Tabla de contenido

1.	Intr	roducción			1
	1.1.	Antecedentes generales	 		1
	1.2.	J 1 J			
		1.2.1. Análisis de las soluciones actuales	 		2
		1.2.2. Predicción de ECV en base a oximetrías	 		6
		1.2.3. Hipótesis de investigación	 		6
	1.3.	Objetivos	 		7
	1.4.	Apoyos Institucionales	 		8
	1.5.	Metodología	 		8
		1.5.1. Selección de indicadores	 		8
		1.5.2. Implementación de un modelo inicial base			
		1.5.3. Desarrollo del modelo final	 		9
		1.5.4. Módulo de visualización			
		1.5.5. Evaluación del impacto económico	 		10
	1.6.	_			
	1.7.	Resultados Esperados	 		11
	1.8.	Estructura del informe	 		12
2.	Mar	rco Conceptual			14
_	2 1	Datos Utilizados			
		Herramientas tecnológicas			
	2.3.	Índices de predicción de ECV tradicionales	 		15
	.0	2.3.1. Índice de Framingham	 		15
		2.3.2. HeartScore o SCORE			
		2.3.3. Índice Prospective Cardiovascular Münster (PROCAM) .			
		2.3.4. Matriz <i>ESH/ESC</i>			
	2.4.	Otros conceptos médicos relevantes			
	•	2.4.1. Eventos Cardiovasculares			
		2.4.2. Polisomnografía y oximetría			
		2.4.3. Disability adjusted life years (DALYs)			
	2.5.	Modelos de <i>Machine Learning</i>			
	.0.	2.5.1. Regresión logística			
		2.5.2. Support Vector Machine (SVM)			
		2.5.3. Red Neuronal			
		2.5.4. Naive Bayes			
	2.6.	Conceptos relevantes de <i>Machine Learning</i> y desarrollo de softwar			
	- 1	2.6.1. Matriz de confusión y métricas asociadas			

		2.6.2.	Cross-validation o validación cruzada [41]	7
		2.6.3.	Modelo Vista Controlador (MVC)	8
3 ·			o del modelo de predicción 2	-
			ión de indicadores	
	3.2.	Imple	mentación de un modelo inicial base	
		3.2.1.	1	;1
				2
		3.2.3.	Extracción de un conjunto grande de oximetrías	3
		3.2.4.	Regresión Logística o Logit	4
		3.2.5.	Controlador	5
		3.2.6.	<i>Testing</i>	6
		3.2.7.	Resultados	6
	3.3.	Desarr	ollo del modelo final	7
		3.3.1.	Implementación y desempeño del modelo de Framingham 3	7
		3.3.2.		9
			Inclusión de variables tradicionales al modelo 4	
			Modificación del umbral de clasificación	
		3.3.5.		
			Testing	
			Medición de desempeño y resultados 4	_
	3.4.		cionamiento del modelo	
	0.1.	3.4.1.	·	
			Mejoras del modelo	
			Resultados	
		0.1.0.		_
4.	Mód	dulo de	e visualización 5	2
-	4.1.	Descri	pción desde el punto de vista del usuario 5	
			nentación	
	•	•	· · · · · · · · · · · · · · · · · · ·	Ū
5 •	Eva	luació	n del impacto económico y social 5	8
	5.1.	Impac	to en el Instituto nacional del Torax	8
	5.2.	Impac	to potencial en Chile	2
6.		clusio		5
	6.1.	Conclu	6	5
	6.2.	Trabaj		7
·		Cr.		_
Bi	bliog	rafía	6	8

Índice de tablas

3.1.	Descripción de variables calculadas desde una oximetría consideradas en	
	esta memoria	31
3.2.	Matriz de confusión del modelo base calculada con la técnica de validación	
	cruzada	37
3.3.	Matriz de confusión del modelo base calculada con la técnica de separación	
	de los datos utilizando un 30 % para testing	37
3.4.	Medidas de desempeño con umbral de 5 %	44
3.5.	Medidas de desempeño con umbral de 10 %	44
3.6.	Medidas de desempeño con umbral de 15 %	44
3.7.	AUC para índice de Framingham y modelos construidos	46
3.8.	Tiempo de ejecución en segundos de cada modelo con cross-validation de	
	20 folds	47
3.9.	AUC regresión logística para cada configuración posible de variables expli-	
	cativas	48
3.10.	AUC Support Vector Machine para cada configuración posible de variables	
	explicativas	49
3.11.	AUC Red Neuronal para cada configuración posible de variables explicativas	49
3.12.	AUC Naive Bayes para cada configuración posible de variables explicativas .	49
3.13.	AUC modelo con únicamente las variables de Framingham como variables	
	explicativas	49
3.14.	AUC Regresión Logística para cada configuración posible de variables ex-	
	plicativas	50
3.15.	AUC Support Vector Machine para cada configuración posible de variables	
	explicativas	50
	AUC Red Neuronal para cada configuración posible de variables explicativas	50
3.17.	AUC Naive Bayes para cada configuración posible de variables explicativas .	50
3.18.	Coeficientes modelo final	51
- 1	Número de estudios de sueão en INT entre 2010 y 2015	-0
•	Número de estudios de sueño en INT entre 2010 y 2015	58
5.2.	corte definido	
5 0	Numero de personas que prevendrían una ECV producto de la implementa-	59
5.3.		60
г <i>1</i>	ción del modelo	UC
5.4.	insuficiencia cardiaca o un infarto de miocardio	60
	Estimación de beneficios monetarios y en DALYs de la implementación del	UU
5.5.	modelo en el hospital salvador para un corte al 5%	61
	modelo en el nospital salvador para un corte al 5 %	O

5.6.	Estimación de beneficios monetarios y en DALYs de la implementación del	
	modelo en el hospital salvador para un corte al 10 %	61
5.7.	Estimación de beneficios monetarios y en DALYs de la implementación del	
	modelo en el hospital salvador para un corte al 20 %	61
5.8.	Mercado potencial estimado por año de 2015 a 2030	63
5.9.	Estimación de beneficios potenciales monetarios y en DALYs de la imple-	
	mentación del modelo en la población chilena para un corte al 5 %	63
5.10.	Estimación de beneficios potenciales monetarios y en DALYs de la imple-	
	mentación del modelo en la población chilena para un corte al 10 %	63
5.11.	Estimación de beneficios potenciales monetarios y en DALYs de la imple-	
	mentación del modelo en la población chilena para un corte al 20 %	64

Índice de figuras

1.1.	indica el nivel de saturación de oxígeno en la sangre	3
1.2.	Gráfico de una oximetría junto a ciertas métricas calculadas automáticamente en <i>Stardust II</i> . La curva negra corresponde a la saturación de oxígeno	4
1.3.	Parámetros en base a los que Somno Check Micro Cardio calcula un indi- cador de riesgo cardiovascular	5
2.1.	Matriz para la predicción de riesgo de ECV según índice de Framingham para hombres en la población chilena. [3]	16
2.2.	Coeficientes para el cálculo del índice de Framingham	17
2.3.	Matriz para la predicción de riesgo de ECV según índice SCORE [31]	19
2.4.	Matriz desarrollada en conjunto por ESH y ESC para la predicción de riesgo	-)
	de ECV [34]	20
2.5.	Factores de riesgo utilizados en la matriz ESH/ESC [34]	21
2.6.	Matriz de confusión: mide desempeño de un modelo de clasificación	26
2.7.	Curva para medir el desempeño de modelos probabilísticos. La línea diagonal representa un modelo sin ningún poder de predicción y entre más se acerca la curva hacia la esquina superior izquierda mayor es la precisión en la predicción del modelo	
	ia prediction dei modelo	27
3.1.	Modelo auxiliar a Framingham utilizado para cuantificar su desempeño	38
3.2.	Ilustración de una actualización en el <i>buffer</i> durante el algoritmo para el cálculo del indicador <i>SPO2-I</i>	40
3.3.	Ilustración de una actualización en el buffer durante el algoritmo para el	
	cálculo del indicador PR-I	41
3.4.	Curvas ROC para el índice de Framingham y cada uno de los modelos cons-	-
	truidos	45
4.1.	Formulario prototipo funcional para el ingreso de variables de predicción	
	de riesgo cardiovascular	54
4.2.	Representación gráfica del nivel de riesgo cardiovascular	55