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Background: Seed mass is a life history trait that is related to invasiveness. Under limiting conditions, a trade-off is
observed whereby an increase in seed mass occurs at the expense of seed numbers; if the above trade-off holds across
climatic gradients it can provide an opportunity to assess the fitness/invasive potential of exotic plants.

Aims: To examine the variation in the life history traits of Eschscholzia californica populations across climatic gradients and
to relate these traits to observed invasiveness.

Methods: We examined 19 populations in Chile. For each population we related seed mass, seed number, the slope of trade-
off between seed mass and number and plant density with annual precipitation and mean annual temperature.

Results: Seed number and the coefficient of variation in seed mass were positively correlated with climatic variables. Trade-
off was detected in 26% of the populations and no relationship was detected with climatic gradient. Plant density was
negatively associated with precipitation.

Conclusions: The results suggest that for E. californica producing seeds with a variety of sizes is an optimal strategy to face
geographic heterogeneity and hence to increase its invasiveness. Increased production of seeds at the cool and wet southern

limit of the current range of the species does not contribute to an increase in its invasiveness.
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Introduction

Seed mass is a phenotypic trait that determines offspring
and maternal fitness in plants (Venable and Brown 1988;
Lalonde and Roitberg 1989; Hutchings 1991). Larger
seeds germinate with higher probabilities than smaller
ones and increase survival during juvenile stage (Moles
and Westoby 2006). Seed mass has a consistent genetic
base (Silvertown 1989; Venable 1992; Sadras and Egli
2008), and due to its adaptive value is one of the targets
of natural selection (Rees and Venable 2007; Sadras
2007).

Under resource limiting conditions, when there is a
restriction on the amount of energy that can be invested
in plant reproduction, there will be a trade-off between
seed mass and seed number (Grubb 2016; Smith and
Fretwell 1974; Leishman 2001; Messina and Fox 2001).
The optimal solution to this trade-off may differ depending
on the environment in which the plant is found. For
instance, in unfavourable environments plants with heavy
seeds are likely to be selected; this will lead to a reduction
in seed numbers but an increase in offspring fitness. In
favourable environments, on the other hand, plants with
light seeds are selected owing to their higher dispersal
abilities (Sallabanks 1992); this will lead to an increase
in seed number and consequently an increase in maternal
fitness. This trade-off has been widely examined in ecolo-
gical studies (Turnbull et al. 1999; Volis et al. 2002; Petrii

et al. 2006), but little examined along geographic gradients
(but see, Volis et al. 2002; Meng et al. 2014).

Among a variety of phenotypic traits examined to
explain invasiveness in exotic plants, seed mass has been
one of the most important attributes (Rejmanek and
Richardson 1996; Leger and Rice 2003; Van Kleunen
et al. 2010). Species with a smaller seed mass appear to
be more invasive than species with heavier seeds
(Rejmanek and Richardson 1996; Simberloff 2009). This
appears to hold at between-species level;, however, we are
not aware of any studies that have examined the effect of
seed mass on plant invasiveness within a single species.

Eschscholzia californica Cham. (Papaveraceae) is an
herbaceous plant native to the west coast of the United
States (California) and is highly invasive in Mediterranean
ecosystems worldwide (Leger and Rice 2007). The species
was introduced in central Chile in the late nineteenth century
and currently occurs from 30°S to 38.0°S. This extensive
geographic distribution concomitantly with the notable pre-
cipitation and temperature gradients that occurs in Chile
(precipitations increase and temperature decreases with lati-
tude) provide an opportunity to examine the variation in the
life history traits of E. californica populations across envir-
onmental gradients and to relate these traits with plant inva-
siveness. Assuming that plant density is a proxy of
invasiveness, we hypothesised that there would be an inverse
relationship between observed plant density and seed mass.
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Materials and methods

The density of E. californica individuals was estimated by
sampling ten 5 m x 2 m randomly selected plots in each of
19 population, between 30.5°S and 36.9°S (Figure 1). To
determine seed numbers and seed mass, we collected an
average of 25 individuals per population (ranging from 9
at Hualqui to 30 at Puchuncavi) (Appendix 1) and three to
four pods per individual. For each pod we counted the
number of seeds and mean seed mass, determined by
dividing the total mass by the number of seeds in a pod.
Sampling was carried out between October 2009 and
February 2010 (late austral spring and summer).

We compared the seed number and seed mass between
populations with non-parametric Kruskall-Wallis tests; we
also estimated the coefficient of variation (CV) for each
trait in each population. As the CV is standardised, it was

possible to conduct comparisons between seed number
and seed mass.

Seed mass versus seed number trade-off (sm/sn trade-
off) was estimated for each population using the slope of a
linear regression analysis. The slope was estimated using
the standardised major axis analysis. This procedure opti-
mises the slope in function of the x- and the y-axes, with-
out assuming dependence on y over x, as is the case of
mass and seed number (Warton and Weber 2002). We
evaluated the significance of the slopes by using bootstrap
procedures (Efron and Tibshirani 1994). All statistical tests
were conducted using R v 3.2.3 (R Development Core
Team 2015).

Current climate data for every sampled site location
(Figure 1) was downloaded from WorldClim database
(http://www.worldclim.org/). We selected mean annual
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Figure 2.
Eschscholzia californica populations along latitudinal gradient
dotted line in the axis y represent mean for each metrics. In Ay

temperature (BIO1) and annual precipitation (BIO12) as the
most relevant climatic variables. Although, WorldClim offers
a variety of climatic variables, we select these variables for
their simplicity to capture the climatic gradient that exist in
Chile: they are highly significantly correlated with latitude
(Pearson test: » =—0.94, P << 0.001 for annual precipitation;
r=10.71, P< 0.001 for mean annual temperature).

We ran spatial auto-regression models using climatic vari-
ables (independent variable) and the life history traits (depen-
dent variables): seed mass, seed numbers, CV of seed mass,
CV of seed number; we also included the slope of the sm/sn
trade-off. Unlike classic regression analysis, this model
weights the numerical differences of pairs of data according
to their geographic distance, assuming that geographically
close data are more similar than geographically distant ones,
correcting a possible genetic relationship between populations
and increasing the power of the analysis. For this analysis, we
used a software developed for spatial analysis in macroecology
(SAM v 4) (Rangel et al. 2010). For the graphical representa-
tion of the most significant variables, we used smooth surface
analysis (Marra and Wood 2011).

Latitude

Seed mass (a), seed number (b) and coefficient variation of seed number and coefficient variation of seed mass (c) of

(axis x) (left, northern populations, right, southern populations). The
B, lines on the points represent the SE.

In order to explore the relationship between life history
attributes and plant density (as a proxy of invasiveness) we
correlated life history attributes and climatic data with
plant density through spatial auto-regression models.
This analysis was conducted with 13 of the 19 as we
were unable to obtain density information for all the
populations.

Results

The mean seed mass obtained for all populations was 1.6 mg +
0.03 SE, ranging from 1.4 mg value at Vichuquen (34.778° S)
to value at 1.8 mg at Quintero (32.379° S). The mean number
of seeds per pod was 59.9 + 5.2 SE, with a range from 25 in
Puchuncavi (32.732° S) to 107 in Coya (34.136° S). We
detected  significant  differences for seed number
(¢ = 22501; P < 0.001) and seed mass (> = 71.69;
P < 0.001) among populations (Figure 2(a) and 2(b)). Seed
mass varied less than seed number (CV seed mass: 0.18 +0.01
SE; CV seed number: 0.42 + 0.02 SE) (Figure 2(c)). A
significant negative relationship (trade-off) between seed
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Figure 3.

Seed mass 10"4[g]

Relationship between seed mass vs. seed number in Eschscholzia californica populations, central Chile. Line represents

estimated lineal regression conducted with smart wrapper (R program version 3.02). b represent the slope of the relationship, p represent
p-values. Populations are displayed from north to south (see Appendix 1).

mass and seed number was detected in 5 of the 19 populations
studied (26%) (Figure 3).

Variation in seed mass was associated positively and sig-
nificantly with the interaction between annual precipitation
and mean annual temperature, explaining 51% of the total
data variability (Table 1, Figure 4(a)); variation in seed num-
ber, in turn, was positively correlated with annual precipitation
(24% total variance; Table 1, Figure 4(b)). None of the regres-
sion models detected a relationship between climatic variables
and seed mass and the slope of the trade-off (Table 1).

Plant density was negatively associated with variation in
seed mass (+* = 0.672; P = 0.012) and annual precipitation
(Table 1, Figure 5) and showed no relationship with the rest of
the plant life history traits.

Discussion

According to life history theory, the trade-off between seed
mass and seed number in plants occurs in environments
with limiting resources, such as water shortage (Leishman

2001; Messina and Fox 2001). In our study, we confirmed
the existence of this trade-off in 5 of 19 populations
(Ovalle, Illapel, Caimanes, Navidad, Curico). This trade-
off did not respond to climatic gradients, contrary to our
expectations. It is probable that the trade-off is consequence
of limiting conditions that occur at local scale, for instance
soil chemistry variation, a fact that has been well documen-
ted in other studies (Lee and Fenner 1989; Jurado and
Westoby 1992). How to explain the 74% of cases where
we did not find the trade-off? It is possible that the regres-
sion analysis using the totality of individuals can obscure
the trade-off (if it exists) because we are including “opti-
mal” and “sub-optimal” individuals in a same analysis. This
methodological problem has been largely identified within
the literature (Grubb 2016); in field studies, however, it is
not possible to discern “a priori” which the optimal indivi-
duals are (those that maximise simultaneously seed mass
and seed number) within the populations. The only way to
do so is to conduct controlled experiments in the laboratory
(Grubb 2016).
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trade-off which implies a reduction of selective pressures
on seed mass, thus allowing the production of a wide
range of seed masses amongst individuals (Leishman and
Westoby 1994). For an invasive plant, such as E. califor-
nica, having the ability to switch between maternal fitness
(small seeds) and offspring fitness (large seeds) is a sig-
nificant advantage when faced with highly variable

Relationship between plant density and annual precipitation (mm) for Eschscholzia californica populations, central Chile.

climatic environments such as those found in central
Chile (Rutllant and Fuenzalida 1991).

Conclusions

The trade-off between seed mass and seed number in the
case of the geographic distribution of the exotic E.



Seed mass, seed number and evolutionary trade-off across geographic distribution 111

californica does not appear to be related to a climatic
gradient. The trade-off detected in some localities suggests
that factors not directly related to climate at smaller spatial
scales may be shaping their expression. The increase in
seed numbers and the increase of seed mass variability
suggest plastic responses to the climatic gradient.
However, the increase in seed numbers at its southern
range limit is not reflected in an increase in invasiveness.
In fact, we observed a reduction in plant density to the
south. This suggests that invasiveness is reduced at the
humid-cold extreme of the distribution range of the
species.
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