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Placing the biological adaptations of Pleistocene hominins within a well-resolved ecological framework
has been a longstanding goal of paleoanthropology. This effort, however, has been challenging due to the
discontinuous nature of paleoecological data spanning many important periods in hominin evolution.
Sediments from the Upper Burgi (1.98—1.87 Ma), KBS (1.87—1.56 Ma) and Okote (1.56—1.38 Ma) mem-
bers of the Koobi Fora Formation at East Turkana in northern Kenya document an important time interval

gei’w"rdsl: in the evolutionary history of the hominin genera Homo and Paranthropus. Although much attention has
HZ;Oiiciﬁ 08y been paid to Upper Burgi and KBS member deposits, far less is known regarding the East Turkana

paleoecosystem during Okote Member times. This study pairs spatially-resolved faunal abundance data
with stable isotope geochemistry from mammalian enamel to investigate landscape-scale ecosystem
variability during Okote Member times. We find that during this period 1) taxa within the East Turkana
large mammal community were distributed heterogeneously across space, 2) the abundance of C3 and C4
vegetation varied between East Turkana subregions, and 3) the Karari subregion, an area with abundant
evidence of hominin stone tool manufacture, had significantly more C3 vegetation than regions closer to
the central axis of the Turkana Basin (i.e., lleret and Koobi Fora). These findings indicate that the East
Turkana paleoecosystem during the Okote Member was highly variable across space and provided a
complex adaptive landscape for Pleistocene hominins.
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1. Introduction technology (Harris and Isaac, 1976; Rogers et al., 1994; Isaac and

[saac, 1997; Ludwig and Harris, 1998). Much of the evidence for

The period between 2.0 and 1.4 million years ago (Ma) in eastern
Africa documents many important events in human evolutionary
history, including the morphological transition from early Homo
(i.e., Homo habilis, Homo rudolfensis) to Homo erectus/ergaster
(Wood, 1991; Wood and Collard, 1999; Wood and Leakey, 2011;
Anton et al., 2014), the synchronic and sympatric existence of the
hominin genera Homo and Paranthropus (Wood, 1991; Wood and
Strait, 2004), as well as significant changes in hominin
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these events comes from the Upper Burgi (1.98—1.87 Ma), KBS
(1.87—1.56 Ma) and Okote (1.56—1.38 Ma) members of the Koobi
Fora Formation at East Turkana in northern Kenya (Brown and
Feibel, 1991; Brown and McDougall, 2011; Fig. 1). In addition to
the hominin record from this period, non-hominin mammal fossils
are particularly abundant and have featured prominently in hy-
potheses related to the tempo and mode of evolutionary and
ecological change in eastern Africa during the Pleistocene (Vrba,
1985; Behrensmeyer et al., 1997; Bobe and Behrensmeyer, 2004;
Bobe, 2011; Patterson et al., 2014, 2017; Bibi and Kiessling, 2015).

Nearly four decades of research into the East Turkana paleo-
ecosystem provides a framework for testing hypotheses about
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Figure 1. A) East Turkana (Red Box), the Nachukui and Shungura formations in the context of eastern Africa; B) The Ileret, Karari Ridge and Koobi Fora subregions, and Collecting
Areas (indicated by white numerals) from which the carbon isotope dataset is derived; C) Stratigraphic section of Upper Burgi, KBS and Okote deposits (modified from Brown and
McDougall, 2011). Paleomagnetic polarity is indicated in the thin column to the left of the lithologic section. Normal intervals shown in white; reversed intervals shown in black.
Names to the right of the lithologic column refer to selected tuffs with dates. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

landscape-scale ecosystem variability during the Pleistocene. Be-
tween 2.0 and 1.4 Ma, the East Turkana record samples primarily
lake margin and riverine environments. Early in this sequence (~2
Ma), a large lake (Lorenyang) occupied most of the Turkana Basin.
After this phase, the lake retreated and by 1.5 Ma the region was
composed of river systems draining into what remained of Lake
Lorenyang (Brown and Feibel, 1991; Isaac and Behrensmeyer, 1997;
Quinn et al., 2007; Behrensmeyer et al., 2016). The isotopic signa-
ture of paleosol carbonates from East Turkana during this period
indicates that grassland-dominated ecosystems increased, but at a
subregional scale, and that vegetative communities were hetero-
geneous (Quinn et al., 2007).

Ecosystem dynamism between 2.0 and 1.4 Ma presented a
complex landscape context for the East Turkana mammal com-
munity, including hominins. This period in the Turkana Basin
documents several macroevolutionary changes. These include the
appearance of several bovid and suid grazing taxa, the replacement
of Theropithecus brumpti by the more terrestrial Theropithecus
oswaldi, and the disappearance of large colobine monkeys and the
genus Paranthropus from the record (Harris, 1991; Bobe, 2006,
2011; Jablonski and Leakey, 2008). When the stable carbon
isotope values from mammalian enamel dating to this period at
East Turkana are compared with samples from modern eastern
African ecosystems (see Cerling et al., 2015), they indicate an
elevated prevalence of mixed-feeding taxa. The stable isotope re-
cord from this period also indicates that members of the genus
Homo show a 20% increase in the ingestion of C4 resources (i.e.,
warm growing season grasses and sedges, or the animals that eat
these resources), a pattern that is not present in Paranthropus,
which ingested a high proportion of C4 resources throughout this
period in the Turkana Basin (Cerling et al., 2013a). The archaeo-
logical record from East Turkana between 2.0 and 1.4 Ma indicates
1) the first evidence of aquatic resource exploitation by hominins in
eastern Africa (Braun et al.,, 2010), 2) stone tool assemblages asso-
ciated with the later portion of this sequence occur in greater di-
versity of depositional environments than early in the sequence
(Rogers et al., 1994), and 3) hominin toolmakers selectively trans-
ported raw materials to regions distal to their sources on the
landscape (Braun et al., 2008). These data indicate that the period

between 2.0 and 1.4 Ma at East Turkana was marked by shifting
relationships between environmental change, mammal commu-
nity dynamics and hominin behavior.

Fossil assemblages relevant to understanding the East Turkana
paleoecosystem between 2.0 and 1.4 Ma are largely limited to
material from the Upper Burgi and KBS members (Fig. 1C). Earlier
work on Okote sedimentology and vertebrate taphonomy
(Behrensmeyer and Laporte, 1982; Behrensmeyer, 1985) suggested
possible differences in faunal representation across subregions, but
intensive paleoecological study of Okote faunas has only recently
been undertaken. Renewed focus on this interval provides impor-
tant new evidence relating to hypotheses about hominin evolu-
tionary history, ecology and behavior in eastern Africa. The
objectives of this study are to use new and existing data from the
Okote Member to 1) investigate any variation in the distribution of
large mammals across the East Turkana paleolandscape, 2) use
stable isotope geochemistry to characterize any spatial variation in
large mammal diet and paleovegetation, and 3) explore the dietary
ecology of the mammals consumed by hominins as resources
during this period.

2. Background
2.1. Geographic and geological context

Okote Member sediments at East Turkana are bounded
temporally by the Okote and Chari Tuffs dated to 1.56 and 1.38 Ma,
respectively (McDougall and Brown, 2006; Brown and McDougall,
2011; Fig. 2). This sediment package is temporally contempora-
neous with parts of the Kaitio and Natoo members of the Nachukui
Formation at West Turkana and members ] and K of the Shungura
Formation in southern Ethiopia (Brown and McDougall, 2011).
Well-dated and widespread tephra correlations between these
three regions have made it possible to compare spatial variation in
contemporaneous paleoecosystems during the Plio-Pleistocene.
Previous authors have suggested regional variability at a larger
scale, with more arid conditions in the Koobi Fora and Nachukui
formations relative to that of the Shungura (Bobe and Leakey, 2009;
Levin et al., 2011), as well as substantial differences in humidity and
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Figure 2. Correlation of KBS and Okote Member sediments in the three geographic areas referred to in this study. Sections are aligned along the uppermost tuff of the Ileret, Okote,
and Koobi Fora Tuff complexes, but the dates on these tuffs are younger from north to south. Sections based on Gathogo and Brown (2006; Ileret) and Brown and Feibel (1991; Karari
and Koobi Fora). Dates based on: McDougall and Brown (2006), Bennett et al. (2009), Brown and McDougall (2011). Note: Gathogo and Brown (2006) designate the lower boundary
of the Okote Member as the Ileret Caliche rather than the Lower Ileret Tuff.
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climate variability between East and West Turkana during this
period (Hernandez Ferndndez and Vrba, 2006; Bobe, 2011;
Fortelius et al., 2016).

Okote Member strata are spatially extensive and particularly
well-exposed in the Ileret, Karari and Koobi Fora subregions
(Fig. 1B). Deposits dating to this period were formed under locally
variable conditions ranging from fluvial settings in the Karari
subregion to low energy alluvial deltas, lacustrine and shoreline
deposits in the Ileret and Koobi Fora subregions (Fig. 2;
Behrensmeyer, 1985; Brown and Feibel, 1991; Isaac and
Behrensmeyer, 1997). Strata from these subregions have received
much attention due to the prevalence of archaeological localities
(Bunn et al., 1980; Rogers et al., 1994; Isaac and Isaac, 1997; Pobiner
et al., 2008), and fossil evidence of hominins (Wood, 1991; Wood
and Leakey, 2011), including trace fossils (Bennett et al., 2009).
While hominin remains and archaeological localities have been
recovered throughout the Ileret, Karari and Koobi Fora subregions,
the overall distribution of these traces of behavior is variably
distributed during Okote Member times. Specifically, deposits in
the Karari subregion have yielded the greatest number of archae-
ological localities (Isaac and Isaac, 1997). Previous authors have
suggested that this concentration was likely a result of proximity to
raw material sources (Toth, 1982; Lepre, 2001; Braun et al., 2009),
but until now limited attention has been paid to understanding the
influence of paleoenvironmental variability on the spatial hetero-
geneity of the Okote Member archaeological record (Behrensmyer,
1985).

The complex deposition of tuffaceous sediments during the
Okote Member has made precise temporal and stratigraphic cor-
relations between the Ileret, Koobi Fora and Karari subregions
particularly challenging (see Vondra et al., 1978; Behrensmeyer and
Laporte, 1981; Brown and Feibel, 1985, 1986; Gathogo and Brown,
2006). Nonetheless, it is possible to approximate temporal re-
lationships between fossil-bearing deposits in the Ileret, Koobi Fora
and Karari subregions using existing data. In Ileret (Fig. 2), Okote
Member fossil-bearing deposits date primarily to between 1.53 and
1.51 Ma, while those of the Koobi Fora subregion are slightly
younger and date to between 1.48 and 1.44 Ma. Okote Member
fossiliferous deposits of the Karari subregion are 1.56—1.38 Ma, thus
including the time spans of the richest sources of fossil evidence in
the Okote Member of the Ileret and Koobi Fora subregions (Fig. 2).

2.2. Stable isotope geochemistry

Plant physiological diversity can be broadly characterized into
three categories based upon the degree to which they fractionate
carbon isotopes during photosynthesis: C3, C4 and Crassulacean
Acid Metabolism (CAM). In eastern Africa, C3 plants are primarily
trees, bushes and shrubs and have §'3C values ranging from —30%o
to —22%o, while C4 plants are grasses and sedges adapted to high
temperatures and restricted to low elevations (<3000 m) and have
313C values ranging from —14%o to —10%o (Tieszen et al., 1979;
Young and Young, 1983; all isotope ratios are reported relative to
the isotope standard Pee-Dee Belemnite [PDB], where 3'3C (in
%0) = [("*C/"C)sample/(*C/"*C)standard — 1] x 1000). Plants that use
the CAM pathway primarily consist of succulents like cacti, orchids
and bromeliads and have 3'3C values intermediate to those of Cs
and C4 plants, or similar to C4 plants (Lambers et al., 2008). It is
unlikely, however, that CAM plants were significant components of
eastern African biomass during the Plio-Pleistocene (Peters and
Vogel, 2005) and therefore it is unlikely they contributed sub-
stantially to mammalian diet during this period.

The 8'3C value of carbonate associated with mammalian bone
and tooth apatite can be used to infer proportions of C3 versus C4
vegetation in the diet of ancient organisms. The 3'C value of

enamel apatite reflects the 3'3C value of ingested foodstuffs, offset
by a diet-tissue fractionation factor (e*epamel-diet; DeNiro and
Epstein, 1978; Vogel et al, 1978; Tieszen et al., 1979). For large
herbivores, €*epamel-diet Tanges from 13.3 to 14.6%. (Cerling and
Harris, 1999). Isotopic dietary variation in African mammals is
represented as a continuum from Cs-dominated browsers to Cy4-
dominated grazers with C3/C4 mixed feeders having intermediate
values between the two endmembers. This scheme has been used
extensively in both modern (e.g., Cerling and Harris, 1999; Cerling
et al., 2004) and fossil settings (e.g., Kingston and Harrison, 2007;
Uno et al., 2011). Most recently, Cerling et al. (2015) used a three-
component mixture analysis of a large modern ungulate enamel
dataset from eastern and central Africa to establish quantitative
boundaries between C3 browsers (<—8%), C3/C4 mixed-feeders
(>—8%o to <—1%o0) and C4 grazers (>—1%o).

2.3. Faunal abundance

The spatial distribution of mammal taxa across modern
(Behrensmeyer et al, 1979; Reed, 1997; Western and
Behrensmeyer, 2009) and ancient landscapes (Behrensmeyer and
Laporte, 1982; Bobe and Eck, 2001; Patterson et al., 2014) can be
used to understand habitat heterogeneity better. Certain groups of
mammals (particularly ungulates) have habitat-specific re-
quirements for survival (Vrba, 1992). Thus, their presence in a
modern or ancient bone assemblage suggests the presence of a
particular type of environment. This scheme is complicated by
taphonomic processes that can potentially transport skeletal re-
mains away from the habitat associated with the organism in life
(Behrensmeyer et al., 2000). However, if taphonomic biases are
understood, the distribution of mammals across space in pene-
contemporaneous fossil deposits can provide novel insights into
the nature of the ancient ecosystems.

3. Materials and methods
3.1. Faunal abundance analyses

At East Turkana, fossiliferous deposits have been divided into
discrete spatial units called “Collecting Areas” that are numbered
from 1 to 263 (see Brown and Feibel, 1991 for a detailed description).
Data for the analysis of faunal abundance in this study came from
three main sources: 1) Okote Member mammal fossils assigned to
Collecting Areas in the Ileret, Karari and Koobi Fora subregions,
which were sourced from the Turkana Basin Paleontology Database
(Supplementary Online Material [SOM]| Table S1; http://
naturalhistory.si.edu/ete/ETE_Datasets_Turkana.html), 2) fossils
collected between 2011 and 2015 in association with the Koobi Fora
Research and Training Program (Koobi Fora Field School) by the
senior author, and 3) fossils from Okote Member archaeological as-
semblages (n = 101) identified in the National Museums of Kenya
(NMK) by the senior author. The paleontological samples presented
here were collected using a range of collection methods (e.g., surface
surveys, targeted sampling, excavation) designed to record the
relative representation of taxa in East Turkana fossil deposits as
systematically as possible. Fossils with multiple elements assigned
to a single specimen number were counted as a single specimen.
Specimens were included only if confidently identified to the generic
level (i.e., all cf. taxa were removed). The only exception were bovid
fossils identified to the tribal level which is more comparable to
genus level identifications in non-bovid taxa. The total dataset was
taxonomically diverse and consisted of 763 fossils from 14
mammalian families, dominated by material from the Ileret subre-
gion (n = 560) with fewer specimens coming from the Karari (n=297)
and Koobi Fora (n = 106) subregions. To investigate spatial
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heterogeneity in the East Turkana mammal community, we
compared the proportional abundance of taxa between the Ileret,
Karari and Koobi Fora subregions. Because spatial differences in the
composition of the East Turkana mammal community could be due
to differences in the taphonomy of fossil assemblages in the three
regions, we also compared groups of taxa with similar preservation
potential (e.g., within bovid tribes and fossils attributed to the
genera Homo, Paranthropus and Theropithecus) using a Chi square
analysis in R (R Core Team, 2016) to assess the potential impact of
taphonomic biases on the overall faunal abundance data.

Ileret and Koobi Fora Okote sediments include more lake margin
and delta depositional settings whereas the Karari is dominantly
fluvial (Fig. 2). This raises the possibility that subregional variation
in taphonomic processes affected burial and preservation, which in
turn could influence taxonomic abundances. For example, fluvial
reworking of skeletal remains favor preservation of larger and more
robust elements, while marginal lacustrine and deltaic environ-
ments typically preserve a wider range of skeletal element and
body sizes (Boaz and Behrensmeyer, 1986). To control for these
potential biases, fossils from groups with similar preservation
probabilities (i.e., similar body sizes) were compared across sub-
regions, but the results still indicate that the East Turkana
ecosystem was heterogeneous in terms of faunal abundances.

3.2. Stable isotopic analyses

3.2.1. Sample We report enamel carbon and oxygen isotope values
from 155 new fossils sampling a wide range of mammals (bovids,
cercopithecids, proboscideans, equids, giraffids, hippopotamids,
hominins, and suids) collected in Okote Member sediments at East
Turkana. These new data are supplemented with 98 existing sam-
ples compiled from the published literature (SOM Table S2; Cerling
et al., 1999, 2011, 2013a, 2013b; Harris and Cerling, 2002; Harris
et al, 2008) that also sample this period. Table 1 provides a
breakdown of the sample by collection context (archaeological,
consisting primarily of excavated material, and non-
archaeological, predominantly from surface collections), and
subregion (Ileret, Karari and Koobi Fora), to facilitate analyses of
spatial variation in 8'3C values. We include 5®0 enamel values
for completeness in SOM Table S2 and discuss them with respect
to spatial variation, but the primary focus is on the carbon
isotope data for all other analyses presented here.

3.2.2. Analytical methods All new enamel samples were photo-
graphed and then sampled in the NMK with a high-speed rotary drill
fitted with a diamond bit. The analyses were conducted at the
Department of Earth and Planetary Sciences at Johns Hopkins
University. Enamel powder was treated for 15 min with 3% H,0; to
remove organic material and rinsed three times with distilled
water prior to a 15 min treatment with 0.1 M buffered acetic acid

to remove secondary carbonate. Following this treatment, samples
were rinsed three times with distilled water and dried overnight at
60 °C. Samples (typically ranging from between 200 and 600 pg)
were then loaded into silver capsules and digested in a 100%
phosphoric acid bath at 90 °C for 10 min. Gases produced from the
enamel powders were cryogenically cleaned using a custom-built
automated system (Passey et al., 2010) and the resulting CO, was
analyzed for 83C and 8%0 on a Thermo MAT 253 mass
spectrometer. An acid fractionation factor of 1.00725 (90 °C) was
used for all enamel samples (Passey et al., 2007; this fractionation
factor was also used in existing isotopic data referenced in SOM
Table S2). Throughout the analyses, Carrara marble, normalized to
the carbonate standard NBS-19, was routinely measured as an
internal working standard. Additionally, working internal enamel
standards, normalized to NBS-19, were routinely measured during
analyses to monitor instrument performance. §'3C standard
deviation of internal standards was 0.19%o and 0.15%o for 3'>C and
3180, respectively. We assigned 8'3C values of our Okote sample to
dietary categories modified from those of Cerling et al. (2015).
Specifically, we combine C3 closed canopy browsers with Cs
browsers and C4 hyper-grazers with C4 grazers (see SOM Table S2).
We performed all statistical analyses in R.

4. Results
4.1. Faunal abundance

The taxonomic distribution of mammal fossils is heterogeneous
across space during Okote Member times at East Turkana. This
patterning could be related to landscape-scale differences in the
East Turkana ecosystem, or to differences in the taphonomic
context of the three subregions, or a combination of the two. When
the Okote Member subregions are pooled (Fig. 3), reduncin bovids
are the most abundant taxon, followed by Theropithecus, Metri-
diochoerus and Hippopotamus. These four taxa make up ~50% of the
Okote sample. Fossils attributed to the genus Paranthropus make up
~2%, while those attributed to Homo also make up ~2% of the Okote
sample. With respect to fossil abundance distributions of the three
subregions, fossils from the Ileret subregion constitute ~73% of the
entire Okote sample and thus dominate fossil abundance distri-
butions for the Okote Member as whole, with reduncin bovids
being most abundant followed by Theropithecus, Metridiochoerus
and Hippopotamus. In contrast, in the Karari subregion sample,
tragelaphin bovids are the most abundant taxon followed by Met-
ridiochoerus, alcelaphin bovids and Hippopotamus. Unlike the Ileret
sample, reduncin bovids are a minor component of the assemblage
from the Karari and make up ~1% of the total sample. In all three
subregions of East Turkana the genera Metridiochoerus and Hippo-
potamus are abundant, making up greater than 13% of the fossil

Table 1
Summary of Okote Member stable isotopic data included in SOM Table S2.%
313¢ 3180
n Range (%o) Mean (%o) SD (%o) n Range (%o) Mean (%o) SD (%o)

Sample by collection context
Archaeological 54 -6.6—1.4 -1.7 21 54 -4.6—4.6 0.3 21
Non-archaeological 199 —12.5-2.8 -1.1 2.6 147 -6.6—5.3 -03 23
Total sample 253 -12.5-2.8 -1.2 2.5 201 -6.6—5.3 -0.1 23
Sample by subregion
Ileret 147 -12.5-2.8 -1.1 23 138 -6.6—5.3 -03 22
Karari 37 -6.6—14 -23 2.2 37 —4.6—4.6 04 24
Koobi Fora 17 -34-24 -0.1 14 14 -5.7-2.9 04 2.7

Note that some specimens, although associated with a Collection Area and assigned to Archaeological / Non-archaeological, are not assigned to any of the subregions (lleret,

Karari and Koobi Fora) analyzed for spatial patterns.
2 SD = standard deviation.
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Figure 3. Relative abundance of Okote Member mammal genera and tribes in surface and archaeological fossil assemblages.

sample in each subregion for the former and greater than 7% for the
latter (see Fig. 3). Theropithecus fossils are more unevenly distrib-
uted, making up more than 13% of the assemblages from Ileret and
Koobi Fora subregions, but less than 3% of the sample in the Karari
subregion. Fossils from the family Equidae are most abundant in
the Koobi Fora subregion and constitute 11% of the total assem-
blage. Finally, when the fossils attributed to Homo and Paranthropus
are combined they make up ~5% of the Ileret sample and less than
2% of the Koobi Fora and Karari subregions.

When we compared bovid fossils, most of which are from taxa
>50 kg in body mass, across subregions, reduncin bovids are more
abundant in the Ileret and Koobi Fora subregions relative to the
Karari subregion, which was dominated by tragelaphin bovids (%2,
p < 0.05; Fig. 4A). Similar differences were found when the sample
was restricted to the large-bodied primates (e.g., Homo,

Paranthropus and Theropithecus) in the three subregions (%2,
p <0.05; Fig. 4B). In all three subregions, hominin abundances were
low relative to those of Theropithecus, but it is difficult to assess the
influence of sample size on these differences.

4.2. Stable isotopes

4.2.1. Okote 3'3C values 3'3C values in our Okote Member enamel
sample encompass the full spectrum from strictly Cs to strictly Cy4
diets (Fig. 5). In this dataset, 3!3C values average —1.2%o =+ 2.5%0 (10)
and range from —12.5%0 to +2.8%o (Table 1), with browsers (e.g.,
Giraffa) yielding lower 8'3C values than contemporaneous grazers
(e.g., Alcelaphini, Equus, Hippopotamus,  Kolpochoerus,
Metridiochoerus, Reduncini; SOM Table S2). The 3'3C values from
archaeological localities are significantly depleted (Table 2; Fig. 6)
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Table 2
Statistical comparisons of subsample values (collection context and subregions).®
Carbon Oxygen
p TS p TS
Arch x Non-arch 0.02 W = 42285 0.13 W =45195
Ileret x Karari x Koobi Fora 0.0001 ChiSq.=17.77 0.13 Chi Sq. = 4.095
Ileret x Karari 0.0004 W =3737 0.11 W=2115
Ileret x Koobi Fora 0.05 W = 886 0.15 W =17395
Karari x Koobi Fora 0.0004 W =502.5 0.7 W=278

2 TS = test statistic; Arch = archaeological; Non-arch = non-archaeological.

relative to those from a non-archaeological context, while the 3'80
values show no significant differences (Fig. 6; Table 2). 3'3C values
are significantly different (Fig. 7; Table 2) among the Ileret, Karari
and Koobi Fora subregion samples, while the 3'%0 values show no
significant differences (Fig. 7; Table 2). Karari subregion 3C
values overall are significantly depleted relative to those from the
Ileret and Koobi Fora subregions (Table 2).

Due to relatively small sample sizes from the Karari and Koobi
Fora subregions, taxonomic analyses of spatial variation in 3'3C and
3180 values were limited to the genera Metridiochoerus and

Hippopotamus and the family Equidae (Fig. 8). These taxon-specific
analyses are important given that lumping multiple taxonomic
groups into a single assemblage from each of the three subregions
could produce spurious patterns related to sampling of the original
community. We found that Karari subregion 8'3C values in Metri-
diochoerus (n = 29; p = 0.01; Wilcoxon rank sum test: W = 39) and
Equidae (n = 11; p = 0.04; Wilcoxon rank sum test: W = 0) are
significantly depleted relative to those from the Ileret subregion.
Metridiochoerus 3'80 values are significantly lower (n = 13;
p = 0.01; Wilcoxon rank sum test: W = 0) in the Karari relative to
those from Koobi Fora, while Equidae 5'80 values are significantly
lower (n = 11; p = 0.05; Wilcoxon rank sum test: W = 2) in the
Karari subregion relative to those from lleret. Hippopotamus shows
no significant variation in 3'80 across the three areas.

5. Discussion
5.1. Spatial heterogeneity in the East Turkana mammal community
Our analyses support the hypothesis that the composition of the

East Turkana large mammal community varied across the East
Turkana landscape during Okote Member times. The overall Okote
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Figure 6. Comparison of Okote Member non-archaeological and archaeological enamel 5'3C values. Median 5'3C values represented by horizontal line within the box, edges of box
represent quartile ranges, vertical lines represent the range, outlier values plotted as circles. Raw §'3C data presented as circles superimposed on the box plots. Dietary classifications
in both plots based upon Cerling et al. (2015). Red star indicates significant difference at p < 0.05 level, Wilcoxon rank sum test. VPBD = Vienna Pee Dee Belemnite. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sample is dominated by reduncin bovids, but these taxa are un-
evenly distributed across the East Turkana subregions. Modern
reduncins are most often found in marshes and floodplains and are
rarely found away from permanent water sources (see Bobe et al.,
2007). In combination with the prevalence of C4 vegetation in the
diet of the individuals sampled here (Fig. 5B), the abundance of
reduncin bovids in the Ileret and Koobi Fora subregions suggests
the presence of well-watered grasslands. This is consistent with
existing geological interpretations that indicate that these regions
sample low energy alluvial deltas, lacustrine and shoreline deposits
(Brown and Feibel, 1991; Isaac and Behrensmeyer, 1997). These
depositional environments likely existed along the shoreline of
Paleolake Lorenyang and would have provided abundant marshy
grasslands to support sizable populations of reduncins. The prev-
alence of reduncins in the Ileret subregion contrasts with their low
abundance in the Karari subregion. The fossil assemblage from the
Karari is dominated by tragelaphin bovids, indicators of the pres-
ence of mixed C3/C4 vegetation, and hypsodont (i.e., high crowned)
taxa like Metridiochoerus and alcelaphin bovids. This combination
of taxa indicates that the Karari region was characterized by a more
arid grassland-brushland setting than the well-watered western
subregions (i.e., [leret and Koobi Fora) nearer the central axis of the
Turkana Basin.

The ubiquity of Metridiochoerus across the Ileret, Karari and
Koobi Fora subregions is intriguing. Fossils attributed to Metri-
diochoerus from the Okote Member are typically extremely hyp-
sodont, which has been suggested as an adaptation to water-
stressed environments (Liu et al., 2009). Metridiochoerus fossils,
however, make up approximately 13% of both the Ileret and Koobi
Fora sample. Sedimentological data as well as the prevalence of
reduncin bovids suggest that these areas were well-watered (i.e., a
persistently high water table) during the Okote Member

(Behrensmeyer, 1975). This spatial patterning of Metridiochoerus
fossils could indicate that 1) the taxon's diet was more flexible than
indicated by their dental morphology alone, 2) factors other than
diet controlled their spatial distribution, 3) semi-arid grassland
environments also occurred in the Ileret and Koobi Fora subregions,
4) Metridiochoerus dental elements are more taphonomically du-
rable and thus there is a taphonomic bias towards their preserva-
tion. As these specimens are also easily identifiable relative to those
from other Okote Member mammals this may represent a further
collection bias. A combination of these different factors could
explain this patterning, and further studies are needed to tease out
their relative contribution to the abundance pattern of
Metridiochoerus.

5.2. Isotopic evidence of East Turkana paleoenvironments

5.2.1. Diet in the East Turkana mammal community Our enamel
sample indicates that C4 grazing taxa were the most prominent
component of the East Turkana mammal community during
Okote Member times. This finding is consistent with the
contemporaneous carbon isotope record from Turkana Basin
paleosol carbonates that indicate a paleolandscape dominated by
C4 vegetation, particularly in floodplain settings (Levin et al.,
2011). However, 40% of our 3'3C enamel sample is composed of
C3/C4 mixed feeding taxa, which suggests that the vegetation
community of East Turkana included a significant quantity of C3
plants. Previous work indicates that due to their specific
environmental requirements for formation and preservation,
paleosol carbonates may not capture the full range of 3'3C
variation in vegetation on a paleolandscape (Levin et al., 2004),
so it is possible that the paleosol carbonate record
underestimates the frequency of C; environments. Our enamel
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Figure 8. Metridiochoerus, Equidae and Hippopotamus 3'>C and 8'80 values by East Turkana subregion. Median 3'3C values represented by horizontal line within the box, edges of
box represent quartile ranges, vertical lines represent the range, outlier values plotted as circles. Raw 3'C data presented as circles superimposed on the box plots. Dietary
classifications in both plots based upon Cerling et al. (2015). Red star indicates significant difference at p < 0.05 level, Wilcoxon rank sum test. Sample sizes in parentheses. VPBD =
Vienna Pee Dee Belemnite. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

sample reflects a wide range of dietary adaptations, which Turkana mammal community. Given that teeth are relatively
suggests a broader range of 3!3C variation in the Okote Member durable elements across all large mammal taxa, it is unlikely
plant community. This interpretation depends on how that there are significant taphonomic biases for or against the
accurately the enamel sample records the proportions of three dietary categories. Additional sampling and taphonomic
grazing, mixed feeding, and browsing taxa in the original East analysis of the East Turkana mammal community, as well as
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further analysis of the paleosol carbonate record, are needed to
fully evaluate potential disparities in these paleoecological
proxies.

5.2.2. Spatial variation in East Turkana 3'3C values 3'3C values
from fossil herbivores in the Ileret, Koobi Fora and Karari sub-
regions at East Turkana suggest a heterogeneous distribution of
vegetation across space during Okote Member times (Fig. 7). For the
overall samples, 3'3C values from the Karari sample are significantly
depleted relative to those from the Ileret and Koobi Fora
subregions, indicating more Cs3 vegetation in the Karari subregion.
This pattern potentially could relate to differential preservation
and sampling of mixed feeders and browsers relative to grazers
in the Karari mammal community. However, where it is possible
to sample individuals belonging to the same taxa, (i.e,
Metridiochoerus and Equidae) these taxa have significantly lower
313C values in the Karari subregion relative to the Ileret and Koobi
Fora subregions (Fig. 8). This is consistent with the hypothesis
that spatial variation in vegetation influenced herbivore
distribution in the different subregions.

We recognize two scenarios that could explain the elevated
quantity of C3 vegetation in the Karari subregion. First, geologic
evidence indicates that much of the Karari landscape was
composed of fluvial environments draining the eastern basin
margin (Feibel, 1988). These types of depositional environments
possess abundant C3 vegetation around river channels and C4
grasses in adjacent flood plains (Levin et al., 2004). Areas adjacent
to water courses are also more likely to preserve fossils due to rapid
sedimentation rates (Behrensmeyer, 1982). It is important to
consider that Csz-indicative 313C values do not necessarily corre-
spond to an abundance of trees, as such 3'3C values in the Karari
subregion are also consistent with the presence of arid-adapted
shrubs. The presence of this type of vegetation in the Karari may
be expected given the prevalence of arid-adapted taxa like Metri-
diochoerus and alcelaphin bovids. We propose that C3 vegetation
associated with the combination of wooded river-proximal settings
and bushland-shrubland environments is a viable explanation for
the overall 3'3C depletion in the Karari enamel sample. These
findings are consistent with the paleosol carbonate 3'3C values of
Quinn et al. (2013) that indicate archeological localities in the Karari
subregion frequently occur in habitats interpreted as bushland
environments with elevated quantities of C3 vegetation relative to
other portions of the East Turkana paleolandscape. Although our
findings indicate that the localities analyzed by Quinn et al. (2013)
occurred in environments with C3 vegetation, hominins in the
Karari subregion butchered taxa with both C3- and C4-dominated
diets.

Depleted 380 values in Metridiochoerus and Equidae could
indicate these taxa were more water dependent in the Karari
subregion. However, given the complex environmental and
behavioral influences on the 3'30 signal in enamel (Sponheimer
and Lee-Thorp, 1999), particularly in obligate drinking taxa such
as suids and equids, the underlying biological factors contributing
to these patterns are difficult to interpret. Due to their semi-aquatic
habitat, Hippopotamus oxygen isotope values are frequently used as
an indicator of source water for a particular region (Levin et al.,
2006; Cerling et al., 2008). Although sample sizes are particularly
small from the Karari and Koobi Fora subregions, Hippopotamus
3180 values in our sample are not spatially distinct at East Turkana
(Fig. 8). These data could indicate that these subregions had similar
water input and similar environmental aridity, which is inconsis-
tent with our hypothesis of increased environmental aridity in the
Karari subregion relative to that of lleret and Koobi Fora. Additional
Hippopotamus enamel isotopic data are needed to evaluate this
trend.

5.3. Spatial variation in the East Turkana ecosystem

The combination of faunal abundance and stable carbon isotope
data provides novel insights into ecosystem variability during
Okote Member times at East Turkana. In the Ileret subregion, our
analyses show a prevalence of reduncin bovids, which is consistent
with independent evidence of C4 vegetation from pedogenic car-
bonates from East Turkana during this same period. This combi-
nation indicates moist, open C4 grasslands and serves as a
cautionary tale to interpretations that link the spread of C4 grass-
lands in eastern Africa with increased environmental aridity
(deMenocal, 2004; Sepulchre et al., 2006; Maslin et al., 2014; see
Levin, 2015 for summary). Specifically, moist grassland environ-
ments, like those indicated for the Okote Member in the lleret
subregion, are characterized by virtually identical 5'3C distributions
as those of more arid-adapted grasslands. Thus, this study dem-
onstrates that when interpreting variation in local paleo-
ecosystems, it is important to draw upon both carbon isotope and
faunal abundance data as well as contextual evidence from sedi-
mentary environments.

The carbon isotope data indicate that the Karari ecosystem had
more C3 vegetation than the Ileret and Koobi Fora subregions. We
propose that this pattern was driven by a combination of C3 vege-
tation adjacent to fluvial settings and arid-adapted shrubland
vegetation lateral to floodplain environments. This hypothesis is
supported by the lack of reduncin bovids in the Karari, combined
with the dominance of tragelaphin and alcelaphin bovids. These
data, particularly the low numbers of reduncin bovids, suggest that
moisture availability that would sustain moist/edaphic grasslands
in the Karari subregion was significantly reduced relative to areas
that were closer to the central axis of the Turkana Basin. This could
be explained by differences in physical geography. The modern
Karari subregion is approximately 300 m higher in elevation than
the Ileret and Koobi Fora subregions. Although this difference in
elevation was almost certainly different in the past, paleoenvir-
onmental reconstructions indicate that the Karari ecosystem was
dominated by a fluvial sedimentary regime, while Ileret and Koobi
Fora were characterized by lacustrine and shoreline environments
with frequent standing water. Thus, water to support moist C4
grasslands and reduncin bovids was less overall, and likely linked to
seasonal drainage of the eastern basin margin in the Karari sub-
region compared to regions closer to lacustrine environments (i.e.,
Ileret and Koobi Fora) and a more persistently high water table
nearer the rift axis.

5.4. Temporal variation in the East Turkana ecosystem

It is possible, and plausible, that some of the subregional envi-
ronmental variation we describe here is related to temporal (rather
than spatial) differences in the fossil assemblages collected from
the Ileret, Koobi Fora and Karari subregions. East Turkana deposi-
tional environments were dynamic during the Okote Member and
although these assemblages are broadly contemporaneous, collec-
tions from each subregion could reflect slightly different periods of
ecosystem evolution between 1.56 and 1.38 Ma (Fig. 2). In partic-
ular, the fossiliferous portions of the strata in the three subregions
represent variable sampling of the paleocommunities over time.
There is also mixing of fluvial and lake margin source deposits at
Ileret and Koobi Fora compared with only fluvial channel and
floodplain source deposits in the Karari subregion.

Our stratigraphic interpretation of the temporal relationship
between the three subregions (Fig. 2) indicates that most fossils
from the Koobi Fora subregion are slightly younger than those
collected from Ileret, while assemblages from the Karari subregion
span the entire interval represented at Ileret and Koobi Fora. Our
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documentation of prevalent C3 vegetation in the Karari subregion is
supported by the paleosol carbonate record from East Turkana from
this period. The work of Quinn et al. (2013) indicates that hominin
sites yielding lithic artifacts dating to the Okote Member occurred
in the more wooded portions of the East Turkana landscape. All six
localities included in the analysis of Quinn et al. (2013) were
derived from the Karari subregion sediments. Paleosol carbonates
can potentially take 102—10° years to form (Jenny, 1980; Machette,
1985; Retallack, 2005) therefore their isotopic signature represents
a much longer temporal interval than that represented by the
enamel of a terrestrial mammal (i.e., a single lifetime). The Karari
subregion data indicate the prevalence of C; vegetation (~40—50%
of the vegetation community; Quinn et al., 2013) during the same
interval sampled by our enamel isotope assemblage, supporting the
persistence of C3 vegetation in that region throughout the Okote
Member.

5.5. Implications for hominin paleobiology

Hominin remains make up approximately 4% of the fossil
mammal assemblage from the Okote Member at East Turkana
(Fig. 3). Previous work in the Shungura Formation of southern
Ethiopia indicates that hominins were uncommon components of
Plio-Pleistocene mammal communities (i.e., <1%; see Bobe and
Leakey, 2009). There are several possible explanations for their
slightly elevated prevalence in our fossil sample. First, depositional
environments in the Shungura Formation are primarily fluvial (de
Heinzelin et al., 1976) and as a result hominin remains are domi-
nated by isolated dental elements (Wood and Leakey, 2011). The
East Turkana record samples low energy depositional environ-
ments that often preserve more fragile skeletal elements such as
complete crania (Wood, 1991; Leakey et al., 2012). Second, fossil
collecting at East Turkana over the past five decades has empha-
sized the collection of hominin remains, whereas the strategies
employed in the Shungura Formation have involved more sys-
tematic techniques for sampling the fossil mammal community
(Bobe and Eck, 2001; Alemseged, 2003). The possibility remains,
however, that the East Turkana ecosystem, and the resources
available within it, were more attractive to hominins during this
period and their elevated abundance could be a genuine ecological
signal. Further systematic investigations are needed to evaluate the
combination of taphonomic and ecological factors responsible for
the different abundance of hominin remains across different parts
of the Turkana Basin during this period.

The 3'3C values from fauna preserved in Okote Member
archaeological localities are significantly depleted relative to those
from non-archaeological contexts (Fig. 6). This is consistent with
the hypothesis that hominins consumed a greater proportion of
particular types of organisms, specifically C3/C4 mixed feeding taxa,
from within the larger East Turkana mammal community. This
could simply reflect the fact that most of the archaeological sites are
in the Karari subregion, where mixed feeding taxa were more
common than in the other two subregions. The majority of non-
archaeological 3'3C values are derived from the Ileret and Koobi
Fora subregions and include more C4-feeding taxa. Thus, although it
is also possible that hominins were selectively consuming mixed-
feeding taxa, we cannot at present distinguish this from
landscape-scale sampling differences between the archaeological
and non-archaeological 3'3C values.

Finally, research suggests that the time period represented by
the Okote Member documents substantial changes in the way that
hominins used lithic resources across the broader paleolandscape.
Rogers et al. (1994) indicate that Okote Member hominins used a
broader range of depositional settings for the manufacture of stone
tools than in the KBS Member at East Turkana. A behavioral

transition is also supported by the work of Braun et al. (2009),
which shows that during the Okote Member hominins utilized a
different set of raw material sources for the manufacture of stone
artifacts. Although depositional setting and raw material avail-
ability influenced the distribution of lithic artifact manufacture and
discard, the results of the research presented here suggests also
that differences in the distribution of large mammals and paleo-
vegetation, reflecting a heterogeneous paleolandscape in East
Turkana, offered hominins a range of habitats and tool-assisted
foraging opportunities.

5.6. Future directions

Although this study indicates several intriguing patterns related
to ecosystem variability and hominin behavior at East Turkana
during Okote Member times, future studies should focus on 1)
increasing systematic faunal collections in the Karari and Koobi
Fora subregions, with careful documentation of the source lith-
ofacies (e.g., fluvial channel, floodplain, delta or lake margin), 2)
testing our hypotheses related to spatial variation in vegetation
with other paleoenvironmental proxies, and finally 3) establishing
robust connections between the hominin behavioral record and
ecosystem heterogeneity. Our data indicate differences in the dis-
tribution of mammals across the Okote Member landscape at East
Turkana. Faunal samples from the Koobi Fora and Karari sub-
regions, however, are limited relative to those from the Ileret
subregion. It is imperative to test further the impact of sample size
on our interpretations of spatial heterogeneity in the East Turkana
mammal community. The differences in spatial heterogeneity that
we interpret as ecologically likely are affected to some extent by
depositional and taphonomic (e.g., collection biases) disparities
between the Ileret, Karari and Koobi Fora subregions which could
be tested with additional carefully controlled faunal sampling. The
currently available samples show depleted §'3C values in the Karari
sample and are indicative of more C3 vegetation in that subregion
relative to the Ileret and Koobi Fora subregions. We hypothesize
that this pattern is related to the combination of woody vegetation
in delimited fluvial settings as well as arid-adapted bushlands
adjacent to these floodplains. Our hypotheses should be tested with
other paleovegetation proxies such as isotopic data from paleosol
carbonates and plant waxes (Uno et al., 2016a, 2016b). This research
adds to previous studies proposing spatial variation in hominin
behavior and ecology during Okote Member times (Rogers et al.,
1994; Quinn et al., 2013). These patterns should be placed within
the context of the ecosystem heterogeneity described here to un-
derstand better how ecological factors contributed to the spatial
distribution of the hominin behavioral record.

6. Conclusion

Understanding how paleoecosystems vary across space is crucial
to testing hypotheses related to hominin ecology and behavior
(Blumenschine and Peters, 1998). Okote Member deposits at East
Turkana in northern Kenya present the rare opportunity to construct
a spatially resolved ecological context for testing hypotheses relating
to hominin adaptation. Based upon the combination of faunal
abundance and stable isotopic data, our findings indicate that 1)
taxa within the East Turkana mammal community were distributed
heterogeneously across space, 2) subregions closer in proximity to
the Basin axis (i.e., Ileret and Koobi Fora) had more C4 vegetation
based on faunal abundance and stable isotopic evidence, and 3) the
Karari subregion, which has abundant evidence of hominin stone
tool manufacture and discard, had significantly more C; vegetation
than the Ileret and Koobi Fora subregions, although the exact nature
of the vegetation in this area is still an open question. These lines of
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evidence indicate that during the Okote Member the East Turkana
ecosystem was highly variable across space. This setting would have
undoubtedly contributed to the ecological pressures experienced by
hominins during this period and could have been a primary factor in
shaping the disparate evolutionary trajectories of the genera Homo
and Paranthropus.
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