
6: if |U | is odd and re < r then
7: X ← U and r ← re
8: end if

9: end for

10: return X the odd minimum cut-set and r its capacity.

Figure 1.4 shows an example of how the algorithm works cutting the infeasible solution
exposed in Figure 1.1. We represent the extended graph on the left and the min-cut set in
dashed lines and show, on the right, how the Gomory-Hu tree computes this minimum cut.
Note that in the example the min-cut odd set is formed by the set of nodes {3, 4, 5} with
cost 0 and the associated constraint is z{3,4} + z{3,5} + z{4,5} ≤ 1 which cuts the solution in
Figure 1.1.

17



3

1 2

4 5

S

1
2

1
2

1
2

1
2

0 0

1
2

1
2

0

0
0

a) Extended graph of solution in Fig. 1.1

3

1 2

4 5

S

1 1

1

1

0

b) Gomory-Hu Tree

Figure 1.4: Representation of the algorithm which detects the Odd min cut set. The dashed
edges shows the min cut of this graph.

We use Algorithm 1 to implement a generic cut-generation algorithm to face large-sized
instances. This procedure is described in Algorithm 2. We denote by U the set of nodes of
odd cardinality in constraints (1.28), and by D(U) the optimization scheme that includes
these sets in the model. The main idea is that given an optimal solution of D(U) , z∗, at
some iteration, we check if any of the odd set inequalities, not already in U , is violated. If
there are not any then the algorithm obtains an optimal solution. Otherwise, the procedure
adds the violated inequality to D(U) and re-optimizes.

Algorithm 2 Constraint Generation Algorithm

1: Set U = ∅
2: for i = 1, · · · ,MAX_IT do

3: z∗ ← D(U)
4: costMinOddCut, U ← Min odd-cut set(G,z∗)
5: if costMinOddCut ≥ 1 then

6: break
7: else

8: U ← U ∪ {U}
9: end if

10: end for

11: return The optimal coverage (z∗, c∗)

1.3.3. Recovering an implementable strategy

In this section we consider two di�erent ways of recovering an implementable mixed stra-
tegy x∗ which respects the optimal probabilities on targets and edges (z∗, c∗) returned by
(COMB). In Section 1.3.1 we propose a box method to recover the implementable mixed
strategy. This method relies heavily on being able to decompose a fractional matching of size
m as convex combination of pure matchings of size m. Let us take a closer look at how this

18



can be achieved.

Decomposing z∗ in pure matchings of size m

Given a vector (z∗, c∗) we want to build a set Mz ⊆ Mm of matchings of size m and a
set of weights {λy}y∈Mm such that the vector z∗ can be written as a convex combination
of elements in Mz. This is possible because the cardinality constrained matching polytope
is integral, [52]. Then the problem is reduced to distributing the weights λ such that z∗ is
respected.

We propose two methodologies to achieve this goal. First we propose a mixed integer
program considering |E| + 1 matchings are neccesary to create the decomposition, and a
Dantzig-Wolfe approach where the matchings are created on-the-run. The mixed integer
programming formulation is the following:

min
∑
y∈Mz

ord(y)λy (1.41)∑
e∈δ(v)

θye ≤ 1 ∀y ∈Mz (1.42)

∑
e∈E

θye = m ∀y ∈Mz (1.43)∑
y∈Mz

λy = 1 (1.44)∑
y∈Mz

δye = ze ∀e ∈ E (1.45)

δye ≤ θye ∀e ∈ E, ∀y ∈Mz (1.46)

λy − 1 + θye ≤ δye ≤ λy ∀e ∈ E, ∀y ∈Mz (1.47)

λy ≥ 0 ∀y ∈Mz (1.48)

θye, δye ∈ {0, 1} ∀e ∈ E, y ∈Mz (1.49)

where the variables θye are binary decisions taking value 1 if the edge e belongs to the
matching y ∈ Mm and 0 otherwise, λy is the weight of the matching y ∈ Mm and variables
δye represents the product between λy and θye. Constraints (1.42) and (1.43) de�ne that
the variables θie are matchings of size m. Constraints (1.44) and (1.45) ensure that the
matchings retrieved can build the vector z as a convex combination of these matchings. The
linearization of the product λyθye is ensured by (1.47) and (1.48), and the fact that θye is a
binary variable. The objective function pretends to get a set of matchings with the minimum
cardinality, giving more weight to the matchings with highest ord(y). We note that any
objective function is useful due to the focus on this part is feasibility and not optimality.

This problem can also be solved with a Dantzig-Wolfe approach, [20]. Let M t
z the set of

matchings considered at the step t of the procedure. The master problem can be stated as:

19



(MP) min
∑
e∈E

Ye (1.50)

Ye +
∑
i∈Mt

z

θyeλy = ze ∀e ∈ E (1.51)

∑
y∈Mt

z

λy = 1 (1.52)

λy ≥ 0 ∀y ∈M t
z (1.53)

where as in mixed integer formulation, λy is the weight of matching y. Ye variables are
auxiliary variables to be minimized. Notice that in this model θye is a parameter which
has the same meaning than the last model. Let πe and σ be the optimal dual variable
associated to constraint (1.51) and (1.52) respectively. Then, the reduced costs of any new
column/matching generated is given by:

rθ = 0−
∑
e∈E

πeθe − σ. (1.54)

The problem of adding a new column can be stated as a maximum weight matching of size
m with weights {πe}e∈E. If the optimal cost is greater than −σ a new matching θ is added
to M t+1

z . The algorithm stops when there is no new column to be added or the objective
function of (MP) is equal to zero, and z can be written as a convex combination of matchings
{θy}y∈Mt

z
with weights {λy}y∈Mt

z
.

We implement a warm start using a greedy algorithm. We describe this procedure in
Algorithm 3. The algorithm �rst is initialized with an empty set of matchings, and the
problem of maximum matching of size m is solved considering z as weights of the matching.
Then, the matching retrieved is assigned a weight λ equal to the minimum edge weight
selected by the matching, and this λ is subtracted to the edges belonging to that matching.
The algorithm continues until there is no more weight to allocate to matchings. This condition
can be achieved if all the weight has been assigned to the corresponding matchings, or if at
any iteration the value of λ retrieved is equal to 0.

Algorithm 3 Warm Start (G,z∗, m)

1: c = z∗, M0
z = ∅, λ = null, it = 0.

2: while
∑

e∈E ce > 0 do

3: M [it] = max_matching_size(N,E, c,m)
4: λ[it] = mine∈M [it]ce
5: for e ∈M [it] do
6: ce = ce − λ[it]
7: end for

8: it = it+ 1
9: end while

10: return M0
z , λ

20



An example of how this algorithm works is represented in Figure 1.5. Figure 1.5.a shows a
solution z for a problem with m = 2. The maximum weight matching of size 2 in this graph
has weight 0.83 (Fig.1.5.b). Then subtracting this amount to the edges belonging to this
matching there are only two edges with positive weight, that conforms the second matching
with weight 0.17. In this case, the warm start returns a pair of matchings and weights such
that z is a convex combination of them. This is not always possible. Anyway, this algorithm
can always be used to accelerate the Dantzig Wolfe procedure described above.

2

3

4

1

5

0.170.83

1

0

0

a) Fractional matching

2

3

4

1

5

01

1

0

0

b) λ = 0,83

2

3

4

1

5

10

1

0

0

c) λ = 0,17

Figure 1.5: Example of the warm start algorithm.

Next, we propose an alternative sampling method which allows to recover an implemen-
table mixed strategy x∗ given optimal coverage probabilities (c∗, z∗).

An alternative sampling method

The recovery of an implementable strategy through the box method described in Section
1.3.1 can be computationally challenging. In particular, as seen in the previous section, de-
composing our optimal z into a convex combination of pure matchings of sizem is not an easy
task. In this section, we propose a more naïve sampling method in two stages that recovers
an implementable defender strategy. In Section 1.5, we study the accuracy of this sampling
method.
Given z∗, the coverage vector over |E| of size m, we can discard all the edges in E such that
ze = 0. We can then select m of the remaining edges according to a uniform random variable
U(0,m). This, in itself, could provide edges that do not form a matching. Hence, we need to
do something a bit more subtle. Let M be the set of m edges we have sampled. Now, let us
solve the following optimization problem:

Max
∑
e∈M

z∗exe

s.t.x ∈Mm. (1.55)

Out of all matchings of size m, the objective function guarantees that we pick a maximum
weight matching. Solving the above formulation for our initial set M will have two possible
outcomes. Either the model will return an optimal solution, in which case the edges in M

21



generate a matching of size m, or, the problem is infeasible and such a matching cannot be
constructed. If the problem returns a matching, we now that this matching agrees with the
optimal distribution z∗. If the problem is infeasible, we sample a new edge which we add
to the set M and we re-optimize. We proceed in this iterative fashion until we construct a
matching of size m. Note that this algorithm will produce a matching in at most |E| − m
iterations, as we know that such a matching exists in the original graph.

Finally, givenM∗, our optimal matching of size m, we sample an allocation of resources to
targets that satis�es the optimal coverage probability returned by our formulation as follows.
We discard targets j that belong to precincts which are not paired. For each target j that
belongs to a paired pair of precincts, say u and v, we normalize their coverage probability by
the weight of the total coverage provided by the optimal coverage vector c∗ in the two areas
u and v that are paired and denote it by c̄∗j :

c̄∗j =
c∗j∑

j∈Ju∪Jv c
∗
j

∀(u, v) = e ∈M.

This way, we ensure that one resource is available per paired pairs of precincts. The weekly
schedule is composed sampling over the newly constructed c̄∗.

1.4. Case Study: Carabineros de Chile

In this section, we describe a realistic border patrol problem proposed by Carabineros de
Chile. In this problem, Carabineros considers three di�erent types of crime, namely, drug
tra�cking, contraband and illegal entry. In order to minimize the free �ow of these types
of crime across their borders, Carabineros organizes both day shift patrols and night shift
patrols along the border, following di�erent patterns and satisfying di�erent requirements.

We are concerned with the speci�c actions that Carabineros can take during night shift
patrols. The region is divided into several police precincts. Due to the vast expanses and harsh
landscape at the border to patrol and the lack of manpower, for the purpose of the defender
actions under consideration, a number of these precincts are paired up when planning the
patrol. Furthermore, Carabineros are aware of a �xed number of locations along the border of
the region that can serve as vantage points from where to conduct surveillance with technical
equipment such as night goggles and heat sensors. A night shift action consists in deploying
a joint detail with personnel from two paired precincts to conduct vigilance from 22h00
to 04h00 at the vantage point located within the territory of the paired precincts. Due to
logistical constraints, for a given precinct pair, Carabineros deploys a joint detail from every
precinct pair to a surveillance location once a week.

Carabineros requires a schedule indicating the optimal deployment of details to vantage
points for a given week. Figure 1.8 depicts a defender strategy in a game with m = 3 pairings,
|V | = 7 precincts and |J | = 10 locations. Table 1.1 shows a tabular representation of the
implemented strategy for that week.

Therefore, we have an adjacency graph G(V,E) where V is the set of police precincts

22



Figure 1.6: A Carabinero conducts surveillan-
ce.

Figure 1.7: Harsh border landscape.

Pairing 1

Pairing 2

Precinct HQ

Border outpostMonday

Monday

Sunday

1

2

3

4

5

6

7

8

9

10

Pairing 3

Figure 1.8: Feasible schedule for a week. Elaborated by Carlos Casorrán.

Pairing\Outpost 1 2 3 4 5 6 7 8 9 10
Pairing 1 M
Pairing 2 M
Pairing 3 Su

Table 1.1: Tabular representation for the feasible schedule in Figure 1.8.

and E are the edges that represent valid pairing of precincts. Further, the set of vantage
points that need to be protected, corresponds to the set of targets J . Furthermore, the
vantage points are partitioned among the di�erent vertices of G, such that for a given u ∈ V ,
Ju contains all the vantage points inside precinct u. The set of attacker types is given by
K = {Drugs, Contraband, Illegal entry}. In this setting, the pairings among precincts is �xed
at the beginning of each month. Therefore, the game is separable into di�erent standard SSG
within every pair of paired precincts and one can use a standard SSG formulation such as
the one presented in [37] to solve the di�erent subproblems. Within each subproblem, the
defender has a single resource to allocate to one of the di�erent vantage points on a given day
of the week. Given a coverage strategy over the targets, an adversary of type k ∈ K plays
the game with probability πk and tries to cross the border through the vantage point j ∈ J
and on the day of the week that maximizes his payo�. It remains to construct the payo�s of
the game for the problem described. To that end, Carabineros supplied us with arrest data
in the region between 1999 and 2013 as well as other relevant data discussed next. In the
following section, we discuss a payo� generation methodology.

23



1.4.1. Payo� estimation

An accurate estimation of the payo�s for the players is one of the most crucial factors in
building a Stackelberg model to solve a real-life problem. For each target in the game, we
need to estimate 12 di�erent values corresponding to a reward and penalty for Carabineros
and the attacker for each type of crime k ∈ K.

We tackle this problem in several steps. First, we use QGIS [51], an open source geograp-
hic information system, to determine what we call action areas around each vantage point
provided by Carabineros, based on the visibility range from each outpost. Such an action
area represents the range of a detail stationed at a vantage point, i.e., the area within which
the detail will be able to observe and intercept a criminal.

Further, consider, for each type of crime k ∈ K, a network Gk(Vk, Ek) that models that
type of crime's �ow from some nodes outside the border to some nodes inside the border,
crossing the border precisely through the action areas previously de�ned. As nodes of origin
for the di�erent types of crime, we consider cross border cities. As destination nodes we
consider the locations inside Chile where Carabineros has performed an arrest of that type
of crime. In order to have a more manageable sized network, we consider a clustering of
these destination nodes. We later show that our methodology is robust versus changes in the
number of cluster nodes.

Speci�cally, for a crime of type k ∈ K, let us de�ne Sk ⊂ Vk as the nodes of origin situated
outside the borders, F k ⊂ Vk as the nodes of destination and J as the set of action areas
along the border. Each destination node, f ∈ F k, resulting from a clustering procedure is
then assigned a demand b(f) which corresponds to the number of destination nodes which
are contracted into f . For each k ∈ K, the edge set Ek is constructed as follows. All nodes
of origin are linked to all action areas. These areas are then linked to all of the destination
nodes for crime k ∈ K. Figure 1.9 is a representation of such a network. The nodes to the
left represent the points of origin of crime and the three nodes to the right are clusters of
destination nodes for those crime �ows. Note that crime enters the country through the
four action areas marked as squares along the border. We propose the following attractivity
parameter for a given action area j ∈ J for a criminal of type k ∈ K attempting to move
from node s ∈ Sk to node f ∈ F k through action area j:

U j
sf =

Kilometers of roads inside action area j
dsj + djf

,

where duv is the distance in kilometers between nodes u ∈ Vk and v ∈ Vk. This attractivity
parameter is proportional to the total length of roads inside a given action area and it is
inversely proportional to how much an attacker moving from sk to fk has to travel in order
to cross the border through area j.

We model the �ow of crime k ∈ K through a single route from s ∈ Sk to f ∈ F k passing

24



Figure 1.9: Three crime �ow networks, one per type of crime. Elaborated by Carlos Casorrán.

through j ∈ J as follows:

x(s, j, f, k) =
eλU

j
sf∑

s′∈Sk
∑

j′∈J e
λUj

′
s′f

· b(f).

The �ow of crime k ∈ K through a route (s, j, f) is expressed as a proportion with respect to
the �ow of crime k ∈ K through all routes leading into the same destination point f ∈ F k.
The parameter λ ∈ R+ provides a proxy of how the defender expects crime to behave. A value
of λ = 0 means that crime k ∈ K between any node of origin and destination distributes itself
evenly among the di�erent action areas. A high value of λ, however, is consistent with a �ow
of that type of crime through those action areas j ∈ J with a higher attractivity parameter
U j
sf . It follows that the total �ow of crime of type k ∈ K through j ∈ J can be computed by

summing over all origin nodes s ∈ Sk and all destination nodes f ∈ F k:

x(j, k) =
∑
s∈Sk

∑
f∈Fk

eλU
j
sf∑

s′∈Sk
∑

j′∈J e
λUj

′
s′f

· b(f) ∀j ∈ J,∀k ∈ K.

Based on this parameter, we propose the following values for the players' payo� values:

Ak(j|u) = x(j, k) · AG(k) ∀j ∈ J,∀k ∈ K,
Ak(j|c) = −x(j, k) ·OC(k) ∀j ∈ J,∀k ∈ K,
Dk(j|c) = 0 ∀j ∈ J,∀k ∈ K,
Dk(j|u) = −x(j, k) · AG(k) ∀j ∈ J,∀k ∈ K,

where AG(k) denotes the average gain of successfully committing crime k ∈ K, and OC(k)
the opportunity cost of being captured while attempting to perpetrate a crime k ∈ K. Note
that the reward Carabineros perceives when capturing a criminal is 0, irrespective of the
crime. Carabineros is only penalized when a crime is successfully perpetrated on their watch.

25



These values were calculated following open source references [16], [1], [42] and where then
fully vetted by Carabineros to ensure that our estimates were realistic.

1.4.2. Building software for Carabineros

We have provided Carabineros with a graphical user interface developed in PHP to deter-
mine optimal weekly schedules for the night shift actions for a set of border precincts in the
XV region of Chile. The software provided for Carabineros is divided into two parts: a �rst
part devoted to the parameter generation of the game according to the indications of the
previous section, and a second part, which solves for the optimal deployment of resources.
We discuss the two parts separately.

Parameter estimation software

The objective of the parameter estimation software is to construct the payo� matrices for
the SSG. This software allows for the matrices to be updated when new criminal arrests are
recorded in Carabineros' database. The input for this software is a csv data �le with arrest
data which is uploaded to the software. The main screen of the software shows a map of the
region to the left and the following options to the right:

1. Crimes: Shows all criminal arrests in the area, color-coded according to the type of
crime.

2. Nodes of origin: Shows the nodes of origin used in the networks constructed to determine
the crime �ow through the action areas.

3. Cluster: Clusters the criminal arrest points and constructs the crime �ow networks
joining nodes of origin, action areas and the clustered arrest points, which are the
destination nodes for the di�erent types of crime. It displays the payo� matrices for
the di�erent action areas.

4. Input �le and update: Allows to upload a csv data �le with arrest data. One then re-
clusters to obtain new destination points and to construct the new crime �ow networks
that lead to new payo� matrices.

Deployment generation software

The deployment generation software is the part of the software that optimizes the SSGs
and returns an implementable patrols strategy for Carabineros. The user is faced to a screen
that on the left shows a map of the region where the di�erent action areas are color-coded
along the border, and on the right shows di�erent available user options. Clicking on an
action area reveals the payo� values for that area. The values can be modi�ed on-screen
although this is discouraged. The user can additionally select the number of resources in a
given paired pair of precincts. Increasing the number of resources can be used to model that
a joint detail can perform a night-shift patrol as many times during a week as the number of

26



resources he has. Further, the user can select the number of weekly schedules that are to be
sampled from the optimal target coverage distribution, allowing him to change the weekly
schedule to a monthly schedule. Once all parameters are set, clicking on solve returns the
desired patrol schedule such as the one shown in Figure 1.1.

Once a patrol strategy has been returned, the user can perform several actions. If the patrol
is not to the planner's liking, he can re-sample based on the optimal coverage distribution
returned by the optimization. This produces a di�erent patrol strategy that still complies
with the same coverage distribution over targets. The user can further impose di�erent types
of constraints on each paired pair of precincts to model di�erent requirements such as forcing
a deployment on a given day of the week or to a particular target. Similarly, the user can
forbid a deployment on a given day of the week, or forbid deployment to a given target.
Further, the user can ensure that at least one of a subset of targets is protected or that
deployment to a given target happens on at least one out of a subset of days. Solving the
game under these constraints and sampling will produce a deployment strategy that complies
with the user's requirements.

1.4.3. Robustness of our approach

We study the robustness of the solutions produced by our software to variations in the
payo� matrices. Speci�cally, we study the robustness of our method against variations of
two key parameters in the payo� generation methodology: λ, which models the defender's
belief on how crime �ows across the border and b(f), which indicates the number of nodes
clustered into a given destination node f . Equivalently, one can consider variations in a vector
h = (h1, h2, h3) which determines the number of cluster nodes for the three types of crime
considered. We study the e�ects of variations in the parameter λ and in the vector of cluster
nodes h separately.

As a base case, we generate payo�s for the players by setting λ = 50 and h = (6, 6, 6).
This appears reasonable given the size of the problem and distribution and number of arrests
per type of crime in the studied region. Let λ ∈ Λ = {0,5λ, 0,75λ, 1,25λ, 1,5λ} and h ∈ H =
{(h1, h2, h3) ∈ N3 : ht = ht ± s, t ∈ {1, 2, 3}, s ∈ {0, 1, 2, 3}}. We denote by c(λ, h), the
optimal coverage probabilities on the targets when the payo�s have been de�ned according
to λ and h. Given two vectors p, q ∈ R|J |+ , we consider the usual euclidean distance function
between them:

d(p, q) =

√∑
j∈J

(pj − qj)2.

We identify λ∗ ∈ argmax{d(c(λ, h), c(λ, h))} and h∗ ∈ argmax{d(c(λ, h), c(λ, h))} and plot
c(λ, h), c(λ∗, h) and c(λ, h∗).

Figure 1.10 shows the optimal coverage probabilities c(λ, h), c(λ∗, h) and c(λ, h∗) for a
game with �ve paired police precincts and twenty targets. One can see that the optimal
probabilities are very robust towards variations in the number of clusters. As one could
expect, they are less robust to variations in the parameter λ. Recall that a low value of λ
constructs the payo� matrices under the assumption that crime distributes itself uniformly

27



Targets j 2 J

P
r
o
b
a
b
i
l
i
t
y

5 pairings

1

2 3

4

5c(�, h) c(�⇤, h) c(�, h⇤)

Figure 1.10: Robustness of the solution method to variations in the parameters λ and h

among the di�erent action areas j ∈ J . It is therefore understandable that the optimal
coverage probabilities re�ect this by trying to cover the targets uniformly. On the other hand
the optimal coverage probabilities tend to be more robust for higher values of λ.

1.5. Computational Experiments

In this section we measure the performance of the compact formulation (COMB) and we
study the e�ectiveness of the alternative sampling procedure presented in Section 1.3.3. The
experiments were programmed in Python 3.5 and GUROBI to solve mixed integer programs.

1.5.1. Performance of (COMB)

We present an analysis on the computational e�ciency of our compact formulation (COMB)
on randomly generated instances. We do so by comparing the solving time of three di�erent
methods. The �rst method is solving the instances directly with (COMB) without separa-
ting the exponential family of odd-set constraints (1.28). The second method is solving the
instances with (COMB) where we apply the separation procedure described in Section 1.3.2
to the family of odd-set constraints (1.28). We refer to this method as (COMBC), where the
C indicates that we add cuts on the �y. Finally, the third method is solving the instances
with (D2) where we explicitly enumerate all leader strategies.
The instances we compare the three methods on are randomly generated as follows. We con-
sider random adjacency graphs where the number of nodes lies in n = {5, 6, . . . , 100} and we
generate arcs such that we ensure that the graph is connected and that in average each node
has four incident edges. Further, we consider four targets inside each node. In addition, we
uniformly generate payo� values for the defender and each attacker type by considering, for
each player, rewards Dk(j|c) and Ak(j|u) for all k ∈ K and j ∈ J in the range [0, 100] and
penalties Dk(j|u) and Ak(j|c) for all k ∈ K and j ∈ J in the range [-100,0].

28



Figure 1.11 a. shows the solving time of the three methods on instances from 5 nodes to 22
nodes. We solve these instances for m = 2, i.e., we need four nodes to pair up. For each ins-
tance size we plot the average solving time of 30 randomly generated instances. Note that for
m = 2 only can scale-up until 12 nodes. For greater set of nodes, the process of enumerating
the set of pure strategies is not possible for the computational capacity. Figure 1.11 b. shows
the solving time of the three methods on instances from 6 to 20 nodes. In this case we solve
for m = 3. For each instance size we plot the average solving time of 30 randomly generated
instances. Note that in this case, (D2) only can solve instances up to 10 nodes. In Figure 1.11
c. we report average solution times of 30 randomly generated instances with m = 10, and set
of nodes in {20, . . . , 35}. In this case, our formulation without the cut-generation procedure
only can scale-up until instances of 24 nodes. On the other hand, (COMBc) does not exceed
20 seconds of solution times.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Nodes

0

50

100

150

200

250

300

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

(COMB)c
(COMB)

(D2)

a. m = 2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Nodes

0

100

200

300

400

500

600

700

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

(COMB)c
(COMB)

(D2)

b. m = 3

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Nodes

0

100

200

300

400

500

600

700

800

900

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

(COMB)c
(COMB)

(D2)

c. m = 10

Figure 1.11: Performance for m = 2, m = 3 and m = 10: Solving time (s.) vs. number of
nodes in graph.

As one can see, our compact formulation plus the separation procedure for the odd-set
inequalities clearly outperforms the other two methods. The slowest of the methods, as could
have been expected, is (D2). The set of leader strategies grows exponentially and (D2) can
only explicitly enumerate these strategies for very small graphs of less than 12 nodes. It is also

29



interesting to note that our full compact formulation, (COMB), behaves remarkably well for
graphs of up to 18 nodes. For larger graphs, it is essential to separate the exponential family
of odd-set inequalities. Combining this separation procedure with our compact formulation
leads to substantial improvements in terms of solving time, consistently solving each of our
random instances in less than 20 seconds.

1.5.2. Performance of the alternative sampling method

In Section 1.3.3, we provide a two-stage sampling method to recover an implementable
defender strategy, which consists in selecting a matching of size m and then determining the
m targets to protect within those paired nodes. In this section we use the Kullback-Leibler
distance [38] to determine the similarity between the optimal z∗ and our estimated ẑ. The
optimal z∗ are those returned by our optimization model (COMB) whereas the estimated
ẑ are obtained as follows: We sample i = 1, . . . , N matchings of size m according to the
method in Section 1.3.3. Then, for each edge e ∈ E, set ẑe =

∑N
i=1 z

i
e/N . In our experiments

we consider N = 1000 and use the Kullback-Leibler distance to measure the similarity of
z∗ and ẑ over instances with n nodes where n = {5, 25, 50, 100}. For each instance size, we
generate 30 estimated ẑ and plot the results as box diagrams as shown in Figure 1.12.

5 25 50 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Kullback distance between estimated and optimal z

Figure 1.12: Kullback-Leibler distance between z∗ and ẑ over instances of di�erent size

Observe that the Kullback-Leibler distance between z∗ and ẑ is very small, below 0,2 over
all instances, which is a good indicator that ẑ is a good estimator for z∗. in particular we
observe that the larger the set of nodes in an instance the better an estimator ẑ appears
to be. As one can see in Figure 1.12, for instances with 100 nodes, most of the ẑ have a
Kullback-Leibler distance to z∗ which is below 0,02.

30



1.6. Conclusions and future work

In this chapter, we studied a special type of SSG played on a network. In this game, a
defender has to combine resources to do patrol labors in a set of targets. We proposed a
novel formulation, (COMB), that represent the set of mixed strategies in a compact form
via marginal probabilities in the pairs of resources to team-up and the targets to cove. We
proposed a method to retrieve an implementable strategy given the optimal marginals and
we prove the validity of our formulation. In this method we proposed two ways to decompose
fractional size constrained matchings as convex combination of pure matchings. (COMB)
formulation has a exponential family of constraints. To scale-up the instances that solvers
are able to optimize, we proposed a cut generation algorithm.

We have further provided an alternative sampling method to recover an implementable
defender strategy given the optimal coverage distributions. Computational tests have shown
that the two-stage sampling method we describe, provides implementable strategies that
do not deviate much from the optimal coverage distributions. Further computational tests
have shown (COMB) to have smaller solution times and better scaling capabilities than
the extensive formulation (D2) on randomly generated security instances. Both methods are
considerably outperformed by the cut generation algorithm.

In addition, we have described a real-life border patrol problem and have presented a
parameter generation methodology that takes into account past crime data and geographical
and social factors to construct payo�s for the Stackelberg game. Robustness tests have shown
that the solutions our software provides are fairly robust to the networks we generate as well
as to minor changes in the �ow of crime along the border.

In future work we aim to extend our model and methodology to the case where each
resource can be paired up with more than one resource, taking into account di�erent ca-
pabilities, time schedules, and other considerations. We also are working in improving the
parameter estimation for the real case exposed in this chapter.

31



Chapter 2

Abstractions to handle large scale

models.

Besides the Stackelberg Security Games disscused in Chapter 1, data-driven models have
been developed to generate strategies against crime. An algorithm based on machine learning
techniques is presented in [74] to handle opportunistic crime. This algorithm consists in lear-
ning through a Dynamic Bayesian Network (DBN), where the data is the defender strategy
in target i at time t, denoted by Dit, Yit the number of crimes committed at time t in target
i, and Xit is a hidden variable representing the number of criminals in target i at time t.

The main idea of the algorithm is to learn the transition probabilities of the number of
crimininals in target i at time t+1, noted by P(Xi,t+1|Dt, Xt) and the crime output probability
P(Yit|Dt, Xt). The output of this learning phase is used to get a planning strategy, stated
as an optimization problem. Experiments shows that this algorithm does not converge for
instances of more than n = 5 targets in a reasonable time. We call n as the scalability
parameter.

In this chapter we use the concept of abstraction to transform large scale urban area
problem into a smaller abstract problem and then apply the algorithm mentioned before and
solve it hierarchically. Here we use the concept abstraction as in the Arti�cial Intelligence
literature, where we collect many objects with similar features into a single class [9]. In this
particular case, targets that have similar characteristic are merged into aggregated targets.
This set of aggregated targets is called the abstract layer while the set of original targets is
named the original layer. If we are able to solve the problem with the targets aggregated, the
algorithm propagates the strategy to the targets inside each cluster of aggregated targets.
Given a scalability parameter n of the algorithm that we want to scale-up maybe we need to
generate more than two layers. In contrast to traditional clustering methods, in geographical
areas the geometry of each cluster is important [13].

Our focus in this work is the methodology to generate those geographical multilayer clus-
ters (or districts) to propagate e�ciently mixed strategies from one layer to another, losing
the less information as possible.

32



2.1. Layer Generating Algorithm

We model the layer generation as a Districting Problem [35, 13]. The districting problem
is the well known problem of dividing a geographical region into balanced subregions with the
notion of balance di�ering for di�erent applications. For example, police districting problems
focus on workload equality [13]. Our layer generation is a districting problem that group tar-
gets in the original layer into aggregated targets in the abstract layer. However, distinct from
the classic Districting problem where the resources are balanced among di�erent aggregated
targets, in our problem, we try to maximize the similarity of the targets inside the same ag-
gregated target. We do so by modeling the similarity of targets within each aggregated target
and use this similarity measure as one of the criteria in the optimization formulation of our
problem.

When generating the aggregated targets, there are three principles to follow. First, the
aggregated targets should follow the geometric constraints in the districting problem such as
contiguity, compactness and environmental constraints. Contiguity means that every target is
geographically connected; compactness means that all targets in an aggregated target should
be close together; and environmental constraints are the constraints for defender's patrol
convenience. For example, if two neighboring targets are divided by a highway, they should
not be merged together. Second, the dissimilarity within the aggregated targets should be
minimized. We consider two properties of target i, the number of crimes per shift with the
defender's presence ci1 and the number without the defender's presence ci0. For target i and
target j, we de�ne the Dissimilarity distance function as Disij = |ci1 − cj1|+ |ci0 − cj0|.

Third, the algorithm should consider the scalability constraint for a learning algorithm.
Let N denote the number of targets in the original layer and n denote the largest scale of
problem that the learning and planning algorithms can scale up to. Then there can be no
more than n targets inside each aggregated target and no more than n aggregated targets in
the abstract layer. Therefore, N ≤ n2 in the original layer. When N > n2, we need multiple
layer abstraction that will be introduced later. As we prove next in Lemma 2.1, the more the
aggregated targets are in the abstract layer, the less information is lost during the abstraction.
Hence, we would want to have as many targets as possible in the abstract layer. Thus, we
set n aggregated targets in the abstract layer.

Let I = {1, . . . , N} be a set of targets in the original layer. A partition of size K of this
set I is a collection of sets {Ik}Kk=1 such that Ik 6= ∅ for all k ∈ {1, . . . , K}, Ik ∩ Il = ∅ for
all k, l ∈ {1, . . . , K}, k 6= l and

⋃K
k=1 Ik = I. {Ik}Kk=1 is the set of the aggregated targets in

the abstract layer. Let PK(I) denote the set of all partitions of I of size K. Given Ik ⊂ I we
de�ne its inner Dissimilarity as Dis(Ik) =

∑
i,j∈Ik Disij =

∑
i,j∈Ik |ci1 − c

j
1| + |ci0 − cj0| . Also

we de�ne its Inertia as In(Ik) = minj∈Ik
∑

i∈Ik dij, with dij denoting the physical distance
between the geometric centers of targets i, j.

In our districting process we want to �nd a partition which achieves both low inner Dis-
similarity and Inertia over all elements of the partition. Given α > 0 as a normalization
parameter, we de�ne the information loss function LI(K) as the lowest cost with a partition
of size K, mathematically LI(K) = min{Ik}Kk=1∈PK(I)

∑K
k=1 αIn(Ik) +Dis(Ik).

33



Lemma 2.1 The information loss decreases with K, that is LI(K + 1) ≤ LI(K).

Proof. Assume K < N . First, note that In({i}) = Dis({i}) = 0 for all i ∈ I. Let j∗

be the value of j that achieves the minimum in In(Ik) = mı́nj
∑

i∈Ik dij. Let {I∗j }Kj=1 the
optimal partition of I and k∗ ∈ argmaxk={1,··· ,K}αIn(I∗k) +Dis(I∗k). Then |I∗k∗| > 1 otherwise
LI(K) = 0 and |I∗k | = 1 for all k and there is no clusters. Let i∗ ∈ I∗k∗ − {j∗}. Note that:

In(I∗k∗) =
∑
i∈I∗

k∗

dij∗ ≥
∑

i∈I∗
k∗−{i

∗}

dij∗ ≥ In(I∗k∗ − {i∗})

Dis(I∗k∗) =
∑
i,j∈I∗

k∗

Disij ≥
∑

i,j∈I∗
k∗−{i

∗}

Disij = Dis(I∗k∗ − {i∗})

Then,

LI(K) =
K∑
k=1

αIn(I∗k) +Dis(I∗k)

≥
K∑

k 6=k∗
αIn(I∗k) +Dis(I∗k)

+αIn(Ik∗ − {i∗}) +Dis(Ik∗ − {i∗})
+αIn({i∗}) +Dis({i∗})︸ ︷︷ ︸

=0

≥ LI(K + 1)

Then, the partition {I1, . . . , Ik∗−1, Ik∗−{i∗}, {i∗}, Ik∗+1, . . . , IK} ∈ PK+1(I) is feasible for the
problem of K + 1 clusters and has lower loss function value, then the optimal clustering in
PK+1(I) also has the lower objective function.

Based on these three principles, we propose a mixed integer linear program (MILP) to
solve the districting problem. We apply an extension of the capacitated K-median problem
with K a parameter such that the set of N targets can be partitioned in K aggregated targets
with at most n elements each of them. While the capacitated K-median problem [54] satis�es
the scalability constraint by setting a maximum capacity for each aggregated target, it cannot
handle the geometric constraints such as contiguity. In this chapter, we handle the geometric
constraints by considering the inertia of each aggregated target as part of the information
loss function.

34



Algorithm 4 Constraint Generation Algorithm (I,K)

1: Center ← Location_Problem(I,K); Cuts=∅
2: for i = 1, · · · ,MAX_IT do

3: y∗, z∗ ← Allocation_Phase(Center, Cuts)
4: i∗, j∗, k∗ = argmı́ni,j,k z

∗
ik −Disik(yij + ykj − 1)

5: if (z∗i∗k∗ −Disi∗k∗(yi∗j∗ + yk∗j∗ − 1)) ≥ 0 then

6: break
7: else

8: Cuts ← Cuts ∪ {zi∗k∗ ≥ Disi∗k∗(yi∗j∗ + yk∗j∗ − 1)}
9: end if

10: end for

11: return {y∗}, objective_function

mı́nx,y,z α
∑

i,j dijyij +
∑

ik zik

s.t.
∑

j yij = 1 ∀i ∈ I
yij ≤ xj ∀i, j ∈ I∑

j xj = K∑
j yij ≤ n ∀j ∈ I

zik ≥ Disik(yij + ykj − 1) ∀i, k, j ∈ I
zik ≥ 0 ∀i, k ∈ I
yij + ykj ≤ 1 ∀j ∈ I, i, k cannot be aggregated together

yij, xj ∈ {0, 1} ∀i, j ∈ I

(2.1)

xj is a binary variable. It is 1 if the target j is the center of an aggregated target and 0
otherwise. The variable yij takes the value 1 when the target i is allocated to the aggregated
target centered in j and 0 otherwise. The variable zik is a continuous non-negative variable
that takes the value Disik when target i and target k are allocated to the same aggregated
target, otherwise zik is 0. The objective function is the weighted sum of inertia and dissi-
milarity. α represents the trade-o� between geometric shape and the similarity within each
aggregated target.

The �rst set of constraints ensures that every target is allocated to an aggregated target.
The second set of constraints ensures that the center of an aggregated target belongs to
this aggregated target. The third expression states that there are K aggregated targets. The
fourth set of inequalities ensures the size of every aggregated target to be no greater than n.
The �fth and sixth constraint ensures that zik will take the value Disik when target i and
target k are allocated to the same aggregated target, otherwise zik will be 0. The seventh
constraint is an example of environmental constraints that target i and target k cannot be
in the same aggregated target.

We use the heuristic constraint generation algorithm (Algorithm 4) to approximately solve
the problem. The algorithm has two phases: �rst, the Location_Problem is solved in which

35



the centers of the aggregated targets is computed. The location problem is solved as a K-
median problem. Observe that once the centers are �xed the second and third constraints
can be omitted from the MILP, which reduces the size of the problem a lot. In the second
phase, sub targets are allocated to the centers obtained in the last step. However, even with
the �rst phase simpli�cation, the resultant MILP is di�cult to solve. Thus, in the second
phase, given the large number of constraints, we use the constraint generation technique [8]
to solve the optimization problem. The iterative constraint generation algorithm is shown
as the for loop (line 2-9). To start with, all the constraints zik ≥ Disik(yij + ykj − 1) for
i, j, k are removed completely (denoted by the empty set Cuts in line 1), and then in each
iteration of the for loop the MILP is solved (line 3) and then we check whether any of the
left out constraints are violated (line 4, 5). If yes, then the most violated constraint is added
to Cuts or else the loop stops. The maximum number of iterations is limited by MAX_IT .
Constraint generation guarantees an optimal solution given large enough MAX_IT .

2.2. Multi-Layer Generating Algorithm

Two layers are not enough to handle instances where the number of targets N > n2.
Therefore, we propose the approach to generate K layers in this section. We denote the
original layer as Layer 1 and the layer directly generated from Layer k as layer k+ 1. In this
notation, the top abstract layer is Layer K. Considering the scale constraints, K > lognN .
When merging targets in layer k to generate targets in layer k+ 1, we also need to �gure out
the total number of targets in layer k+1. In this section, we propose a Dynamic Programming
generating algorithm so that the minimum information is lost by abstraction.

Algorithm 5 Dynamic Programming based Multi-Layer Generating Algorithm

Require: N,n
1: Layers = blognNc+ 1
2: for i = 1, · · · ,Layers do
3: for j = bN

ni
c, . . . , nLayers+1−i do

4: optimal_objective(j) = +∞, Targets(j) = ∅, optimal_path_to(j)= ∅
5: for k = b N

n(i−1) c+ 1 : n · j do
6: I(j), objective(j)= Clustering_Algorithm(I(k), j)
7: if optimal_objective(j) > optimal_objective(k)+objective(j) then
8: optimal_objective(j)= optimal_objective(k)+objective(j)
9: optimal_path_to(j) = k

10: Targets(j) = I(j)
11: end if

12: end for

13: end for

14: end for

15: return Targets

This algorithm cannot be solved in a reasonable time for real instances, so for this work

36



we only use a greedy algorithm that, in each step i ∈ {1, · · · ,Layers}, solves the problem
with the maximum number of targets, i.e., K(i) = nLayers+1−i.

We show an example where N = 1266 and n = 25. Then blognNc + 1 = 3 layers are
required in our algorithm. The resulting layers are showed in Figure 2.1.

Original Layer or Layer 1

Layer 2 Layer 3

Figure 2.1: Layers of targets generated by the Greedy Multi-Layer Algorithm algorithm.

2.3. Conclusions

In this chapter we look for e�cient ways to approximate algorithms in games developed
in large geographical areas inspired by a machine learning algorithm, called DBN, that only
scale-up to 5 targets in reasonable time. We propose a territory design problem as K-median
with capacity constraints cluster territory units or targets considering geographical aspects
and similarity in crime levels. We also design a multi-layer algorithm to do geographical
clusters in multiple levels.

37



The model and algorithm presented in this chapter is quite independent from the algorithm
DBN that we aim to scale up. This property can be used for example to scale up any game
where the strategies have a relationship with spatial and geographical features, for example
in security games in any of their versions that are di�cult to solve. In a future work we look
for a measure of how much we lose doing this approximation, that is, given an instance and
a approximated solution, how far we are to the optimal strategy.

38



Chapter 3

Solving Stackelberg equilibrium in

stochastic games

3.1. Introduction

In this chapter we face the problem of computing a strong Stackelberg equilibrium (SSE)
in stochastic games (SG) both in feedback and stationary policies. Given a set of states we
model a two player perfect information dynamics where one of them, called Leader or player
A, observes the current state and commits to a, possibly mixed, strategy f . Then the other
player, called Follower or player B, observes the strategy of player A and plays his best
response denoted by g. Given the selected strategies there is an immediate payo� for each
player and a random transition Qfg to another state. This dynamics can be represented by
the following scheme:

s0  
Player A
chooses f0

 
Player B
observes f0

and chooses g0

 ︸︷︷︸
Qf0g0 (s1|s0)

s1  
Player A
chooses f1

 
Player B
observes f1

and chooses g1

 · · ·

Formally, let S represent the set of states of the game. Let A,B denote the set of actions of
players A and B respectively, and we denote by As and Bs the actions available in state s ∈ S.
For a given state s ∈ S and actions a ∈ As and b ∈ Bs, Qab(s′|s) represents the transition
probabilities of reaching the state s′ ∈ S. The time horizon is given by τ ∈ N∪{+∞}. When
τ < +∞ we say that the game has �nite horizon and otherwise we say this is an in�nite
horizon game. The reward received by each player in state s when selecting actions a ∈ As
and b ∈ Bs is referred to as the one-step reward functions and are given by rA = rabA (s)
and rB = rabB (s). The constants βA, βB ∈ [0, 1) are discount factors for player A and B
respectively. Therefore we represent a two-person stochastic discrete game G by

G = (S,A,B, Q, rA, rB, βA, βB, τ) .

39



SG have been used to model situations arising in areas like evolutionary biology, interaction
in economics [4], computer networks [3], and security [21], among others applications.

In the literature of controlled stochastic processes authors distinguish di�erent types of
policies, see [5, ch. 2]. In this chapter we shall work with Feedback policies, which depends
on the current state s and time epoch t and Stationary policies de�ned as feedback policies
that do not depend on the time step. There are other type of policies that depend on the
whole history of the game called closed-loop policies, or policies that only depend on the
initial state of the game referred to as open loop policies.

Recent work on computing Stackelberg equilibria in SGs include [21], which introduced
a model and algorithm to do resource allocation to detect fare evasion, �nding Bayesian
Stackelberg equilibrium and [62], which uses a non linear optimization model to �nd Stac-
kelberg equilibrium in adversarial patrolling games. To the best of our knowledge there is
no prior work on e�cient algorithms to �nd stationary strategies in Stackelberg games when
τ → +∞, in case they exist.

In the security applications that motivate this work, such as patrolling the streets to
prevent crime, the decision of where to patrol next should not depend on the history of
previous patrolling actions and a time independent policy is easy to communicate to real
world security agents. Therefore, the focus of this work is computing Stackelberg equilibria
in feedback or Markovian policies. Nevertheless, stationary policies are not always optimal
(see the counterexample in the corrected version of [62]).

For the Leader in a Stackelberg dynamic setting, feedback policies can be seen as a
collection of functions π = {f0, f1, . . . , fτ}, where for each t ∈ {0, . . . , τ} the function
ft : S → P(As) maps a state s ∈ S into a probability distribution over the set of ac-
tions As, denoted by ft(s). The follower feedback policies will be a collection of functions
γ = {g0, g1, . . . , gτ} where each function gt is a mapping from the set of states S into P(Bs).
The sets of all possible feedback strategies are denoted by Π and Γ, for player A and B res-
pectively. With this notation, stationary policies are π = {f, f, f, . . .}, γ = {g, g, . . .}, for the
leader and follower respectively. In particular, we are interested in computing SSE policies.
That is, a Stackelberg equilibrium where if the follower is indi�erent between actions, the
strategy that leads to the best utility for the leader is selected.

To determine the performance of a pair of policies we write down the discounted reward
for each player. To do so, we notice that given an initial state s ∈ S and a pair of strategies
(π, γ) there exists a unique probability measure Pπ,γs for the stochastic processes {St}, {At}
and {Bt} in the spaces S, A and B respectively. Let Eπ,γs be the expectation operator with
respect to Pπ,γs . See [30, Appendix C]. For any horizon τ ∈ N ∪ {+∞}, the value functions
for both players are given by

vπ,γA (s) = Eπ,γs

[
τ∑
t=0

βtAr
At,Bt
A (St)

]

vπ,γB (s) = Eπ,γs

[
τ∑
t=0

βtBr
At,Bt
B (St)

]
.

40



Given a state s0 ∈ S, a Stackelberg equilibrium is a pair of policies (π∗, γ∗) satisfying:

π∗ ∈ argmaxπ∈Π v
π,γ∗(π)
A (s0) (3.1)

s.t. γ∗ ∈ argmaxγ∈Γ v
π,γ
B (s0) , (3.2)

where Π and Γ will be the set of feedback or stationary policies depending on the case we
are studying. We de�ne a pair of Stackelberg policies as a pair of policies (π, γ), forming a
Stackelberg equilibrium. Notice that in this case it would be convenient to write, for a policy
π of player A, the corresponding policy γ of player B as γ = γ(π). Nevertheless, unless it
is necessary we shall continue writing the pair of Stackelberg strategies as (π, γ) instead of
(π, γ(π)). Similarly, a pair of Stackelberg stationary strategies is a pair of stationary strategies
(f, g) which forms a Stackelberg equilibrium.

We summarize the contributions of this work as follows:

1. We prove via a counterexample that it is not always possible to achieve a SSE in
stationary policies via dynamic programming.

2. We provide su�cient conditions for a stochastic game to satisfy existence of a unique
SSE in stationary strategies.

3. We provide a theoretical framework for algorithms to compute SSE in feedback strate-
gies in both �nite and in�nite horizon via a de�nition of a suitable operator.

4. We prove the convergence of Value Iteration and Policy Iteration to �nd SSE in statio-
nary policies for a family of stochastic games.

5. We experimentally compare the scalability of mathematical programming approaches
and algorithms based on dynamic programming.

The rest of this chapter is as follows: In Section 3.2 we provide a Literature review with
emphasis on algorithms and math programming approaches to compute Stackelberg Equili-
brium. In Section 3.3 we present an application to a security game in a graph. A numerical
example to show how a value function iteration algorithm works in a simple SG it is shown
in Section 3.4. In section 3.5 we introduce the Stackelberg Operator and discuss the conver-
gence of Value Iteration (VI), Policy Iteration (PI) and Rolling Horizon (RH) for a particular
family of stochastic games. In section 3.6 we extend algorithms and operators to the general
case and we discuss why dynamic programming algorithms cannot converge in the general
case. In Section 3.7 we provide a mathematical programming approach to compute SSE in
stationary policies. In Section 3.8 we present a computational comparison of the performance
of the algorithms exposed. Finally we present our conclusions and future work in Section 3.9.

3.2. Literature Review

We divide the literature review in two parts. We �rst describe general results and appli-
cations of SG focusing on algorithms and stationary policies, for both Nash and Stackelberg
equilibrium. In the second part, we focus on mathematical programming models that aimed
to calculate equilibria in SG.

41



3.2.1. General results

SG were �rst introduced by Shapley [53] and who also gives the �rst algorithm to �nd
Nash Equilibrium in zero-sum SG (when rabA (s) = −rabB (s) = rab(s)) based on a dynamic
programming algorithm. The algorithm strongly relies on the fact that there is a unique
value of the game. This is not the case for Nash equilibrium in general sum games. There
are some articles that extend Shapley's seminal work to general sum games. In [36] a Value
Iteration algorithm is used that converges to a Nash equilibrium when the SG horizon is �nite.
The algorithm uses an arbitrary �Nash selection function� that maps local choices between
multiple Nash equilibrium into the selection of a single global Nash equilibrium. For general-
sum games a pair of stationary policies that is a Nash equilibrium does not always exists.
In [28], the authors discuss about a 3-person game in which there is no Nash equilibrium in
stationary policies. In [75] it is demonstrated that there exist SG for which no value iteration
algorithm based on dynamic programming can converge to a stationary policy.

Another approach to �nd Nash equilibrium uses the Fictitious play paradigm where each
player updates their beliefs in a simulated game, (see [65]). A complete review about Nash
equilibria computation and Learning in SG can be found in [56].

In [40] the authors study the relationship between Stackelberg strategies and correlated
equilibrium in stochastic games.They also show that it is NP-hard to �nd Stackelberg equili-
brium in stochastic games. In contrast to MDP settings, Stackelberg equilibrium in stationary
policies can be arbitrarily suboptimal as shown in [63]. They also provide a mixed integer
non linear program to compute SSE in general SG when players are restricted to stationary
policies. They extend this formulation in [62] to policies that depend on history of bounded
length.

Some applications of SG in security can be found in [2], [43] and the solution concept
used is the Nash equilibrium in zero-sum games. Authors named these games as Stochastic
or Markov security games.

Some applications of Stackelberg equilibrium in SG are the following:

• The problem of coordinating a group of robots for planet exploration is presented in
[14]. They model it as a multi-objective stochastic game and the solution concept used
is the Stackelberg equilibrium.

• Adversarial patrolling games [61] and robotic patrolling games where a robot has to
detect an intruder [6].

• Optimal policies to detect fare evasion under execution uncertainty are presented in
[21] as solutions of Bayesian Stackelberg SG.

• In [15] the authors present a partially observed stochastic game and de�ne algorithms
to generate policies using as an example a manager of a liquid egg production process.
The leader aim to maximize expected process productivity while mitigating the risk of
an attacker who seeks to contaminate the process with a chemical or biological toxin.

42



3.2.2. Math programming to solve Stochastic Games

There are well known mathematical programming models that compute equilibria in ga-
mes. Probably, the most famous case is the linear program to compute the Nash equilibrium
in zero-sum games where the duality in linear programming has direct relationship with the
calculus of equilibria in zero-sum games (see [47, ch. 12]). There is no linear model to calculate
Nash equilibrium in general sum games.

The problem of computing SSE in general sum games can be modeled as a mixed integer
linear program, using typical tools of bi-level optimization, as it is mentioned in Chapter 1,
with the model (D2).

On the other hand, there are some linear optimization models to �nd optimal stationary
policies in Markov Decisions Process, also referred as MDPs (see [50, ch. 6]). As SG can
be seen as a generalization of MDPs when there more than one controller [27], there is the
natural question of whether equilibrium policies in SG can also be modeled as linear or mixed
integer programs. In [27, ch. 3] the authors name three cases where linear programming can
�nd optimal stationary policies in zero-sum SG:

1. Single-Controller Discounted Games: Games where

(SC) Qab(s′|s) = Qa(s′|s)

is satis�ed, that is only the actions of one player a�ects the transition probabilities.

The model proposed by them is as follows:

(FVSC) mı́n
∑
s∈S

αsv(s)

v(s) ≥
∑
b∈B

rab(s)gsb + βA
∑
s′∈S

Qa(s′|s)vA(s′) ∀a ∈ A, ∀s ∈ S∑
b∈B

gsb = 1 ∀s ∈ S

gsb ≥ 0 ∀b ∈ B, ∀s ∈ S,

and its dual:

(FVSC)∗ máx
∑
s∈S

z(s)∑
a∈A

fsa − β
∑
s′∈S

∑
a∈A

Qa(s|s′)fs′a = αs ∀s ∈ S

z(s) ≤
∑
a∈A

rab(s)fs,a ∀b ∈ B, ∀s ∈ S

fsa ≥ 0 ∀a ∈ A, ∀s ∈ S.

43



The optimal stationary policies can be retrieved setting f ∗ = {f ∗(s, a) = fsa∑
a′∈A fsa′

} to
the leader and g = {gsb} for player B. The value of the game is given by vector v.

2. Separable Reward State (SER) - Independent Transition Discounted Stochastic games
(SIT): This game satis�es the following conditions:

(SER) rab(s) = r1(s) + r2(a, b)

(SIT) Qab(s′|s) = Qab(s′) .

The problem can be solved by constructing the following matrix:

R =

[
r2(a, b) + β

∑
s′∈S

Qab(s′)r1(s)

]
a∈A, b∈B

,

and calculating the value of this matrix game. The optimal strategies obtained in this
matrix game correspond to optimal stationary policies in the (SER)-(SIT) game and
the optimal value can be calculated as:

v = r1 +
val(R)

1− β 1

where val(R) is the value of the matrix game R and β = βA = βB.

3. Switching Controller discounted Stochastic Games: In this type of games the state space
is partitioned in SA and SB and in each partition one player is a single-controller, that
is:

(SW) Qab(z|s) =

{
Qa(z|s) if s ∈ SA,
Qb(z|s) if s ∈ SB.

The authors provide a �nite algorithm based on the resolution of multiple Linear pro-
grams [64].

Nevertheless, they also provide a counterexample showing that not every stochastic zero-
sum game equilibria can be calculated with an LP. Given that Strong Stackelberg Equilibrium
and Nash equilibrium are equivalent in zero-sum games (see [17]), the result can be extended
to SSE in SG.

In [63] the authors provide Mixed Integer Non Linear Programs (MINLP) to compute
general sum Stackelberg equilibria in stationary policies. The model is

44



(MINLP) máx
∑
s∈S

αsvA(s) (3.3)

s.t.
∑
a∈A

fsa = 1 ∀s ∈ S (3.4)∑
b∈B

gsb = 1 ∀s ∈ S (3.5)

vA(s)−RA(s, f, b) ≤MA(1− gsb) ∀s ∈ S, ∀b ∈ B (3.6)

0 ≤ vB(s)−RB(s, f, b) ≤MB(1− gsb) ∀s ∈ S, ∀b ∈ B (3.7)

fsa ≥ 0, gsb ∈ {0, 1} ∀s ∈ S, a ∈ A, ∀b ∈ B, (3.8)

where RA(s, f, b) =
∑

a∈A fsa
[
rabA (s) + βA

∑
s′∈S Q

ab(s′|s)vA(s′)
]
and RB(s, f, b) de�ned simi-

larly; αs are positive constants; and MA, MB � 1 are upper bounds to the respective value
functions.

Despite their not provide any upper bound toMA, MB it su�ces to takeMA = ||rA||∞
1−βA

and

MB
||rA||∞
1−βA

. Variables fsa and gsb represent the probability of taking action a and b respectively
in state s, assuming deterministic policies for the follower.

They also provide a linear approximation doing a discretization in the probability space.
In [62] the same way of reasoning to an Adversarial Patrolling Game extending (MINLP) to
history-dependent policies of �xed length is applied.

In the context of doing surveillance labor on a transit system to detect fare evasion, [21]
provide a mixed integer quadratic program for general sum game and a LP in the zero-
sum case to �nd Bayesian Stackelberg Equilibria (the term Bayesian refers to have multiple
adversaries, K appearing with a known probability πk). They model the patrol labor that
a set {1, . . . , γ} of agents has to do using γ MDPs. The space of states is in the form of
(li, t) representing the location of agent i and time epoch. Similarly as the game described in
Section 3.3, there exists a probability of failing in the actions that each agent takes. Taking
s+
i and s−i as initial and �nal states for each agent i, the quadratic model can be stated as
follows:

45



(DFQ) máx
∑
k∈K

πkx
TUd

k gk +

γ∑
i=1

xi(si, ai, s
′
i)Ri(si, ai, s

′
i) (3.9)

s.t. xi(si, ai, s
′
i) = f isi,aiQ

ai
i (s′i|si) ∀si ∈ S

(3.10)∑
s′i,a
′
i

xi(s
′
i, a
′
i, s
′
i) =

∑
ai

f isi,ai ∀si ∈ S

(3.11)∑
a′i

f i
s+i ,a

′
i

=
∑
s′i,a
′
i

xi(s
′
i, a
′
i, s
−
i ) = 1 (3.12)

∑
α

gk(α) = 1 ∀k ∈ K

(3.13)

gk ∈ argmax g′k
xTUa

k gλ ∀k ∈ K
(3.14)

xsa ≥ 0, gsb ∈ {0, 1} ∀s ∈ S, a ∈ A, ∀b ∈ B,
(3.15)

where R represents a trajectory reward which is independent of the interaction with the
other players, and U represents the payo� structure due to the interaction with the followers.
Variables x and f represents the probability of taking an action and pass through a state to
another. Binary variables gk represent the deterministic best response of each player. In this
model rewards are divided in two terms. The �rst one represents the interaction of a game
with payo�s Ud

k and Ua
k . The second term represents the expected utility of doing patrol

labor in state si take action ai and arrive to state s′i. This rewards is given by parameter
Ri(si, ai, s

′
i). Note that the follower response is independent of the future actions, and the

transition matrix only depends on the leader decisions. This type of structure as we will see
has nice properties in the calculation of SSE.

3.3. Motivational Example

In this section we present a stochastic game example modeling a patrol domain that helps
motivate this work. In this game a defender has to patrol a set of locations and an attacker
wants to perform an attack in one of these locations, both maximizing their expected rewards.
The rewards mainly depend on the place where the attack is performed and whether the
location is being covered or not. The e�ectiveness of the defender's movements are in�uenced
by aleatory factors, so when he decides to patrols any location and try to move to another
location, by external factor he could fail, and remain in the same location. We will suppose
the attacker always succeeds moving between di�erent locations. In order to represent this
situation as a stochastic game in the formalism of Section 3.1, in the following paragraph
we de�ne the set of states S, the set of actions for the defender and the attacker A and B

46



respectively, the transition probabilities between states Q and the expected rewards for both
players rA and rB.

Formally, we consider a set of locations to patrol/targets L = {`1, `2, ..., `n}. There are
some connections allowed between locations represented by edges (denoted by E), so the
game can be represented in a graph (L, E). A typical state s = (sA, (sB, α)) ∈ S represents
the defender's location (sA ∈ L), the attacker's location (sB ∈ L). The parameter α ∈ {a, ā}
takes the value α = a if the attacker is committing a crime or α = ā if he is going unnoticed
at that period. There are also two special �ctitious states ⊥a, ⊥ā representing the state of the
game once the attack was performed. ⊥a represents the case where the attack is successful
and ⊥ā when the attacker is caught.

The action space As for the leader are all the possible location that he can achieve from
its current position (given by the state s). For the follower, Bs represents all the possible
locations that the attacker can achieve in the state s with and the decision whether to attack
or stay unnoticed. We use the notation ` ∈ L to represent the action of �move to `� and
α ∈ {a, ā} to represent the action of �attacking� or �stay unnoticed� respectively.

Now we can represent the transition probabilities between states taking into account the
notation introduced above, as

Qab(z|s) = Qs′A,(s
′
B ,α
′)(zA, (s

′
B, α

′)|sA, (sB, α))),

representing the fact that the leader can fail attempting a change in his current position but
the attacker has a 100% of e�ectiveness moving from one place to another. We also assume
independence of the transitions of the defender respect with the attacker's movements.

We de�ne these probabilities noting q`
′
(`′′|`) as the probability of the defender passing

from location ` to `′′ when the defender decides to move to `′. The function q captures the
execution uncertainty of the leader. Then Q can be represented as follows:

Qs′A,(s
′
B ,α
′)(zA, (s

′
B, α

′)|sA, (sB, α))) =


1 sA = sB, zA = s′B =⊥ and α = a
1 sA 6= sB, zA = s′B =⊥ and α = a
1 sA = sB = zA = s′B =⊥a or ⊥ā

qs
′
A(zA|sA) otherwise

(3.16)

Expression in its �rst component represent the fact that if the defender and the attacker
meet at same location, and the attack is performed, then the attacker is caught and both go
to the �nal state ⊥a. The second row represent the case where the attack succeeds, and both
go to the terminal state ⊥ā. The third row states that both, ⊥a and ⊥ā, are terminal states.
The fourth row, represents the uncertainty in the defender movements.

Instant rewards rA and rB are de�ned as the expected values of the rewards RA and RB

of the dynamics between players and the transportation costs between players, cA and cB,
which depends on the current state of the system, the actions performed by the players and

47



the future state of the system. This technique is fairly standard, as it is shown in [50, Ch. 2,
pp.20].

The function

RA = R
s′A,(s

′
B ,α
′)

A (zA, (s
′
B, α

′)

denotes the reward for the leader if the system arrives at state (zA, (s
′
B, α

′) after defender and
attacker choose actions s′A and (s′B, α

′) respectively. Analogously, the function RB is de�ned
for the follower. The values that RA and RB can take are as follows:

R
s′A,(s

′
B ,α
′)

A ((sA, (sB, α)), (zA, (s
′
B, α

′))) =


−g(s′B) zA 6= s′B and α′ = a
h(s′B) zA = s′B and α′ = a
0 α′ = ā
εA(⊥a) zA = s′B =⊥a
−εA(⊥ā) zA = s′B =⊥ā

(3.17)

R
s′A,(s

′
B ,α
′)

B ((sA, (sB, α)), (zA, (s
′
B, α

′))) =


k(s′B) zA 6= s′B and α′ = a
−M(s′B) zA = s′B
−ε α′ = ā
−εB(⊥a) zA = s′B =⊥a
εB(⊥ā) zA = s′B =⊥ā

(3.18)

Expressions (3.17) and (3.18) show the payo�s for the leader and the follower for the four
possible cases. First, if the attacker succeeds in attacking location s′B, the attacker receives
a payo� given by k(s′B) which depends on the location where the attack is performed. The
defender receives a penalty (negative reward) of g(s′B). Second, if he attacker is caught by the
defender, then the defender receives a payo� of h(s′B) and the attacker receives a a penalty
of M(s′B). In the third case, we represent the opportunity cost of not attacking in one period
as ε. In this case, the defender receives a payo� of 0. Finally, cases fourth and �fth represent
the payo� to stay one period caught or enjoying a successful attack.

Also, both players incur costs moving between di�erent locations cA and cB respectively.
Given that the defender transitions are not deterministic, the transportation cost will be
evaluated as the expected value. Taking this into account the instantaneous rewards rA and
rB can be calculated as:

r
s′A,(s

′
B ,α
′)

A (sA, (sB, α)) :=
∑
z∈S

cA(sA, z)q
s′A(z|sA)

+
∑
z∈L

R
s′A,(s

′
B ,α
′)

A

(
z, (s′B, α

′)

)
Qs′A,(s

′
B ,α
′)

(
z, (s′B, α

′)|sA, (sB, α))

)

48



r
s′A,(s

′
B ,α
′)

B (sA, (sB, α)) := c(sB, s
′
B)

+
∑
z∈L

R
s′A,(s

′
B ,α
′)

B

(
z, (s′B, α

′)

)
Qs′A,(s

′
B ,α
′)

(
z, (s′B, α

′)|sA, (sB, α))

)
.

The dynamics of the game is described as follow:

1. At the start of epoch t ∈ {1, . . . , τ}, the system is in a state formed by the location
and the behavior of the attacker.

2. The defender knowing the state chooses a strategy ft (probably mixed) over the loca-
tions reachable from his current location.

3. The attacker observes the strategy and chooses where to move and whether to attack
or not. We denote this action as gt.

4. The system evolves to the following state in�uenced by f , g and Q. Both players receive
their payo�s.

5. The dynamic starts again at a new state st+1 or is �nished if t = τ .

This dynamic �ts with the games that we are interested to solve.

3.4. Numerical Example 1

We describe a �rst numerical example with two states and two actions per player in each
state in a Stackelberg dynamic in two stages applying a Dynamic Programming approach.
We denote S = {s1, s2}, A = {a1, a2}, B = {b1, b2} the spaces of states and actions for
each player respectively. Consider βA = βB = 0.9 the discount factors for each player. The
transition matrix Q and payo�s rA, rB are speci�ed in the following table:

b1 b2

a1
��

���
���

���(1
2 ,

1
2)

(10,-10) ���
��

���
���(0, 1)

(−5, 6)

a2
��

��
��

���(1
4 ,

3
4)

(-8,4) ��
���

���
���(1, 0)

(6,−4)

State s1

b1 b2

a1
��

��
��

���(1
2 ,

1
2)

(7,-5) ��
���

���
���(0, 1)

(−1, 6)

a2
��

���
���

���(1
4 ,

3
4)

(-3,10) ���
��

���
���(1, 0)

(2,−10)

State s2

Table 3.1: Transition matrix and payo�s for each player.

where each entry represents of the table in the state s represents each value as follows:

b

a

((((
((((

(((
((((

(((
((((

((
Qa,b(s1|s), (Qa,b(s2|s)

)
(ra,bA (s), ra,bB (s))

49



We are going to solve this problem using dynamic programming in two stages (τ = 2) to
�nd an SSE, that is, we �nd two policies π = {f1, f2} and γ = {g1, g2} which forms a SSE.
In the last step players are in each state face the following bi-matrices games:

b1 b2

a1 (10,-10) (−5, 6)
a2 (-8,4) (6,−4)

State s1

b1 b2

a1 (7,-5) (−1, 6)
a2 (−3, 10) (2,−10)

State s2

Table 3.2: Bi-matrix games in τ = 2.

Let f2(s1) = (x1, 1−x1) be a randomized policy for the player A, where x1 the probability
if player A chooses action a1 in the state s1. Then we can represent the expected payo� for
each player if the player B selects an action b1 or b2 as follow:

• EA|b1(s1) = 10x1 + (−8)(1− x1) = 18x1 − 8

• EA|b2(s1) = −5x1 + 6(1− x1) = −11x1 + 6

• EB|b1(s1) = −10x1 + 4(1− x1) = −14x1 + 4

• EB|b2(s1) = 6x1 + (−4)(1− x1) = 18x1 − 8

where Ei|b(s) is the expected reward for player i = A, B if the follower choses action b in
the state s. In Fig. 3.1 it is shown how a SSE can be found in a 2×mB bi-matrix game. For
the follower, the expected value is plotted in function of x1. If player A chooses x1 <

1
3
, then

player B will choose b1 having better expected reward. Analogously, player B will choose b2

if the player A choose any x1 greater than 1
3
, and B will have no preference for any action if

player A chooses exactly x∗1 = 1
3
. So the expected value for player B taking into account his

best response is plotted in red.

On the other hand, player A taking into account the behavior of player B will observe the
expected reward function plotted in red, which is not linear and even not continuous. The
maximum of this function is in the same 'indi�erence point' for player B, so the SSE of this
game is f2(s1)∗ = (1

3
, 2

3
). Given the indi�erence of player B and the de�nition of a SSE, B

will choose the action that returns greater expected value to player A, that is b2, receiving
payo�s vτA(s1) = 7

3
and vτB(s1) = −2

3
respectively.

Similarly, we �nd a SSE in the state s2 in the last step. Fig. 3.2 represents the utility
function taking into account the best response. The strategies f 2(s2)

∗
= (20

31
, 10

31
) for player

A and b∗ = b1 represent a SSE in this stage. The expected values in this last step are
vτA(s2) = 107

31
and vτB(s2) = 10

31
respectively.

At stage τ = 1, the players knowing the payo�s of the last step can calculate their payo�
matrices as the expected value of the instantaneous expected reward added to the value of
achieving a speci�c state. So, for each pair of actions a, b they play a bi-matrix game given
by the following payo�s for player i

r1
i (a, b)(s) = ra,bi (s) + βi

∑
z∈S

Qab(z|s)v2
i (z).

50



0.2 0.4 0.6 0.8 1

−10

−5

5

10
b1

b2

x∗
1 = 1

3

Leader

0.2 0.4 0.6 0.8 1

−10

−5

5

10

b2

b1

x∗
1 = 1

3

Follower

Figure 3.1: Expected reward for each player and SSE in the game played in state s1 at stage
τ = 2.

0.2 0.4 0.6 0.8 1

−10

−5

5

10

b1

b2

x∗
1 = 20

31

Leader

0.2 0.4 0.6 0.8 1

−10

−5

5

10

b2

b1

x∗
1 = 20

31

Follower

Figure 3.2: Expected reward for each player and SSE in the game played in state s2 at stage
τ = 2.

The bi-matrices games that players face in each state are represented in Table 3.3.

b1 b2

a1 (12.6032, -10.1548) (−1.8935, 6.2903)
a2 (-5.1451, 4.0675) (8.0999, -4.6)

State s1

b1 b2

a1 (9.6032, -5.1548) (1.0999, 5.4)
a2 (-0.6484, 9.6226) (5.1065, −9.7097)

State s2

Table 3.3: Bi- matrix games at stage 1.

Following the same logic of the games played in stage 2 (see Fig. 3.3 and 3.4), a unique
SSE is found at f 1(s1)

∗
= (0.3452, 0.6548) with values v1

A(s1) = 4.6507 and v1
B(s1) = −0.8412

51



respectively in state s1; and f 1(s2)
∗

= (0.6468, 0.3532) with values v1
A(s2) = 5.9828 and

v1
B(s2) = 0.0639 for each player respectively in state s2

0.2 0.4 0.6 0.8 1

−10

−5

5

10
b1

b2

x∗
1 = 0.345

Leader

0.2 0.4 0.6 0.8 1

−10

−5

5

10

b2

b1

x∗
1 = 0.345

Follower

Figure 3.3: Expected reward for each player and SSE in the game played in state s1 at stage
1.

0.2 0.4 0.6 0.8 1

−10

−5

5

10

b2

b1

x∗
1 = 0.6468

Leader

0.2 0.4 0.6 0.8 1

−10

−5

5

10

b2

b1
x∗
1 = 0.6468

Follower

Figure 3.4: Expected reward for each player and SSE in the game played in state s2 at stage
1.

Note that, the policies π∗ = {f 1∗, f 2∗} and γ∗ = {b1∗, b2∗} form a SSE to the SG with
horizon τ = 2. Second, if the game has horizon τ > 2, the pair calculated above is exactly the
Strong Stackelberg policies corresponding to stages τ−1 and τ . Third, if the game has a longer
horizon (τ � 1), the value functions computed through this procedure will stabilize. In Figure
3.5 values are represented for games with τ = 100. Values are stabilized in v∞A (s1) = 26.2662
and v∞A (s2) = 27.6012 for player A and v∞B (s1) = −2.7473 and v∞B (s2) = −1.8353 for player
B. We will show in the next sections, that in general it is not always true for all instances.

52



0 20 40 60 80 100
Stages

5

0

5

10

15

20

25

30

V
a
lu

e
 F

u
n
ct

io
n

State 1
Leader Follower

State s1

0 20 40 60 80 100
Stages

5

0

5

10

15

20

25

30

V
a
lu

e
 F

u
n
ct

io
n

State 2
Leader Follower

State s2

Figure 3.5: Value Function vs time in numerical example 1.

3.5. Special case: Myopic Follower Strategies (MFS)

In this section we discuss algorithms for the case where the value function of the follower
vB do not a�ect in its best response. Let de�ne the functional g of best response as follows:

g(f, vB) = argmaxb∈B
∑
a∈As

f(a)

[
rabB (s) + βB

∑
z∈S

Qab(z|s)vB(z)

]
. (3.19)

This functional for each policy f of the leader in the state s and value functions vB, returns
the action b ∈ Bs that is a best response. For convenience we omit the dependence on s in
the policy f . Here we follow the convention that the argmax is unique because in case of
indi�erence between options, we select the one that favors the leader. In case the leader is
also indi�erent, then, in order for g(f, vB) to be well de�ned, the follower selects the action
with the lowest index. Note that since g(f, vB) optimizes (3.19), g(f, vB) is at least as good
as any mixed strategy.

We say that a stochastic game G has optimal Myopic Follower Strategies (MFS) if at any
step of the game the functional g is independent of vB, that is g(f, vB) = g(f). That means
in other words that optimal responses for the player B are independent of the future values.
In particular, we distinguish two important cases of SG with (MFS):

• Myopic follower: We de�ne a game as a myopic follower game if βB = 0. Note that in
this case the follower at any step of the game does not take into account the future
rewards, but only the instantaneous rewards. Clearly, in this case the follower best
response is in the form:

g(f, vB) = argmáx
b∈B

∑
a∈As

f(a)rabB (s) = g(f).

53



• Leader-Controller Discounted Games: This case is a particular case of the Single-
controller discounted game described in Section 3.2.2 where the controller is the leader.
In other words, the transition law has the form:

Qab(z|s) = Qa(z|s).

In this case best response can be written as:

g(f, vB) = argmaxb∈B
∑
a∈As

f(a)

[
rabB (s) + βB

∑
z∈S

Qa(z|s)vB(z)

]
= argmaxb∈B

∑
a∈As

f(a)rabB (s) + Constant

= g(f) ,

where the Constant term does not depend on b, so the 'argmax' and the best response
function does not depend on vB.

3.5.1. Stackelberg operator and Value function iteration

Let F(S) be the set of all bounded functions of the �nite space state S into R. Given a SG
G and a strategy f , we de�ne the operator T fA : F(S)→ F(S) by the following expression:

T fA(vA)(s) =
∑
a∈As

f(a)

[
r
ag(f)
A (s) + βA

∑
z∈S

Qag(f)(z|s)vA(z)

]
. (3.20)

This operator, given a �xed stationary policy of the leader f , computes the value of being
in state s and apply this policy. Now we de�ne the Stackelberg operator, TA : F(S)→ F(S),
for the MFS case as follows:

TA(vA)(s) = máx
f∈P(As)

∑
a∈As

f(a)

[
r
ag(f)
A (s) + βA

∑
z∈S

Qag(f)(z|s)vA(z)

]
= máx

f∈P(As)
T fA(vA)(s). (3.21)

This operator computes in every state the SSE value of being in state s for each s ∈ S
and the future expected rewards are given by function vA. Given the value function vA and
a �xed state s ∈ S the operator TA can be computed with (D2) described in Chapter 1, as
follows:

54



(D2) máx TA(s) (3.22)

s.t.
∑
a∈A

fsa = 1 (3.23)∑
b∈B

gsb = 1 (3.24)

TA(s) ≤
∑
a∈A

fsa

[
rabA (s) + βA

∑
z∈S

Qab(z|s)vA(z)

]
+ ||rA||∞(1− gsb) ∀b ∈ B

(3.25)

0 ≤ TB(s)−
∑
a∈A

fsar
ab
B (s) ≤ ||rB||∞(1− gsb) ∀b ∈ B

(3.26)

fsa ≥ 0, gsb ∈ {0, 1} ∀a ∈ A, ∀b ∈ B
(3.27)

TA(s), TB(s) ∈ R (3.28)

where the optimal values of (D2), TA(s) represent TA(vA)(s) for a given state s ∈ S. Optimal
variables {fsa}a∈A and {gsb}b∈B represent a pair of SSE in the state s. Constrains (3.23) and
(3.24) de�ne that f and g are probability measures. The objective function and constraint
(3.25) states that TA(s) is the maximum value attainable for the leader considering the
optimal response for the follower. The optimality condition for the follower is represented by
expression (3.26). Given that variables gsb are binary, the policy implemented for B under
this formulation is deterministic.

Given the Stackelberg operator TA, a generic dynamic programming algorithm is presented
in Algorithm 6. This generic algorithm is described as follows:

Algorithm 6 Value function iteration: Finite horizon

1: Initialize with vτ+1
A (s) = 0 for every s ∈ S

2: for t = τ, . . . , 1, 0, and for every s ∈ S do

3: Solve
vtA(s) = TA(vt+1

A )(s) (3.29)

Finding f ∗t and g∗t SSE strategies at stage t− 1.
4: end for

5: return Stackelberg policies π∗ = {f ∗0 , . . . , f ∗τ } and γ∗ = {g∗0, . . . , g∗τ}

In [5, Theorem 7.4] it is shown that when this algorithm ends, it returns both the value for
our game and a pair of Stackelberg feedback policies (π∗, γ∗) for the τ -�nite horizon game.
In the rest of this subsection, we discuss about the convergence of the sequence of value
functions generated for the previous algorithm to the value function (v∗A) using contraction
mapping operators theory and �xed point arguments for the in�nite horizon game.

55



De�nition 3.1 Let (X, || · ||) be a Banach Space (i.e. normed and complete).

A mapping T̃ : X → X is said to be contractive, if there exists a positive constant β < 1,
such that

||T̃ u− T̃ v|| ≤ β||u− v|| ,
for all u, v ∈ X. In this case, the contraction is said to be of modulus β.

In this subsection we work with X = F(S) and the norm ||v||∞ = máxs∈S |v(s)|. Given
that (F(S), ||v||∞) is a Banach space, the following theorem states that the operators de�ned
in (3.20) and (3.21) are contractions on F(S).

Theorem 3.1 Let G be a SG with MFS, then it is true that:

a) For any stationary strategy f , the operator T fA : F(S) → F(S), de�ned in (3.20) is a
contraction on (F(S), || · ||∞) of modulus βA.

b) The operator TA de�ned in (3.21) is a contraction on (F(S), || · ||∞), of modulus βA.

Proof. To show a), take vA, uA ∈ F(S), a stationary strategy f , and s ∈ S. Then,

T fA(vA)(s)− T fA(uA)(s) = βA
∑
a∈As

f(a)
∑
z∈S

Qag(f)(z|s) [vA(z)− uA(z)]

≤ βAmaxz∈S |vA(z)− uA(z)|.

By reversing the roles of vA and uA and taking the maximum over s ∈ S we have that:

|T fA(vA)(s)− T fA(uA)(s)| ≤ βAmaxz∈S |vA(z)− uA(z)| ,
⇒ maxz∈S |T fA(vA)(z)− T fA(uA)(z)| ≤ βAmaxz∈S |vA(z)− uA(z)| .

Concluding that T fA is a contracting map of modulus βA.

In order to show b), take vA, uA ∈ F(S), a state s ∈ S and f ∗ the optimal policy of
máxf∈P(As) T

f
A(vA). Then,

TA(vA)(s)− TA(uA)(s) = maxf∈P(As)T
f
A(vA)−maxf∈P(As)T

f
A(uA)

= T f
∗

A (vA)−maxf∈P(As)T
f
A(uA)

≤ T f
∗

A (vA)(s)− T f∗A (uA)(s)

≤ βAmaxz∈S |vA(z)− uA(z)|.

Then, by reversing the roles of vA, uA and taking the maximum the result follows.

If TA is contractive we can use the Banach's �xed point theorem, Theorem 3.2, to conclude
that the values converges to the unique �xed point v∗A of operator TA.

Theorem 3.2 (Banach's Fixed Point Theorem): Let (X, || · ||) a Banach space. If T̃ : X → X
is a contraction mapping, then there exists a unique element v ∈ X such that

T̃ v = v .

56



Furthermore, for all u ∈ X,
ĺım
n→∞

T̃ nu→ v .

Given ε > 0, a value function iteration algorithm is proposed in Algorithm 7, that applies
TA repeatedly until the distance between two functions vnA and vn+1

A are less or equal to ε.
The last two theorems ensure us that the algorithm �nishes. Now we use Theorem 3.3 to
show that the algorithm converges to the value of the leader in a SSE. Also, this theorem give
us a guaranty that at the n-th iteration the values are ε

1−βA
= ε′(n) far from the equilibrium

value.

Algorithm 7 Value function iteration: In�nite horizon

Require: ε > 0
1: Initialize with n = 1, v0

A(s) = 0 for every s ∈ S and v1
A = TA(v0

A)
2: while ||vnA − vn−1

A ||∞ > ε do
3: Compute vn+1

A by
vn+1
A (s) = TA(vnA)(s) .

Finding f ∗ and g∗(f) at stage n.
4: n := n+ 1
5: end while

6: return Stationary Stackelberg policies π∗ = {f ∗, . . .} and γ∗ = {g∗, . . .}

Theorem 3.3 Let G be a SG with MFS. Then the sequence of value functions vnA converges
to v∗A. Furthermore, v∗A is the �xed point of TA, and therefore, for any n ∈ N,

||v∗A − vnA|| ≤
||rA||∞ βnA

1− βA
.

Proof. For any pair of policies (π, γ) let vπ,γA,τ , the value function of A in the problem with
horizon τ and the associated policies π y γ, and vπ,γA the value function in in�nite horizon
when the pair (π, γ) is applied.

First we note that for each s ∈ S,

vπ,γA (s)− vπ,γA,τ (s) = Eπ,γs

[
∞∑

t=τ+1

βtAr
At,Bt
A (St)

]
.

Then, it is true that for each s ∈ S,

|Eπ,γs

[
∞∑

t=τ+1

βtAr
At,Bt
A (St)

]
| ≤ ||rA||∞

βτ+1
A

1− βA
.

Then,

||vπ,γA − vπ,γA,τ || ≤ ||rA||∞
βτ+1
A

1− βA
−→ 0 ,

57



when τ →∞. This fact is independent or the pair of strategies π, γ chosen. Given that there
exists a unique �xed point v∗A, using the last inequality we have that

||vπ,γA − vπ,γA,τ || ≤ sup
π

sup
γ
||vπ,γA − vπ,γA,τ || −→ 0 ,

when τ →∞.

Finally, using that

v∗A,τ = T τA(0) ,

it is true that

||v∗A − T τA(0)|| −→ 0 ,

or

T τA(0) −→ v∗A

when τ →∞, and the result follows.

Let us observe that, by the error bound proposed in the Theorem holds, then, for ε > 0,
taking

n ≥ ln(ε(1− βA))− ln(||rA||∞)

ln(βA)

stationary values are ε-optimal for the leader.

Given that the best response of the follower in this games are independent of the future
expected value vB we have ignored its behavior. Anyway, the stationary pair of policies
(f ∗, g(f ∗)) it has been guaranteed to exist and they are enough to calculate the value function
for SG with MFS as the �xed point:

v∗B =
∑
a∈A

f ∗ar
a,g(f∗)
B + βB

∑
z∈S

Qag(f∗)(z|·)v∗B.

In the next subsection we show that in this case Policy Iteration also converges for SG with
MFS.

3.5.2. Policy Iteration

The Policy Iteration (PI) algorithm directly iterates in the policy space. This algorithm
starts with an arbitrary policy f and then �nds the optimal in�nite discounted horizon
values, taking into account the optimal response g(f). These values are then used to compute
new policies. These two steps of the algorithm can be de�ned as Evaluation Phase and
Improvement Phase. This algorithm is described in Algorithm 8.

58



Algorithm 8 Policy Iteration (PI)

1: Require varepsilon > 0.
2: Choose an arbitrary stationary Stackelberg pair (f0, g(f0)).
3: while ||uA,n − uA,n+1|| > ε do

4: Evaluation Phase: Find uA,n �xed point of the operator T fnA .
5: Improvement Phase: Find a distribution fn+1 such that

T
fn+1

A (uA,n) = TA(uA,n) .

6: n := n+ 1
7: end while

8: return Stationary Stackelberg policies π∗ = {f ∗, . . .} and γ∗ = {g(f ∗), . . .}

The Evaluation Phase requires to solve a linear system of size |S|×|S|. On the other hand,
the Improvement Phase can be implemented by solving (D2) for each state s ∈ S. Now we
prove that PI algorithm converges to the SSE in stationary policies for SG with MFS.

Lemma 3.4 If a function vA ∈ F(S) satis�es vA ≤ T fA(vA), for some f ∈ P(A) then vA ≤ vfA,
where vfA is the unique �xed point of T fA(vA) in F(S).

Proof. First we note that the following monoticity property is satis�ed by the operators T fA:

uA ≤ vA ⇒ T fA(uA) ≤ T fA(vA) .

In fact, for each s ∈ S

T fA(vA)(s)− T fA(uA)(s) =
∑
a∈A

f(a)

[
r
ag(f)
A (s) +

∑
z∈S

Qa,g(f)(z|s) [vA(z)− uA(z)]

]
≥ 0.

By hypothesis we have that
vA ≤ T fA(vA) ,

that implies by monoticity
T fA(vA) ≤ (T fA)2(vA) ,

and then
vA ≤ (T fA)2(vA) .

In the same way, for each n we have

vA ≤ (T fA)n(vA) ,

and by Theorem 3.1 part a.,
(T fA)n(vA) −→ (vfA),

the result follows.

Theorem 3.5 The sequence of functions uA,n veri�es uA,n ↑ v∗A . Further, if for any n ∈ N,
uA,n = uA,n+1, then it is true that uA,n = v∗A .

59



Proof. For each s ∈ S, we have that

uA,0(s) = T f0A (uA,0)(s)

≤ TA(uA,0)(s) = T f1A (uA,0)(s) .

then the value function uA,0 satis�es

uA,0 ≤ T f1A (uA,0) ,

and by Lemma 3.4
uA,0 ≤ vf1A = uA,1 .

Iterating over n, we have that

uA,n ≤ TA(uA,n) ≤ uA,n+1 . (3.30)

Now the succession {uA,n}n∈N being non-decreasing and bounded by v∗A then exists a value
function uA(s) such that for any s ∈ S

uA(s) = limn→∞uA,n(s) .

Taking n → ∞ in (3.30), uA ≤ TA(uA) ≤ uA and therefore uA = TA(uA) , and by unicity of
the �xed point

uA = v∗A ,

and we have the �rst claim of the theorem

uA,n ↑ v∗A .

Also, if it is veri�ed for some n that uA,n = uA,n+1, then, using (3.30),

uA,n+1 = uA,n ≤ TA(uA,n) ≤ uA,n+1 ,

which implies
uA,n = TA(uA,n) = v∗A ,

where the second equality is given by the unicity of the �xed point. The result follows.

The results exposed in this section strongly relies on the fact that g(f, vB) is independent
on vB. In the next section we show that MFS is a su�cient condition but all the results here
may fail in the general case. We show a case where the value function iteration cycles, not
�nding a stationary policy forming a SSE.

3.6. General Case

In this section we extend the analysis from the MFS case to the general case. We describe
and analyze algorithms for solving SSE in feedback strategies for stochastic games with
arbitrary time horizon and general instances, extending the operator TA to a general operator
T .

60



3.6.1. De�nition of the Stackelberg Operator in the general case

We generalize the Stackelberg operator TA de�ned in (3.21) to calculate SSE in general
instances. This is necessary in the general case because the operator TA is not enough to
describe the whole dynamics of the values. In other words, we can not assume that g(f, vB) =
g(f), and given that condition not only the best responses of the follower are a�ected but
also the optimal policies of the leader.

Given a SG G and a pair of stationary strategies f and g we de�ne the pair of operators
T f,gA , T f,gB : F(S)→ F(S) by the following expression. For s ∈ S:

T f,gA (vA)(s) =
∑
a∈As

f(a)
∑
b∈Bs

g(b)
∑
z∈S

Qa,b(z|s)
[
ra,bA (s) + βAvA(z)

]
, (3.31)

T f,gB (vB)(s) =
∑
a∈As

f(a)
∑
b∈Bs

g(b)
∑
z∈S

Qa,b(z|s)
[
ra,bB (s) + βBvB(z)

]
. (3.32)

We also de�ne for a SG G, the Stackelberg operator for general instances T : F(S) ×
F(S)→ F(S)×F(S). For each s ∈ S:

(T (vA, vB))(s) =

(
maxf∈P(As)

∑
a∈As

f(a)
∑
z∈S

Qa,g(f,vB)(z|s)
[
r
a,g(f,vB)
A (s) + βAvA(z)

]
∑
a∈As

f ∗(a)
∑
z∈S

Qa,g(f∗,vB)(z|s)
[
r
a,g(f∗,vB)
B (s) + βBvB(z)

])
=

(
maxf∈P(As), T

f,g(f,vB)
A (vA)(s), T

f∗,g(f∗,vB)
B (vB)(s)

)
= (TA(vA, vB), TB(vA, vB))(s) (3.33)

where f ∗ is the measure which maximizes the �rst coordinate and the functional g(f, vB) is
de�ned as in (3.19). This operator returns for each state s ∈ S given values vA, vB ∈ F(S) the
strong Stackelberg values in equilibrium of the one-shot game played with payo� matrices:

RA(a, b)(s) = ra,bA (s) + βA
∑
z∈S

Qab(z|s)vA(z),

RB(a, b)(s) = ra,bB (s) + βB
∑
z∈S

Qab(z|s)vB(z).

Note that we omit the dependence on G of T = T (G), unless it is necessary indicate it. Given
the pair of value functions (vA, vB) and a �xed state s ∈ S the operator T can be computed
with (D2) as in Section 3.5.1 just changing constrains (3.26) by

0 ≤ TB(s)−
∑
a∈A

[
rabA (s) + βB

∑
z∈S

Qab(z|s)vB(z)

]
fsa ≤MB(1− gsb) ∀b ∈ Bs. (3.34)

Now we show a second numerical example that show us that Algorithm VI does not always
converges because of the non-contractivity of operator T .

61



3.6.2. Numerical Example 2

Now we describe a numerical example where VI algorithm do not converge in values. We
consider a SG with discount factors βA = βB = 0.5. As in the earlier example we consider a
set of states S = {s1, s2} and actions spaces A = {a1, a2} , B = {b1, b2} for the leader and
the follower respectively. Following the earlier notation, we describe the transition and the
payo�s in Table 3.4.

b1 b2

a1
��
��

��
��(1, 0)

(1,-1) ��
��

��
��(0, 1)

(0, 1)

a2
��
��

��
��(0, 1)

(-1,1) ���
���

���
�

(0, 1)
(−1,−1)

State s1

b1 b2

a1
��

���
���

��(0, 1)
(-1,0) ��

��
��

��(1, 0)
(0, 1)

a2
��

��
��

��(1, 0)
(0,1) ���

���
���

�
(0, 1)

(1,−1)

State s2

Table 3.4: Transition matrix and payo�s for each player in the numerical example 2.

Beginning with vA = vB = 0 ∈ R|S|, we apply the operator T 13 times. The value functions
obtained at this iteration are v13

A = (0.2714, 0.4911) and v13
B = (1.4187, 0.6646). Using this

value function we build the bi-matrices games played in step 14 as follow:

b1 b2
a1 (1.1357, -0.2910) (0,2456, 1,3323)
a2 (-0.7544, 1.3323) (-0.7544, -0.6677)

State s1

b1 b2
a1 (-0.7544, 0.3323) (0.1357, 1.7093)
a2 (0.1357, 1.7093) (1.2456, −0.6677)

State s2

Table 3.5: Bi- matrix games at stage 14 for numerical example 2.

The SSE in this game is f14(s1) = (0.552, 0.448), g14(s1) = (1, 0) in state s1 and f14(s2) =
(0.633, 0.367), g14(s2) = (1, 0) in state s2. Values obtained at this step are v14

A = (0.2890,
0.5428) and v14

B =(0.4364, 0.8374).

In the next iteration, the bi-matrix game that is played in each state is the following:

b1 b2
a1 (1.1445, -0.7818) (0.2714, 1.4187)

a2 (-0.7286, 1.4187) (-0.7286, -0.5813)

State s1

b1 b2
a1 (-0.7286, 0.4187) (0.1445, 1.2182)

a2 (0.1445, 1.2182) (1.2174, -0.5813)

State s2

Table 3.6: Bi- matrix games at stage 15 for numerical example 2.

62



Iteration 14
State s1 State s2

0.2 0.4 0.6 0.8 1

−1

1

2

b1

b2
x∗
1 = 0.552

0.289

0.2 0.4 0.6 0.8 1

−1

1

2

b1 b2

x∗
1 = 0.552

0.4364

0.2 0.4 0.6 0.8 1

−1

1

2

b1
b2

x∗
1 = 0.6330.543

0.2 0.4 0.6 0.8 1

−1

1

2

b1 b2

x∗
1 = 0.633

0.8374

Leader Follower Leader Follower
Iteration 15

State s1 State s2

0.2 0.4 0.6 0.8 1

−1

1

2

b1

b2

x∗
1 = 1

0.2714

0.2 0.4 0.6 0.8 1

−1

1

2

b1 b2

x∗
1 = 1

1.4187

0.2 0.4 0.6 0.8 1

−1

1

2

b1
b2

x∗
1 = 0.6920.491

0.2 0.4 0.6 0.8 1

−1

1

2

b1 b2

x∗
1 = 0.692

0.665

Leader Follower Leader Follower

Table 3.7: Iterations 14 and 15 for numerical example 2.

At this step the SSE is given by f15(s1) = (1, 0) g15(s1) = (0, 1) in state s1 and f15(s2) =
(0.692, 0.308), g15(s2) = (0, 1) in state s2. Values obtained at this step are v15

A =(0.2714,
0.4911) and v15

B = (1.4187, 0.6646), the same at the iteration 13. The summary of both
iterations is represented in Table 3.7. The algorithm cycles.

Why does it fail? We cannot give an exact answer to this question, but we can say a few
words related. First, observe that if we would know that T is a contractive operator, the value
sequence will result convergent, but this is not the case. As an example, we take functions
the v14

A , v
14
B and v15

A , v
15
B and observe that

|TA(v14
A (s1), v14

B (s1))− TA(v15
A (s1), u15

B (s1))| > 1

2
maxz∈S |v14

A (z)− v15
A (z)|

|0.5428− 0.4911| > 1

2
max{|0.2714− 0.2890|, |0.5428− 0.4911|},

which shows that this instance is not 1
2
-contractive. Even more, if we change βA to any value

between (0,1) the negative result also holds. Then the contractivity, our su�cient condition,
is not satis�ed for this game and we can not guaranty convergence.

Of course we know that this argument is not enough to assure convergence, since the are
convergent instances in the class of non-expansive operators (which includes strictly the class
of contractive operators). A non-expansive operator is an operator T verifying, for any u and
v,

||Tu− Tv|| ≤ ||u− v||,

which is the case of our example.

63



In Figure (3.6) is presented the behavior of the value functions through the application of
the operator T . Note that for state s1, the leader passes from a mixed strategy to a pure one
and the follower changes the action b1 to b2 in iteration 14 and 15 respectively. That makes
values oscillate between two values.

0 10 20 30 40 50
Stages

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V
a
lu

e
 F

u
n
ct

io
n

State s0
Leader Follower

State s1

0 10 20 30 40 50
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
lu

e
 F

u
n
ct

io
n

State s1
Leader Follower

State s2

Figure 3.6: Value Function vs time in numerical example 2.

Note that if we change this games to the MFS case, values converges. First, if we apply
value function iteration to the same game but changing to βB = 0, Figure 3.7 shows that in
few iterations the dynamic programming algorithm converges.

0 2 4 6 8 10 12 14 16
Stages

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
a
lu

e
 F

u
n
ct

io
n

Leader Follower

State s1

0 2 4 6 8 10 12 14 16
Stages

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
a
lu

e
 F

u
n
ct

io
n

Leader Follower

State s2

Figure 3.7: Value Function vs time in numerical example 2 in the myopic case (βB = 0).

If we change the instance to a Leader-controller transition, just changing the transition
probabilities (see Table 3.8), the algorithm converges in few iterations as we see in Figure
3.8.

64



b1 b2
a1 (1, 0) (1, 0)

a2 (0, 1) (0, 1)

State s1

b1 b2
a1 (1, 0) (1, 0)

a2 (0, 1) (0, 1)

State s2

Table 3.8: Transformation of the matrix in numerical example 2 to a Leader-controller case.

0 5 10 15
Stages

0.0

0.5

1.0

1.5

2.0

V
a
lu

e
 F

u
n
ct

io
n

Leader Follower

State s1

0 5 10 15
Stages

0.0

0.5

1.0

1.5

2.0

V
a
lu

e
 F

u
n
ct

io
n

Leader Follower

State s2

Figure 3.8: Value Function vs time in numerical example 2 in Leader-controller case.

In the next subsection we describe the algorithms of VI in both, �nite horizon and in�nite
horizon using the operator T . We also describe the PI procedure to the general case.

3.6.3. Value Function and Policy Function for the general case

We adapt algorithms exposed in section 3.5 to calculate (when it is possible) strong Stac-
kelberg equilibrium in feedback policies for the �nite horizon problem and stationary policies
for the in�nite horizon problem.

The Algorithm 9 implements dynamic programming to �nd SSE in feedback strategies for
the �nite horizon problem. In [5, Theorem 7.4] it is shown that when this algorithm ends, it
returns both the value for our game and a pair of Stackelberg feedback policies (π∗, γ∗) for
the τ -�nite horizon game.

65



Algorithm 9 Value Iteration (VI): Finite horizon for the general case

1: Initialize with vτ+1
A (s) = vτ+1

B (s) = 0 for every s ∈ S
2: for t = τ, . . . , 1, and for every s ∈ S do

3: Solve (
vtA(s), vtB(s)

)
= T (vt+1

A , vt+1
B )(s) (3.35)

Finding f ∗t and g∗t SSE strategies at stage t.
4: end for

5: return Stackelberg policies π∗ = {f ∗1 , . . . , f ∗τ } and γ∗ = {g∗1, . . . , g∗τ}

Following the same logic as the MFS case, the in�nite horizon version of this algorithm
is proposed by Algorithm 10. Note that it is necessary to introduce a concept of distance
between two pairs of functions (vA, vB) (uA, uB) to introduce the convergence. We use the
following norm in F(S)×F(S):

||(vA, vB)|| = máx{máx
s∈S
|vA(s)|,máx

s∈S
|vA(s)|} = máx{||vA||∞, ||vB||∞}. (3.36)

Now we show, in Lemma 3.6, that this quantity is a norm and makes (F(S)×F(S), || · ||)
a Banach space.

Lemma 3.6 The quantity || · || de�ned by expression (3.36) is a norm on F(S) × F(S),
which makes (F(S)×F(S), || · ||) a Banach space.

Proof. It is easy to check that ||(vA, vB)|| ≥ 0 and it is equal to zero when both vA and vB are
the null function. Also, it is easy to check that for any λ ∈ R ||(λvA, λvB)|| = |λ|||(vA, vB)||.
The Triangle inequality also holds. Take (vA, vB), (uA, uB) ∈ F (S)× F (S):

||(vA, vB) + (uA, uB)|| = ||(vA + uA, vB + uB)||
= máx

s∈S
(máx{|vA(s) + uA(s)|, |vB(s) + uB(s)|})

W.l.o.g suppose that the maximum is achieved in the �rst coordinate at s∗ ∈ S, otherwise
assume that the maximum is achieved in the second one, and repeat the argument:

máx
s∈S

(máx{|vA(s) + uA(s)|, |vB(s) + uB(s)|}) = |vA(s∗) + uA(s∗)|
≤ |vA(s∗)|+ |uA(s∗)|
≤ máx

s∈S
{|vA(s)|, |vB(s)|}+ máx

s∈S
{|uA(s)|, |uB(s)|}

= ||(vA, vB)||+ ||(uA, uB)||.

It remains to check that (F (S)× F (S), || · ||) is a complete normed space. Let {(vnA, vnB)}n∈N
be a Cauchy sequence in F (S)× F (S), then:

||(vnA, vnB)− (vmA , v
m
B )|| < ε n,m > N0.

66



That implies for every n,m > N0

||(vnA − vmA ), (vnB, v
m
B )|| = máx

s∈S
{|(vnA(s)− vmA (s))|, |(vnB(s)− vmB (s))|} < ε.

Then {vnA}n and {vnB} are Cauchy sequences. Given that F (S) is a complete space, vnA →
v∗A ∈ F (S) and vnB → v∗B ∈ F (S), then:

||(vnA, vnB)− (v∗A, v
∗
B)|| = ||(vnA − v∗A), (vnB − v∗B)||

= máx
s∈S
{|(vnA(s)− v∗A)(s)|, |(vnB(s)− v∗B(s))|} → 0

and the result is obtained.

Algorithm 10 Value Iteration (VI): In�nite horizon for the general case

Require: ε > 0
1: Initialize with n = 0, v0

A(s) = v0
B(s) = 0 for every s ∈ S

2: while ||(vnA, vnB)− (vn−1
A , vn−1

B )|| > ε do
3: �nd the pair (vnA, v

n
B) by

(vnA, v
n
B)(s) = T (vn−1

A , vn−1
B )(s) .

Finding f ∗ and g∗ SSE strategies at stage n− 1.
4: end while

5: return Stationary Stackelberg policies π∗ = {f ∗, . . .} and γ∗ = {g∗, . . .}

As we see in the numerical example 2, The algorithm does not always terminate. In the
next subsection we discuss �rst what fails in the analogous for theorems exposed in Section
3.5.

PI is also extended to the general case. As stationary policies forming a SSE are not
guaranteed to exists, when this algorithm ends, we are not able to consider the strategies
returned to be a Stackelberg equilibrium. Algorithm 11 implements policy iteration for the
general case. Note that this algorithm needs to solve at each step 2 linear systems of |S|×|S|
in the evaluation phase and (D2) |S| times in the improvement phase, at each iteration.

Algorithm 11 Policy Iteration (PI): General case

1: Choose a stationary Stackelberg policy f0 and calculate g0 = g(f0, 0).
2: Set uA,−1 = uB,−1 = 0 and uA,0, uB,0 = (T f0,g0A (0, 0), T f0,g0B (0, 0)).
3: Set n := 0.
4: while ||(uA,n, uB,n)− (uA,n−1, uB,n−1)|| > ε do
5: Set n := n+ 1.
6: Evaluation phase: Find (uA,n, uB,n) �xed point of the operator T fn,gn(fn,uB,n).
7: Improvement phase: Find a pair (fn, gn(fn)) such that

T fn+1,gn+1(fn+1,uB,n)(uA,n, uB,n) = T (uA,n, uB,n) .

8: end while

9: return Stationary Stackelberg policies π∗ = {f ∗, . . .} and γ∗ = {g∗, . . .}

67



In the next section, we give some ideas of why, in general, SSE cannot be computed using
VI. We will do that in terms of contractivity properties of the Dynamic Operator propposed.

3.6.4. What does it fail?

To ensure the convergence to a unique �xed point of T as in Theorem 3.1 part b) a
su�cient condition is given by the contractivity of the operator T , that is forall (vA, vB) and
(uA, uB) ∈ F(S)×F(S):

||T (vA, vB)− T (uA, uB)|| ≤ β||(vA, vB)− (uA, uB)|| (3.37)

for some β ∈ (0, 1), which we would have, for instance, if we can prove

||TA(vA, vB)− TA(uA, uB)||∞ ≤ βA||vA − uA||∞ (3.38)

||TB(vA, vB)− TB(uA, uB)||∞ ≤ βB||vB − uB||∞, (3.39)

taking β = máx{βA, βB}.

Unfortunately, Numerical Example 2 shows us that there does not exist such β for all the
instances G (if it would, VI sequence will converge). With this in mind, the challenge is now
to impose some restrictions on the parameters of the problems to assure the contractivity
of T and then the convergence of VI. On the other hand, even if we could characterize the
conditions on G under which T results a contractive operator, this conditions will not be
strictly necessary for the convergence of VI.

In order to ensure that PI converges we need additionally some extra conditions:

• We need an analogous of Theorem 3.1a. for the operator T . This condition can be
stated as follows:

For any pair of functions vA,0, vB,0 and a �xed stationary policy f , the sequence of
functions vA,n, vB,n de�ned by the recurrence

vA,n+1 = T
f,g(f,vB,n)
A (vA,n, vB,n), vB,n+1 = T

f,g(f,vB,n)
B (vA,n, vB,n)

converges to a unique vf∗A , v
f∗
B .

• We also need monotonicity of operator T (G):

For (vA, vB) and (uA, uB), such that (vA, vB) ≤ (uA, uB) then T (vA, vB) ≤ T (uA, uB).

We suspect that not only MFS instances are contractive. For instance, numerical example
1 in Section 3.4, which is not MFS, shows us that the application of operator T starting from
(0, 0) ∈ F(S) × F(S), the algorithm converges. This is not implying that T is contractive
for this game because contractivity is independent of the initial values. However, in Figures
3.9 and 3.10 we test several initial values, all converging to a unique value. That make us
suspect that T is contractive for the game described in the numerical example 1.

68



0 10 20 30 40 50 60
Stages

100

50

0

50

100

V
a
lu

e
 F

u
n
ct

io
n

(0, 0)
(100.0, 100.0)
(-100.0, -100.0)

(-50.0, -50.0)
(50.0, 50.0)

State s1

0 10 20 30 40 50 60
Stages

100

50

0

50

100

V
a
lu

e
 F

u
n
ct

io
n

(0, 0)
(100.0, 100.0)
(-100.0, -100.0)

(-50.0, -50.0)
(50.0, 50.0)

State s2

Figure 3.9: Convergence of vA starting from di�erent starting values (v0
A, v

0
B).

0 10 20 30 40 50 60
Stages

100

50

0

50

100

V
a
lu

e
 F

u
n
ct

io
n

(0, 0)
(100.0, 100.0)
(-100.0, -100.0)

(-50.0, -50.0)
(50.0, 50.0)

State s1

0 10 20 30 40 50 60
Stages

100

50

0

50

100

V
a
lu

e
 F

u
n
ct

io
n

(0, 0)
(100.0, 100.0)
(-100.0, -100.0)

(-50.0, -50.0)
(50.0, 50.0)

State s2

Figure 3.10: Convergence of vB starting from di�erent starting values (v0
A, v

0
B).

Finally, we can adapt the VI procedure to a �nite version of Algorithm 10.

As we have said, if T would be contractive, we will have he existence of a unique (v∗A, v
∗
B)

�xed point of T . In that case, the following condition has to be satis�ed by the operator at
the n-th application of T :

||(vnA, vnB)− (v∗A, v
∗
B)|| ≤ βn

1− β ||(rA, rB)||. (3.40)

69



for some β < 1. Using that we have that:

||(vnA, vnB)− (vn−1
A , vn−1

B )|| ≤ ||(vnA, vnB)− (v∗A, v
∗
B)||+ ||(vn−1

A , vn−1
B )− (v∗A, v

∗
B)||

≤ βn

1− β ||(rA, rB)||+ βn−1

1− β ||(rA, rB)||

≤ 2
βn−1

1− β ||(rA, rB)||.

Then we have that ||(vnA, vnB)− (vn−1
A , vn−1

B )|| → 0 as n→∞ and if for any n the condition

||(vnA, vnB)− (vn−1
A , vn−1

B )|| > 2
βn−1

1− β ||(rA, rB)||. (3.41)

holds, then T is not β-contractive, and we can not assure the geometric convergence of VI
of rate β. Nevertheless this does not imply neither T is not contractive with any modulus of
contractivity, nor the non-convergence of V I

With these elements we adapt the algorithm of VI to the general case, where if T is
contractive returns the strong Stackelberg equilibrium in stationary policies. This algorithm
is described in Algorithm 12.

Algorithm 12 Value function iteration modi�ed: In�nite horizon for the general case

1: Initialize with n = 0, v0
A(s) = v0

B(s) = 0 for every s ∈ S.
2: for n = 1, · · · ,MAX_IT do

3: Find the pair (vnA, v
n
B) by

(vnA, v
n
B)(s) = T (vn−1

A , vn−1
B )(s) .

Finding f ∗ and g∗ SSE strategies at stage n− 1.
4: if (vnA, v

n
B) = (vn−1

A , vn−1
B ) then

5: return (vnA, v
n
B) �xed point of T .

6: end if

7: if ||(vnA, vnB)− (vn−1
A , vn−1

B )|| > 2β
n−1

1−β ||(rA, rB)|| then
8: return UNDEFINED.
9: end if

10: end for

11: return UNDEFINED.

Let us emphasize that, if the algorithm terminates in a �xed point, then it returns an
equilibrium. Otherwise,the algorithm does not de�ne neither the convergence of VI nor the
non-convergence of the VI procedure.

3.7. Mathematical Programming approach

In this section we show a Mathematical approach that we compare to the models exposed
in Section 3.2.2. We start noting that given a stationary policy for the leader π = {f, . . .},

70



the follower solves the following problem for each state s ∈ S

vfB(s) = máx
b∈Bs

∑
a∈A

f(s, a)

[
rabB (s) + βB

∑
z∈S

Qab(z|s)vB(z)

]
, (3.42)

= máx
b∈Bs

{
r̄fbB (s) + βB

∑
z∈S

Q̄fb(z|s)vB(z)

}
, (3.43)

where r̄fbB (s) =
∑

a∈As fs(a)rabB (s) and Q̄fb(z|s) =
∑

a∈A fs(a)Qab(z|s). With this policy �xed,
the follower solves a Markov decision process (MDP) which can be written as in [50, Ch. 6.9]:

(Pf ) mı́n
∑
s∈S

αsvB(s) (3.44)

s.t. vB(s)− βB
∑
z∈S

Q̄fb(z|s)vB(z) ≥ r̄fbB (s) ∀s ∈ S, (3.45)

where α ∈ R|S|+ is a strictly positive vector of coe�cients. The dual of this problem is:

(Df ) máx
∑
s∈S

∑
b∈B

r̄fbB (s)ysb (3.46)

s.t.
∑
b∈B

ysb − βB
∑
z∈S

∑
b∈B

Q̄fb(s|z)yzb = αs ∀s ∈ S (3.47)

ysb ≥ 0. (3.48)

In this case, an optimal solution y∗ of (Df ), an optimal stationary policy can be retrieved for
the leader as follows:

g(s, b) =

{
ysb∑
b∈B ysb

if
∑

b∈B ysb > 0
1
|B| otherwise.

(3.49)

By [50, Theorem. 6.9.3] every deterministic policy can be represented as an extreme point of
(Df ), in particular, there exists an optimal policy which is deterministic. Then, we can write
a more restrictive version of this problem but with the same value. Let us de�ne

qsb =

{
1 if ysb > 0

0 otherwise,
(3.50)

and or equivalently represented with the following set of linear constraints∑
b∈B

qsb = 1 ∀s ∈ S (3.51)

qsb ≥ ysb ∀s ∈ S, ∀b ∈ B (3.52)

qsb ∈ {0, 1} , (3.53)

On the other hand, the solution of (Pf ) and (Df ) satis�es strong duality and complementary
slackness conditions for linear programs, in addition with feasibility constraints (3.45), (3.47)

71



and (3.48):

(Strong Duality)
∑
s∈S

αsvB(s) =
∑
s∈S

∑
b∈Bs

r̄fbB (s)ysb (3.54)

(Comp. Slackness 1) ysb

(
vB(s)−

∑
z∈S

Q̄fb(z|s)vB(z)− r̄fbB (s)

)
= 0 (3.55)

(Comp. Slackness 2) vB(s)

(∑
b∈Bs

ysb − βB
∑
z∈S

∑
b∈Bz

Q̄fb(s|z)yzb − αs
)

= 0 . (3.56)

Note that the condition given by (3.56) is satis�ed by any feasible solution of (Df ). Given that
we only focus on deterministic policies for the follower, condition (3.55) can be represented
as:

0 ≤ vB(s)− βB
∑
z∈S

Q̄fb(z|s)vB(z)− r̄fbB (s) ≤ ||rB||∞
1− βB

(1− qsb). (3.57)

The idea is to use optimality conditions as constrains in an optimization problem to compute
the best strategy f for the leader. If T is contractive and monotone, u ≤ v implies that
T (u) ≤ T (v), then �nding values that are optimal, implies to �nd values that are the minimum
upper bound of each state.

(PSS) mı́n
∑
s∈S

ιsvA(s) (3.58)

s.t. vA(s) ≥
∑
a∈As

fsa

[
rabA + βA

∑
z∈S

Qab(z|s)vB(z)

]
− ||rA||∞

1− βA
(1− qsb) ∀s ∈ S

(3.59)

Conditions (3.47) - (3.48) - (3.51) - (3.52) - (3.53) - (3.57) , (3.60)

where ι ∈ R|S|+ is a positive vector of coe�cients. The model here is extremely non-linear as the
model (MINLP). There is a vast literature of Mathematical programming with equilibrium
constrains (see [41]). Solvers like KNITRO [66] or PATH [23], [26] can be used to solve this
types of problems in several programming languages (Matlab, Python, GAMS, AMPL, etc).

This type of models can be extended to calculate feedback policies for a �xed horizon τ
solving stationary policies for the following game:

Ḡ = (S̄, Ā, B̄, Q̄, r̄A, r̄B, βA, βB,+∞) ,

where S̄ = S × {1, . . . , τ}, for every t the set of actions are in the form Ā(s,t) = As and
B̄(s,t) = Bs, and the transitions function Q are in the form of

Qab ((z, t)|(s, t′)) =

{
Qab(z|s) if t = t′ + 1

0 otherwise.

72



This type of transformation is the same that is used in [58] and also used in the model
(DFQ) exposed in section 3.2.2. This technique of increasing the space of states is also used
to get more complex policies for a �xed time horizon in [61].

Anyway, in terms of computational scalability, for the instances for which we know there
exists equilibrium, algorithms based on dynamic programming outperform solvers implemen-
ting the model exposed in this section and in Section 3.2.2.

3.8. Computational Experiments

In this section we aimed to compare the performance of the algorithms exposed in Sections
3.5 and 3.6.3 and analyze how the algorithms impact solution times in the di�erent types of
instances, how di�erent parameters a�ect the convergence of algorithms and the existence
or not of strong Stackelberg equilibrium. All codes were programmed using Python 3.5 and
Gurobi 7.5 to solve optimization problems as subroutines. The experiments were run on a
PC with Windows 10 and a Intel i7 processor of 2.4 GHz and 12 GB RAM.

3.8.1. Performance of algorithms: (MFS) case.

We �rst analyze the performance of the algorithms for instances in which we know it is
possible to �nd a SSE in stationary policies through VI. We denote as n the number of states
we consider and mA and mB the size of the action space for player A and B respectively.
We use n = mA = mB = 10 as base case. Rewards were generated uniformly between
[−100, 100] and transition matrices were generated by Algorithm 13. Given matrix Q we
apply a rounding process to avoid numerical issues. Also we randomly generated the values
of βA and βB uniformly between 0 and 1. It is easy to adapt Algorithm 13 to generate Leader
Controller instances. Due to numerical problems we restrict each element of Q to not have
more than 2 decimals.

Algorithm 13 Generating Stochastic Matrix

Require: S, A, B.
1: Initialize with Q = {}.
2: for s ∈ S, a ∈ A, b ∈ B, do
3: Set M = 0
4: for z ∈ S do

5: Qab(z|s) = U(0, 100)
6: M = M +Qab(z|s)
7: end for

8: for z ∈ S do

9: Qab(z|s) = Qab(z|s)
M

10: end for

11: end for

12: return Stochastic matrix Q, randomly generated.

73



Starting from the base case, we change the values of n, mA and mB to take values in
{2, 25, 50, 100, 200}, one at a time. For each set of parameters (n,mA,mB) we run k = 30
instances. In myopic instances, we generate the instances as before but setting βB = 0.
Solution times and number of iterations are shown in Table 3.9 and Figure 3.11.

Time[s] Iterations [it]
n mA mB VI PI VI PI

Base Case 10 10 10 12.49 1.10 58.23 2.77

∆S

2 10 10 3.08 0.19 74 2.37
25 10 10 23.80 2.68 40.40 2.30
50 10 10 128.74 6.53 95.45 2.31
100 10 10 275.87 22.51 71.53 2.63
200 10 10 432.09 80.12 40.65 3.2

∆A

10 2 10 4.72 0.52 29.60 2.27
10 25 10 24.19 2.57 77.83 2.90
10 50 10 18.18 4.73 42.53 3
10 100 10 46.14 9.86 69.73 3.37
10 200 10 47.85 21.59 42.97 3.83

∆B

10 10 2 6.95 0.45 53.07 2.5
10 10 25 25.33 3.11 53.1 2.93
10 10 50 81.84 6.97 72.86 2.90
10 10 100 105.63 16.92 38.7 3.13
10 10 200 360.32 49.11 52.12 2.94

Table 3.9: Solution times and iterations performed by algorithms in myopic instances.

2 10 25 50 100 200
|S|

0

50

100

150

200

250

300

350

400

450

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

2 10 25 50 100 200

|A|

0

10

20

30

40

50

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

2 10 25 50 100 200

|B|

0

50

100

150

200

250

300

350

400

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

Figure 3.11: Performance of VI and PI in myopic instances.

In Leader controller instances, results are shown in Table 3.10 and Figure 3.12.

74



Time[s] Iterations [it]
n mA mB VI PI VI PI

Base Case 10 10 10 3.48 1.28 15.72 3.07

∆S

2 10 10 2.27 0.19 58.77 2.43
25 10 10 1.87 2.65 3.17 2.37
50 10 10 2.69 5.39 2 2
100 10 10 6.50 14.03 2 2
200 10 10 19.13 46.18 2 2

∆A

10 2 10 2.36 0.52 14.53 2.43
10 25 10 9.55 3.25 16.43 3.57
10 50 10 10.71 6.55 18.53 3.77
10 100 10 34.62 13.97 22.2 3.93
10 200 10 25.86 20.16 20.73 3.8

∆B

10 10 2 1.59 0.44 15.53 3.03
10 10 25 6.57 2.66 17 3.17
10 10 50 19.71 7.01 19.77 3.5
10 10 100 39.89 14.14 17.3 3.33
10 10 200 156.44 42.41 20.6 3.5

Table 3.10: Resolution time and iterations performed by algorithms in Leader Controller
Instances.

2 10 25 50 100 200
|S|

0

10

20

30

40

50

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

2 10 25 50 100 200

|A|

0

5

10

15

20

25

30

35

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

2 10 25 50 100 200

|B|

0

20

40

60

80

100

120

140

160

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

Figure 3.12: Performance of VI and PI in Leader Controller instances.

3.8.2. Stackelberg Security Games

We extend the de�nition of Stackelberg Security Games to SG, de�ning instances with
the following payo�s structure:

rabA (s) =

{
RA(b) > 0 if b = a

PA(b) < 0 otherwise
(3.61)

rabB (s) =

{
PB(b) < 0 if b = a

RB(b) > 0 otherwise
(3.62)

75



This type of game can be interpreted as a game similar to the one proposed in Section 3.3
where a defender has to protect di�erent locations L and an attacker has to choose a location
where to attack. Note that in each state we are analyzing a square game, given by the size
of the set of locations L. We denote the size of this set with m.

We use Algorithm 12 to measure the fraction of instances where the algorithm converges.
For those instances we compare which algorithm has a better performance. We test square
games that is games where in each state both sets of actions have the same dimension m. In
our setting, m takes values in {10, 25, 50, 75} and we ran 50 experiments for each size of m.

Given the computation accuracy, in all the instances tested, the algorithm terminates
by the equality condition, and then in a stationary equilibrium in a number of iterations
less than the maximum number of iteration. Since this was the case, we have the geometric
decreasing of the values, we conjecture that the operator T (G) is contractive for every game
with this payo�s structure. Anyway, we do not provide any proof or counterexample.

The performance of the algorithms in security instances are represented in Figure 3.13,
where the behavior is similar to the instances already tested. PI outperforms VI again.
Nevertheless, we are not able to a�rm that the PI will converge to an equilibrium.

10 25 50 75
Size

0

500

1000

1500

2000

2500

3000

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

Figure 3.13: Performance of value function iteration and policy iteration in security games
instances.

3.8.3. General Case

In general instances, assuming the accuracy of the computer precision, we measure the
fraction of instances where VI converges. This fraction gives us an upper bound of how likely
it is that a randomly generated instance can �nd an SSE in stationary policies via VI. We
�rst ran VI (Algorithm 12) in randomly generated instances. If the algorithm does not detect
that T is not contractive, then we run PI and compare the solution time of both algorithms.
The parameters were generated as in the (MFS) case except that we use k = 50 per size.

The percentage of instances that are not solved in general games is represented in 3.14.

76



Results show that the more the set of states increases, the more likely it is to �nd a SG whose
associated operator T is not contractive. As opposed to increasing the set of actions of the
leader or the follower, where the impact seems to be smaller. We guess that the existence of
only one matrix with bad properties can make T not contractive. If this is true the probability
of T not being contractive, given that the cardinality of the space of states is n, is equal to
(1−p)n where p is the probability of a bad matrix appearing. In our experiments we calculate
that for payo� matrices generated as in the (MFS) case, this probablity for 10 per 10 matrices
should be p = 1.5 %.

2 10 25 50 100 200
|S|

0

20

40

60

80

100

In
st

an
ce

s
no

tS
ol

ve
d

%

2 10 25 50 100 200

|A|

0

20

40

60

80

100

In
st

an
ce

s
no

tS
ol

ve
d

%

2 10 25 50 100 200

|B|

0

20

40

60

80

100

In
st

an
ce

s
no

tS
ol

ve
d

%

Figure 3.14: Percentage of instances where the Algorithm 12 returns unde�ned.

Performance of both algorithms in those instances where it is not detected that the ope-
rator T is not contractive is shown in Table 3.11 and Figure 3.15.

Time[s] Iterations [it]
n mA mB VI PI VI PI

Base Case 10 10 10 28.45 3.52 102.91 6.93

∆S

2 10 10 5 0.63 94.43 6.57
25 10 10 83.72 4.25 115.32 3.04
50 10 10 119.93 7.39 74.96 2.22
100 10 10 502.27 19.97 130.33 2.33
200 10 10 362.03 61.18 35.5 2.5

∆A

10 2 10 17.65 1.94 104 8.62
10 25 10 36.39 6.15 118.29 7.14
10 50 10 47.49 14.63 113.88 9.67
10 100 10 46.14 19.36 71.22 6.83
10 200 10 60.34 60.98 56.5 11.25

∆B

10 10 2 10.71 1.22 69.41 6.02
10 10 25 44.6 7.95 96.53 7.65
10 10 50 109.37 16.08 106.02 7.17
10 10 100 295.77 34.07 156.95 7.5
10 10 200 978.23 90.57 95 8.41

Table 3.11: Resolution time and iterations performed by algorithms in General instances, for
instances where T is not detected to be not contractive.

77



2 10 25 50 100 200
|S|

0

100

200

300

400

500

600
S

ol
ut

io
n

tim
e

[s
ec

on
ds

]

Value Iteration Policiy Iteration

2 10 25 50 100 200

|A|

0

10

20

30

40

50

60

70

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

2 10 25 50 100 200

|B|

0

200

400

600

800

1000

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

Value Iteration Policiy Iteration

Figure 3.15: Performance of value function iteration and policy iteration in General ran-
dom instances generated, for instances where it is not detected that the operator T is not
contractive.

3.8.4. Sensitivity analysis in β

We analyze the impact of changing βA on solution times of VI and PI algorithm for
MFS instances. To do so, we randomly generate k = 30 payo� matrices and transition
probabilities, and for each of these instances we consider di�erent values of βA, taking values
in {0.1, 0.5, 0.75, 0.9, 0.95}. Figures 3.16 and 3.17 show the results of this experiment. As
we expected, we note that as βA increases, VI increases its solution times. This e�ect is not
really clear in PI. Moreover, PI procedure for each β and size instance has constant iterations
in each experiment.

2 10 25 50 100

|S|

0

100

200

300

400

500

600

700

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

0.1
0.5
0.75

0.9
0.95

2 10 25 50 100

|A|

0

20

40

60

80

100

120

140

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

0.1
0.5
0.75

0.9
0.95

2 10 25 50 100

|B|

0

100

200

300

400

500

600

700

800

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

0.1
0.5
0.75

0.9
0.95

Figure 3.16: Sensitivity analysis in solution times for VI algorithm when βA changes.

Besides, we study an instance where for some values of {βA, βB} VI converges and for
others does not. We called this example Numerical Example 3. The instance is described in
Table 3.12. We test several values of βA, βB ∈ [0, 1] labeling each experiment if it converged
or not. Figure 3.18 shows the result of this experiment. As we can see, for βB ∈ [0.1, 0.65]
the associated operator in VI seems to be not contractive. Moreover, βA seems not to play
any role in the fact if VI converges to a equilibrium or not.

78



2 10 25 50 100

|S|

0

5

10

15

20

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

0.1
0.5
0.75

0.9
0.95

2 10 25 50 100

|A|

0

1

2

3

4

5

6

7

8

9

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

0.1
0.5
0.75

0.9
0.95

2 10 25 50 100

|B|

0

2

4

6

8

10

12

14

16

S
ol

ut
io

n
tim

e
[s

ec
on

ds
]

0.1
0.5
0.75

0.9
0.95

Figure 3.17: Sensitivity analysis in solution times for PI algorithm when βA changes.

b1 b2

a1
   

   
    (0,4, 0,6)
(0,-66) ((((

(((
((((

(
(0,2, 0,8)

(−56,−98)

a2
   

   
    (0,3, 0,7)
(29,-81) ((((

((((
(((((0,8, 0,2)

(−77,−72)

State s1

b1 b2

a1
   

   
    (0.8, 0.2)
(-93,-59) ((((

(((
((((

(
(0,2, 0,8)

(−33,−65)

a2
   

   
    (0.3, 0.7)
(-61,34)    

   
    (0,2, 0,8)

(−47, 16)

State s2

Table 3.12: Transition matrix and payo�s for each player in the Numerical Example 3.

0.0 0.2 0.4 0.6 0.8 1.0

βA

0.0

0.2

0.4

0.6

0.8

1.0

β
B

Not Convergence Convergence

Figure 3.18: Impact of βA and βB on the convergence in VI in Numerical Example 3.

79



3.9. Conclusions and Future work

In this work we adapt dynamic programming based algorithms and mathematical pro-
gramming formulations to �nd stationary and feedback policies forming SSE. We �rst show
a family of SG where a unique equilibrium exists . In this case, we show that Value Iteration
and Policy Iteration converge to a pair of value functions that corresponds to the value of a
SSE. For the general case it is not always possible. We show an instance where VI does not
converge. Our computational test show that PI outperforms VI in solution times in most of
cases. We also discuss about an algorithm to detect if the operator proposed for the general
case is contractive.

In future work we aim to extend the analysis to other families of SG where SSE can be
achieved via dynamic programming. For these games, we would like to analyze the impact
of approximate dynamic programming (see [49]) on computing this type of equilibrium. Also
Rolling Horizon procedures are . A third research line is to analyze the impact of better
implementations of PI and VI to improve the scalability of the algorithms exposed in this
chapter. Finally, in future work we expect to formalize and understand the behavior of Cyclic
policies forming strong Stackelberg equilibrium.

80



Chapter 4

Stackelberg games of water extraction

In this chapter we analyze an example in another domain where the methodology and
analysis in Chapter 3 can be applied. We model the decision of a central agency who has to
decide how to set prices to water extraction considering the actual level of the groundwater
through time. We consider a setting where the leader is the central agency with a positive
discount factor βA = β > 0 and the followers are myopic agents (βB = 0). The goal of
the central agency is to maximize the expected discounted future utilities of these myopic
followers. We also discuss stochastic and robust implementations of this problem. The models
and analysis presented in this chapter form part of the working paper [34].

4.1. Introduction

A central agency has to decide the marginal cost that a set of K agents face when they
have to decide the amount of water to extract from a shared groundwater. We consider a
multi-stage Stackelberg setting where the central agency is the leader and the set of K agents
are the followers. The dynamics of the groundwater is given by:

Gt+1 = Gt +Rt −
K∑
i=1

uit, t ∈ N with G0 given, (4.1)

where Gt is the water level at period t, Rt is the rainfall during period t and uti is the water
extracted by agent i at period t.

The utility function of each player is given by

πit = Fi(u
i
t)− Ci

(
Gt +mtRt − nt

K∑
i=j

ujt

)
· uti, t ∈ N0, i = 1, 2, . . . , K, (4.2)

where F is a production function that models the technology of agent i, Ci is the marginal

81



cost function, that depends on the level of water. Binary Controls mt and nt are used to
determine if the level is measured before the rain at this period, or whether consider the
total extraction of the agents or not.

Agents knowing controls {nt, mt}, at each time t each agent maximizes its instantaneous
rewards considering the others players decision. In other words, agents observe mt and nt
and then play a Nash equilibrium with payo�s πit. This is equivalent to the case where the
discount factor of each agent is βB = 0.

On the other hand, the central agency maximizes the total discounted reward of the agents,
controlling values of nt,mt. Then central agency faces the following multistage problem:

máx J̄ ({nt, mt}t) =
+∞∑
t=0

βtAπ
i
t (nt,mt) . (4.3)

4.2. A �rst study

In this preliminary work we consider symmetric agents and production functions and
marginal costs as:

F (u) =u− b

2
u2, (4.4)

C(x) =z − cx > 0, (4.5)

we call this case the linear-quadratic case. Also we assume a constant rainfall R. Given nt,mt

the Nash equilibrium of the followers can be computed as

ut =
c

b+ (K + 1)ntc︸ ︷︷ ︸
αt

Gt +
1− z + cmtRt

b+ (K + 1)ntc
= α

[
Gt +mtRt +

1− z
c

]
, i = 1, . . . , K, t ∈ N0,

(4.6)
where we note that αt = αt(nt). The equilibrium utilities for each agent is given by:

π = u2 b+ 2ntc

2
= πt, i = 1, . . . , K, t ∈ N0. (4.7)

Then, the leader faces the following optimal control problem:

máx
nt,mt

+∞∑
t=0

βtAKπt,

s.t. πt = α2
(
Gt +mtRt + 1−z

c

)2 b+ 2ntc

2

(4.8)

with a Bellman equation given by:

V (G) = máx
n,m

K

(
cG+ cmR+ (1− z)

b+ (K + 1)nc

)2 b+ 2nc

2

+βAV

(
G+R−K c

b+ (K + 1)nc
G+

1− z + cmR

b+ (K + 1)nc

)
. (4.9)

82



Parameter Value
b 1.0
c 0.6
z 0.9
R 1.0
K 4

Table 4.1: Parameters in our preliminar study.

Note that in this case, the consumption of steady state, denoted by ū, can be computed
by G = G+R−Kū. Then ū = R

K
, in the steady state, the agents consume only the rainfall

at each period.

We can also analyze the case where agents are non-symmetric, where the Nash equilibrium
is given by the following linear system:

(cint + bi)u
i
t + cint

K∑
j=1

ujt = 1− zi + ciGt + cimtRt i = 1, . . . , K. (4.10)

4.3. Preliminary results

In this section we show our preliminary results. We test the linear quadratic case with
symmetric myopics agents, with the parameters listed in Table 4.1.

First, as we expected, β has a positive impact on the water trajectories. That is as β
increases, water trajectories converge to a higher levels (see Figure 4.1).

0 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

G

Consumption Ground

a. βA = 0.2

0 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

G

Consumption Ground

b. βA = 0.7

0 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

G

Consumption Ground

c. βA = 0.9

Figure 4.1: Groundwater level and consumption for βA ∈ {0.2, 0.7, 0.9}.

Note that in Figure 4.1.a. agents consume all the water available in each period. Farmers in
each period has a consumption of steady state ū and the steady state level of the groundwater
is zero. When βA increases to 0.7, Figure 4.1.b., the groundwater level �uctuates between 0
and 0.9, making also the agent's consumption �uctuates between two values, one higher than
ū and other lower than ū . This behavior is related with the optimal policy, changing at each
step to levels of G where the optimal policies change.

83



Second, we found two types of optimal policies:

• Constant policies, that is for each level of water the optimal policies are nt = 0 and
mt = 1 (see Figure 4.2a.). Given that βA has low value has the consequence that the
marginal cost of extracting water given by the optimal policy is low. This occurs when
it is not considered the extraction of the agents but it is considered the rainfall in
computing the marginal cost of extraction.

• Threshold policies (see Figure 4.2b. and 4.2.c), that is policies of the form:

nt,mt =

{
n,m if Gt ≤ Ḡ

n,m otherwise.
(4.11)

That means, if the groundwater has a level lower than Ḡ, then the agency increases the
marginal cost. Otherwise, the marginal cost of extraction water is cheaper. Note that
the optimal threshold Ḡ is an increasing function in the value of βA.

a. βA = 0,2 b. βA = 0,7 c. βA = 0,9

Figure 4.2: Policies for βA ∈ {0,2, 0,7, 0,9}.

As future work we aim to prove that threshold policies are optimal and what are the
conditions in the parameters of the dynamic to detect both, constant and threshold policies.

4.4. Robust approach

In a �rst attempt to introduce uncertainty in our model, we consider a robust optimization
approach (see [7]) in the amount of rain that the leader predicts to fall. In other words, we
do not consider R as a deterministic but we consider it as a parameter in an uncertainty set
Rt, and the leader protects himself from uncertainty by minimizing the impact of the worst
outcome. We consider the following uncertainty set:

(R̃t)
τ
t=0 ∈

{
(R̄t + Λt)

τ
t=0 : −ytδt ≤ Λt ≤ ytδt,

τ∑
t=0

yt ≤ Λ, yt ∈ {0, 1}
}
,

R̄t represents the average rain at period t, and δt represents the maximum deviation that is
observed in the rainfall at period t. To avoid being too conservative, we add an uncertainty
budget Λ and we restrict the time steps that yt takes values 1 at most Λ times.

84



Then, in our robust setting the leader problem can be stated as:

máx
nt,mt

mı́n
yt

+∞∑
t=0

βtAKπ(R̃t, nt,mt). (4.12)

In order to write a more friendly formulation, we rewrite the problem stated in (4.12):

máx
nt,mt

+∞∑
t=0

βtπt + mı́n
yt

+∞∑
t=0

βtAξtmtδt(mtδt − 2µ)yt (4.13)

where ξt = Kα2
[
b+2ntc

2

]
and µ = Gt +mtR̄t + 1−z

c
. Now, we consider the problem associated

to the second term of (4.13):

mı́n
yt

+∞∑
t=0

βtξtmtδt(mtδt − 2µ)yt∑
t

yt ≤ Λ

yt ≤ 1 (4.14)

yt ≥ 0

and its dual:

máx Λθ +
∑
t

λt

θ + λt ≤ βtAξtmtδt(mtδt − 2µ) (4.15)

λt, θt ≤ 0. (4.16)

Using the fact that both problems have optimal �nite solution, we can state the robust
counterpart as:

máx
mt,nt,θ,λt

∑τ
t=0 β

t
A

(
c

b+(K+1)ntc

)2 (
Gt +mtR̄t + 1−z

c

) (
b+2ntc

2

)
+ Λθ +

∑T
t=0 λt (4.17)

s.a. θ + λt ≤ βAK
(

c
b+(K+1)ntc

)2 (
b+2ntc

2

)
mtδt

[
mtδt − 2Gt − 2mtRt − 21−z

c

]
∀t (4.18)

θ, λt ≥ 0 ∀t (4.19)
0 ≤ mt, nt ≤ 1 ∀t.(4.20)

We plan to design e�cient ways to solve this problem. To do so, we note that constraints
are separable on t. Then we can use Dynamic Programming to solve this formulation.

85



4.5. Conclusions and future (current) work

We model a decision problem where a central agency aims to control the groundwater
level through the marginal cost. We present a Stackelberg stochastic discounted game, now
with several followers playing Nash equilibrium, where the controls are whether the marginal
cost depends on the rainfall and the agents extraction at each period t. We test our models
in a linear quadratic setting with symmetric myopic agents. We show experimentally that
optimal policies are constant or threshold based policies. Moreover, we can a�ect the water
trajectories to higher stationary levels, even with myopic agents, by considering a central
agency maximizing the social welfare. In order to introduce uncertainty in the rainfall, we
propose a robust approach formulation of the central agency problem.

We aim in future work to �nd algorithms to solve the robust counterparts. Moreover, we
expect to consider stochastic versions of this problem, considering the rainfall as random
variable. We are studying two cases:

1. Rt is iid, taking values in R and R, with probability distribution πR =

[
p

(1− p)

]
.

2. Rt is Markovian with states, {R,R}, representing cycles in climate with a transition

matrix Q =

[
p (1− p)

(1− q) q

]
.

Finally, we expect to compare both problems with uncertainty.

86



Conclusion

In this thesis we provided algorithms and models to solve Stackelberg Security Games
outperforming the state of the art approaches, addressing problem size due to large scale set
of strategies, targets in a geographical area or because the interaction between the leader
and the follower is evolving through the time. Our main methodological contributions are
twofold. We �rst developed decomposition methods based on a nice connection between the
problem and the matching polyhedral structure. And second we provided new operators to
analyze dynamic programming algorithms to compute Stackelberg equilibrium in Stochastic
Games.

In Chapter 1 we studied a special type of SSG played on a network. In this game, a
defender has to combine resources to do patrol labors in a set of targets. We proposed a
novel formulation, (COMB), that represent the set of mixed strategies in a compact form
by setting marginal probabilities over the possible pairings of team up resources and the
targets to be covered. We proposed a method to retrieve an implementable strategy given the
optimal marginals and we proved the validity of our formulation. In this method we proposed
two ways to decompose fractional size constrained matchings as convex combination of pure
matchings. (COMB) formulation has an exponentially large family of constraints. To scale-up
the instances that solvers are able to optimize, we propose a cut generation algorithm.

Furthermore, we provided an alternative sampling method to recover an implementable
defender strategy given the optimal coverage distributions. Computational tests have shown
that the two-stage sampling method we describe, provides implementable strategies that
do not deviate much from the optimal coverage distributions. Further computational tests
have shown (COMB) to have smaller solution times and better scaling capabilities than
the extensive formulation (D2) on randomly generated security instances. Both methods are
considerably outperformed by the cut generation algorithm.

In addition, we described a real-life border patrol problem and have presented a parameter
generation methodology that takes into account past crime data and geographical and social
factors to construct payo�s for the Stackelberg game. Robustness tests have shown that the
solutions our software provides are fairly robust to the networks we generate as well as to
minor changes in the �ow of crime along the border.

In future work we aim to extend our model and methodology to the case where each
resource can be paired up with more than one resource, taking into account di�erent ca-
pabilities, time schedules, and other considerations. We are also working on improving the
parameter estimation for the real case exposed in this chapter.

87



In Chapter 2 we developed algorithms and heuristics to scale up algorithms in games that
are applied to a large geographical area. In future work we aim to analyze the performance
of our approximation algorithm

In Chapter 3 we adapted dynamic programming based algorithms and mathematical pro-
gramming formulations to �nd stationary policies forming strong Stackelberg equilibrium.
We �rst show a family of SG where this type of equilibrium exists. In this case, we show that
VI and policy iteration converges to a pair of value functions that corresponds to the value of
a SSE. For the general case it is not always possible. We show an instance where VI does not
converge. Our computational test show that PI outperforms VI in solution times in most of
cases. We also discuss about an algorithm to detect if the operator proposed for the general
case is contractive.

In future work we consider how to extend the analysis to other families of stochastic games
where strong Stackelberg equilibrium can be achieved via dynamic programming. For these
games, we would like to analyze the impact of approximate dynamic programming (see [49])
on computing this type of equilibrium. A third research line is to analyze the impact of better
implementations of PI and VI to improve the scalability of the algorithms exposed in this
chapter. Finally, in future work we expect to formalize and understand the behavior of Cyclic
policies forming strong Stackelberg equilibrium.

Finally, in Chapter 4 we model a decision problem where a central agency aims to control
the groundwater level in steady state. We present a Stackelberg stochastic discounted game,
where the controls are wheter the marginal cost depends on the rainfall and the agents
extraction at each period t. We test our models in a linear quadratic setting with symmetric
myopic agents. We show experimentally that optimal policies are constant or threshold based
policies. Moreover, we can a�ect the water trajectories to higher stationary levels, even with
myopic agents, by considering a central agency maximizing the social welfare. In order to
introduce uncertainty in the rainfall, we propose a robust approach formulation of the central
agency problem.

We aim in future work to �nd algorithms to solve the robust counterparts. We expect to
consider stochastic versions of this problem, considering the rainfall as random variable.

88



Bibliography

[1] Aduanas de Chile. https://www.aduana.cl/importaciones-de-productos/aduana/2007-
02-28/161116.html, 2016.

[2] Tansu Alpcan and Tamer Ba³ar. Stochastic security games, page 74�97. Cambridge
University Press, 2010.

[3] Eitan Altman, Konstantin Avratchenkov, Nicolas Bonneau, Mérouane Debbah, Rachid
El-Azouzi, and Daniel Sadoc Menasché. Constrained stochastic games in wireless net-
works. In Global Telecommunications Conference, 2007. GLOBECOM'07. IEEE, pages
315�320. IEEE, 2007.

[4] Rabah Amir. Stochastic games in economics and related �elds: an overview. In Stochastic
Games and Applications, pages 455�470. Springer, 2003.

[5] Tamer Basar, Geert Jan Olsder, and GJ Clsder. Dynamic noncooperative game theory,
volume 200. SIAM, 1995.

[6] Nicola Basilico, Nicola Gatti, and Francesco Amigoni. Leader-follower strategies for
robotic patrolling in environments with arbitrary topologies. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems-Volume 1,
pages 57�64. International Foundation for Autonomous Agents and Multiagent Systems,
2009.

[7] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Prin-
ceton University Press, 2009.

[8] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scienti�c Belmont, MA, 1997.

[9] Darse Billings, Aaron Davidson, Jonathan Schae�er, and Duane Szafron. The challenge
of poker. Arti�cial Intelligence, 134(1-2):201�240, 2002.

[10] Jerome Bracken and James T. McGill. Mathematical programs with optimization pro-
blems in the constraints. Operations Research, 21(1):37�44, January 1973.

[11] Victor Bucarey, Carlos Casorran, Karla Rosas, Hugo Navarrete, and Fernando Ordóñez.
Coordinated defender strategies for border patrols. 2017.

89



[12] Victor Bucarey, Eugenio Della Vecchia, Alain Jean-Marie, Mabel Tidball, and Fernando
Ordóñez. Solving Stackelberg equilbrium in stochastic games. 2017.

[13] Victor Bucarey, Fernando Ordóñez, and Enrique Bassaletti. Shape and balance in police
districting. In Applications of Location Analysis, pages 329�347. Springer, 2015.

[14] Arnaud Canu and Abdel-Illah Mouaddib. Collective decision-theoretic planning for
planet exploration. In Tools with Arti�cial Intelligence (ICTAI), 2011 23rd IEEE Inter-
national Conference on, pages 289�296. IEEE, 2011.

[15] Yanling Chang, Alan L Erera, and Chelsea C White III. A leader-follower partially
observed, multiobjective markov game. Annals of Operations Research, 235(1):103, 2015.

[16] Comisión Económica para América Latina y el Caribe. Costo económico de los deli-
tos, niveles de vigilancia y políticas de seguridad ciudadana en las comunas del gran
santiago. http://www.cepal.org/es/publicaciones/7258-costo-economico-de-los-delitos-
niveles-de-vigilancia-y-politicas-de-seguridad, 2000.

[17] Vincent Conitzer. Should Stackelberg mixed strategies be considered a separate solution
concept? 2014.

[18] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit
to. In Proceedings of the 7th ACM conference on Electronic commerce, pages 82�90.
ACM, 2006.

[19] Council of the European Union. http://www.consilium.europa.eu/en/press/press-
releases/2016/09/14-european-border-coast-guard/, 2016.

[20] George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs. Oper.
Res., 8(1):101�111, February 1960.

[21] Francesco Maria Delle Fave, Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe,
Sarit Kraus, and John P Sullivan. Game-theoretic patrolling with dynamic execution
uncertainty and a case study on a real transit system. Journal of Arti�cial Intelligence
Research, 50:321�367, 2014.

[22] Department of Homeland Security of the United States. https://www.dhs.gov/border-
security, 2016.

[23] Steven P Dirkse and Michael C Ferris. The PATH solver: a non-monotone stabiliza-
tion scheme for mixed complementarity problems. Optimization Methods and Software,
5(2):123�156, 1995.

[24] Jack Edmonds. Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat.
Bur. Standards B, 69(1965):125�130, 1965.

[25] Julius Farkas. Theorie der einfachen ungleichungen. Journal fur die reine und ange-
wandte Mathematik, 124:1�27, 1902.

90



[26] Michael C Ferris and Todd S Munson. Complementarity problems in GAMS and the
PATH solver. Journal of Economic Dynamics and Control, 24(2):165�188, 2000.

[27] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science
& Business Media, 2012.

[28] Janos Flesch, Frank Thuijsman, and Koos Vrieze. Cyclic Markov equilibria in stochastic
games. International Journal of Game Theory, 26(3):303�314, 1997.

[29] Dan Gus�eld. Very simple methods for all pairs network �ow analysis. SIAM Journal
on Computing, 19(1):143�155, 1990.

[30] Onésimo Hernández-Lerma and Jean-Bernard Lasserre. Discrete-time Markov control
processes: basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

[31] Dorit S Hochbaum, Cheng Lyu, and Fernando Ordóñez. Security routing games with
multivehicle chinese postman problem. Networks, 64(3):181�191, 2014.

[32] Manish Jain, Erim Kardes, Christopher Kiekintveld, Fernando Ordoñez, and Milind
Tambe. Security games with arbitrary schedules: A branch and price approach. In
Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010.

[33] Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld, Shyamsunder Rathi, Mi-
lind Tambe, and Fernando Ordóñez. Software assistants for randomized patrol planning
for the lax airport police and the federal air marshal service. Interfaces, 40(4):267�290,
July 2010.

[34] Alain Jean-Marie, Mabel Tidball, Fernando Ordóñez, Ma. Evangelina Alvarez, Victor
Bucarey, and Eugenio Della Vecchia. Stackelberg games of water extraction. 2017.

[35] Jörg Kalcsics, Stefan Nickel, and Michael Schröder. Towards a uni�ed territorial design
approach: Applications, algorithms and GIS integration. Top, 13(1):1�56, 2005.

[36] Michael Kearns, Yishay Mansour, and Satinder Singh. Fast planning in stochastic games.
In Proceedings of the Sixteenth conference on Uncertainty in arti�cial intelligence, pages
309�316. Morgan Kaufmann Publishers Inc., 2000.

[37] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita, Fernando Ordóñez, and
Milind Tambe. Computing optimal randomized resource allocations for massive security
games. In Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS '09, pages 689�696, Richland, SC, 2009.
International Foundation for Autonomous Agents and Multiagent Systems.

[38] S. Kullback and R. A. Leibler. On information and su�ciency. Ann. Math. Statist.,
22(1):79�86, 03 1951.

[39] George Leitman. On generalized Stackelberg strategies. J. Optim. Theory Appl.,
26(4):637�643, 1978.

91



[40] Joshua Letchford, Liam MacDermed, Vincent Conitzer, Ronald Parr, and Charles L
Isbell. Computing optimal strategies to commit to in stochastic games. In AAAI, 2012.

[41] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical programs with equili-
brium constraints. Cambridge University Press, 1996.

[42] Ministerio del Trabajo y Previsión Social. http://www.leychile.cl/Navegar?idLey=20763,
2016.

[43] Kien C Nguyen, Tansu Alpcan, and Tamer Basar. Stochastic games for security in
networks with interdependent nodes. In Game Theory for Networks, 2009. GameNets'
09. International Conference on, pages 697�703. IEEE, 2009.

[44] Fernando Ordónez, Milind Tambe, Juan F Jara, Manish Jain, Christopher Kiekintveld,
and Jason Tsai. Deployed security games for patrol planning. In Handbook of Operations
Research for Homeland Security, pages 45�72. Springer, 2013.

[45] Manfred W Padberg and M Ram Rao. Odd minimum cut-sets and b-matchings. Mat-
hematics of Operations Research, 7(1):67�80, 1982.

[46] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando Ordó-
ñez, and Sarit Kraus. Playing games for security: An e�cient exact algorithm for solving
bayesian Stackelberg games. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS '08, pages 895�902,
Richland, SC, 2008. International Foundation for Autonomous Agents and Multiagent
Systems.

[47] Hans Peters. Game theory: A Multi-leveled approach. Springer, 2015.

[48] James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. Deployed armor
protection: the application of a game theoretic model for security at the los angeles
international airport. In Proceedings of the 7th international joint conference on Auto-
nomous agents and multiagent systems: industrial track, pages 125�132. International
Foundation for Autonomous Agents and Multiagent Systems, 2008.

[49] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimensio-
nality, volume 703. John Wiley & Sons, 2007.

[50] Martin L Puterman. Markov decision processes. Wiley-Interscience, 1994.

[51] QGIS. QGIS Geographic Information System. Open Source Geospatial Foundation,
2009.

[52] A. Schrijver. Combinatorial Optimization - Polyhedra and E�ciency. Springer, 2003.

[53] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences,
39(10):1095�1100, 1953.

92



[54] Hanif D Sherali and Frederick L Nordai. Np-hard, capacitated, balanced p-median
problems on a chain graph with a continuum of link demands. Mathematics of Operations
Research, 13(1):32�49, 1988.

[55] Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo, Ben
Maule, and Garrett Meyer. Protect: A deployed game theoretic system to protect the
ports of the united states. In SC Richland, editor, Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems - Volume 1, volume 1 of
AAMAS '12, pages 13�20, Richland, SC, 2012. International Foundation for Autonomous
Agents and Multiagent Systems.

[56] Olivier Sigaud and Olivier Bu�et. Markov decision processes in arti�cial intelligence.
John Wiley & Sons, 2013.

[57] Milind Tambe. Security and game theory: algorithms, deployed systems, lessons learned.
Cambridge University Press, 2011.

[58] Mabel M Tidball and Eitan Altman. Approximations in dynamic zero-sum games i.
SIAM journal on control and optimization, 34(1):311�328, 1996.

[59] Jason Tsai, Christopher Kiekintveld, Fernando Ordonez, Milind Tambe, and Shyam-
sunder Rathi. Iris-a tool for strategic security allocation in transportation networks.
2009.

[60] H. von Stackelberg. Principios de teoria economica. Oxford University Press, New York
(USA), 1952.

[61] Yevgeniy Vorobeychik, Bo An, and Milind Tambe. Adversarial patrolling games. In
Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems-Volume 3, pages 1307�1308. International Foundation for Autonomous Agents
and Multiagent Systems, 2012.

[62] Yevgeniy Vorobeychik, Bo An, Milind Tambe, and Satinder Singh. Computing solutions
in in�nite-horizon discounted adversarial patrolling games. In Proc. 24th International
Conference on Automated Planning and Scheduling (ICAPS 2014)(June 2014), 2014.

[63] Yevgeniy Vorobeychik and Satinder Singh. Computing Stackelberg equilibria in discoun-
ted stochastic games (corrected version). 2012.

[64] OJ Vrieze, SH Tijs, TES Raghavan, and JA Filar. A �nite algorithm for the switching
control stochastic game. Operations-Research-Spektrum, 5(1):15�24, 1983.

[65] Okko Jan Vrieze. Stochastic games with �nite state and action spaces. CWI tracts,
33:1�221, 1987.

[66] Richard A Waltz and Jorge Nocedal. Knitro user's manual. Northwestern University,
Evanston, Illinois, Technical Report OTC-2003/5, 2003.

[67] Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. Adaptive resource

93



allocation for wildlife protection against illegal poachers. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2014.

[68] Rong Yang, Albert Xin Jiang, Milind Tambe, and Fernando Ordoñez. Scaling-up security
games with boundedly rational adversaries: A cutting-plane approach. In Francesca
Rossi, editor, IJCAI. IJCAI/AAAI, 2013.

[69] Rong Yang, Christopher Kiekintveld, Fernando Ordóñez, Milind Tambe, and Richard
John. Improving resource allocation strategy against human adversaries in security
games. In IJCAI Proceedings-International Joint Conference on Arti�cial Intelligence,
volume 22, page 458, 2011.

[70] Rong Yang, Fernando Ordóñez, and Milind Tambe. Computing optimal strategy against
quantal response in security games. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, pages 847�854. International
Foundation for Autonomous Agents and Multiagent Systems, 2012.

[71] Zhengyu Yin, Albert Xin Jiang, Milind Tambe, Christopher Kiekintveld, Kevin Leyton-
Brown, Tuomas Sandholm, and John P. Sullivan. Trusts: Scheduling randomized patrols
for fare inspection in transit systems using game theory. AI Magazine, 33(4):59�72, 2012.

[72] Zhengyu Yin and Milind Tambe. A uni�ed method for handling discrete and continuous
uncertainty in bayesian Stackelberg games. In Winiko� Conitzer and van der Hoek,
editors, AAMAS, 2012.

[73] Chao Zhang, Victor Bucarey, Ayan Mukhopadhyay, Arunesh Sinha, Yundi Qian, Yev-
geniy Vorobeychik, and Milind Tambe. Using abstractions to solve opportunistic crime
security games at scale. In Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, pages 196�204. International Foundation for
Autonomous Agents and Multiagent Systems, 2016.

[74] Chao Zhang, Arunesh Sinha, and Milind Tambe. Keeping pace with criminals: Designing
patrol allocation against adaptive opportunistic criminals. In Proceedings of the 2015
international conference on Autonomous agents and multiagent systems, pages 1351�
1359. International Foundation for Autonomous Agents and Multiagent Systems, 2015.

[75] Martin Zinkevich, Amy Greenwald, and Michael L Littman. Cyclic equilibria in markov
games. In Advances in Neural Information Processing Systems, pages 1641�1648, 2006.

94


	Introduction
	Coordinated defender strategies for border patrols
	Introduction
	Problem Formulation and Notation
	Stackelberg Security games
	Resource Combination in a SSG

	Decomposition Model
	(COMB) is an equivalent SSG formulation
	Cutting Odd-Set Constraints
	Recovering an implementable strategy

	Case Study: Carabineros de Chile
	Payoff estimation
	Building software for Carabineros
	Robustness of our approach

	Computational Experiments
	Performance of (COMB)
	Performance of the alternative sampling method

	Conclusions and future work

	Abstractions to handle large scale models.
	Layer Generating Algorithm
	Multi-Layer Generating Algorithm
	Conclusions

	Solving Stackelberg equilibrium in stochastic games
	Introduction
	Literature Review
	General results
	Math programming to solve Stochastic Games

	Motivational Example
	Numerical Example 1
	Special case: Myopic Follower Strategies (MFS)
	Stackelberg operator and Value function iteration
	Policy Iteration

	General Case
	Definition of the Stackelberg Operator in the general case
	Numerical Example 2
	Value Function and Policy Function for the general case
	What does it fail?

	Mathematical Programming approach
	Computational Experiments
	Performance of algorithms: (MFS) case.
	Stackelberg Security Games
	General Case
	Sensitivity analysis in 

	Conclusions and Future work

	Stackelberg games of water extraction
	Introduction
	A first study
	Preliminary results
	Robust approach
	Conclusions and future (current) work

	Conclusion
	Bibliography

