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Background: Seed mass is a life history trait that is related to invasiveness. Under limiting conditions, a trade-off is
observed whereby an increase in seed mass occurs at the expense of seed numbers; if the above trade-off holds across
climatic gradients it can provide an opportunity to assess the fitness/invasive potential of exotic plants.
Aims: To examine the variation in the life history traits of Eschscholzia californica populations across climatic gradients and
to relate these traits to observed invasiveness.
Methods: We examined 19 populations in Chile. For each population we related seed mass, seed number, the slope of trade-
off between seed mass and number and plant density with annual precipitation and mean annual temperature.
Results: Seed number and the coefficient of variation in seed mass were positively correlated with climatic variables. Trade-
off was detected in 26% of the populations and no relationship was detected with climatic gradient. Plant density was
negatively associated with precipitation.
Conclusions: The results suggest that for E. californica producing seeds with a variety of sizes is an optimal strategy to face
geographic heterogeneity and hence to increase its invasiveness. Increased production of seeds at the cool and wet southern
limit of the current range of the species does not contribute to an increase in its invasiveness.
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Introduction

Seed mass is a phenotypic trait that determines offspring
and maternal fitness in plants (Venable and Brown 1988;
Lalonde and Roitberg 1989; Hutchings 1991). Larger
seeds germinate with higher probabilities than smaller
ones and increase survival during juvenile stage (Moles
and Westoby 2006). Seed mass has a consistent genetic
base (Silvertown 1989; Venable 1992; Sadras and Egli
2008), and due to its adaptive value is one of the targets
of natural selection (Rees and Venable 2007; Sadras
2007).

Under resource limiting conditions, when there is a
restriction on the amount of energy that can be invested
in plant reproduction, there will be a trade-off between
seed mass and seed number (Grubb 2016; Smith and
Fretwell 1974; Leishman 2001; Messina and Fox 2001).
The optimal solution to this trade-off may differ depending
on the environment in which the plant is found. For
instance, in unfavourable environments plants with heavy
seeds are likely to be selected; this will lead to a reduction
in seed numbers but an increase in offspring fitness. In
favourable environments, on the other hand, plants with
light seeds are selected owing to their higher dispersal
abilities (Sallabanks 1992); this will lead to an increase
in seed number and consequently an increase in maternal
fitness. This trade-off has been widely examined in ecolo-
gical studies (Turnbull et al. 1999; Volis et al. 2002; Petrŭ

et al. 2006), but little examined along geographic gradients
(but see, Volis et al. 2002; Meng et al. 2014).

Among a variety of phenotypic traits examined to
explain invasiveness in exotic plants, seed mass has been
one of the most important attributes (Rejmanek and
Richardson 1996; Leger and Rice 2003; Van Kleunen
et al. 2010). Species with a smaller seed mass appear to
be more invasive than species with heavier seeds
(Rejmanek and Richardson 1996; Simberloff 2009). This
appears to hold at between-species level; however, we are
not aware of any studies that have examined the effect of
seed mass on plant invasiveness within a single species.

Eschscholzia californica Cham. (Papaveraceae) is an
herbaceous plant native to the west coast of the United
States (California) and is highly invasive in Mediterranean
ecosystems worldwide (Leger and Rice 2007). The species
was introduced in central Chile in the late nineteenth century
and currently occurs from 30°S to 38.0°S. This extensive
geographic distribution concomitantly with the notable pre-
cipitation and temperature gradients that occurs in Chile
(precipitations increase and temperature decreases with lati-
tude) provide an opportunity to examine the variation in the
life history traits of E. californica populations across envir-
onmental gradients and to relate these traits with plant inva-
siveness. Assuming that plant density is a proxy of
invasiveness, we hypothesised that there would be an inverse
relationship between observed plant density and seed mass.
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Materials and methods

The density of E. californica individuals was estimated by
sampling ten 5 m × 2 m randomly selected plots in each of
19 population, between 30.5°S and 36.9°S (Figure 1). To
determine seed numbers and seed mass, we collected an
average of 25 individuals per population (ranging from 9
at Hualqui to 30 at Puchuncavi) (Appendix 1) and three to
four pods per individual. For each pod we counted the
number of seeds and mean seed mass, determined by
dividing the total mass by the number of seeds in a pod.
Sampling was carried out between October 2009 and
February 2010 (late austral spring and summer).

We compared the seed number and seed mass between
populations with non-parametric Kruskall–Wallis tests; we
also estimated the coefficient of variation (CV) for each
trait in each population. As the CV is standardised, it was

possible to conduct comparisons between seed number
and seed mass.

Seed mass versus seed number trade-off (sm/sn trade-
off) was estimated for each population using the slope of a
linear regression analysis. The slope was estimated using
the standardised major axis analysis. This procedure opti-
mises the slope in function of the x- and the y-axes, with-
out assuming dependence on y over x, as is the case of
mass and seed number (Warton and Weber 2002). We
evaluated the significance of the slopes by using bootstrap
procedures (Efron and Tibshirani 1994). All statistical tests
were conducted using R v 3.2.3 (R Development Core
Team 2015).

Current climate data for every sampled site location
(Figure 1) was downloaded from WorldClim database
(http://www.worldclim.org/). We selected mean annual

Figure 1. Geographic distribution of sampled populations of Eschscholzia californica, central Chile.
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temperature (BIO1) and annual precipitation (BIO12) as the
most relevant climatic variables. Although,WorldClim offers
a variety of climatic variables, we select these variables for
their simplicity to capture the climatic gradient that exist in
Chile: they are highly significantly correlated with latitude
(Pearson test: r = −0.94, P≪ 0.001 for annual precipitation;
r = 0.71, P≪ 0.001 for mean annual temperature).

We ran spatial auto-regression models using climatic vari-
ables (independent variable) and the life history traits (depen-
dent variables): seed mass, seed numbers, CV of seed mass,
CVof seed number; we also included the slope of the sm/sn
trade-off. Unlike classic regression analysis, this model
weights the numerical differences of pairs of data according
to their geographic distance, assuming that geographically
close data are more similar than geographically distant ones,
correcting a possible genetic relationship between populations
and increasing the power of the analysis. For this analysis, we
used a software developed for spatial analysis inmacroecology
(SAM v 4) (Rangel et al. 2010). For the graphical representa-
tion of the most significant variables, we used smooth surface
analysis (Marra and Wood 2011).

In order to explore the relationship between life history
attributes and plant density (as a proxy of invasiveness) we
correlated life history attributes and climatic data with
plant density through spatial auto-regression models.
This analysis was conducted with 13 of the 19 as we
were unable to obtain density information for all the
populations.

Results

Themean seedmass obtained for all populations was 1.6mg ±
0.03 SE, ranging from 1.4 mg value at Vichuquen (34.778° S)
to value at 1.8 mg at Quintero (32.379° S). The mean number
of seeds per pod was 59.9 ± 5.2 SE, with a range from 25 in
Puchuncaví (32.732° S) to 107 in Coya (34.136° S). We
detected significant differences for seed number
(χ2 = 225.01; P < 0.001) and seed mass (χ2 = 71.69;
P < 0.001) among populations (Figure 2(a) and 2(b)). Seed
mass varied less than seed number (CV seedmass: 0.18 ± 0.01
SE; CV seed number: 0.42 ± 0.02 SE) (Figure 2(c)). A
significant negative relationship (trade-off) between seed

Figure 2. Seed mass (a), seed number (b) and coefficient variation of seed number and coefficient variation of seed mass (c) of
Eschscholzia californica populations along latitudinal gradient (axis x) (left, northern populations, right, southern populations). The
dotted line in the axis y represent mean for each metrics. In A y B, lines on the points represent the SE.
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mass and seed number was detected in 5 of the 19 populations
studied (26%) (Figure 3).

Variation in seed mass was associated positively and sig-
nificantly with the interaction between annual precipitation
and mean annual temperature, explaining 51% of the total
data variability (Table 1, Figure 4(a)); variation in seed num-
ber, in turn, was positively correlated with annual precipitation
(24% total variance; Table 1, Figure 4(b)). None of the regres-
sion models detected a relationship between climatic variables
and seed mass and the slope of the trade-off (Table 1).

Plant density was negatively associated with variation in
seed mass (r2 = 0.672; P = 0.012) and annual precipitation
(Table 1, Figure 5) and showed no relationship with the rest of
the plant life history traits.

Discussion

According to life history theory, the trade-off between seed
mass and seed number in plants occurs in environments
with limiting resources, such as water shortage (Leishman

2001; Messina and Fox 2001). In our study, we confirmed
the existence of this trade-off in 5 of 19 populations
(Ovalle, Illapel, Caimanes, Navidad, Curicó). This trade-
off did not respond to climatic gradients, contrary to our
expectations. It is probable that the trade-off is consequence
of limiting conditions that occur at local scale, for instance
soil chemistry variation, a fact that has been well documen-
ted in other studies (Lee and Fenner 1989; Jurado and
Westoby 1992). How to explain the 74% of cases where
we did not find the trade-off? It is possible that the regres-
sion analysis using the totality of individuals can obscure
the trade-off (if it exists) because we are including “opti-
mal” and “sub-optimal” individuals in a same analysis. This
methodological problem has been largely identified within
the literature (Grubb 2016); in field studies, however, it is
not possible to discern “a priori” which the optimal indivi-
duals are (those that maximise simultaneously seed mass
and seed number) within the populations. The only way to
do so is to conduct controlled experiments in the laboratory
(Grubb 2016).

Figure 3. Relationship between seed mass vs. seed number in Eschscholzia californica populations, central Chile. Line represents
estimated lineal regression conducted with smart wrapper (R program version 3.02). b represent the slope of the relationship, p represent
p-values. Populations are displayed from north to south (see Appendix 1).
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When we analysed each life history trait separately, we
found that seed number varied significantly and positively
with precipitation, while seed mass did not. The lower varia-
bility in seedmass than seed number is consistent with the idea
that seed mass has an important component of heritability
among plants (Moles et al. 2004, 2005a, 2005b; Moles and
Westoby 2006), while seed number is a plastic attribute, highly
dependent of environment (Sadras 2007; Sadras and Egli
2008).

An increase in seed numbers with precipitation alone
does not necessarily mean that invasive populations will
be viable in the future. Evidence shows that the population
growth rate of E. californica decreases significantly at the
humid extreme of the gradient (southern Chile) due to a
severe recruitment limitation of seeds to juvenile and
juvenile to adult stages (Peña-Gómez and Bustamante
2012). Thus, high fecundity expresses the potential of
individuals to maintain viable populations; however, this
may be inconsequential if plant survival is low during later
life cycle stages (Angert et al. 2009; Peña-Gómez and
Bustamante 2012). The species distribution model
(SDM) constructed for this species is concordant with
these results as they show that it has a very low likelihood
of spreading to the south of Chile (Peña-Gómez et al.
2014).

Considering these results, we suggest that the expan-
sion of this species beyond its current southern invasion
front is limited due to demographic constraints that occur
in areas with low temperature and high precipitation
simultaneously (see Stachowicz et al. 2002; Hellmann
et al. 2008). Despite lower seed numbers observed at the
northern xeric extreme of the gradient, we found increased
plant density, thus suggesting the possibility of further
expansion beyond the current northern geographic limits
if there is not dispersal limitation. This hypothesis is con-
cordant with SDMs which predict an expansion in the
north of Chile to approx. 28° latitude (Peña-Gómez et al.
2014). Coastal zones beyond 30° S (Figure 1) are rela-
tively warm and have enough coastal fog during all year
around (Rutllant and Fuenzalida 1991; Garreaud et al.
2008), that is, it is possible that potential new migrants
of this invasive species may survive and maintain viable
populations farther north. In other words, this species has
the potential to invade unique coastal desert ecosystem,
valuable for their endemism and for their vegetation
responses to sudden ephemeral precipitations, producing
the “flowering desert” (Armesto et al. 1993; Vidiella et al.
1999).

The significant interaction between precipitation and
temperature that appears to be related to seed mass varia-
bility suggests that an interesting non-linear synergy
affects seed mass. In fact, CV seed mass was highest
only at intermediate values of temperature and precipita-
tion at ca. 34° S, the centre of the distribution range of the
species (Figure 1). Considering the latitudinal gradient of
Chile, an increase in precipitation will result in a decrease
in temperature; therefore, at the centre of the geographic
distribution of this species, there appears to be a climaticT
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trade-off which implies a reduction of selective pressures
on seed mass, thus allowing the production of a wide
range of seed masses amongst individuals (Leishman and
Westoby 1994). For an invasive plant, such as E. califor-
nica, having the ability to switch between maternal fitness
(small seeds) and offspring fitness (large seeds) is a sig-
nificant advantage when faced with highly variable

climatic environments such as those found in central
Chile (Rutllant and Fuenzalida 1991).

Conclusions

The trade-off between seed mass and seed number in the
case of the geographic distribution of the exotic E.

Figure 4. Relationship between environmental variables and the life history traits for Eschscholzia californica populations with spatial
auto-regression. (a) Smooth surface of the seed mass variation coefficient in relation to annual precipitation (mm) vs. annual mean
temperature. Smooth surface explains the 81.2% of variance. (b) Linear regression between seed number and annual precipitation (mm).

Figure 5. Relationship between plant density and annual precipitation (mm) for Eschscholzia californica populations, central Chile.
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californica does not appear to be related to a climatic
gradient. The trade-off detected in some localities suggests
that factors not directly related to climate at smaller spatial
scales may be shaping their expression. The increase in
seed numbers and the increase of seed mass variability
suggest plastic responses to the climatic gradient.
However, the increase in seed numbers at its southern
range limit is not reflected in an increase in invasiveness.
In fact, we observed a reduction in plant density to the
south. This suggests that invasiveness is reduced at the
humid-cold extreme of the distribution range of the
species.
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