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Abstract This article studies a multi-item auction characterized by asymmetric bidders and
quantity discounts. We report a practical application of this type of auction in the procure-
ment of Internet services to the 709 public schools of Buenos Aires. The asymmetry in this
application is due to firms’ existing technology infrastructures, which affect their ability to
provide the service in certain areas of the city. A single round first-price sealed-bid auction,
it required each participating firm to bid a supply curve specifying a price on predetermined
graduated quantity intervals and to identify the individual schools it would supply. The max-
imal intersections of the sets of schools each participant has bid on define regions we call
competition units. A single unit price must be quoted for all schools supplied within the
same quantity interval, so that firms cannot bid a high price where competition is weak and
a lower one where it is strong. Quantity discounts are allowed so that the bids can reflect
returns-to-scale of the suppliers and the auctioneer may benefit of awarding bundles of units
instead of separate units. The winner determination problem in this auction poses a challenge
to the auctioneer. We present an exponential formulation and a polynomial formulation for
this problem, both based on integer linear programming. The polynomial formulation proves
to find the optimal set of bids in amatter of seconds. Results of the real-world implementation
are reported.

B G. Durán
gduran@dm.uba.ar

1 Departamento de Computación, FCEN, UBA, Buenos Aires, Argentina

2 CONICET, Buenos Aires, Argentina

3 Instituto de Cálculo, FCEN, UBA, Buenos Aires, Argentina

4 Departamento de Matemática, FCEN, UBA, Buenos Aires , Argentina

5 Departamento de Ingeniería Industrial, FCFM, Universidad de Chile, Santiago, Chile

6 Department of Business and Management Science, NHH Norwegian School of Economics,
Bergen, Norway

7 Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-016-2164-x&domain=pdf
http://orcid.org/0000-0002-8901-3734


570 Ann Oper Res (2017) 258:569–585

Keywords Multi-item auction · Asymmetric bidders · Quantity discounts · Integer linear
programming

1 Introduction

Auction processes are methods of buying and selling goods and services that are potentially
very efficient and thus can increase the economic welfare of all involved actors. For this to
be the case, however, it is crucial that the design of the auction truly captures the actors’
preferences and the nature of the goods or services. An auction mechanism can be defined
as the specification of all possible bidding strategies available to the participants, and of an
outcome function that maps these strategies to an allocation of items and corresponding pay-
ments the participants need to make or receive (Abrache et al. 2007). The rise of the Internet
and e-commerce have opened up a huge field of application for studying and improving
auction mechanisms in which Operations Research is making a major contribution.

Real-world auctions frequently involve buying or selling multiple products. This leads
to a multi-unit auction if all products are identical (Kwasnica and Sherstyuk 2013), or to a
multi-item or multi-object auction if products differ from each other (Demange et al. 1986).
On its hand, products are often composed of a complex mix of goods and services in which
logistic factors play a central role. Since the material component of each unit of the product
is identical by definition, each bidder’s final unit price would supposedly be very similar. But
due precisely to the logistic component, this simple criterion is not generally valid. Because
product suppliers are heterogeneous, each will have cost advantages or disadvantages relative
to its rivals in providing certain goods in the product mix. Also, a supplier with logistics
facilities in a given area may find some increasing returns-to-scale in awarding several units
in the auction. Such asymmetries among bidders create the conditions for what the literature
refers as asymmetric auctions (Hubbard and Paarsch 2014; Maskin and Riley 2000).

An example of auctions with asymmetric bidders is the auction organized by JUNAEB,
an agency of the government of Chile, for the contract to provide meals to the country’s
5,000 public schools. Under the scheme some two million meals per day are served to school
children 200 days a year at a cost to the public treasury of close to a billion dollars. The
product delivered is a lunch composed of food items such as chicken or rice that are highly
homogeneous goodswhose quality can be specified in detail and are thus conceptually similar
to a commodity. These food itemsmust be transported, stored, cooked and served, thus posing
a logistical problem of considerable complexity. In this case the spatial component is a key
element in the logistics and therefore affects the quality of the product. There is a significant
difference between supplying meals in Santiago, a major city of 6 million inhabitants, and in
a rural area, leading firms to specialize and thus be efficient for certain supply conditions but
not others. To optimize the purchase process a combinatorial auction (Cramton et al. 2006)
was designed in which the country is divided into territorial units that are the objects to be
auctioned and can be grouped by the potential suppliers into packages they either accept or
reject on an all-or-nothing basis. It is this characteristic that gives the school meals auction its
combinatorial nature and allows each supplier to specify its full costs for each territorial unit
more clearly. The process has operated successfully since 1997 (Catalán et al. 2009; Epstein
et al. 2002; Durán et al. 2011).

Another example of auctions with asymmetric bidders is the procurement of bus routes in
London (Glaister and Beesley 1991; Kennedy 1995). The city’s bus network consists of some
800 routes covering an area of 1630 square kilometers and is used by more than 3.5 million
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passengers a day. Before the system was deregulated these services were run by a city-owned
entity, but since privatization in 1984, provision has been awarded to transport firms through
annual auctions. Implementation of the processwas gradual, for although the first auctionwas
held in 1985, it was not until 1995 that one-half of the network’s routes had been auctioned at
least once. Since then the system has stabilized, with 20%of the network auctioned each year.
The arrangement is considered to be a success, having led to improved service quality and
reduced costs for the public transport authority. The product supplied through the London
bus auction can also be divided into two main components: the buses themselves, which
are homogeneous, and the logistics involved in operating them, which include supplying
fuel and lubricant, carrying out repairs, oil changes and other maintenance, and hiring and
training professional bus crews. The logistic capabilities of the suppliers vary, each having
different degrees of cost advantage or disadvantage relative to rival firms depending on the
route. These variations arise due to asymmetries among the suppliers in such factors as the
locations of their garages within the city, the locations of their crews’ personal residences and
their accumulated knowledge and skills in operating routes with different levels of demand.

Other examples of auctionswith asymmetric bidders include highway procurement in Cal-
ifornia (Jofre-Bonet and Pesendorfer 2000), snow removal contracts in Montréal (Flambard
and Perrigne 2006) and electricity markets in Spain (Aparicio et al. 2008).

In this paper we examine the case of an asymmetric multi-item auction for supplying Inter-
net services to public schools in the Argentinian capital of Buenos Aires. The asymmetries
in this case arise because Internet service provision to any given school is highly constrained
by the physical location of the existing supply infrastructure, the geographical distribution
and capacity of each firm’s installed technology. The case dates back to 2008 when the city
government of Buenos Aires planned to invite tenders for provision of the Internet services
to 709 schools locations over a 2-year period. The original plan of the city contemplated
an auction design in which participating firms bid separately on each school but were not
required to bid on every one. The value of a bid would be the monthly price quoted by the
bidder for service provision meeting certain previously specified technical requirements. For
each school the winning bidder would be the firm submitting the best bid. This design had
two main problems, however. First, no discounts for quantity were permitted, which had the
effect of raising the average price bid by interested suppliers. Previous literature recognizes
quantity discounts as an effective way to improve the outcome of auctioneers, for example,
in the context of food and car manufacturers (Davenport and Kalagnanam 2002; Hohner
et al. 2003; Kameshwaran et al. 2007). Second, the asymmetries due to each firm’s installed
technology posed a limiting factor on its participation. This meant that in areas of the city
with relatively little or no competition (i.e., few firms or a single firmwith technology already
installed), therewas a risk that suppliers would submit high bids and even engage in collusion.
Previous literature on auction theory recognizes competition as crucial for the profitability
of an auction (Klemperer 2004) which is also supported by empirical evidence (Samuelson
2014). It was, therefore, a challenge for the city to procure the Internet service at fair prices
in schools where there was no competition.

The present study reports on an auction proposal suggested by the authors that was even-
tually adopted by the city government authorities in place of their original plan. The proposed
design is a single-round first-price sealed-bid multi-item auction, characterized by asymmet-
ric bidders and quantity discounts. The aim of the alternative was to lower the city’s costs.
It allowed for the fact that not all participating firms were able to provide service to every
school, and permitted them to offer quantity discounts. The schools were not considered as
separate units; rather, the individual price the city paid to the supplier of each one depended
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on the number of schools that firm was awarded, and it is uniform for all the schools awarded
to the same firm.

An auction process built around this format involves the development of mathematical
models to determine which is the best set of bids for the auction organizer, and the imple-
mentation of algorithms to solve the models. In these tasks, Operations Research play a
fundamental role. We formulate two integer linear programming (ILP) models aimed at
minimizing the total cost of procurement. The first formulation, although correctly cap-
tures the combinatorial nature of the auction, has an exponential number of variables
which can be permuted without changing the structure of the problem. In consequence, the
formulation falls into a well-known phenomenon called symmetry (Margot 2010), which
makes it extremely difficult to solve. The second formulation has a polynomial num-
ber of variables and restrictions in the number of schools and bidders. The main family
of variables in this formulation expresses how many schools are assigned to each win-
ning bidder in each region or “competition unit” generated after the bids are submitted.
This formulation, a significant methodological contribution of this paper, is more efficient
than the first one in that it sidesteps the symmetry issues and was the one finally used in
practice.

The rest of this article is organized in five sections. “Design of the auction for Inter-
net service procurement in Buenos Aires schools” section reviews the various alternatives
that were considered for the design of the school Internet service auction and describes the
format finally settled on, which fully incorporates the possibility of quantity discounts and
the bidding firms logistical constraints. “Mathematical formulation of the proposed auction”
section sets out two mathematical models for solving the problem of awarding the schools
to bidders in such a way as to minimize total cost under the chosen format. “Solution fea-
tures” section explains how all the optima of a given instance are obtained using an iterative
process and proposes a simple algorithm for distributing the schools among the winning
bidders in cases where there is more than one winner for a given competition unit. “Bids
and results of the Internet procurement auction” section describes the experience of apply-
ing the proposed auction, and finally, “Discussion and conclusions” section presents our
conclusions.

2 Design of the auction for Internet service procurement in Buenos Aires
schools

In this section we set out various auction design alternatives we proposed and discuss the
characteristics of each before describing the one that was finally implemented. As mentioned
in the introduction, the original plan of the city contemplated an auction design in which
participating firms bid separately on each school. The winning bidder for each school would
be the firm submitting the best bid. The main objective at this stage was to develop a design
that would generate competition between potential auction participants through quantity
discounts in order to achieve the lowest price possible (the more schools allocated to a firm,
the lower the unit price) while ensuring the process was transparent and not biased either
towards or against any particular bidder. As noted above, the main factor in the bias issue
is that Internet service provision to a specific physical site depends on the location of the
technology infrastructure, and it is precisely this which defines the asymmetric nature of
the auction. For a firm with no technology installed in the area of a given school, providing
service to it would be very costly.
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Fig. 1 Buenos Aires school
districts

2.1 Auction based on territorial units

The city of Buenos Aires is divided into 21 school districts (see Fig. 1). To include the ability
to offer quantity discounts in the design we first considered the approach noted above for
auctioning school meal services in Chile, with in this case the school districts as the territorial
units. Firms would bid on combinations of districts and a mathematical model would allocate
the award so as to achieve themost advantageous price structure. Each unit would be awarded
entirely to a single firm, which would then have to provide Internet service to every school
within that unit.

The advantage of this formulation was that it allows quantity discounts and therefore
addresses the city’s concern to achieve lower prices by promoting competition among
potential suppliers. The disadvantage, however, was that it took no account of the firms’
asymmetries due to their existing technology infrastructures. If the city school district divi-
sion had been used, firms with technology installed in only certain parts of a district would
have had to significantly raise their bids to finance an extension into the remaining parts.
These providers could then have objected, and justifiably so, that the auction process was
unfair. This particular territorial unit formulation had therefore to be rejected.

A different approach was then tried that began with an analysis of the radius of action
of each potential bidder’s installed technology. The radii so determined were superimposed
on the school-district division to form a partition consisting of 11 territorial units, each
aggregating various districts, that maximized the overlap between the units and the suppliers’
existing coverage patterns (see Fig. 2). But this alternative also had its shortcomings. For a
start, the firms’ radii of action were estimated by the city authorities rather than the firms
themselves and were therefore subject to error; also, there was still a risk that some units
would have little competition.
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Fig. 2 Division into territorial units based on firms’ radii of action and school districts

2.2 Multi-item auction based on competition units

In light of the above drawbacks, the idea of basing the auction on territorial units defined
a priori was abandoned and efforts were redirected to the development of a method (the
one eventually adopted) in which each firm submits a sealed bid indicating which schools
it would supply and a schedule or curve of prices as a function of the quantity of schools it
awards. The schedule must be non-increasing in the quantity of schools. For this purpose, the
auctioneer informed the firms beforehand a set of quantity intervals T . Each interval t in T is
delimited by a lower bound mint and an upper bound maxt . Thus, the bid submitted by firm i
consists of a tuple (S, c1, . . . , cu), where S is the set of schools firm i is willing to supply, ct
is the price that firm i charges per school if it awards a quantity of schools in interval t , and
u denotes the interval such that |S| ∈ [minu,maxu]. Note the price in an interval is the same
for all schools the firm bids on, and would thus be the “unit price per item” regardless of any
given school’s particular location. The city would then determine the set of winning bids in
such a way as to minimize total cost, paying each chosen supplier the unit price specified in
the schedule it submitted for the quantity it is to supply.

The resulting auction process is a single-round first-price sealed-bid auction with quantity
discounts and which takes into account the asymmetries of the bidders by allowing them to
specify the schools they are willing to supply given its logistical restrictions.

Note by specifying the set S on its bid a firm states that it is willing to provide the service
in any subset of S. Thus, the auction can be interpreted as a combinatorial auction, where the
packages of items that a firm bid on are all the subsets of schools contained in S.
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Though for the case studied here a multi-round auction mechanism could have been used,
it was rejected by the city authorities due to the complexity involved in its formulation (for
a detailed analysis of multi-round auctions, see Ausubel and Milgrom 2002).

Following previous literature (Catalán et al. 2009; Epstein et al. 2002), it was suggested
that an upper bound be placed on the number of schools that could be awarded to a single
bidder to prevent the formation of monopolies, but the idea was rejected by the city, which
saw no disadvantage in awarding all of the schools to the same firm if doing so meant getting
the best price. Also, no cost had to be considered in the number of awarding firms in any
given area of the city. It is important to remark here that, in addition to the schools, the
market for internet suppliers include a number of other users, such as private householders
and companies. These account for about 300,000 users, which provide conditions for the
firms to keep competing even if only one or few of them would award all the schools.

A potential problem with the above mechanism (shared by the city’s original proposal) is
that a given school might only interest a single firm, which puts in a very high bid (though it
would then be committed to the same high price for every other school it bids on). For this,
the city sets a reserve price which is uniform for all schools. If for a given school there is no
bid offering a price respecting this reserve price, the city could declare the auction void for
that particular item and procure Internet service for it directly (for example, by contracting
with the same firm privately at the going market unit price). Otherwise, however, this design
is free of almost all of the problems that arise with the previous proposals and meets the
objective of fostering competition, low costs and transparency.

• In terms of competition, since a single unit price within the same quantity interval must
be quoted for all schools supplied, firms cannot bid a high price where competition is
weak and a lower one where it is strong.

• In terms of cost, quantity discounts are captured through a quantity-graduated price
schedule, resulting in lower total costs for the city.

• In terms of transparency, it takes into account the firms’ existing technology infrastruc-
tures, by allowing firms to specify the sets of schools it is willing to provide the service.
Thus, each firm can define its own radius of action based on its logistical restrictions.

The auction mechanism in this design is in fact a combination of (a) the city’s original
intention to auction each school separately (thus avoiding objections by potential bidders
that there is too little overlap between the territorial units and their radius of action), and (b)
the desire to increase competition by allowing bids to include quantity discounts. Since all
schools are involved the mechanism is a multi-item auction, and since each bidder defines its
own radius of action, the territorial units are still generated as regions of direct competition
between bidders. A distinctive aspect is that these regions are defined subsequent to reception
of the bids given that they are determined by the maximal intersections of the sets of schools
each participant has bid on. The regions formed by these maximal intersections will also be
referred to hereafter as competition units.

3 Mathematical formulation of the proposed auction

In this section we develop two integer linear programming models for optimally choosing
the winning bids in the above-described multi-item auction by minimizing total cost to the
city. The first model is an exponential formulation presented simply to demonstrate the
combinatorial nature of the auction while the second one is an efficiently solvable model
with a polynomial number of variables and constraints (on the number of schools and firms)
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and was therefore the specification actually used in practice. Both models search for the
solution that awards all of the schools and is optimal for the city.

3.1 Exponential formulation

Let I be the set of firms (i.e., bidders) and E the set of schools. For each firm i ∈ I , we define
Hi ⊆ E as the set of schools the firm i bid on. For each k = 0, . . . , |Hi |, we define as γik
the unit price per school bid by firm i if it is awarded exactly k schools. We also introduce
the binary variable xi S for each i ∈ I and each subset S ⊆ Hi such that xi S = 1 if firm i is
awarded exactly the set S of schools, otherwise xi S = 0. With these definitions we can then
state the integer linear programming model as follows:

min
∑

i∈I

∑

S⊆Hi

γi,|S| |S| xi S (1)

∑

i∈I

∑

S⊆Hi :s∈S
xi S = 1 ∀ s ∈ E (2)

∑

S⊆Hi

xi S = 1 ∀ i ∈ I (3)

xi S ∈ {0, 1} ∀i ∈ I, ∀S ⊆ Hi (4)

The objective function (1) attempts to minimize total cost. Constraints (2) specify that
each school must be awarded to exactly one firm while constraints (3) impose that each firm
must be awarded exactly one subset of the schools it bid on. The binary characteristic of the
variables is stated in (4).

Note for themodel to be feasible, all schoolsmust be covered by at least one bid.Otherwise,
the model would turn infeasible due to constraints (3). An alternative in this case would be
to run the model by including in set E only the schools covered by at least one bid (this
subset can be easily computed before building the integer programming model) and, for the
remaining schools, the auctioneer would have to procure the service through another means.
Other alternativewould be to cancel the auction and perform it again encouraging providers to
extend their bids. As we will report later, however, none of these alternatives were necessary
in practice, as all schools were included in at least one bid.

Also, note since xi S is defined for all S ⊆ Hi and due to the quantity discounts, awarding
a whole set to a given firm is at least as good for the auctioneer as awarding its separate parts
to this firm. The subsets of Hi also includes the empty set, which has cost zero. Constraints
(3) are helpful to identify the maximal set chosen for each company.

Model (1)–(4) explicitly reflects the combinatorial nature of the auction given that each
winning bidder will in the end be awarded one subset of schools on which it bid at a unit
price per school that depends on the number of schools in the award. However, since the
number of variables in the model grows exponentially with the number of schools, the model
is computationally impractical unless a column generation mechanism is implemented.

Furthermore, this formulation is highly symmetrical, because variable xi S is defined for
each S ⊆ Hi and the cost contributed by firm i in the objective function is the same for subsets
of the same cardinality. Note there are

(Hi
k

)
subsets of cardinality k that can be formed among

the schools firm i bid on (k ≤ |Hi |). This might turn to be a relatively high number. For
example, if the bid of a firm contains 100 schools, there are more than 1013 different subsets
containing 10 schools. Keeping a binary variable for each of these subsets, despite each of
them would contribute the same cost in the objective function, might involve considerable
computational effort. Moreover, if for a subset of schools S ⊆ E various firms make bids
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and in the optimum S is partitioned among more than one firm, then all partitions of S that
allocate the same number of schools to each firm are alternative solutions with the same
objective function value. This property, widely studied in the literature (see, for example,
Jeroslow 1974; Margot 2010; Méndez-Díaz and Zabala 2006; Rey 2004), is known in ILP as
symmetry and can increase the computational complexity of the solution enormously. This
would be particularly problematic in the context of an auction process where, for the sake
of fairness and transparency, all optimal solutions should be identified and submitted to the
decision-makers. With so many equivalent solutions, finding all optimal solutions would be
no simple task.

3.2 Polynomial formulation

This formulation is motivated by the fact that in the context of the present problem, for any
given subset of schools on which the same firms are bidding, it suffices for optimization
purposes just to determine how many schools from the subset are awarded to each firm;
identifying which schools each firm is awarded can be determined a posteriori.

The schools are then partitioned into regions that are the classes of the equivalence relation
defined such that two schools are equivalent if they have been bid on by exactly the samefirms.
Regions can be thought of as competition units whose schools are competed for by a given
group of firms or just a single firm. The schools within each such unit are indistinguishable
from one another in terms of the final award. The competition units are thus constructed after
the bids are placed based on the schools the different subsets of firms bid on.

Recall E denotes the set of schools and I the set of firms. For simplicity, in set E we only
consider schools that are included in the bid of at least one firm. We are given as an input
the bids matrix B ∈ {0, 1}E×I , such that Bi j = 1 if firm j bids for school i and 0 otherwise.
We can then test if two schools are equivalent (with the equivalence definition above) in time
O(|I |). By using well known data structures and a naïve implementation we can find the
set J of equivalence classes, i.e. regions, in time O(|E |(|I | + log |E |)). For that and more
involved algorithms see Hopcroft and Ullman (1973); Tarjan (1975).

If there is a region for which the set of firms bidding on it is empty, that region will not
take part of the model and the auctioneer would have to attempt procuring the uncovered
schools by other means.

Example 1 Suppose the set of schools is E = {s1, s2, s3, s4, s5, s6} and the set of firms is
I = {i1, i2, i3}. Suppose the sets of schools covered by the bid of each firm are: Hi1 =
{s1, s2, s3, s4, s6}; Hi2 = {s1, s2, s3}; Hi3 = {s1, s4, s5, s6}. Figure 3 illustrates this situation.
Schools s2 and s3 are equivalent, and schools s4 and s6 are equivalent. We obtain J =
{{s1}, {s2, s3}, {s4, s6}, {s5}}. The resulting competition units in this instance are: {s1}, where
all companies bid; {s2, s3}, where only firms i1 and i2 bid; {s4, s6}, where only firms i1 and i3
bid; and {s5}, where only firm i3 bids. These competition units are represented by the ovals
in Fig. 3, while the squares delimit the set of schools covered in the bid of each firm.

Fig. 3 Illustration of an example
with six schools, three firms and
four competition units
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Once the competition units are computed, an integer linear model determines how many
schools are awarded to each firm in each of the competition units generated by the bids. The
formulation of this model is given below.

1. Model parameters:

• I : set of firms;
• J : set of competition units (regions), each one defined as the intersection of the

schools contained in the bids by each subset of firms;
• E j : set of schools in competition unit j ∈ J (recall by definition of competition units

the sets E j are disjoint);
• I j : set of firms bidding in competition unit j ∈ J (the sets I j are not necessarily

disjoint);
• Ji : set of competition units in which firm i has bid (the sets Ji are not necessarily

disjoint);
• T : quantity intervals (i.e., numbers of schools) making up the graduated price sched-

ule. For this auction, the following intervals were arrived at in discussions with the
city authorities: T = {0–19, 20–39, . . ., 80–99, 100–149, 150–199, 200–299, . . .,
600–699, 700–709};

• mint and maxt : the lower and upper bounds of quantity interval t ∈ T ;
• cit : price per school in quantity interval t ∈ T bid by firm i ∈ I such that if a firm

is awarded between mint and maxt schools, it will charge a price equal to cit for
supplying each one.

2. Model variables:

• xi j ∈ Z≥0, j ∈ J, i ∈ I j : number of schools in competition unit j awarded to firm
i ;

• yit ∈ {0, 1}, i ∈ I, t ∈ T : variable defining whether quantity interval t is applied to
firm i ;

• zit ∈ Z≥0, i ∈ I, t ∈ T : number of schools awarded to firm i in quantity interval t .

3. Formulation of the model:

min
∑

i∈I

∑

t∈T
cit zi t (5)

∑

i∈I j
xi j = |E j | ∀ j ∈ J (6)

∑

j∈Ji

xi j ≥ mint − M(1 − yit ) ∀ i ∈ I, ∀ t ∈ T (7)

∑

j∈Ji

xi j ≤ maxt + M(1 − yit ) ∀ i ∈ I, ∀ t ∈ T (8)

∑

t∈T
yit = 1 ∀ i ∈ I (9)

zit ≥
∑

j∈Ji

xi j − M(1 − yit ) ∀ i ∈ I, ∀ t ∈ T (10)

xi j ∈ Z≥0 ∀ j ∈ J, ∀ i ∈ I j (11)

yit ∈ {0, 1} ∀ i ∈ I, ∀ t ∈ T (12)

zit ∈ Z≥0 ∀ i ∈ I, ∀ t ∈ T (13)
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The objective function (5) attempts to minimize total cost. Constraints (6) require that all
schools in each competition unit must be covered. Constraints (7) and (8) link variables x and
y such that yit = 1 if the number of schools awarded to firm i falls within quantity interval t .
M is the total number of schools in the auction, so in the present case M = 709. Constraints
(9) impose that each firm must be associated with a single quantity interval. Constraints (10)
force zit to be at least the total number of schools assigned to firm i as long as yit = 1, that
is, as long as the firm is associated with quantity interval t . Constraints (11)–(13) specify the
characteristics of the variables. The z variables can be defined as non-negative reals instead
of non-negative integers (that is, zit ∈ R≥0 for i ∈ I and t ∈ T ) given that in the optimal
solution they will in any case be integers due to the model’s constraints.

A noteworthy aspect of this model is that the number of variables and constraints is
polynomial in the numbers of schools and firms given that the numbers of competition
units and quantity intervals are bounded above by the number of schools. Furthermore, this
formulation is more efficient than the more natural one (also polynomial in the number of
schools) that would be obtained by considering each school individually, that is, with a binary
variable for each school and each firm. Such a version, as well as containing more variables
and constraints than the model just set out above, would have serious symmetry problems
impacting negatively on the process of searching for multiple optima to be described in the
next section.

4 Solution features

A solution to the polynomial formulation can be found by a commercial solver, as we will
report in our results. Given an optimal solution, however, we still have to search for alternative
optima and to allocate schools to the auction winners. These two tasks are addressed in the
following subsections.

4.1 Search for alternative optima

It was noted earlier that when ILP models are applied to auctions, every optimal solution
should be found and submitted to the auction organizer to ensure transparency and fairness
between bidders. In cases where there is more than one optimal solution, the organizer will
decide the final award based on whatever criteria they choose to apply.

To incorporate this consideration, once the optimum of the polynomial model is generated
we add constraints to render this solution infeasible in all further iterations while maintaining
every other solution feasible, and then run the model again. When a new optimum is found
we check whether the objective function value is the same as or greater than the value for the
previous optimum. This procedure is iterated as long as the same objective function value
is obtained, thus generating all possible optimal alternatives. In what follows we describe
the constraints that must be added at each iteration to exclude the optimum obtained in the
immediately preceding one.

Let xi j = a ji be the optimal solution for each firm i ∈ I and each competition unit j ∈ J .
For each value a ji > 0 we add two binary variables, w j i and w′

j i , which will take the value
of 1 if xi j < a ji and xi j > a ji , respectively, and 0 otherwise. To express these conditions
and ensure that at least one of the x variables changes its value in each new optimal solution,
the following constraints are added:
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xi j ≥ (a ji + 1)w j i ∀ i ∈ I, j ∈ J such that a ji �= 0

M − xi j ≥ (M − (a ji − 1))w′
j i ∀ i ∈ I, j ∈ J such that a ji �= 0

∑

a ji �=0

(w j i + w′
j i ) ≥ 1

Again, M is the number of schools. The addition of these new variables and constraints
could potentially prolong the model’s solution times, particularly if numerous iterations were
performed to eliminate alternative optima. This could occur in particular if there were various
firms with similar bids, giving rise to many different optimal solutions. Finally, it should be
noted that this process of eliminating optimal alternatives is possible because the model
simply determines quantities of “equivalent” schools to be assigned to each firm without
specifying any further identifying details. Were it to do the latter, the number of optimal
alternatives would be too high for the model to be practically solvable.

4.2 Distribution within a competition unit

Once the model has been solved and the final solution obtained, schools must be assigned
to the winning bidders in each competition unit. As a first step, the schools in a competition
unit where there is only one winning firm are assigned to the corresponding firm.

In a second step, the schools in competition units where there are two or more winning
firmsmust be allocated to these firms. This stepmust be performed in a post-processing phase
since the model does not assign individual schools to winning bidders, but only specifies the
number of schools xi j to be assigned to each winning bidder i in each competition unit j .
Given the optimal value of the variables xi j , there are multiple solutions to the problem
of assigning schools to firms in a shared competition unit. This is not critical because the
winning firms and their economical awards are already decided. Also, note that the chosen
assignment does not change the value of the objective function identified by the optimal
solution of the model.

In what follows we propose a simple procedure to find a unique assignment in cases
where there is more than one winning bidder in a single competition unit. This procedure is a
straightforward greedy algorithm that pans each region along a north-south or west-east axis,
whichever is longer, and assigns first the required number of schools to the firm which in the
first step awarded the northernmost (easternmost) school among the winning firms that share
the competition unit. Suppose we must assign xi j schools to this firm i in competition unit j .
These schools are chosen as the xi j northernmost (easternmost) schools of this competition
unit. The procedure is then repeated iteratively with the remaining schools to assign the
required numbers xi j to each additional winning bidder i until all the schools of competition
unit j have been assigned. By proceeding in this manner the “sub-regions” assigned to each
winning bidder will tend to be compact areas, thus simplifying the logistics of providing the
service. This algorithm is quite simple and easily implemented by a manual operator. Under
any draw in the procedure (e.g., equal schools’ coordinates or if no firm awarded a whole
competition unit in the first step), we can choose randomly.

Example 2 Consider the situation illustrated in Fig. 4. Schools s(1,1), s(2,2), s(3,1) and s(4,2)
form a competition unit j1 thoroughly awarded to firm i1, who is the only bidder for these
schools. Likewise, schools s(7,2) and s(9,3) form a competition unit j2 thoroughly awarded to
firm i2. After that first step, the competition unit j3 formed by schools s(5,3) and s(6,1) must
be shared between i1 and i2, in such a way that xi1 j3 = 1 and xi2 j3 = 1. The north-south
axis in this example is the longest one for the shared region. Therefore, firm i1 gets awarded
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Fig. 4 Illustration of an example with eight schools, two firms and three competition units

school s(5,3), which is the northernmost school of the competition unit j3 we are splitting.
Then, firm i2 gets awarded the remaining school s(6,1).

More sophisticated procedures could be explored, but they would likely involve longer
running times. For example, schools could be assigned in such a way as to minimize the
maximum distance between any two assigned to the same bidder. Another possibility would
be to use clustering algorithmswith compactness requirements (see for exampleKaufman and
Rouseeuuw 2005; Lloyd 1982). Whichever procedure is used, it should ideally be disclosed
by the auctioneer beforehand, for purposes of transparency and fairness of the auction. As
reported in the following section, however, none of these procedures were necessary in the
actual implementation.

5 Bids and results of the Internet procurement auction

Four firms participated in the auction process. Firm A bid on the entire set of 709 schools,
which was foreseeable since the provider was known to already have coverage in the whole
of Buenos Aires. Firm B bid on 348 schools covering the entire central zone of the city. Firm
C bid on 99 schools in the city’s northern zone and Firm D on 97 schools also on the north
side, the wealthiest part of the city where greater competition was expected. The areas bid on
by each firm are shown on the city map in Fig. 5, and the six competition units determined
once the bids were submitted are depicted in Fig. 6. As can be seen, there were 248 schools
in the southern zone of the city where Firm A was the only provider to enter a bid. Neither
the city authorities nor Firm A itself knew that it would be the sole bidder in that area.

The prices bid by each of the four firms are tabulated in Fig. 7 for each quantity interval.
The city authorities considered a good price to be about U$S 250 per month and the best
(i.e., the most discounted) prices bid by all four firms were in that range. The bid prices
are graphed in Fig. 8. The schedule of prices of Firm A is flat in the first intervals and
extremely steep at the end, which clearly reveals that this firm’s bid was designed with the
intention of supplying all 709 schools. This “all-or nothing” behavior is in line with previous
literature (Chernomaz and Levin 2012; Cantillon and Pesendorfer 2013) which suggests the
strongest or global bidder may behave strategically by favoring its bid for all items. While
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Fig. 5 Areas of the city bid on by each firm

Fig. 6 Competition units
determined once bids were
opened

Fig. 7 Bids by each firm in each quantity interval

this behaviour could lead to inefficiencies in absence of synergies, it may also improve the
outcome for the auctioneer when synergies are high.

The model was coded in Zimpl and solved using CPLEX solver package running on a PC
with a 1.6GHz processor and 2 GB of RAM. Execution time was a matter of seconds. The
model generated a single optimum solution of the problem that awarded all 709 schools to
firm A at a total monthly cost to the city of U$S 166,501, implying a total expenditure for
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Fig. 8 Graphical representation of bids by each firm in each quantity interval

the 2-year supply period of U$S 3,996,037. The average monthly unit cost was U$S 234.84,
the price bid by the firm A for the last (most discounted) quantity interval.

6 Discussion and conclusions

This paper contributes to the literature on asymmetric multi-item auctions with a piece of
empirical evidence from the procurement of Internet service to Buenos Aires public schools.
The asymmetries among providers in this auction are due to the geographic location of their
pre-existing infrastructure, which limit their ability to offer the Internet service to all schools.
This affects the degree of competition within the different areas of the city. Since the details
on the infrastructure of the firms are unknown for the auctioneer beforehand, it is a challenge
to configure packages of schools to auction them together. At the same time, allowing the
companies to bid on packages of schools is desirable so that they can reflect their economies
of scales and the procurement cost for the auctioneer turns lower.

We proposed a design for this auction allowing for quantity discounts, which are specified
in the bid of each firm by a schedule or curve of prices as a function of the number of schools
it awards. The design introduced the concept of competition units, which are the maximal
intersections of the sets of schools each participant has bid on. These units capture the fact
that not all companies have infrastructure to provide the service in all areas of the city. The
design prevents firms from bidding high prices in areas where competition is weak and low
prices where it is strong by imposing that the unit price for all items bid on be identical.

The winner determination problem in the resulting auction is a challenge for the auc-
tioneer. We presented two integer linear formulations for this problem. A first formulation,
exponential in the number of schools, reflects the combinatorial nature of the auction but
is computationally impractical. A second formulation, polynomial in the number of schools
and firms, proved to be efficient and was the one used in practice.

Our work was implemented in the auction of a supply contract for Internet service to the
709 schools in the city of Buenos Aires. The polynomial formulation solved the problem of
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determining the best bid in just a few seconds. Based on the bids actually submitted in the
Buenos Aires auction, the definitive solution awarded all of the schools to the same bidder
(Firm A) at a unit price of U$S 234.84 per month. This is consistent with previous literature
that predicts the strongest bidder is always the winner (Maskin and Riley 2000; Coatney et al.
2012).

Note the awarded price is 6% lower than the U$S250 regarded as good by the city before-
hand. Using this price as reference and the auction format the city originally intended to
perform (where all 709 schools were going to be auctioned separately), the savings gener-
ated by themulti-item formatwith quantity discount and the optimizationmodel are estimated
in about U$S 257,963 for the 2-year supply period. Additional perspective on the effective-
ness of the proposed auction format may be obtained by calculating what would have been
the highest unit price Firm A could have bid for the most discounted quantity interval and
still be awarded the contract for every school. This can be done by running the polynomial
model presented in “Mathematical formulation of the proposed auction” section with differ-
ent values for Firm A’s most discounted price. A binary search was done over the range of
possible values for this price until the limit value was found. The highest price turned out to
be U$S 401.38, or 71% above the actual bid value. This suggests that the auction achieved
a competitive price in the whole city even if in some areas there was no competition for
the strongest bidder. This adds some evidence in line with the experiments recently reported
by Samuelson (2014), that advocate for a sealed-bid auction in the asymmetric multi-item
auctions, because subjects in the role of strong buyers fail to take full advantage of their
favorable value distribution. Empirical outcomes are also valuable in the debate on equilib-
rium of assymmetric auctions, for which most known results to date are derived numerically
rather than analytically (Hubbard and Paarsch 2014).

A direction for further research is to compare the design and solution approach proposed
in this article with other designs and approaches, by means of an experimental study such
as in Chernomaz and Levin (2012). Another direction is attempting to obtain a structural
estimation or semiparametric estimation of this auction. Since some inputs are common to
all firms but they differ based on the location of their infrastructure, a model within the
affiliated private value paradigm which allows for dependence among bidders’ private values
is particularly appealing (Li et al. 2002; Campo et al. 2003; Hubbard et al. 2012).
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