
Ocean Engineering 145 (2017) 237–249
Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier .com/locate/oceaneng
Simplified analysis of the influence of strain localization and asymmetric
damage distribution on static damaged polyester rope behavior

Juan Felipe Beltr�an a,*, Nicol�as Ramírez b, Eric Williamson c

a Dept. of Civil Engineering, University of Chile, Blanco Encalada # 2002 of. 440, Santiago, Chile
b Dept. of Civil Engineering, University of Chile, Blanco Encalada # 2002, Santiago, Chile
c Dept. of Civil Engineering, University of Texas at Austin, 1 University Station C1748, Austin, TX, 78712-0273, USA
A R T I C L E I N F O

Keywords:
Damage
Synthetic-fiber rope
Numerical simulation
Rope failure
Rope response
* Corresponding author.
E-mail addresses: jbeltran@ing.uchile.cl (J.F. Beltr�an),

http://dx.doi.org/10.1016/j.oceaneng.2017.09.006
Received 2 September 2016; Received in revised form 5
Available online 18 September 2017
0029-8018/© 2017 Elsevier Ltd. All rights reserved.
A B S T R A C T

In this paper, two factors that govern the response of damaged ropes are numerically examined independently:
strain localization and asymmetric damage distribution. These two mechanisms are studied by using two
nonlinear mechanical models that account for the strain localization around the failure site due to frictional ef-
fects (SLM) and the presence of unbalanced radial contact forces within a rope cross-section due to the asymmetry
in damage distribution (ADDM). These models are applied to an available set of static tension tests on asym-
metrically damaged, large-scale polyester ropes. The initial damage level of the rope cross-sections and rope
diameters varied from 5% to 15% and from 32 mm to 166 mm, respectively. A semi-analytical proof is given to
show that SLM and ADDM provide upper and lower bounds, respectively, to the damaged response of the ropes
analyzed. Results indicate that, relative to the intact rope, the SLM predicted a reduction in rope capacity similar
to the damage level and a maximum reduction in rope deformation capacity equal to 16% for an effective damage
level equal to 25%. Conversely, the ADDM predicted a reduction in rope residual strength slightly greater than the
damage level and a maximum reduction in deformation capacity equal to 3%.
1. Introduction

A rope is a slender and flexible structural element used in many en-
gineering applications including cranes, bridges, electrical conductors,
mine hoisting, offshoremooring, and so on. Ropes manufacturers provide
different configurations of ropes suited for the wide aforementioned
range of usage, having a different number and arrangement of rope
components, which can be made of different materials such as metal,
natural, and synthetic fibers, within the rope cross-section (Foster, 2002;
McKenna et al., 2004).

During rope operational service, mechanical demands, abrasion and
environmental interaction (corrosion, chemical, ultra-violet light, heat
exposure, etc.) continuously degrade the mechanical properties of indi-
vidual rope components. This degradation process could result in the
rupture of some rope components, which could eventually lead to rope
failure. Damage to ropes, which could start during rope transportation
and installation, is complex and different for each rope application,
revealing the local operating parameters and the characteristics of the
rope selected (Chaplin, 2005).

Experimental (Hankus, 1981; Cholewa and Hansel, 1981; Chaplin
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and Tantrum, 1985; Cholewa, 1989; Evans et al., 2001; Li et al., 2002;
and Ward et al., 2006; Liu et al., 2015; Lian et al., 2015 among others)
and theoretical (Lanteigne, 1985; MacDougall and Bartlett, 2005, 2006;
Beltran and Williamson, 2010, 2011; Beltran and Vargas, 2012; and
Beltran and De Vico, 2015 among others) studies, mainly conducted on
steel wire ropes and synthetic fiber ropes, have intended to determinate
the ability of particular types of rope constructions to withstand damage
(i.e., damage-tolerance property). The results of previous studies have
shown that the impact of broken rope components on overall rope
response (stiffness, residual strength, deformation capacity, and
deformed configuration) depends on the length of the rope, number of
broken rope components (degree of damage or damage level), type of
rope construction, and their distributions throughout the rope
cross-section (symmetric and asymmetric) and along the rope length.

In the context of analyzing damaged rope behavior, the damage-
tolerance property is an essential parameter for rope design, rope eval-
uation during operational service, and for developing discard criteria
according to rope usage based on the residual strength and deformation
capacity a degraded (damaged) rope can sustain. Thus, the effects of the
multiple degrading factors on rope response and the complex interactions
amírez), ewilliamson@mail.utexas.edu (E. Williamson).
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Fig. 1. (a)Two-noded axial-torsional element; (b) damaged rope discretization.
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between them should be understood in order to establish the appropriate
rope inspection methods and discard criteria, and in this way, extend
rope service life (Chaplin, 2005).

In this paper, two mechanisms that rule the behavior and failure of
damaged ropes are numerically examined individually: strain localiza-
tion and asymmetric damage distribution. The former mechanism is
accounted for by using the numerical model proposed by Beltran and
Williamson (2011) in which the rope analysis is linearized by discretizing
the rope into a series of two-noded axial-torsional elements whose
formulation accounts for material and geometric nonlinearities. The
discretization of the damaged rope depends upon the potential incre-
mental contribution of broken rope components to overall rope response
due to frictional forces that defines the length over which damage
propagates along the length of a rope (the so-called damage length). To
account for the latter mechanism, the model proposed by Beltran and De
Vico (2015) is extended to account for multi-level rope geometry (more
than one helical structure can be found in rope construction). The
damaged rope is assumed to behave as a nonlinear beam under biaxial
bending and axial load with Bernoulli's kinematic hypothesis. A
semi-analytical proof is given to show that strain concentration and
asymmetric damage distribution capacity curves provide upper and
lower bounds, respectively, to damaged rope response. Based on this
proof, conclusions can be drawn regarding which mechanism has more
influence on the behavior of a particular damaged rope in terms of its
stiffness, residual strength, and deformation capacity. Comparisons with
available static tension tests on large-scale ropes (diameters vary from
32 mm to 166 mm) asymmetrically damaged (initial damage level varies
from 5% to 15%) polyester ropes (Ward et al., 2006) are performed to
validate the proposed models and to explain the measured damaged
ropes responses.

2. Damaged rope response simulation

2.1. Strain localization model (SLM)

Beltran and Williamson (2011) presented a numerical model to esti-
mate the effect of broken rope components on overall rope response. This
proposed model relies on the ability of broken rope components to carry
their proportionate share of axial loads over a distance measured from
the failure region, which is referred as the recovery length (rl) (Raoof,
1991). The ability of a failed rope component to resume carrying load is
due to frictional forces, which depend on the presence of contact forces
between rope components (due to their helical nature and/or rope jacket
confinement) and the surface characteristics (i.e., coefficient of friction)
of the components in contact. The model assumes axisymmetric
response, accounts for the type of rope construction, damage level, and
damage distribution along the length of the rope. A limitation of this
model, however, is that it ignores any loss of symmetry due to the failure
of any rope components. If the recovery length value is admissible (i.e.,
within the physical length constraints of the rope being analyzed), a
damaged rope is discretized along its length into two-noded axial-tor-
sional elements, which provides a means for representing a weakened
cross-section acting over a localized region. For the purpose of this study
and in order to simplify the analysis, the gradual increase in load carried
by broken rope components is ignored. Thus, only the full value of axial
load at distances outside admissible recovery length values are taken into
consideration. The proposed model accounts for the geometric nonline-
arity of a rope's displacement and the potential nonlinearity of the
constitutive response of the components that form a rope. In addition, the
potential confinement effect of a rope jacket on rope components is
included in the proposed model by assuming the rope jacket behaves like
a thin-walled tube.

The formulation of the SLM is briefly described for completeness, but
full details of its formulation can be found in the corresponding refer-
ences. In Fig. 1a, the two-noded axial-torsional element used to discretize
damaged rope length is presented. Each element includes two degrees of
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freedom at each node: axial displacement (ui) and axial rotation (ϕi).
Associated with these degrees of freedom are the corresponding axial
force Ni and torsional moment Ti. For the sake of the model description,
consider that the failure region is located near the rope midspan and
broken rope components (identified in black color) fully develop their
recovery length values. In this case, damaged rope is a non-prismatic rope
discretized into three two-noded axial-torsional elements in which the
length LS2 represents the damage length (broken components do not
contribute to rope response), and its value is equal to 2rl. In elements of
lengths LS1 and LS3, which are equal due to the symmetry of the model,
broken components fully contribute to rope response because they have
entirely developed their rl values as depicted in Fig. 1b (they are not in
black color).

As explained by Beltran and Williamson (2011), the tangent stiffness
matrix of each axial-torsional element Si is computed, and then each
tangent stiffness matrix is assembled to obtain the tangent stiffness ma-
trix of the entire rope. For each axial-torsional element, equilibrium
considerations are used to describe, in terms of only two independent
degrees of freedom (referred to as the “essential set”- axial deformation
(u3 – u1) and the axial rotational deformation (ϕ4 – ϕ2)), its response.
Consequently, a 2 � 2 stiffness matrix is computed having the
following form:

½ksr �i ¼
�
kλλ kλη
kηλ kηη

�
i

(1)

where the subscripts λ and η are associated with the axial strain and the
rate of twist, respectively, of the cross-section of element Si. No closed-
form expressions exist to compute the stiffness coefficients due to the
nonlinear geometry and (eventually) nonlinear constitutive response of
the rope components. Accordingly, a numerical procedure is imple-
mented, based upon the centered differentiation formula, to compute
these terms. The 4 � 4 tangent stiffness matrix [Ksr]i of each axial-
torsional element Si, associated with the degrees of freedom u1, ϕ2, u3
andϕ4 (referred as to the “complete set”) described in Fig. 1a, can be
obtained through equilibrium consideration of each element for assem-
bling the tangent stiffness matrix of the entire rope. A summary of the
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numerical scheme implemented to compute the stiffness matrices [ksr]i
and [Ksr]i, for each axial-torsional element Si and the values of the in-
crements in axial displacements and axial rotations as well as the in-
crements in external loads (axial forces and torsional moments), is
provided in Appendix A.

The numerical algorithm of the SLM is based upon a displacement
control analysis scheme in which increments in axial displacement are
prescribed for the rope. The size of these increments is constrained by the
computed axial strain values of the smallest defined structure (i.e., rope
components for which material law is known) that comprises the rope.
These values should not exceed a maximum value arbitrarily set for the
algorithm (typically 2% of the failure axial strain value). If this criteria is
not met or the numerical algorithm of the SLM does not converge (Bel-
tran and Williamson, 2011) for a particular incremental step of the
analysis, sub-steps are performed by continuously bisecting the incre-
ment in axial rope displacement until both increment size criteria and
convergence of the algorithm are achieved. The maximum strain failure
Fig. 2. (a) Damaged rope cross-section; (b) axial load convergence; (c) torsional moment conve
length respectively; (f) convergence of the strain distribution along the rope length.
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criteria is adopted to determine whether any rope component failure
initiated and consequently, at that strain level, to estimate the residual
strength and deformation capacity of the damaged rope.

According to the SLM formulation, the predicted response curve of a
damaged rope (Fig. 1b) starts approaching to the response curve of the
intact (i.e., undamaged) rope as the value of the damage length gets
smaller relative to the length of the rope (damaged rope response gets
stiffer), provided all broken components fully develop their recovery
length values. Given an increment in the displacement of a damaged
rope, the increment in the external load (axial force and torsional
moment) can be obtained through the following expression:

�
ΔF
ΔT

�
J

¼ ð½ksr �int ÞJ�1

�
Δu
Δφ

�
J

(2)

where ΔFJ and ΔTJ are the increments in axial force and torsional
moment, respectively, and ΔuJ and ΔϕJ are the specified axial
rgence; (d) and (e) dependence of the axial displacement and axial rotation of the damage
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displacement and axial rotation, respectively, of the rope in the Jth in-
cremental step of the analysis. The parameter ([ksr]int)J-1 is the tangent
stiffness matrix of an intact two-noded axial-torsional element computed
by considering the rope configuration of the (J-1)th incremental step
(known configuration). It is important to point out that this approach is
only valid for estimating the stiffness, axial load, and torsional moment of
the damaged rope; the strain distribution along the length of the rope
depends on the solution of the entire SLM depicted in Fig. 1a as discussed
later in the paper.

Provided all broken components develop admissible recovery length
values, to study the dependence of damaged rope response on damage
length and to prove that the corresponding damaged capacity curve
converges to the intact one as the damage length gets smaller relative to
the length of the rope, a particular damaged rope analysis is presented.
Consider the two-level three-layer damaged rope cross-section depicted
in Fig. 2a. Rope level refers to the number of structures in the hierarchy of
components that exist in the rope. This rope cross-section is formed by 18
parallel polyester sub-ropes (i.e., the sub-ropes are not twisted together
in a helical fashion forming the first level of the rope), arranged in three
layers (red circles in Fig. 2a), and confined by a polyester jacket (dashed
black circle in Fig. 2a). Layers refer to the number of concentric circles of
components wrapped around the core. In the terminology used in this
study, the core is always considered to be the first layer (Fig. 2a). Each
sub-rope itself, however, is built by twisting three strands (second rope
level) together around a fictitious straight core. The rope has a specified
undamaged breaking strength (SBS) of 35 tonnes (343.2 kN) and a
diameter equal to 32 mm. Five strands of three adjacent sub-ropes have
been cut (colored black) prior to loading to inflict approximately 10% of
damage to the rope cross-section as reported byWard et al. (2006). These
researchers concluded that for this particular type of rope construction
(parallel sub-rope configuration), a strain concentration zone around the
failure section may be induced by rope jacket confinement, type of rope
construction (sub-ropes formed by twisted strands), and rope
terminations.

The convergence of the axial load and torsional moment provided by
the SLM (N7 and T8 in Fig. 1b, respectively) is studied by varying the
percentage of the damage length of the rope (length LS2 in Fig. 1b)
relative to the total length of the rope. The magnitudes of these param-
eters, normalized by the corresponding quantities assuming an intact
rope response (Eq. (2)), are presented in Fig. 2b and c for prescribed
values of the rope axial strain (horizontal axis of the plots). For modeling
purposes, boundary conditions of the model considers one end section of
the rope fully clamped and the other end to have a uniformly increasing
axial displacement history specified with the cross-section prevented
from rotating. For this particular analysis, the percentage of the damage
length of the rope ranges from 0% to 92% for both variables, considering
a wide range of axial strain values (from 0 to 0.06), in which 0.07 is the
failure rope axial strain value experimentally obtained by Ward et al.
(2006) for the intact rope case. Both normalized parameters approach
1.0, and the difference between two consecutive values becomes smaller
as the percentage of the damage length gets smaller relative to rope
length for the entire range of rope axial strain values considered. This
means that damaged rope response, in terms of the stiffness and external
loads (axial load and torsional moment), can be estimated by the model
of the intact rope given by Eq. (2) for prescribed values of the rope axial
strain as the percentage of the damage length gets smaller relative to rope
length. Along with the convergence of the damaged rope stiffness to
intact rope stiffness, the kinematics variables u5 and ϕ6 (as well as u3 and
ϕ4 due to symmetry conditions) associated with the damage length of the
rope (Fig. 1b) become dependent on the rope axial strain (variables u1
and u7 in Fig. 1b) as presented in Fig. 2d and e. The relationships between
both kinematic variables u5 and ϕ6 and rope axial strain converge to a
single curve considering a wide range of rope axial strain values; thus, the
independent degrees of freedom of the damaged ropemodel are u1 and u7
(values of ϕ2 and ϕ8 are set equal to zero in this numerical example),
which are solely related to the intact two-noded axial-torsional element
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as the percentage of the damage length gets smaller relative to
rope length.

In terms of the strain distribution along the length of the damaged
rope, strain localization develops around the failure region as shown in
Fig. 2f, in which the strain values developed in the damaged (S2) and
intact (S1) elements are normalized by the prescribed axial rope strain
values. Strains developed in the S2 element (dashed curves) are greater
than both the prescribed rope axial strains and the strains developed in
the S1 (also S3 according to Fig. 1b) element (solid curves), in which the
latter are smaller than the prescribed rope axial strain values but
converge to them as the percentage of the damage length gets smaller
relative to rope length (ratio of the plotted values approaches 1.0). If the
damaged rope is transformed into an equivalent prismatic rope based on
the damaged element properties (S2), the effective length of this equiv-
alent rope is smaller than the original one to match the (original) non-
prismatic damaged rope stiffness. Thus, the axial displacement pre-
scribed to the equivalent non-prismatic rope is distributed over a smaller
length, inducing higher axial strain in the damaged element (S2) than the
value prescribed for the non-prismatic damaged rope. By axial equilib-
rium (elements Si are in series configuration), axial strains developed in
the undamaged elements (S1 and S2 in Fig. 1b) are smaller than the ones
developed in the damaged length. Additionally, as the percentage of the
damage length (S2) decreases relative to the rope length, the effective
length of the equivalent prismatic rope gets smaller as well. The axial
strain computed for the equivalent prismatic rope gets higher (the axial
displacement specified for the damaged rope is distributed over a smaller
length) and consequently its failure strain is reached for smaller values of
the axial displacement specified for the (original) damaged rope. As such,
axial strains in the damaged element S2 also increase as the percentage of
the damage length gets smaller relative to rope length, converging to an
upper bound curve for a wide range of rope axial strain values and
controlling the deformation capacity of the entire damaged rope. The
curves shown in Fig. 2f (and also in Fig. 2d and e) are plotted up to the
onset of damaged rope failure (associated with the maximum load car-
rying capacity and its corresponding strain) to be consistent with previ-
ous researchers (Li et al., 2002; Ward et al., 2006; Beltran and
Williamson, 2011; Beltran and Vargas, 2012; among others) in which the
subsequent fracture process of the rope cross-section is not part of this
study. The reduction in the deformation capacity (rope failure strain
value) of the damaged rope as the percentage of the damage length de-
creases relative to rope length is illustrated in Fig. 2e, d and 2f,
converging to aminimum value equal to 0.063 in this particular case. The
reduction in the rope strength and deformation capacity of the damaged
rope relative to the intact rope are approximately equal to the damage
inflected to rope cross-section (10%) for this particular damaged rope
analysis. Accordingly, the model captures the effect of having a weak-
ened cross-section acting over a localized region defined by the recovery
length. For cases where the damage length to rope length ratio is small,
the damaged capacity curve of the rope coincides with the intact one up
the rope failure due to strain localization in its weakened cross-section.
Accordingly, the SLM can provide an upper bound for the capacity
curve of a damaged rope.

2.2. Asymmetric damage distribution model (ADDM)

Beltran and De Vico (2015) proposed a mechanical model to estimate
the static response of a rope asymmetrically damaged on its outermost
layer. In order to account for the asymmetric damage distribution, the
damaged rope is assumed to behave as a nonlinear beam under uncou-
pled biaxial bending and axial load with Bernoulli's kinematic hypothe-
sis. Biaxial bending arises from the unbalanced radial contact forces
within a rope cross-section due to the asymmetric damage distribution,
resulting in a net transverse force per unit length of rope qR, which is
decomposed into the principal planes (xy and xz) of the damaged rope
cross-section (Fig. 3a). The magnitude of this net transverse force ac-
counts for the initial helical geometry of the unbroken rope components.



Fig. 3. (a) Asymmetrically damaged rope cross-section; (b) three-strand sub-rope configuration; (c) nonlinear beam under sinusoidal loads.
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An iterative cross-sectional numerical algorithm, based upon a
displacement control analysis scheme, is implemented to estimate the
asymmetric damaged rope capacity curve, stress and strain distributions
throughout rope cross-section, and rope geometry deformation for a
prescribed axial displacement of the rope. The computation of the force
qR and the numerical examples provided to validate this model are based
on simple asymmetrically damaged cross-section geometries: one rope
level in which a certain number of rope components are wrapped around
a central straight core. In the current study, the proposed model is
extended to analyze a more complex rope geometry that consists of a
group of parallel sub-ropes in which each sub-rope is built by twisting
three strands together as described in the analysis of the SLM (Sec-
tion 2.1).

According to the model proposed by Beltran and De Vico (2015), the
static behavior of an asymmetrically damaged rope is governed by the
following equations:

ðEIzzÞsec
d4v
dx4

� qyðxÞ
�
1þ duðxÞ

dx

�
� HðxÞ d

2v
dx2

¼ 0 (3)

�
EIyy

	
sec

d4w
dx4

� qzðxÞ
�
1þ duðxÞ

dx

�
� HðxÞ d

2w
dx2

¼ 0 (4)

where the plane directions z and y coincide with the principal axes of the
damaged cross-section; qy(x) and qz(x) are the distributed forces along
the rope length in the y and z direction respectively; (EIzz)sec and (EIyy)sec
are the secant bending stiffnesses of the rope component with respect to
the z and y axes, respectively; v(x) and w(x) are the deflections in the xy
and xz (principal) planes, respectively; u(x) is the displacement of the
centroid in the axial direction; and H(x) is the horizontal force relative to
the axial direction of the undeformed damaged rope.

The procedure implemented to compute the expressions for qy(x) and
qz(x) is extended relative to the one utilized by Beltran and De Vico
(2015) due to the increasing complexity of the damaged cross-section
rope analyzed in the current study as previously stated. The process,
and related assumptions, of computing the net unbalanced line force qR
for the case of a two-level homogeneous rope (i.e., all rope components
have the same material properties) with parallel sub-rope construction,
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whose damaged cross-section for illustrative purposes is depicted in
Fig. 3a, is outlined in the subsequent steps. In the following, the super-
scripts of the equations refer to the level to which the components
belong, and the subscripts refer to the layers where the components are
located, except for the local (ζ0ζ1ζ2) and global (x0y0z0) coordinate sys-
tem and net unbalanced radial line forces q1 and q2.

⁃ Consider the asymmetrically damaged (broken components colored
black) rope cross-section depicted in Fig. 3a. Each damaged sub-rope
is analyzed as an individual one-level damaged rope to estimate its
local radial net unbalanced force relative to the local coordinate
system ζ0ζ1ζ2 (Fig. 3b). For simplicity, the geometrical parameters of
the strands that form each sub-rope (i.e., pitch distance, helix angle,
and curvature) are considered to be the same.

⁃ The values of the local net unbalanced radial line forces q1 and q2
(Fig. 3b) along the local longitudinal axis of the corresponding sub-
rope are given by (Beltran and De Vico, 2015)

q1 ¼
κ22T

2
2;½2�

cos θ22;½2�
(5a)

q2 ¼
2κ22T

2
2;½2� sin Ψ 2

2

cos θ22;½2�
(5b)

where κ22 is the curvature of a rope component in layer two of the second
level of the rope; T2

2;½2� is the axial force of a component in layer two of the

second level, which forms a component of the first level, belonging to
layer two; θ22;½2� is the helix angle of components that belong to layer two
in the second level, which form components of the first level belonging to
layer two; and Ψ2

2 is the angle between the contact line force direction of
the rope component in layer two of the second level of the rope, which
points to the centroid of the equilateral triangle that forms the three-
strand configuration, relative to the base of this equilateral triangle
(i.e., 30� in this example, Fig. 3b). In this particular example, the di-
rections of the line forces q1 and q2 coincide with the principal axes λi, ηi
(i ¼ 1,2) of the damaged subrope cross-sections (Fig. 3b), and the local
reference system ζ0dζ1 is parallel to the global reference system y0z0 due
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to the type of rope construction (parallel sub-ropes) studied.

⁃ It is assumed that the projections of the line forces q1 and q2 point to
the centroid of the damaged cross-section; thus, the projection
resultant of the net unbalanced line force acting on the cross-section
qR also points to the rope cross-section centroid. In this way, the
magnitude of qR is maximized and any potential torsion induced to
the rope cross-section by the unbalanced line forces q1 and q2 is
ignored (Eqs. (3) and (4) do not include torsional terms). The line
force qR forms an angle φ relative to an arbitrary axis y. Due to the
helical nature of the strands, this axis coincides with one of the
principal axes of the damaged rope cross-section for increasing values
of φ (Fig. 3a) equal to nπ/2 (n is an integer). Considering a damaged
cross-section in which the arbitrary xy and xz planes coincide with
principal ones (Fig. 3a), the net transverse line forces along the lon-
gitudinal axis of the ropes in both the xz and xy (principal) planes are
given by

qz ¼ qR sin φ (6a)

qy ¼ qR cos φ (6b)
�

δε22;½k�

�
j

�
J

ðxÞ ¼
��

δ

�
duðxÞ
dx

�
t

�
� yt

�
δ

�
d2vðxÞ
dx2

�
t

�
þ zt

�
δ

�
d2wðxÞ
dx2

�
t

��
j

�

cos θ22;½k�

�2
�

J
(8)
⁃ The condition that the projection of the resultant net unbalanced line
force qR points to the centroid of the damaged rope cross-section,
changing its direction from outward to the interior of the rope
cross-section, is met along the rope axis for increasing values of φ
(Fig. 3a) equal to nπ (n is an integer) due to the helical configuration
of the strands that form each sub-rope. In order to capture the
dependence of the line force qR on the aforementioned helical nature
of strands in the initial rope configuration, the angle φ varies ac-
cording to the relationship between the local swept angles ωi (i¼ 1,2)
and the helical geometry of the strands (Fig. 3b), i.e., ωi ¼ (2πx
/p22,[2]), where p22,[2] is the pitch distance of rope components that
belong to layer two in the second level, which form components of the
first level belonging to layer two.

The procedure described accounts for the fact that the sub-ropes are
assembled parallel to each other in two layers and they are held together
by a jacket; (Fig. 3a). As such, the local longitudinal axis of each damaged
sub-rope ζ2 is parallel to the longitudinal axis of the rope x (i.e.,
cosθ11 ¼ cosθ21 ¼ 1). The damaged rope is analyzed with a constant cross-
section in which the parameters involved in Eqs. (3) and (4) are relative
to the principal axes of the cross-section, and the helical nature of rope
components of the second level of the rope in the initial rope configu-
ration is captured by the sinusoidal variation of the net transverse line
forces qy(x) and qz(x) (Fig. 3c).

Once the values of qy and qz in Eqs. (3) and (4) are estimated, these
equations are analytically solved (i.e., they have closed-form solutions)
½ðδHÞiterj �J ¼
X
t

X
l

ððElÞ22;½k� Þj�1

�
δ

�
duðxÞ
dx

�
t

�iter

j

ðAlÞ22;½k�




cos θ22;½k�
�3 �iter

J

þzt

�
δ

�
d2wðxÞ
dx2

�
t

��iter

j

ðAlÞ22;½k�




cos θ22;½k�
�3 �iter

J

242
for a given value of rope axial strain εr to compute the displacement field
of a generic point of each unbroken rope component (Beltran and De
Vico, 2015). The displacement field of a particular generic point at sec-
tion x can be described using the component displacements u(x), v(x) and
w(x) of the damaged rope centroid at same section as follows:

uxðxÞ ¼ uðxÞ � y
dvðxÞ
dx

þ z
dwðxÞ
dx

(7a)

uyðxÞ ¼ vðxÞ (7b)

uzðxÞ ¼ wðxÞ (7c)

where ux(x), uy(x), and uz(x) denote the displacements in the x, y, and z
directions, respectively (Fig. 3a), of the generic point ((z,y) location at
rope cross-section) under consideration; and d(∙)/dx is used for the first
derivate. As previously stated, in this formulation the effect of the angle
of twist of the rope component on its lateral deflections v(x) and w(x) is
neglected. To estimate the static response of a damaged rope, an
incremental-iterative numerical procedure is implemented (Beltran and
De Vico, 2015) in which the jth increment of the Jth step of the analysis in
axial strain of an unbroken strand in layer two of the second level,
considering small strain assumption, which forms the subrope t of the
first level, belonging to layer k, [(δε22,[k])j]J, is given by
where δ is the variational operator and the above expression assumes that
the deformed configuration of unbroken strands can be accurately esti-
mated by a first-order circular helix curve based upon the work by Bel-
tran and De Vico (2015). Considering that the numerical implementation
of the ADDM is based on a displacement control scheme, the incremental
axial rope displacement δur is specified for each step of the analysis.
Similarly to the numerical algorithm implemented for the SLM case, the
size of δur for each step of the analysis is also controlled by constraining
the computed increment in axial strain for each unbroken rope compo-
nent [(δε22,[k])j]J. In this particular study, the criteria arbitrary set is that
each value of [(δε22,[k])j]J, should be less than 2% of the failure strain
given by the constitutive law. For the sake of explanation, if this criteria is
not met for any iteration of the Jth step of the analysis, sub-steps are
performed by continuously bisecting the increment in axial rope
displacement [δur]J until the criteria are satisfied. The total number of
steps, i.e, Jn, carried out in the algorithm is controlled by the maximum
failure strain criteria. This criteria is used to establish the onset of failure
of any rope component and consequently, at that strain level, estimate
the residual strength and deformation capacity of a damaged rope.
Typically, the centroid of the tth subrope is considered as the generic
point to evaluate the above expression. Assuming unbroken strands
behave as fiber elements (i.e., they only develop uniaxial state of stress),
and considering a discrete formulation model and linearized incremental
constitutive law, the increment in damaged rope axial load for the jth
substep of the Jth step of the analysis at the end of the iteration process
(iter), [(δH)iterj]J, can be estimated as:
þ
X
t

X
l

ððElÞ22;½k� Þj�1

�
� yt

�
δ

�
d2vðxÞ
dx2

�
t

�

(9)
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where the subscripts t and l refer to sub-ropes (first level of the rope) and
strand (second level of the rope), respectively; and El and Al are the
tangent modulus and cross-sectional area of the particular strand l,
respectively. The first term of the above expression accounts for the
contribution of all unbroken strands to the increment of damaged rope
axial load as the rope were subjected to purely tensile load (expression
related to the so-called net-area effect), and the second term is related to
the lack of symmetry of the cross-section (asymmetric damaged distri-
bution) that perturbs the straight initial and deformed configuration of
the rope (hereafter referred to as the perturbation term) inducing a
lateral deformation to the asymmetrically damaged rope and a gradient
in the stress/strain distribution throughout a rope cross-section. As a
result, premature failure is initiated in the rope due to this gradient in the
stress/strain distribution relative to the net-area effect as discussed by
MacDougall and Bartlett (2006) and Beltran and De Vico (2015).
Consequently, Eq. (9) can be recast in the following form:

½ðδHÞiterj �J ¼ ½ðδHÞiterj �J;netarea þ ½ðδHÞiterj �J;pertterm (10)

where the first term of the above expression is related to the net-area
effect (netarea) contribution and the second term is related to the
perturbation term (pertterm), associated with biaxial bending acting on
the rope that arises due to the lack of symmetry of the cross-section ac-
cording to Beltran and De Vico (2015). The total axial force developed by
the rope the for Jth step of the analysis, (H)iterJ, is given by
Fig. 4. Impact of perturbation term
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ðHÞiterJ ¼
Xjmax

½ðδHÞiterj �J ¼
Xjmax

½ðδHÞiterj �J;netarea þ
Xjmax

½ðδHÞiterj �J;pertterm

j¼1 j¼1 j¼1

¼ ðHÞiterJ;netarea þ ðHÞiterJ;pertterm

(11)

where jmax is the maximum number of increments considered for each
step of the analysis (subscript J) due to material and geometric non-
linearities, which can vary from one analysis step to another
depending on the of the desired accuracy of the results. Based on the
formulation proposed, that considers small strain assumption for each
step of the analysis performed, the total perturbation term, (H)iterJ,-
pertterm, should not contribute to the value of the axial load, (H)iterJ,
because this term is related to the biaxial bending induced in the
damaged rope which assumed to be uncoupled from axial response.
The numerical implementation of this formulation, however, considers
only one integration point for each unbroken rope component (its
centroid) to compute its axial stress to subsequently compute its
contribution to the value of the axial load, (H)iterJ, through Eq. (9)
(Beltran and De Vico, 2015). In order to study the accuracy of the
implemented algorithm, the total perturbation term, (H)iterJ,pertterm,
can be expressed in terms of the axial load, (H)iterJ, and the total
increment in axial load associated to net area effect, (H)iterJ,netarea, for
every Jth step of the analysis to evaluate its impact on the value of the
on damaged rope axial load.
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axial load ((H)iterj).
The impact of the perturbation term on the damaged rope axial load

(expressed as percentage of this value) for a wide range of axial rope
strain values for different type of polyester rope cross-section construc-
tions and damage distributions is presented in Fig. 4. All the rope cross-
sections depicted in Fig. 4 have SBS values equal to 35 tonnes and 700
tonnes (6864.6 kN), with diameters that vary from 32 mm to 166 mm as
specified in the same figure in which the small and large values corre-
spond to rope cross-sections with SBS values equal to 35 tonnes and 700
tonnes, respectively. Similarly to the proof given for the SLM, boundary
conditions of the ropes analyzed assume one end section is fully clamped
and the other end has a uniformly increasing axial displacement history
with no axial twist (Fig. 3c). In order to be consistent with previous works
(Beltran and Vargas, 2012; Beltran and De Vico, 2015), the degree of
asymmetry of the damaged cross-section is captured by a scalar quantity
termed the index of asymmetry (IA). This parameter accounts for the shift
of the center of stiffness of the damaged cross-section relative to the
intact rope cross-section due to the asymmetric distribution of damage.
For computational purposes, the initial value of this parameter (IA)0
(computed for small rope axial strain value) is considered as a repre-
sentative measure of the degree of asymmetry of the rope cross-section
(hereafter referred to as IA) as extensively discussed by Beltran and
Vargas (2012).

The damage level of the damaged cross-sections shown in Fig. 4 varies
from 5% to 15%, in which ropes R1 and R3 have the same number of
parallel sub-ropes for both SBS values (drawn in the figure). Conversely,
cross-section of rope R2 has eighteen parallel sub-ropes for rope with SBS
equal to 35 tonnes and twenty parallel sub-ropes for rope with SBS equal
to 700 tonnes. The contribution of the perturbation term (Eq. (11)) to the
total value of the rope axial load (shown as percentage in Fig. 4) fluc-
tuates around the zero value (horizontal axis) for the entire range of rope
axial strain values considered for all the ropes analyzed. The peak values
of this fluctuating behavior are quite small in which the maximum
magnitude is equal to 0.18% for rope R3 with SBS equal to 35 tonnes and
a 10% damage level. Each plotted curve in Fig. 4 has its associated IA
value according to the damage distribution within a corresponding rope
cross-section. Based on the results presented in Fig. 4, for the ropes
analyzed in this study in which the diameters vary from 32 mm to
166 mm, damage levels (asymmetrically distributed) range from 5 to
15%, and the corresponding IA values vary from 0.09 to 0.25, the
contribution of the perturbation term (Eq. (11)) to the total value of the
rope axial load is negligible. Consequently, the integration scheme
implemented is sufficiently accurate, and the axial load and axial stiffness
of these damaged ropes can be readily estimated by the net-area effect
model for a given rope axial strain value. As such, the estimated damaged
capacity curve (and accordingly damaged rope stiffness) of the rope
given by the ADDM is governed by the net-area effect term providing a
more flexible response relative to the intact one and consequently a lower
bound for the damaged capacity curve when compared with the pre-
dicted curved given by the SLM. The values of the residual strength and
deformation capacity of these ropes, however, differ from the ones pre-
dicted by the net-area effect model as discussed in the subse-
quent section.

3. Numerical simulations and discussion

Based upon the results presented in Section 2, both numerical models,
SLM and ADDM, provide an upper and lower bound, respectively, for the
predicted capacity curves of the analyzed asymmetrically damaged
polyester ropes. In this section, these two models are used to estimate the
stiffness, residual strength, and axial failure strain of a set of large-scale
damaged polyester ropes tested by Ward et al. (2006). As previously
stated, these two latter values are based on the maximum strain failure
criteria considering the axial failure strain values of the strands, which
are the smallest defined structure in rope constructions. Additionally,
estimated and measured values are compared to validate the proposed
244



Fig. 5. Capacity curves of initially damaged ropes with SBS equal to 35 tonnes: (a) type
Rope R1; (b) type Rope R2 and (c) type Rope R3
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numerical models and explain the tested ropes' behavior. A summary of
the failure axial strain values of the strands that form the ropes and the
residual strength and failure strain values given by both models, along
with available experimental data, are given in Table 1. A discussion of the
results presented in this table is given in the subsequent paragraphs.

The test procedures (Ward et al., 2006) involved the following
sequential steps: (a) initial cycling to bed-in the ropes; (b) inflict pre-
scribed damage level to ropes; (c) damaged ropes are cycled to simulate
storm loading; (d) examination of ropes for any damage progression after
storm loading simulation; and (e) perform rope capacity tests. For each
type of rope construction, test procedure steps from (c) to (e) were car-
ried out for both undamaged and damaged ropes. Undamaged rope test
data (step (e) of test procedures) are used to predict the residual strength
of damaged ropes and to estimate the constitutive law of strands
(smallest structure defined in rope constructions) after storm loading
simulation using the following expression (McKenna et al., 2004):

EtðropeÞ ¼ EtðstrandÞ
�
cos4:75θ1⋅cos4:75θ2

	
(12)

where Et(rope) and Et(strand) are the tangent modulus of the rope (slope of
the measured undamaged rope capacity curves) and the strands that form
the ropes respectively; and θi is the helix angle of rope level i (i ¼ 1 for
sub-ropes and i¼ 2 for strands) according to the rope construction model
used in this study. The values of θi for each rope construction analyzed
are estimated from the information provided by Ward et al. (2006)
regarding the construction of the sub-ropes that form the ropes. For the
case of ropes R1 and R2, the value of θ2 is estimated as 12�, and it is
estimated to be 10� for both SBS values. The value of the helix angle θ1 is
0� for all ropes due to their parallel sub-rope construction type. For
computational purposes, the normal stress of a strand is expressed as a
function of its normal strain by using a polynomial function up to the fifth
degree (Beltran and De Vico, 2015). As previously stated, for simulation
purposes both models consider one end section of the rope to be fully
clamped and the other end section to be subjected to a uniformly
increasing axial displacement with cross-sectional rotation prevented.

In Fig. 5, predicted and measured capacity curves for three types of
rope construction (R1, R2, and R3 previously described in Fig. 4) are
presented. These ropes had an SBS equal to 35 tonnes and an initial
damage level of 10% of the cross-section, where the damaged was
inflicted asymmetrically. The values of the IA associated with the
initial inflicted damage vary from 0.16 to 0.19 as presented in Fig. 4.
These tests considered L/d ratios ranging from 40 to 1000, where L is
the rope length and d is the rope diameter. The curves given by the
SLM are the stiffest response the proposed computational model pro-
vides based on the discussion presented in Section 2.1. SLM curves
account for a strain localization zone around the failure section (rope
midspan) induced by rope jacket confinement and/or the effect of rope
termination, because both effects limit the damage length due to
confinement action. Accordingly, damaged ropes are discretized into
three axial-torsional elements (discretization consistent with the
description of the SLM in Section 2.1, Fig. 1) in which the central
element of each rope discretization is the localized region where strain
concentrates along the rope length. In all the rope analyses presented
in this figure, measured (Exp. data-when available) and predicted
curves of intact (initially undamaged) ropes compare quite well be-
tween each other in which the rope strengths are accurately predicted
and rope failure strains are underestimated by less than 3% with
respect to the measured data. This conclusion validates the use of Eq.
(12) to estimate the constitutive law of rope components (strands) of
each rope analyzed. Associated with the ADDM, the values of the net
unbalanced line force qR are quite similar for all the ropes analyzed,
ranging from 0 to 650 kN/m.

For the case of rope type R1 (Fig. 5a), all the experimental curves
compare well with the ADDM curve for small values of rope axial strain
(less than 0.03). For greater strain values, all these curves get stiffer and
approach the SLM curve. Exp. data 1 (L/d ¼ 40) and Exp. data 3 (L/
245
d ¼ 1000) curves failed at the induced damage location (rope midspan),
while Exp. data 2 curve (L/d ¼ 290) failed at one end splice (Ward et al.,
2006). In the latter, stress concentration could have developed in the
failure region that would explain the extra stiffness shown in this curve
relative to the SLM curve close to the failure strain. The SLM curve is an
upper bound for the Exp. data 1 and Exp. data 3 curves, meaning the
stiffening process experienced by these experimental curves is less steep
than the predicted one, thereby allowing an increased deformation ca-
pacity (value approaching to the one specified for the intact case). In
terms of the residual strength and failure axial strain, experimental
values are estimated, respectively, in the range of �8% to þ1% and
�10% to �2% by the SLM.

Regarding the case of rope type R2 (Fig. 5b), both tested ropes failed
near the initially damaged region according to Ward et al. (2006). Exp.
data 1 (L/d ¼ 290) curve experiences a stiffening process from axial
deformation equal to 0.02 to 0.05. In this strain range, it compares well
with the SLM curve, although it is stiffer over portions of this strain in-
terval. For axial strain values greater than 0.05, this experimental curve
softens (failure initiation reported at a load of approximately 196 kN)
converging to the ADDM (12%) curve. This last curve assumes that the
intermediate failure reported corresponds to one extra strand cut based



Fig. 6. Capacity curves of initially damaged ropes with SBS equal to 700 tonnes: (a) type
Rope R1; (b) type Rope R2 and (c) type Rope R3
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upon the measured residual strength relative to the measured rope ca-
pacity (intact rope). The IA value increases from 0.19 to 0.21, and the
ADDM (12%) underestimates the measured residual strength and failure
axial strain by 2.7% and 1.7%, respectively. Exp. data 2 (L/d ¼ 1000)
curve is softer than the simulations (SLM and ADDM (10%)) curves. It
was reported that some noise was heard during cycling (storm loading
simulations). The initial damage (10%) is distributed in three sub-ropes,
and these three sub-ropes appeared to have failed during storm loading.
Three broken sub-ropes out of 18 correspond to 17% of damage, and the
IA increases from 0.19 to 0.27. The ADDM (17%) curve associated with
this damage level compares quite well with the Exp. data 2 curve,
although failure strain and residual strength are overestimated by 12%
and 10% respectively.

Lastly, for the case of rope type R3, Exp. data 2 (L/d ¼ 590) and Exp.
data 3 (L/d¼ 1000) curves are stiffer than SLM curve for most of the axial
strain range. The explanation of this behavior relies on the fact that all
the sub-ropes associated with Exp. data 2 curve failed near one splice
(stress concentration stiffens rope response), and Exp. data 3 corresponds
to a case where an unwinding process took place near the midspan failure
location, leading to a stiffer rope response as reported by Ward et al.
(2006). Exp. data 1 (L/d¼ 40) curve compares well with the ADDM curve
up to a strain equal to 0.045, then it experiences a stiffening process and
compares quite well with the SLM curve up to strain value equal to 0.065.
It is reported that some strands failure occurred as this deformation
(probably due to stress concentration near one splice), and this curve
approaches the SLM (13.3%) curve that accounts for one extra strand cut
relative to the initial damage. This latter curve underestimates the
measured residual strength and failure strain by less than 0.5%. For this
tested rope, six sub-ropes failed at the rope midspan and four failed near
one of the splices, indicating that the confinement effect associated with
a rope jacket or rope terminations (or both) induced strain localization at
the cut location.

Based on the analyses presented in Fig. 5, information provided by
Ward et al. (2006), and previous studies on strain localization in
damaged ropes (Beltran and Williamson, 2011), different stiffening
effects (stress concentrations, unwinding, and jacket confinement)
impact the manner in which a rope fails. Thus, it is not clear how the
response of a damaged rope depends upon the L/d parameter. A more
extensive set of experimental data is needed to study the potential
dependence of damaged rope response on the L/d parameter, consid-
ering different types of rope constructions and variations in damage
level to rope cross-section, damage distribution (index of asymmetry),
and rope sizes.

Similarly to the analyses presented in Fig. 5, predicted and
measured capacity curves of the types of rope constructions R1, R2,
and R3, previously described in Fig. 4, are presented in Fig. 6 for ropes
with an SBS value equal to 700 tonnes and an initial damage level
varying from 10% to 15% of the cross-section, where this damage is
asymmetrically distributed. The values of the IA associated with the
initial inflicted damage vary from 0.16 to 0.25 as presented in Fig. 4,
and rope discretizations, based on the SLM, are the same as the ones
used for the damaged ropes with SBS equal to 35 tonnes (Fig. 5). The
tests of these types of ropes consider a fixed value of the parameter L/
d, which was equal to 40. Regarding the simulations performed with
the ADDM, the value of the net unbalanced line force qR ranges from
0 to 2300 kN/m for rope R2, and it ranges from 0 to 3900 kN/m for
rope R3. For the case of rope R1, the value of qR vanishes due to the
particular distribution of damage and rope construction (parallel sub-
rope configuration) as discussed subsequently. For the case of rope
type R1 (Fig. 6a), Ward et al. (2006) reported that after cycling the
rope (step (c) of the test procedures), inspection revealed six sub-ropes
were broken. The initial inflected damage to the rope cross-section
was 10% and was distributed to four sub-ropes. Hence, it is assumed
that the initial partially damaged sub-ropes are within the six broken
sub-ropes after cycling, which means that 18 strands are broken,
corresponding to 25% of the area damaged prior performing the
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capacity test. In this way, asymmetry in damage distribution does not
induce transverse load qR because all the strands that form the
damaged sub-ropes are cut. Thus, for this particular case, the ADDM
coincides with the net-area effect model. The predicted response
curves SLM-2 and ADDM (with an IA value equal to 0.3) bound the
response of the Exp. data curve in which the former curve is the stiffest
response that the strain localization model provides (approaches the
intact rope response). The Exp. data curve appears to develop some
degree of stiffening relative to the ADDM curve, a phenomenon that is
well captured by SLM-1 curve. This latter curve considers a partial
effect of strain localization, simulated by increasing the percentage of
the damage length (Section 2.1) of the rope relative to the rope length,
on rope response and overestimates by 6% and 7% the residual
strength and failure strain, respectively. The tested rope failed due to
the splice condition as reported by Ward et al. (2006), which could
have induced, due to stress concentrations, the premature failure of
the rope relative to predicted values.

For the case of rope type R2 with SBS equal to 700 tonnes (Fig. 6b),
the predicted intact curve matches well with the experimental intact
rope curve in which the rope strength and failure strain are over-
estimated and underestimated by 1%, respectively. This rope was
initially damaged by 10% of its cross-section, which corresponds to six
strands cut and distributed to three sub-ropes. The experimental
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damage curve (Exp. data) compares well with ADDM (10%) up to a
strain equal to 0.025, then it experiences a stiffening process resulting
in a response that is a little stiffer than the SLM-1 (10%). There are two
failures that soften the rope response, which is bounded by the SLM-1
(10%) and ADDM (10%) curves before its complete rupture. Based on
the measured residual strength of the rope, it can be concluded that the
two failures observed in the plot correspond to two broken sub-ropes,
which adds six broken stands to the first six. Therefore, 12 broken
strands correspond to a 20% damage level, a value that coincides with
the measured residual strength. The SLM-2 (20%) curve, considering
20% of damage distributed to five sub-ropes and a partial effect of strain
localization (phenomenon explained in the discussion of Fig. 6a)
compares quite well with last part (after breakage) of the Exp. data
curve. Both the measured residual strength and failure strain are
underestimated by less than 0.1%. The tested rope failed at the inflicted
damaged region as reported by Ward et al. (2006).

In Fig. 6c, the analysis rope type R3 with a 15% initial damage level
and an SBS value equal to 700 tonnes is presented. The predicted intact
curve matches well with the experimental intact rope curve in which the
measured residual strength and failure strain are underestimated by 1%
and 2%, respectively. The initial damage inflicted corresponds to 4.5
strands cut and distributed to three sub-ropes. Exp. data curve develops
a stiffening process, comparing quite well with the SLM curve up to
strain equal to 0.053. At this strain level, Ward et al. (2006) report that
one sub-rope failed. Assuming this broken sub-rope was partially
damaged (two strands cut out of three) in conjunction with the initial
damage the rope, its failure adds one more strand cut to the total
damage of the rope cross-section, reaching a value of 18% of the total
cross-section. The measured residual strength is approximately 88% of
the measured intact rope strength, and the measured failure strain value
is equal to 0.075. These two values suggest that after the failure of the
sub-rope, the rope developed an unwinding process and was able to
reach a greater residual strength and failure strain relative to the ones
provided by the SLM curve.

4. Conclusions

In this paper, two effects that govern static damaged rope response
were studied using two different numerical models: strain localization
around the failure region and asymmetric damage distribution at a
given rope cross-section. The analyses conducted to capture these two
effects were uncoupled in order to quantify independently the relevance
of each effect on damaged rope stiffness, rope residual strength, and
rope deformation capacity. The formulation of each model was
described and computationally implemented. Computed results were
compared to available test data for a set of large-scale, polyester
damaged ropes to validate the models and to explain the tests re-
sults obtained.

Most of the initially damaged ropes with an SBS value equal to 35
tonnes, and all the initially damaged ropes with an SBS value equal to
700 tonnes, experienced a stiffening process relative to the ADDM (lower
bound) curve. This stiffening process, which is primarily induced by the
confinement of the rope jacket and end splice effects (especially on
shorter ropes (L/d ¼ 40)), is well captured by the SLM curves because
both effects eventually result in admissible recovery length values of the
broken strands. The ability of broken rope components to eventually
resume carrying load is an important feature of the SLM (strain locali-
zation model). For these cases, the predicted reduction in rope capacity is
similar in magnitude to the loss of cross-sectional area induced through
initial damage. The predicted reduction in rope deformation capacity
ranges from 7% to 16%, relative to the intact rope response, for cases
with initial cross-sectional damage ranging from 10% to 25% of the total
cross-sectional area. The unwinding process of the broken strands,
however, is not accounted for the SLM curves; thus, damaged rope
response is underestimated by the SLM curves when unwinding of the
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unbroken strands is the primary stiffening effect.
The response of two rope samples of type R2, with an SBS value

equal to 35 tonnes, was accurately predicted by the ADDM curves. One
of these samples, L/d ¼ 290, initially presented a stiffening process,
then an intermediate failure occurred during testing. Consequently, the
damaged rope response softened and converged to the ADDM (12%)
curve with an IA value equal to 0.21. This index of asymmetry (IA)
accounted for a greater damage level than the initial value inflicted
(10%) due to the previously described intermediate failure that
occurred during testing. For this case, the model predicts a reduction of
15% for the rope strength and 3% for the deformation capacity relative
to the intact values. The ADDM (12%) underestimates the measured
residual strength and failure axial strain by 2.7% and 1.7%, respec-
tively. The other rope sample, L/d ¼ 1000, experienced the failure of
some strands during storm loading simulation. The ADDM (17%) curve
that considered 17% of the cross-section damaged and an IA value equal
to 0.27 reasonably predicts the damaged response up to failure,
although the measured failure strain and residual strength are over-
estimated by 12% and 10%, respectively. In this case, the model pre-
dicts reductions of 18% of the rope strength and 3% of the deformation
capacity relative to the intact values predicted.

It is worth mentioning that both models utilized in this study are
highly efficient. Typically, for each rope deformation increment, five
or fewer iterations are needed to meet the convergence criteria asso-
ciated with each numerical model. Additionally, both models are
robust over a wide range of parameters, showing good correlation
between measured and predicted damaged rope response for ropes of
different sizes and construction types, having a variety of damage
levels and distributions.

This paper includes analysis results that consider different types of
rope configurations with parallel sub-rope construction, effective dam-
age levels from 5% to 25% of the rope cross-section, variety in damage
distribution (index of asymmetry varies from 0.09 to 0.27), and different
large-scale rope sizes (rope diameters vary from 32 mm to 166 mm).
Based on the computed results, it can be concluded that, in general, the
SLM and ADDM curves bound the experimental data (except for the cases
discussed in Fig. 5), with the SLM providing an upper bound and the
ADDM curves providing a lower bound. This conclusion extends the
range of applicability of both models that in previous works (Beltran and
Vargas, 2012; and Beltran and De Vico, 2015) had been validated for
small-scale polyester ropes whose diameter was equal to 6 mm, damage
levels were in the range of 11%–55%, and index of asymmetry values
varied from 0.093 to 0.54.

Despite the good performance of the models described in this paper,
additional comparisons with experimental data on damaged ropes are
needed to establish the range of applicability of the SLM and ADDM and
to assess the significance of strain localization and damage asymmetry on
rope response. Ideally, future research will consider ropes comprised of
materials other than polyester and include a variety of damage levels,
damage distributions, and ropes sizes. While these two models can be
used to provide reasonable bounds on the response of damaged polyester
ropes, the interaction between strain localization and asymmetry in
damage distribution are treated as uncoupled phenomena in the current
research. Hence, a more general model that also accounts for the
coupling between strain localization and asymmetry in damage distri-
bution needs to be explored. This coupled model should consider torsion-
axial loads, torsion-bending, and bending-axial load interactions to
assure convergence, computational efficiency, and robustness of the
corresponding implemented algorithm based on the geometry of rope
cross-section and rope's length.
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Appendix
A. Strain localization model (SLM): numerical algorithm

No closed-form expressions exist to compute the stiffness coefficients (Eq. (1)) due to the nonlinear geometry and potential nonlinear constitutive
response of rope components. Accordingly, a numerical procedure is needed to compute these terms. Considering a function Gi ¼ (G1, G2)i such that (Ti,
Mi)¼Gi(λ, η)i, the stiffness coefficients can be obtained by computing the gradient of this function. Thus, the stiffness coefficients of the matrix [ksr]i can
be evaluated, for any element Si, as follows:
� �

kλλ ¼ ∂G1

∂λ
¼ Tðλþ δλ; ηÞ � Tðλ� δλ; ηÞ

2δλ
(A.1)

� �

kηλ ¼ ∂G2

∂λ
¼ Mðλþ δλ; ηÞ �Mðλ� δλ; ηÞ

2δλ
(A.2)

� �

kλη ¼ ∂G1

∂η
¼ Tðλ; ηþ δηÞ � Tðλ; η� δηÞ

2δη
(A.3)

� �

kηη ¼ ∂G2

∂η
¼ Mðλ; ηþ δηÞ �Mðλ; η� δηÞ

2δη
(A.4)

where the centered differentiation formula is used to evaluate the stiffness coefficients, T andM are the axial force and torsional moment, respectively,
and (δλ, δη)i are small perturbations to a prescribed level of deformation (λ, η)i for each axial-torsional element Si. The values of the perturbations δλ and
δη are found using an iterative process where variations are considered until two consecutive values of the stiffness coefficients are sufficiently close
based upon a prescribed tolerance. In this algorithm, these induced perturbations are applied separately (i.e., small perturbations are assumed for one
variable while holding the other perturbation equal to zero), generating two different perturbed deformations. The values of T and M are computed
using the formulation described by Beltran and Williamson (2005).

From equilibrium considerations, the 4 � 4 tangent stiffness matrix [Ksr]i of each axial-torsional element Si, associated with the degrees of freedom
u1, ϕ2, u3 andϕ4 (referred as to the “complete set”) described in Fig. 1, can be obtained. Hence, with the 2 � 2 element stiffness matrix [ksr]i computed,
[Ksr]i can be calculated as follows:
� �

½Ksr �i ¼

½ksr �i �½ksr �i
�½ksr �i ½ksr �i (A.5)

The increments in axial displacements and axial rotations of the individual axial-torsional element as well as the increments in external loads (axial
forces and torsional moments) required to induce a prescribed increment in the deformation level of the rope (displacement control analysis) can be
obtained by solving the following linearized equilibrium equation of a damaged rope throughout the use of an incremental-iterative numeri-
cal procedure:
k�1 k k k�1
½Kr�j fdugj ¼ fdQgj þ fRgj (A6)

where the superscript k represents the iterative step, ½Kr �k�1
j represents the tangent stiffness of the rope at the end of the (k-1)th iteration (converged

state) obtained by assembling the tangents stiffness matrices of each axial-torsional element computed from Eq (A5), fdQgkj is the increment in the

external load vector of the kth iteration, and fRgk�1
j is the unbalanced load vector (axial forces and torsional moments) that represents the imbalance

between the existing internal and external loads at the end of the (k – 1)th iteration.
For each iteration k of each increment j, once the Eq. (A6) is solved, the axial strain and axial rotation for each axial-torsional element are computed.

Using the constitutive equation corresponding to the current level of rope deformation, the internal axial force and internal torsional moment on axial-
torsional element are obtained. These internal quantities are compared with the corresponding external quantities obtained from the solution of Eq.
(A6) (computation of the so-called unbalanced load vector). If the norm of this vector is less than a prescribed tolerance, the iteration process is stopped
and a new increment in axial deformation and axial rotation of the rope is given to perform the (jþ1) step of the analysis. Otherwise, new iterations are
carried out (solution of Eq. (A6)) until the norm of the unbalanced load vector meet the stopping criterion.
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