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El método de aproximación de campo de geometría independiente (GIFT) introducido
recientemente en [1] como una extensión del análisis isogeométrico (IGA), permite diferentes
bases para la parametrización de la geometría y la aproximación de campo. Por ejemplo, se
demostró en [1] cómo se puede emparejar la geometría CAD original dada por NURBS con
la solución dada por PHT-splines para problemas bidimensionales de conducción de calor
regidos por la ecuación de Poisson. Esta modificación permite superar ciertas deficiencias
del método IGA, como la ausencia de refinamiento local, que es crucial para los problemas
donde las soluciones muestran altos gradientes, manteniendo la principal ventaja de IGA, es
decir, la estrecha integración del análisis con el diseño de CAD.

Este trabajo es una extensión del trabajo realizado en [1]. Tiene dos objetivos principales:
el primero es estudiar la adaptabilidad local de la solución, esto se logra implementando
y comparando tres medidas de error diferentes; la segunda parte consiste en el estudio de
la dependencia de la parametrización de la geometría en la solución, para este objetivo, se
analizan dos parametrizaciones diferentes del mismo problema.

Para estudiar la adaptabilidad local, se resuelven dos problemas usando tres métodos
diferentes, usando indicadores de error para seleccionar las celdas a refinar: el Método 1 usa
un indicador de error de norma-L2, el Método 2 usa un indicador de error basado en residuos
y el Método 3 usa un algoritmo jerárquico. Para probar estos métodos se utiliza el método
GIFT con su geometría definida por NURBS y un campo de solución definido por PHT-
Splines, las tasas de convergencia, las mallas refinadas y las gráficas de error se comparan
con la solución analítica y el refinamiento homogéneo.

Finalmente, dos de los tres métodos muestran mejoras en comparación con el refinamiento
homogéneo, donde el Método 2 presenta los mejores resultados, seguido de cerca por el
Método 1 y finalmente el método 3, que presenta peores resultados que el refinamiento ho-
mogéneo. Para la dependencia de la parametrización de la geometría, los resultados obtenidos
muestran una diferencia entre las parametrizaciones, concluyendo que la parametrización de
la geometría si afecta la solución, además, se observa que al utilizar el método de refinamiento
adaptativo local se presentan mejores tasas de convergencia para ambas parametrizaciones.

Se espera que este trabajo conduzca a posteriores mejoras del método GIFT, propuesto
en [1].
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Abstract

Geometry Independent Field approximaTion (GIFT) is a method recently introduced in [1]
as an extension of the IsoGeometric Analysis (IGA), which allows different bases for the
geometry parameterization and the field approximation. For example, it was demonstrated
in [1] how the original CAD geometry given by NURBS can be paired with the solution
given by PHT-splines for 2D problems of heat conduction governed by Poisson’s equation.
This modification allows to overcome such deficiencies of IGA, as absence of local refinement,
which is crucial for the problems, where solutions exhibit high gradients, while keeping the
main advantage of IGA, i.e. tight integration of analysis with CAD design.

This work is an extension of the work done in [1]. It has two principal objectives: the
first one is to study the local adaptivity of the solution, this will be achieved by implement-
ing and comparing three different error measures; the second part consists in the study of
the dependence of the parameterization of the geometry on the solution, for this goal, two
parameterizations of the same problem are tested.

To study the local adaptivity, two problems were solved using three different methods,
that used error indicators to select the cells to refine: Method 1 uses an L2-norm error in-
dicator, Method 2 uses a residual based error indicator and Method 3 uses a hierarchical
algorithm. To test this methods, the GIFT method with a NURBS geometry and a PHT-
Splines solution field was used, the convergence rates, the refined meshes and the error plots
were compared to the analytical solution and the homogeneous refinement.

Finally, two of the three methods show improvements compared to the homogeneous re-
finement, where Method 2 presents the best results, followed closely by Method 1, and finally,
the method 3, which presents worse results than the homogeneous refinement. For the geome-
try parameterization dependence, the results obtained show an important difference between
the parameterizations, concluding that the geometry parameterization does affect on the so-
lution, whilst the local adaptive refinement method works fine for both parameterizations.

It is expected that this work will lead to further improvement of the GIFT method,
proposed in [1].
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To my little girl.
Para mis hermanos, Vicente y Nicolás,

belive in yourself, be yourself, you own your future,
embrace it or just change it, be happy.
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Chapter 1

Introduction

1.1 Motivation

Over the last few decades, computer aided numerical methods have been extensively used to
solve or to obtain an approximate solution to complex engineering problems (e.g. heat propa-
gation, vibratory responses, fluid dynamics, etc.) through the resolution of partial differential
equations. The development of numerical methods is motivated by the great complexity of
obtaining such solutions analytically, and due to rapid developments in Computer Sciences,
the time spent on solving such problems numerically, dramatically decreased. Due to the
nature of numerical methods, the solutions are discrete, which implies that is always possible
to obtain a more detailed and precise solution because of the real numbers density, making
necessarily the use of larger amounts of computational data to improve the quality of the
desired solution. This, together with the great technological advances lead the career of the
numerical methods to achieve better responses to the problems. The classic numeric method
for the resolution of problems has been the Finite Element Method (FEM), nevertheless, it
presents certain limitations, that result in large computational times and inaccuracy in the
solutions.

Nowadays, the numerical methods are being very important in different areas of science,
including engineering and health. That is why engineers and mathematicians seek to obtain
increasingly accurate solutions to known problems in order to be able to solve faster and
more accurately problems that still have not been resolved by now.

In the pursuit for the numerical methods optimization, a new method was proposed by
Hughes in [2], known as IsoGeometric Analysis (IGA), which gathers the best of Computer
Aided Design methods (CAD) and Finite Element methods (FEM or FEA). While in FEM,
for h-method (standard FEM), the geometry of the problem is constantly refined, to achieve
this is necessary the use of lots of computational resources. Whilst in the IGA method the
geometry is represented exactly as the CAD generates it, so there is no need to refine and
change the geometry to refine the solution, significantly reducing the resources used. This

1



Figure 1.1: The main idea of isogeometric analysis (IGA). Source: [1].

is why Isogeometric Analysis allows to mix the best of CAD and FEM, generating an exact
geometry by using basis functions called Splines (the most commonly used ones are B-Splines
and NURBS [Non Uniform Rational B-Splines]), that are used for both, parameterization of
the CAD geometry and approximation of the solution field. Despite the advantages of IGA,
there are shortcomings in this method like the difficult to represent complex multi patch
geometries and the lack of local adaptivity.

Recently, in [1] a new method was introduced, called Geometry-Independent Field approx-
imation (GIFT), which presents further generalization of the IGA. IGA has the potential to
provide closer integration between geometric design and numerical analysis since any change
in the CAD model is directly inherited by the field approximation, but sometimes using the
same functions for both geometry and solution field may create unwanted constraints, this is
why unlike IGA, in GIFT, the solution field and geometry basis can be chosen independently.
Allowing GIFT method to address the main shortcomings of IGA, by enabling:

1. Flexibility of solution representation.
2. Straightforward treatment of multi-patch configurations.
3. Independent field refinement.

In Figures 1.1 and 1.2, the main ideas of IGA and GIFT methods are simply represented.

As GIFT method allows to select separately the basis functions for the geometry and
solution field, it helps to take advantage of two different Splines in the same problem. This
main advantage using PHT-Splines for the solution field, allowing local adaptivity, and a
simple parameterization of the geometry using NURBS, allows the method getting better
convergence rates in problems with sharp peaks. In Figure 1.3 one can see the comparison
of convergence rates between IGA and GIFT method made in [1], using PHT-Splines and
B-Splines for the solution field and NURBS for the geometry in case of GIFT method and
PHT-Splines and B-Splines for solution and geometry field for IGA.
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Figure 1.2: The main idea of geometry-independent field approximation (GIFT). Source:
[1].

In this work the local adaptivity, using PHT-Splines for the solution field and NURBS
for the geometry, will be studied using different methods to trigger local refinement, also the
dependency of the parameterization of the geometry with the convergence of the solution
will be studied.

Figure 1.3: Comparison of the convergence results with the IGA method using quadratic
NURBS and GIFT method using cubic B-Spline spaces during h-refinement. Source: [3]
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1.2 Objectives and scope

1.2.1 General objective

The general objective of this work is to continue studying performance of the GIFT method,
initiated in [1].

1.2.2 Specific objectives

To achieve the main objective, two specific objectives are established:

1. The study of the local adaptivity of the solution. This will be achieved by implementing
three different error measures methods as indicators for the code to self-select the cells
to be refined in two different problems:

• Using absolute error with L2-norm for every cell.

• Using an error indicator that does not depend on the analytical solution to select
the cells to be refined.

• Using a hierarchical method that depends on the previous solution to select the
cells to be refined.

2. The study of the dependence of the parameterization of the geometry on the solution.

• Analyzing and comparing two problems with the same geometry and the same
solution using two different parameterizations.

• Using a uniform parameterization and an irregular parameterization.

1.2.3 Scope

This work will analyze two-dimensional (2D) problems governed by partial differential equa-
tions. Comparing analytical and numerical results obtained by an in-house code programmed
in C++, which has to be modified and extended to accomplish the objectives of this work.
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Chapter 2

Theoretical Background

2.1 Heat transfer

The transfer of heat is normally done from a high temperature object to a lower temperature
object. Heat transfer changes the internal energy of both systems involved according to the
First Law of Thermodynamics:

Q = Wk +
dU

dt
, (2.1)

where Q is the heat transfer rate and Wk is the work transfer rate. They may be ex-
pressed in joules per second (J/s) or Watts (W ). The derivative dU/dt is the rate of change
of internal thermal energy U , with time t. This works for closed systems [4].

The analysis of the heat transfer processes can generally be done without reference to any
work processes, although heat transfer might subsequently be combined with work in the
analysis of real systems. If p dV work is the only work that occurs, then Eq. (2.1) can be
rewritten as:

Q = p
dV

dt
+

dU

dt
. (2.2)

For heat transfer there are three methods:

• Conduction.

• Convection.

• Radiation.

For this work we will focus just on conduction. The heat equation for a function u is:
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ρcp
du

dt
− k∆u = q, (2.3)

where ρ is the density, cp is the specific heat capacity, k is a positive constant that rep-
resents the thermal conductivity, ∆ denotes the laplace operator and q represents the heat
source.

In a steady state Eq. (2.3) can be reduced to the form:

∆u =
−q
k
, (2.4)

this equation is known as the Poisson’s equation. In this particular case, for Heat con-
duction problems, q is expressed in Joules or Calories and k is expressed in W

Km
. For this

work we focus on the mathematical expressions, this is why the units are not shown in the
posterior analysis.

2.1.1 Poisson’s equation

Poisson’s equation is a partial differential equation, the inhomogeneous equivalent of Laplace’s
equation given by Eq. (2.6). It is encountered in the modeling of a variety of problems in
mechanics and physics, ranging from the study of fluid flows in porous media to the theory
of gravitation [5] and it is defined by Eq. (2.5):

∆u = f, Ω ⊂ Rn, (2.5)

∆u = 0, Ω ⊂ Rn, (2.6)

where ∆ is the laplace operator, a differential operator given by the divergence of the
gradient of the function, u is the unknown solution and f is a function in Ω.

This equation is particularly important because is going to be used in this work. The
weak form of Poisson’s equation is given by:

∫
Ω

∇w · ∇u dΩ =

∫
Ω

wf dΩ +

∫
Γ

w (−→n · ∇u) dΓ, (2.7)

where w is the weight function and −→n is the unit outward normal of the boundary Γ of
the problem domain.
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To solve Laplace or Poisson’s equation is necessary to impose boundary conditions.

The most common boundary conditions are:

• Dirichlet condition.

u(x) = g(x), x ∈ δΩ. (2.8)

• Neumann condition.

∂u(x)

∂n
= h(x), x ∈ δΩ. (2.9)

• Robin condition.

au(x) + b
∂u(x)

∂n
= β(x), x ∈ δΩ. (2.10)

Where u is the solution, g, h and β are functions in δΩ, a and b are constants and ∂u/∂n
denotes the normal derivative of u at the boundary.

2.2 Splines

It is commonly accepted that the first mathematical reference to splines is Schoenberg’s
paper [6], which is probably the first place that the word "Spline" is used in connection
with smooth, piecewise polynomial approximation. According to [7], the splines were first
used in the aircraft and ships crafting in the days before computer modeling. The engineers
needed to draw smooth curves through a set of points, this was achieved by using thin metal
or wooden beam (called spline) and bended through the control points with metal weights
(called ducks). This meant that if more influence of the control point was needed, the simple
solution was to add more weights to the control point. Despite this solution, a more detailed
method was required, a mathematical way was needed to describe the shape of the curve.
For more information about spline history refer to [8].

Cubic splines were the first ones used to recreate the spline-duck method mathematically
due to its close relation with the draftsman’s spline, an important aspect is that this spline
is represented actually by piecewise cubic polynomial between control points, but to assure
a smooth continuity they must follow certain rules, i.e. they must be continuously differen-
tiable (C0, C1 and C2 continuity).

The splines proved to be an effective tool in the elementary processes of interpolation and
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approximate integration. An outstanding characteristic, however, is its effectiveness in nu-
merical differentiation. In computer graphics, the pursuit of representing smooth curves for
desired designs makes splines the best functions to approximate the geometry of the graphic,
that is why it is widely used for Computer Aided Design softwares. In [9] the reader may
find more rigorous and complete information about the use of splines in computer graphics.

Nowadays there are multiple kinds of splines that are used to represent smooth curves,
these curves are used from graphic designs to solutions of complex engineering problems.
In the next sections, three important kinds of splines relevant to this work are presented:
B-Splines, NURBS and PHT-Splines.

B-Splines

B-Splines are a kind of spline that represent curves like piecewise Bezièr curves, see an ex-
ample in Figure 2.1 (for more information about Bezièr curves the reader is referred to [10]).
A particular property of the B-Splines is local control, by which we mean that altering the
position of a single control vertex causes only a part of the curve to change. This makes it
possible to modify part of a curve (or surface) without affecting other portions that are al-
ready satisfactory, which is often useful in geometric design and modeling. An added benefit
of local control is that it minimizes the work required to recompute a curve after a control
vertex has been moved since only a small part of the curve has changed [9].

Figure 2.1: Quadratic B-Spline curve in R2. Control point locations are denoted by red
dots. Source: [2].

A p-th-degree B-Spline curve is defined by:

C(u) =
n∑

i=0

Ni,p(u)Pi, (2.11)
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where Pi are the control points, and Ni,p(u) are the pth-degree B-Spline basis functions,
which can be defined with Cox-de Boor recursion formula:

Ni,0(u) =

{
1 if ui < u < ui+1

0 otherwise
,

Ni,p(ξ) =
ξ − ξi

ξi+1 − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2.12)

Important properties of B-Splines curves are:

1. They have continuous derivatives of order p − k, where k is a number of repetition of
the knots.

2. An affine transformation of a B-spline curve is obtained by applying the transformation
to the control points. We refer to this property as affine covariance.

B-Splines surfaces: For a B-Spline surface of p−th degree in ξ direction and q−th degree
in η direction, given a control points net Pi,j, i = 1, 2, ..., n, j = 1, 2, ...,m, and knot vectors
Ξ1={ξ1, ξ2, ..., ξn+p+1}, and Ξ2={η1, η2, ..., ηm+q+1} is defined by:

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j, (2.13)

where Ni,p and Mj,q are B-Splines basis functions of the surface.

Non Uniform Rational B-Splines (NURBS)

A pth-degree NURBS curve is defined by:

C(u) =

∑n
i=0Ni,p(u)wiPi∑n

i=0Ni,p(u)wi

a ≤ u ≤ b, (2.14)

where Pi are the control points (forming a control polygon), wi are the weights and Ni,p(u)
are the pth-degree B-spline basis functions defined by Eq. (2.12), on the non periodic knot
vector

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , un−p−1, b, . . . , b︸ ︷︷ ︸
p+1

}.

Unless otherwise stated, we assume that a = 0, b = 1 and wi > 0 for all i. Setting

9



Ri,p(u) =
Ni,p(u)wi∑n
j=0Rj,p(u)wj

, (2.15)

allows us to rewrite Eq. (2.14) in the form:

C(u) =
n∑

i=0

Ri,p(u)Pi, (2.16)

where Ri,p(u) are the rational basis functions of NURBS, they are piecewise rational func-
tions on u ∈ [0, 1].

Ri,p(u) have the following properties derived from Eq. (2.14) and the corresponding prop-
erties of Ni,p(u):

1. Non negativity and partition of the unity.

2. Affine invariance: an affine transformation is applied to the curve by applying it to the
control points; NURBS curves are also invariant under perspective projections, a fact
which is important in computer graphics.

3. Strong convex hull property.

4. C(u) is infinitely differentiable on the interior of knots spans and is p− k times differ-
entiable at a knot of multiplicity k.

5. NURBS curves contain nonrational B-Splines and rational and nonrational Bézier
curves as special cases.

NURBS surfaces: Analogously to B-Splines, a NURBS surface of p − th degree in ξ
direction and q − th degree in η direction is defined by:

S(ξ, η) =
n∑

i=1

m∑
j=1

Rp,q
i,p (ξ, η)Pi,j, (2.17)

where Pi,j is a set of n×m bidirectional control net and Rp,q
i,p is defined by:

Rp,q
i,p (ξ, η) =

Ni,p(ξ)Mj,q(η)∑n
î

∑m
ĵ Nî,p(ξ)Mĵ,q(η)wî,ĵ

, (2.18)

where Nî,p(ξ) and Mĵ,q(η) are B-Splines functions defined on knots vectors Ξ1 and Ξ2

respectively.
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PHT-Splines

An important progress of locally refinable splines began with T-splines [11, 12] which over-
comes a weakness of NURBS models that contains a large number of superfluous control
points by allowing T-junctions in the control mesh, calling the new control mesh as T-mesh
and have already shown its potential as a powerful modeling tool for advanced geometric
modeling and adaptive isogeometric analysis [13, 14].

Polynomials Splines over Hierarchical T-meshes (PHT-Splines), introduced by Deng et al.
in 2006 [15], are a generalization of B-Splines over hierarchical T-meshes which in addition
to main properties of B-Splines it inherits the main properties of T-Splines such as adaptiv-
ity and flexibility, also exhibits several advantages over T-Splines. The conversion between
NURBS and PHT-Splines is very fast unlike T-Splines. The local refinement algorithm of
PHT-Splines is local and simple. However, the trade off is PHT-Splines are only C1 contin-
uous but this is enough for most applications in solid and structural mechanics.

PHT-Splines possess a very efficient local refinement property. This property makes PHT-
Splines preferable in geometric processing, adaptive finite elements and isogeometric analysis.
Owing to these properties, PHT-Splines have been widely applied in geometric modeling and
isogeometric analysis. With PHT-Splines, surface models can be reconstructed and simplified
efficiently [15].

Given a T-mesh T, T denotes all the cells in T and Ω the region occupied by all the cells
in T . A spline space over the given T-mesh T is defined by:

T(m,n, α, β,T) :=
{
s(x, y) ∈ Cα,β(Ω) |s(x, y)|φ ∈ Pmn ∀φ ∈ T

}
, (2.19)

where Pmn is the space of all the polynomials of bi-degree (m,n), and Cα,β(Ω) is the
space consisting of all the bivariate functions which are continuous in Ω with order α along
x direction and with order β along y direction.

Due to the nature of hierarchical T-meshes, the local refinement of PHT-Splines is achieved
by cross insertion, i.e., dividing a cell into four subcells with a cross.

PHT-Splines basis functions have the same important properties as B-Splines, such as
nonnegativity, local support and partition of unity.

PHT-Splines surfaces: Let T be a hierarchical T-mesh, and bj(u, v), j = 1, ..., d be the
basis functions of PHT-Splines. Then the polynomial spline surface over T (called PHT-
Spline surface) is defined by:
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S(u, v) =
d∑
j=1

Cjbj(u, v) (u, v) ∈ [0, 1]× [0, 1], (2.20)

where Cj are control points. PHT-Splines surfaces have similar properties with B-Splines
surfaces such as convex-hull property, affine invariant, local support, etc. To efficiently
manipulate and evaluate a PHT-Spline surface, one should maintain the Bézier representation
of the PHT-Splines surface in every cell, since the basis functions are represented in Bézier
forms in every cell.

2.2.1 Finite Element Method

The Finite Element Method (FEM) is used to solve physics and engineering problems where
other methods are difficult to use. Mathematical models of complex problems are solved by
numerical simulations, by its simplicity to approximate solutions despite complex geometries,
physics and/or boundary conditions.

In the Finite Element Method, a given domain is viewed as a collection of subdomains,
and over each subdomain the governing equation is approximated by any of the traditional
variational methods. This way it is easier to represent a complicated function as a collection
of simple polynomial.

The FEM is characterized by three features [16]:

1. The domain of the problem is represented by a collection of simple subdomains, called
finite elements. The collection of finite elements is called the finite element mesh.

2. Over each finite element, the physical process is approximated by functions of the de-
sired type (polynomials or otherwise), and algebraic equations relating physical quan-
tities at selective points, called nodes, of the element are developed.

3. The element equations are assembled using continuity and/or "balance" of physical
quantities.

In the finite element method, we seek an approximation uh of the solution u in the form:

u ≈ uh =
n∑
j=1

ujψj, (2.21)

where uj are the values of uh at the element nodes and ψj are the interpolation functions.
This representation is substituted into a weak form of the problem and a system of linear
algebraic equation is obtained to determine unknown nodal values uj.
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2.2.2 IsoGeometric Analysis (IGA)

The isogeometric analysis (IGA) is a method introduced in [2] where basis functions generated
from NURBS are employed to construct an exact geometric model and for analysis purposes.
The basis is refined and/or its order elevated without changing the geometry (see Figure
1.1). This makes a complete integration between CAD and Finite Element Analysis (FEA),
which by the unnecessary subsequent communication with the CAD description allows better
computational efficiency. More detailed examples can be found in [2].

The main features of IGA are the use of same spline representation for both, geometry
and the solution field and having every element iso-geometric, the union of the fields is better
achieved.

In the following equations the geometry and the solution field splines representation are
shown:

x(ξ) =
N∑
α=1

CαNα(ξ), (2.22)

u(ξ) =
N∑
α=1

DαNα(ξ), (2.23)

where Cα ∈ Rd are the control points, Dα are the control variables and Nα(ξ) are the
NURBS basis functions.

This representation is subsequently substituted into the weak form of the problem given
by Eq. (2.7) together with w = Nβ(ξ) to yield the following algebraic equation for the vector
of unknown control variables U :

KU = F, (2.24)

where K is the stiffness matrix and F is the force vector.

Poisson’s equation weak form

For example, for Poisson’s problem given by Eq. (2.5) with Neumann’s boundary condition
(Eq. (2.9)), using the weak form of the equation, given by Eq. (2.7) with the solution
representation u(ξ) defined in Eq. (2.23) and selecting the weight function to be the ith

shape function, i.e. w = Ni(x, y) we get the following ith linear algebraic equation for N
unknown variables:
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N∑
j=1

{∫
Ω

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ

}
uj =

∫
Ω

Nif dΩ +

∫
Γ

Nih(x) dΓ. (2.25)

This equation is valid for i = 1, 2, ..., N . All N equations can be represented by Eq. (2.24)
where:

Kij =

∫
Ω

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ, (2.26)

Fi = fi + bi, (2.27)

fi =

∫
Ω

Nif dΩ, (2.28)

bi =

∫
Γ

Nih(x) dΓ, (2.29)

U is the unknown vector with N entries, f is the force vector and b is the boundary
integral vector.

2.2.3 Geometry-Independent Field approximaTion (GIFT)

The Geometry-Independent Field approximaTion (GIFT) is a new method explained in [1].
It is a generalization of the isogeometric analysis (IGA) method where the spline spaces used
for the geometry and the field variables can be chosen and adapted independently while pre-
serving geometric exactness and tight CAD integration.

In GIFT, for a given computational domain with spline form, the solution field can have a
different spline representation, such as B-Splines of different degrees, PHT-Splines, T-Splines
and generalized B-Splines. Importantly, the geometry of the computational domain has the
same spline representation as that of the given CAD boundary.

In Figure 2.2, one can see an example of the GIFT method in a complex geometry defined
by NURBS and PHT-Splines for the solution field. The parametric domain mesh and the
color-map error of the GIFT solution are shown.

Analogously to the IGA, the computational domain Ω ∈ Rd, d ≥ 2, defined on parametric
domain P has the following spline representation:
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x(ξ) =
N∑
α=1

CαNα(ξ). (2.30)

Unlike in IGA, in GIFT method, the solution field u(ξ) can have a different spline repre-
sentation, as shown in Figure 1.2:

u(ξ) =
M∑
β=1

UβMβ(ξ), (2.31)

where Uβ, β = 0, 1, . . . ,M are the control variables to be solved and Mβ(ξ) are the basis
functions of the specified spline space defined on the parametric domain P.

The main features of GIFT are:

1. Possibility to flexibly choose between different spline spaces with different properties
to better represent the solution of the problem, e.g. the continuity of the solution field,
boundary layers, singularities, whilst retaining geometrical exactness of the domain
boundary.

2. For multi-patch analysis, where the domain is composed of several spline patches, the
continuity condition between neighboring patches on the solution field can be automat-
ically guaranteed without additional constraints in the variational form.

3. Refinement operations by knot insertion and degree elevation are performed directly on
the spline space of the solution field, independently of the spline space of the geometry of
the domain, which makes the method versatile and allows local refinement. GIFT with
PHT-spline solution spaces and NURBS geometries is used to show the effectiveness of
the proposed approach in [1].

Formulation of GIFT

Consider an open domain Ω ⊂ Rd, d ≥ 2, with boundary Γ consisting of two parts ΓD and
ΓN , such that Γ = ΓD

⋃
ΓN , ΓD

⋂
ΓN = ∅. The domain Ω is parameterized on a parametric

domain P by mapping F :

F : P → Ω, x = F (ξ), x ∈ Ω, ξ ∈ P . (2.32)

Using Eq. (2.30) one can represent the geometry where Nα(ξ) is the chosen basis function
known as geometry basis. For change of variables we will also need the Jacobian matrix J(ξ)
of the mapping F , which is given by:
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Figure 2.2: GIFT utilized with local refinement using PHT-splines. The first row shows
the computational domain with the control mesh (left) and knot patches (right). From the
second row to the fourth row, we show the T-mesh in the parametric domain (left) and
the corresponding color-map of error measurement (right) with different scales during local
refinement operations. Source: [1].
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Jij(ξ) =
∂xi

∂ξj
(ξ) =

∑
i

Ci
∂Ni(ξ)

∂ξj
. (2.33)

The departure from classical isogeometric analysis consists in choosing a solution basis
Mβ(ξ), which is different from the geometry basis, and looking for the solution as in Eq.
(2.31). In order to evaluate derivatives of the solution basis function Mβ(ξ) with respect to
variables x, the standard chain rule is used, which in two dimensions read:

(
∂Mβ(ξ,η)

∂x
∂Mβ(ξ,η)

∂y

)
=

( ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

)(∂Mβ(ξ,η)

∂ξ
∂Mβ(ξ,η)

∂η

)
(2.34)

Now let the weak form of the boundary value problem be given by:

a(u, v) = l(v), (2.35)

the substituting Eq. (2.30) and (2.31) into (2.35) we obtain the linear system of equations
given by Eq. (2.24) where the stiffness matrix K and the force vector f are given by:

Kij = a(Mi(x),Mj(x)), fi = l(Mi(x)). (2.36)

2.3 Measurement of errors

Before proceeding further it is necessary to define what we mean by error. It is considered
to be the difference between the exact solution and the approximate one, given by:

e = un − ua, (2.37)

where un denotes the numerical solution and ua the exact or analytical solution.

There are 2 general types of errors and different methods to calculate them. The absolute
error and the relative error are given by:

eabs = ‖un − ua‖, (2.38)

erel =
‖un − ua‖
‖ua‖

, (2.39)
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where ‖ ‖ is the norm, which will be explained in the following section.

In this work we will use absolute errors in the L2-norm to calculate the global error of
problems, and for every cell of the field mesh also we will use H1-norm and two different
error indicators.

2.3.1 L2-Norm

The L2-norm is the most typical and mostly used to estimate errors. L2-norm of a function
u defined in domain Ω is represented as follows:

‖u‖L2(Ω) =

(∫
Ω

|u|2dx

) 1
2

, (2.40)

where |u| denotes the modulus of u.

2.3.2 H1-Norm

The H1-norm is defined in the Sobolev space W 1,2(Ω) that could be also denoted as H1(Ω).
It is a Hilbert space, with an important subspace H1

0 (Ω) defined to be the closure in H1(Ω) of
the infinitely differentiable functions compactly supported in Ω. The H1(Ω)-norm is defined
as follows:

‖u‖H1(Ω) =

(∫
Ω

(|u|2 + |∇u|2)dx

) 1
2

. (2.41)

2.3.3 Error indicators

Residual based

Error indicators are used to select elements that meet specific requirements to be refined.
Requirements could be as simple as a constant limit, e.g. an error indicator that selects all
values that are over a chosen value eind = a, where every element to analyze of a vector that
are greater than the specific value a is selected.

An important error indicator is proposed in [1] as a strategy for marking the parametric
cells to be refined, using GIFT method with PHT-Splines in the field solution and NURBS
for the geometry. Suppose K as the cell on the T-mesh T of the parametric domain P for the
PHT-Splines solution uh. The local error indicator eK on each parametric cell K is given by:

18



eK = hK‖f(x) + ∆uh(x)‖L2(K), (2.42)

where hK is the circumference of the subpatch in the NURBS parameterization F(ξ, η) of
Ω with respect to the cell K in the parametric domain P and x = F(ξ, η) = (x(ξ, η), y(ξ, η)).

Hierarchical

The hierarchical error indicator compares the solution of step n and step n + 1. Being un
the numerical solution of the iteration n and un+1 the numerical solution of the iteration
n + 1, the error marker to select the cells to be refined can be calculated using L2-norm of
the difference by Eq.(2.43) or H1-norm of the difference by Eq. (2.44) in each K cell of the
domain.

eind = ‖un+1 − un‖L2(K). (2.43)

eind = ‖un+1 − un‖H1(K). (2.44)

2.3.4 Refinement strategy

To select the cells to be refined in addition of the error indicators, a strategy has to be
implemented. Using the error indicators, cells are arranged by their errors in descending
order, so the cells with the highest errors are selected. In this work, two simple methods are
used, selecting the 5% of the cells with the highest errors and the second one selecting the
20% of the cells.
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Chapter 3

Methodology and Resources

3.1 Methodology

To achieve the main objectives of this research it is necessary to divide the work in three
stages:

The first one is the detailed theorical background review of the principal subjects as
Isogeometric Analysis (IGA), Geometry-Independent Field approximaTion (GIFT) and the
necessarily functions, such as NURBS and PHT-Splines.

The second stage is the study of the local refinement of the solution. For this purpose, the
code used to solve two known problems has to be adapted, so the algorithm can self-adapt
to improve the solutions by locally refining the meshes where it’s needed, specifically where
the algorithm detects that the solutions exhibits high gradients or sharp peaks. This will be
verified by the implementation and comparison of three different error measures to determine
if they improve the accuracy on the solutions compared to homogeneous refinements, select-
ing by three different methods the cells to be refined. The first method uses the analytic
solution, but the other two methods do not depend on the exact solution. Because many
times there is not a known exact solution available, this two methods would be very helpful
if they work accurately.

1. Method 1 selects the cells to be refined by using the L2-norm of the absolute error of
the solution (analytical and numerical solution).

2. Method 2 selects the cells to be refined by using the Residual based error indicator,
mentioned in Eq. (2.42).

3. Method 3 uses a hierarchical algorithm using L2-norm and H1-norm as mentioned in
Eq. (2.43) and (2.44).
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Finally as the third stage, we study the dependence of the parameterization of the ge-
ometry on the solution. To do this we will use two different parameterizations of a quarter
annulus geometry, a uniform one and a nonuniform, to compare the solution given by the
GIFT method of a known problem, the Poisson’s problem.

3.2 Resources

The resources involved in this work are related to the software employed. For the algorithm
coding it is necessary a cross platform like Code Blocks, which is a free C++ IDE available
for Windows, OS X and Linux operating systems. For the data analysis and all the post-
processing, the software Matlab R© will be used, which is a not free numerical computing
software, available for Windows, OS X and Linux operating systems.
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Chapter 4

Definition of The problems

We seek to investigate the performance of the GIFT method, and the improvements we can
get exploiting it’s advantages. For this work, we will research the advantages of the local
refinement using PHT Splines. Analyzing two problems using different methods to select the
cells to refine, aiming to decreasing the convergence rate.

For the second part we are using multiple parameterization of a geometry to test the
solution in each of them.

4.1 Poisson’s problem

The first problem to solve is the Poisson’s equation given by Eq. (2.5) in a quarter annulus
domain Ω (see Figure 4.1). The control points used to parameterize the geometry are shown
in Table 4.1.
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Figure 4.1: Quarter annulus geometry with external radius of 1 and internal radius of 0.5.
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Table 4.1: Control points and weights for coarsest parameterization of Poisson’s problem.

(i, j) P x
ij P y

ij wij

(1,1) 0.500 0.000 1.000
(1,2) 0.500 0.500 0.7071
(1,3) 0.000 0.500 1.000
(2,1) 0.750 0.000 1.000
(2,2) 0.750 0.750 0.7071
(2,3) 0.000 0.750 1.000
(3,1) 1.000 0.000 1.000
(3,2) 1.000 1.000 0.7071
(3,3) 0.000 1.000 1.000

We impose zero Dirichlet boundary condition on the entire boundary δΩ. We use the
solution u(r, θ) defined by Eq. (4.1), where r =

√
x2 + y2 and θ = arctan(y/x).

u(r, θ) =
(r − 1)(r − 1

2
)θ(θ − π

2
)

exp(100(r cos(θ)− 0.5))
(4.1)

To formulate the numerical solution we use GIFT method to solve Eq. (2.24). To do this
we define the geometry using NURBS as in Eq. (2.30) and the solution field using PHT-
Splines as in Eq. (2.31) aiming the local refinement.

For NURBS geometry we need the control points given and two knot vectors: Ξξ =
[0, 0, 0, 1, 1, 1] for ξ direction and Ξη = [0, 0, 0, 1, 1, 1] for η direction. As one can infer, the
degrees of the splines are 3 for each direction.

For the stiffness matrix K, using the weak form of Poisson’s equation given by Eq. (2.7)
with u(x, y) defined by Eq. (2.31) and the weight function, we can find the stiffness matrix
as in Eq. (2.26)

The force vector is defined by:

f(r, θ) =
−(4 + A+B)

C
, (4.2)

where A, B and C are defined as follows:
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A =r(−12 + 8r + θ(2θ − π)(−3 + 16r(613 + 25r(−72 + r(97 + 50r(−3 + 2r)))))),

B =200r(θr(−2θ + π)((3 + 4r(49 + 50r(−3 + 2r))) cos(θ)− r(3 + 4r(24 + 25r(−3+

2r))) cos(2θ))− (−4θ + π)(−1 + r)(−1 + 2r)(−1 + 2r cos(θ)) sin(θ),

C =4exp(25(1− 2r cos(θ))2)r2,

where r =
√
x2 + y2 and θ = arctan(y/x).

In Figure 4.2, the analytical solution of the problem given by Eq. (4.1) is plotted. One
can see the gradient in the middle of the domain, where local refinement is expected.

Figure 4.2: Analytical solution for Poisson’s equation in a quarter annulus geometry
domain.

4.2 Two Heat source problem

The second problem to solve has 2 peaks in its domain. We use this problem to test the
adaptability of the solution of the in-house code in presence of multiple focuses of interests.

The domain Ω used for this problem is a square which control points used to parameterize
the geometry are shown in Table 4.2.
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Table 4.2: Control points and weights for coarsest parameterization of Two Heat source
problem.

(i, j) P x
ij P y

ij wij

(1,1) 0.000 0.000 1.000
(1,2) 0.000 1.000 1.000
(2,1) 1.000 0.000 1.000
(2,2) 1.000 1.000 1.000

As for the first problem we impose zero Dirichlet boundary condition for entire boundary
δΩ and the exact solution is given by Eq. (4.3):

u(x, y) = (x2 − x)(y2 − y)
(

e−100|(x,y)−(0.8,0.05)|2 + e−100|(x,y)−(0.8,0.95)|2
)
, (4.3)

To formulate the numerical solution we use GIFT method to solve Eq. (2.24). To do this
we define the geometry using NURBS as in Eq. (2.30) and the solution field using PHT-
Splines as in Eq. (2.31) aiming the local refinement.

For geometry and solution field we need the control points given and two knot vectors:
Ξξ = [0, 0, 1, 1] for ξ direction and Ξη = [0, 0, 1, 1] for η direction. As one can infer, the
degrees of the splines are 3 for each direction.

The force vector of this problem is obtained by solving the following equation:

f(x, y) = −
(
∂2u

∂x
+
∂2u

∂y

)
, (4.4)

where u is the exact solution of the problem given by Eq. (4.3).

In Figure 4.2, the analytical solution, given by Eq. (4.1), is plotted. One can see the two
gradients next to the boundaries of the domain.
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Figure 4.3: Analytical solution for Two Heat source problem, given by Eq. (4.3), in a
square geometry domain.

4.3 Geometry parameterization

Using the Poisson’s problem given by Eq. (2.5), two different parameterizations of the same
geometry are tested, to study the dependence of the solution on the parameterization. The
geometry is a quarter annulus, the parameterizations used are shown in the Figure 4.4, where
the control points are listed in the Tables 4.3 and 4.4.
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Figure 4.4: In the left, the uniform parameterization of a quarter annulus geometry domain
given by control points listed in Table 4.3. In the right, the non-regular parameterization of

a quarter annulus geometry domain given by control points listed in Table 4.4.
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Table 4.3: Control points and weights for uniform parameterization of a quarter annulus
geometry domain.

(i, j) P x
ij P y

ij wij

(1,1) 0.500 0.000 1.000
(1,2) 0.500 0.500 0.7071
(1,3) 0.000 0.500 1.000
(2,1) 0.750 0.000 1.000
(2,2) 0.750 0.750 0.7071
(2,3) 0.000 0.750 1.000
(3,1) 1.000 0.000 1.000
(3,2) 1.000 1.000 0.7071
(3,3) 0.000 1.000 1.000

Table 4.4: Control points and weights for a non-uniform parameterization of a quarter annulus
geometry domain.

(i, j) P x
ij P y

ij wij

(1,1) 0.500 0.000 1.000
(1,2) 0.500 0.04585 0.9634
(1,3) 0.416 0.500 0.7437
(1,4) 0.000 0.500 1.000
(2,1) 0.83335 0.000 1.000
(2,2) 0.550 0.150 0.9634
(2,3) 0.375 0.700 0.7437
(2,4) 0.000 0.83335 1.000
(3,1) 1.000 0.000 1.000
(3,2) 1.000 0.09175 0.9634
(3,3) 0.83195 1.000 0.7437
(3,4) 0.000 1.000 1.000
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Chapter 5

Results

This chapter is divided in two sections, First the results of the Study of the local refinement
will be shown for Poisson’s and Two Heat source problem using each one of the different error
measures as seen in the methodology, using convergence curves and error plots to analyze
the results. The second section is dedicated for the results of the multiple patch test.
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5.1 Poisson’s problem

5.1.1 Method 1: L2-norm error indicator

This method is divided in two parts: The first results shown are obtained using L2-norm of
the absolute error of the cells with refinement strategy of 20% and 5%. For the second part,
the results are obtained using a defined error limit for each cell using as well L2-norm . The
refinement strategy is selecting all cells that overcomes this limit, making a final result where
all cells error is below the limit. The used values are 10−6, 10−7 and 10−8.

L2-norm error indicator: From the results, in Figures 5.1 and 5.3 we can see the con-
vergence curve of the adaptive refinement presents a sinusoidal behavior for lower degrees of
freedom. In Figure 5.1 after 103 degrees of freedom and in Figure 5.3 after 3 × 102 degrees
of freedom, the convergence curve shows a similar steady decreased slope compared to the
homogeneous refinement convergence curve, this represents that the greater the degree of
freedom, the better accuracy shows this method against the homogeneous refinement.

In Figure 5.2 we can see that the refined cells are grouped in the middle of the geometric
domain with a tendency on the upper edge. Which is very close where the peak of the solu-
tion is located, where we expect to see the local refinement. The sinusoidal behavior of the
convergence curve of both refinement strategies can be explained because at lower degrees
of freedom the mesh has to be refined almost in all the domain, this is why the convergence
curve of the adaptive refinement is close to the homogeneous refinement convergence curve
until it shows a more local adaptive process where the refinement occurs most of all in the
middle of the domain where the exact solution presents greater slopes and so we expect
greater errors in those cells.

The refined mesh in Figures 5.2 and 5.4 for the two refinement strategy looks very similar,
both follows the same pattern where the refined cells are close to the analytic solution peak
but there is a little difference that makes one of the refinement strategies better than the
other. In Figure 5.2 in the three cases shown even though most of the refined cells are in the
center there are a few ones that break this pattern. In Figure 5.4 for 5% refinement strategy
there are even fewer cells outside this pattern. This is why the 5% refinement strategy shows
a better convergence curve than 20%. When selecting the cells to be refined using 20% too
much cells are selected, inducing some cells that do not have a big error to be selected causing
a greater global error. When using 5% refinement strategy we can see in Figure 5.4 that the
refined cells are locally adaptive to the solution peak in a better way than using 20%.
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L2-norm limit error: The results obtained using a limit value for each cell is presents
similar behavior to the homogeneous convergence curve. We can see in Figure 5.5 the adaptive
convergence curves follow the same path until a few degrees of freedom before reaching the
limit where every cell error is below the defined limit. This is caused by the strategy used,
the defined limits are low enough to select almost every cell in the domain to be refined until
a few degrees of freedom before reaching the limit as said before. In Figure 5.6 we can see
the refinement process and error plot when using the error value limit of 10−8, here we can
observe that in each iteration almost all the domain is refined imitating the homogeneous
refinement until less cells are selected to be refined then we can see an improvement in the
convergence curve when the refinement starts being more local.
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Figure 5.1: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 1, L2-norm error indicator, using 20% refinement strategy.
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Figure 5.2: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution

by Method 1, L2-norm error indicator, using 20% refinement strategy.
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L2-norm error indicator 5%
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Figure 5.3: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 1, L2-norm error indicator, using 5% refinement strategy.
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Figure 5.4: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution

by Method 1, L2-norm error indicator, using 5% refinement strategy.
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L2-norm error limit
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Figure 5.5: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 1, L2-norm error limit, using limits of 10−6, 10−7 and 10−8.
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Figure 5.6: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution

by Method 1, L2-norm error limit, using limit of 10−8.
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5.1.2 Method 2: Residual based error indicator

The following results are obtained using the residual based error indicator, given in Eq.
(2.37), over the Poisson’s solution and using the refinement strategy of 20% and 5%.

Residual based error indicator: From the results, comparing convergence curves of 20%
and 5% refinement strategy, in Figures (5.7) and (5.9), we can see both behave similar with a
slightly difference right after 102 degrees of freedom, where both get close to the homogeneous
convergence curve For 20% refinement strategy the error decreases compared to the homoge-
neous curve but for 5% refinement strategy the error has a little increase before decreasing
and behaving like 20% refinement strategy. This could be because when using 5% refinement
strategy, less cells are selected to be refined on each iterations, making degrees of freedom
increase slowly, this shows more errors for different degrees of freedom that are not shown in
Figure 5.7.

Like in Method 1, after a threshold close to 3 × 102 degrees of freedom, the slope of
adaptive local refinement convergence curve increases passing below the homogeneous curve,
showing better results with lower errors for higher degrees of freedom.

Figures 5.8 and 5.10 show the refinement process for several degrees of freedom, we can
see that for both strategies the solution behaves very similar. In both cases the refinement is
centered in the middle of the geometry domain very similar to Method 1, with the difference
that for this Method the refined cells centered in the middle also show an oval geometry more
similar to the analytical problem.

A great difference of this method is that the analytical solution of the problem is no needed.
Making this method a great option to treat problems with unknown analytic solution.
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Residual based error indicator 20%

DOF

10
1

10
2

10
3

10
4

L
2
 N

o
rm

 E
rr

o
r

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Adaptive

Homogeneous

2

1

Figure 5.7: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 2, Residual based error indicator, using 20% refinement

strategy.
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Figure 5.8: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution

by Method 2, Residual based error indicator, using 20% refinement strategy.
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Residual based error indicator 5%
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Figure 5.9: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 2, Residual based error indicator, using 5% refinement

strategy.
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Figure 5.10: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution

by Method 2, Residual based error indicator, using 5% refinement strategy.
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5.1.3 Method 3: Hierarchical Adaptivity error indicator

This method is divided in two parts. The first results are obtained using the hierarchical
error indicator with L2-norm given by Eq. (2.43) using refinement strategy of 20% and 5%.
The second part, the hierarchical error indicator is used with H1-norm given by Eq. (2.44)
and the refinement strategy of 20% and 5%.

Hierarchical Adaptivity L2-norm: For both refinement strategies of 20% and 5% the
convergence rates are worse than the homogeneous refinement. In Figure 5.11 we can see a
behavior similar to a stair with three notorious steps. First the solution stays in a constant
error while refining some cells and increasing the degrees of freedom until there is a big drop
in the error measured with a very high slope and then this is repeated. This may be because
the hierarchical method after refining a cell when it compares the previous solution to the
new one there is a big difference, a big new error, even though the solution could get better,
more accurate, as the method just compares with itself when it refine the cells, it can not see
the difference. This causes the algorithm to enter in a ’loop’, refining the same place over
and over until the error is so small that this loop relocates in other place. This explains the
constant error in the convergence curve and the behavior of the refinement process seen in
Figures 5.12 and 5.14 where a scattered refinement is shown. For Figure 5.3 when using the
5% refinement strategy makes the same stair behavior, and the scattered behavior is even
more evident. This happens because with the 5% strategy refinement when less cells are
selected, the refinement process focuses in one place, as previously seen, and it takes more
time to lower the error to move on to other place, this is why the convergence curve in Figure
5.13 shows more results with a constant value than Figure 5.11.

For both strategy refinement in Figures 5.12 and 5.14 in the right column where the error
plot is shown, we can see that the algorithm does not follow the analytical solution, we see
in both cases that the refinement process do not appear where the highest errors shown by
the error plot are. This also makes the overall error of the solution to improve very slowly
as shown in the convergence curves or even not improve.

Hierarchical Adaptivity H1-norm: H1-norm, unlike L2-norm, involves the derivatives
of the function (in this case the solution), this is the only difference between this two methods.
Just like with L2-norm, the convergence curves for both refinement strategies in Figures 5.11
and 5.13 show a behavior similar to a stair. And Figures 5.12 and 5.14 also show an even
more scattered pattern in the refinement process.

The results obtained using H1-norm are very similar to the ones obtained using L2-norm,
using the hierarchical algorithm for both cases makes the solution very similar, but using
H1-norm gives slightly better results, more like the homogeneous refinement. This happens
because it takes in consideration the derivatives of the function which are the gradients of
the solution and helps to select the cells where the peaks of the problems are located. Even
though is not a good indicator when the exact solution is not known.
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Hierarchical Adaptivity L2-norm error indicator 20%

Figure 5.11: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity L2-norm error indicator, using 20%

refinement strategy.
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Figure 5.12: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution by
Method 3, Hierarchical adaptivity L2-norm error indicator, using 20% refinement strategy.
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Hierarchical Adaptivity L2-norm error indicator 5%

Figure 5.13: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity L2-norm error indicator, using 5%

refinement strategy.
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Figure 5.14: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution
by Method 3, Hierarchical adaptivityL2-norm error indicator, using 5% refinement strategy.
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Hierarchical Adaptivity H1-norm error indicator 20%
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Figure 5.15: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity H1-norm error indicator, using 20%

refinement strategy.
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Figure 5.16: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution by
Method 3, Hierarchical adaptivity H1-norm error indicator, using 20% refinement strategy.
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Hierarchical Adaptivity H1-norm error indicator 5%
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Figure 5.17: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity H1-norm error indicator, using 5%

refinement strategy.
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Figure 5.18: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution by
Method 3, Hierarchical adaptivity H1-norm error indicator, using 5% refinement strategy.
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5.2 Two Heat source problem

5.2.1 Method 1: L2-norm error indicator

This method is divided in two parts: The first results shown are obtained using L2-norm of
the absolute error of the cells with refinement strategy of 20% and 5%. For the second part,
the results are obtained using a defined error limit for each cell using as well L2-norm . The
refinement strategy is selecting all cells that overcomes this limit, making a final result where
all cells error is below the limit. The used values are 10−6, 10−7 and 10−8.

L2-norm error indicator: In Figures 5.19 and 5.21 the convergence curves of the adaptive
local refinement are very similar, no big difference can be seen. Both have better convergence
rates than the homogeneous refinement, with an even higher slope which makes big difference
at high degrees of freedom with considerably smaller errors.

Although both convergence curves are very similar, the errors using refinement strategy
of 5% are slightly minor. In Figures 5.20 and 5.22, comparing the refinement process one
can see for 5% refinement strategy the mesh at higher degrees of freedom is denser where
the solution peaks are, whilst for 20% refinement strategy the mesh is a little more scattered
around the solution peaks, which explains the small difference in the errors obtained.

L2-norm limit error: The Results obtained using an error threshold for each cell presents
good convergence rates for higher degrees of freedom. Figure 5.23 shows a big difference
between the slopes of the homogeneous curve and the adaptive curve. For lower degrees of
freedom the adaptive refinement sticks to the homogeneous process because all the errors in
the cells are higher than the limit, causing the refinement of the entire domain until some
cells reaches this limit and the refinement process focuses where the solution peaks are, as
it can be seen in Figure 5.24, so that the solution improves considerably compared to the
homogeneous refinement process.
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L2-norm error indicator 20%
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Figure 5.19: Comparison of Homogeneous refinement and Adaptive local refinement for the
Two heat source solution by Method 1, L2-norm error indicator, using 20% refinement

strategy.
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Figure 5.20: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Two heat source

solution by Method 1, L2-norm error indicator, using 20% refinement strategy.
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L2-norm error indicator 5%
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Figure 5.21: Comparison of Homogeneous refinement and Adaptive local refinement for the
Two heat source solution by Method 1, L2-norm error indicator, using 5% refinement

strategy.
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Figure 5.22: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Two heat source

solution by Method 1, L2-norm error indicator, using 5% refinement strategy.

55



L2-norm limit error
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Figure 5.23: Comparison of Homogeneous refinement and Adaptive local refinement for the
Two heat source solution by Method 1, L2-norm error indicator, using 5% refinement

strategy.
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Figure 5.24: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Two heat source

solution by Method 1, L2-norm error indicator, using 5% refinement strategy.
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5.2.2 Method 2: Residual based error indicator

The following results are obtained using the residual based error indicator (Eq. (2.37)) over
the Two heat source solution and using the refinement strategy with 20% and 5%.

Residual based error indicator: In Figures 5.25 and 5.27 we can see the convergence
curves for both refinement strategies, that has an almost identical behavior, where the local
refinement convergence rates are better than the homogeneous refinement process, after 102

degrees of freedom we see both convergence curves going below the homogeneous curve,
meaning lower errors for same degrees of freedom, what implies a better solution, being more
accurate than using the homogeneous refinement. When comparing to the Poisson’s problem
with same method (Figures 5.7 and 5.9), one can see for this problem, where there are two
peaks, that the local refinement makes better improvements for this solution.

Looking at Figures 5.26 and 5.28 we can see what was expected from the local adaptive
refinement, the location where the solution peaks are, given by Eq. (4.3), is where the
refinement process is centered, leaving the left side of the domain without refining until higher
degrees of freedom. This convergence rates demonstrate the effectiveness of the method.

Using method 2 in this problem, one can see there is barely no difference between strategy
refinement of 20% and 5%, both convergence rates are very similar.
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Figure 5.25: Comparison of Homogeneous refinement and Adaptive local refinement for the
Two heat source solution by Method 2, Residual based error indicator, using 20%

refinement strategy.
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Figure 5.26: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Two heat source
solution by Method 2, Residual based error indicator, using 20% refinement strategy.
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Residual based error indicator 5%

DOF

10
1

10
2

10
3

10
4

L
2
 N

o
rm

 E
rr

o
r

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Adaptive

Homogeneous

2

1

Figure 5.27: Comparison of Homogeneous refinement and Adaptive local refinement for the
Two heat source solution by Method 2, Residual based error indicator, using 5% refinement

strategy.
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Figure 5.28: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Two heat source
solution by Method 2, Residual based error indicator, using 5% refinement strategy.
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5.2.3 Method 3: Hierarchical Adaptivity error indicator

This method is divided in two parts. The first results are obtained using the hierarchical
error indicator with L2-norm given by Eq. (2.43) using refinement strategy of 20% and 5%.
The second part, the hierarchical error indicator is used with H1-norm given by Eq. (2.44)
and the refinement strategy of 20% and 5%.

Hierarchical Adaptivity L2-norm: The convergence curve obtained with refinement
strategy of 20% is very different from all the convergence curves analyzed because it main-
tains a steady error until really high degrees of freedom where it decreases drastically. This
behavior occurs due to the ’loop’ effect as seen in the Poisson’s problem using Method 3 with
hierarchical adaptivity, where the refinement process take place in some place and it starts
refining over and over, this can be seen in Figure 5.30 where for lower degrees of freedom
it refines near one peak of the solution over and over, this makes the decrease of the error
negligible, looking almost constant, because even it refines over one of the solution peak, in
the place where the other peak is located the error is high enough to counteract the error
of the refined cells. For high degrees of freedom where the convergence rate of the adaptive
refinement increases sharply, one can see in Figure 5.30 the refinement process began to take
place all over the domain, making the error of the cells drastically decrease explaining the
behavior of the convergence curve of the adaptive refinement.

For the refinement strategy of 5% in Figure 5.31, we can see a behavior more alike the
Poisson’s problem, similar to a stair, explained like the previous one because of the ’loop’
effect. This refinement strategy detects better the two solution peaks unlike with 20% refine-
ment strategy that focuses just in one solution peak. In Figure 5.32, the irregular refinement
process can be observed, refining both solution peaks areas but in a very dispersed way. This
makes the converge rate worse than the homogeneous refinement process.

Hierarchical Adaptivity H1-norm: The convergence curves of refinement strategy of
20% and 5% are very similar, both follows the same pattern. In figure 5.35 for refinement
strategy of 5% the behavior of the curve is similar to a stair whilst in Figure 5.33 the curve
is more soft but following the same pattern. Like the other convergence rates using Method
3, the convergence rate of both 5% and 20% refinement strategies using H1-norm are worse
than the homogeneous refinement.

Figures 5.34 and 5.36 show the different refinement processes for 20% and 5%. Both
are very irregular, although neither of them refines the left side of the domain, because the
solution peaks are located at the right side, do not follow a regular pattern of localized
refinement. Figure 5.34 shows a denser refinement mesh around the solution peaks whilst
Figure 5.36 shows a very scattered refinement. However, both convergence rates are very
similar.
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Hierarchical Adaptivity L2-norm error indicator 20%
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Figure 5.29: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity L2-norm error indicator, using 20%

refinement strategy.
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Figure 5.30: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution by
Method 3, Hierarchical adaptivity L2-norm error indicator, using 20% refinement strategy.
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Hierarchical Adaptivity L2-norm error indicator 5%
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Figure 5.31: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity L2-norm error indicator, using 5%

refinement strategy.
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Figure 5.32: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution
by Method 3, Hierarchical adaptivityL2-norm error indicator, using 5% refinement strategy.
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Hierarchical Adaptivity H1-norm error indicator 20%
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Figure 5.33: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity H1-norm error indicator, using 20%

refinement strategy.
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Figure 5.34: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution by
Method 3, Hierarchical adaptivity H1-norm error indicator, using 20% refinement strategy.
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Hierarchical Adaptivity H1-norm error indicator 5%
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Figure 5.35: Comparison of Homogeneous refinement and Adaptive local refinement for the
Poisson’s solution by Method 3, Hierarchical adaptivity H1-norm error indicator, using 5%

refinement strategy.
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Figure 5.36: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution by
Method 3, Hierarchical adaptivity H1-norm error indicator, using 5% refinement strategy.
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5.3 Dependence of the solution on the parameterization
of the geometry

Poisson’s problem, given by Eq. (2.5), is solved using two geometry parameterizations (see
Figure 4.4), to test the dependence on the solution. A regular parameterization and an irreg-
ular parameterization were used, both have been tested using Method 2: Residual based error
indicator, using L2-norm. Figure 5.37 shows the numerical results in both parameterizations,
at a glance one can see the difference between the solutions obtained, where using a regular
parameterization, best results are achieved.

Figures 5.38 and 5.39, show the convergence curves of the regular parameterization and
the irregular parameterization respectively. For the irregular parameterization one can see
the homogeneous convergence rate is worse than for the regular parameterization, but using
Adaptive local refinement gives better convergence rates compared to the homogeneous re-
finement than using a regular parameterization where the convergence rate of the adaptive
refinement is slightly better than the homogeneous refinement, still, the irregular parameter-
ization convergence curve for homogeneous and adaptive refinements are worse than using a
regular parameterization. In Figure 5.40, one can see the mesh of the adaptive refinement
using the irregular parameterization, where the highest errors are located near the boundaries
of the irregular mesh, therefore, the refinement focuses on the edges, causing the convergence
rates being worse than using a regular parameterization.

Figure 5.37: In the left is the numerical solution using GIFT method with an uniform
parameterization. In the right is the numerical solution using GIFT method with a

non-uniform parameterization (see Figure 4.4).
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Figure 5.38: Comparison of Homogeneous refinement and Adaptive local refinement over a
regular parameterization for the Poisson’s solution by Method 2, Residual based error

indicator, using 20% refinement strategy.
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Figure 5.39: Comparison of Homogeneous refinement and Adaptive local refinement over
an irregular parameterization for the Poisson’s solution by Method 2, Residual based error

indicator, using 20% refinement strategy.
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Figure 5.40: In 3 rows, from left to right: Parametric mesh, Geometric mesh and error plot
of different degrees of freedom for self-adaptive local refinement for the Poisson’s solution
over an irregular parameterization by Method 2, Residual based error indicator, using 20%

refinement strategy.
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Chapter 6

Discussion

The GIFT method shows several improvements compared to IGA method, mainly because
of the advantage of using separate fields for the geometry and the solution, this was reviewed
in [1] where GIFT method was introduced. In this work the GIFT method performance
was studied, specifically it’s performance using a local adaptive refinement, thanks to the
PHT-Splines properties used for the field solution and using NURBS for the geometry; with
different error indicators that make the process self-select the cells that will be refined. Also
the dependence of the geometry parameterization was reviewed.

For Poisson’s problem using the Method 1, the three different refinement strategies results
shown slightly improvement in the convergence rates for higher degrees of freedom and the
best results were achieved using refinement strategy of 5% where the refined mesh shows
a regular pattern of localized refinement. Results using Method 2 are quite similar to the
results obtained using Method 1. For both methods the convergence rates are better for
higher degrees of freedom where the refinement strategy of 5% show the best results. Finally,
Method 3 shows different results, where the homogeneous refinement is a better option. Us-
ing H1-norm with the hierarchical algorithm shows better convergence curves than L2-norm
and for both the refinement strategy of 20% unlike the other methods is the one that best
suits the solution.

Comparing the three methods on the Poisson’s problem, Method 3 is the only one that
has worse convergence rates than the homogeneous refinement, because the hierarchical al-
gorithm does not show a good selection in the cells to be refined. Method 1 and Method 2
shows fine results. Method 1 uses the analytical solution, so it is expected to present a good
solution, and consequently a better rate of convergence than the homogeneous refinement.
Method 2 show the best results, due to the fact that it does not uses the analytical solution
to refine the numerical solution and offers similar convergence rates, it also presents a regular
localized adaptive mesh around the peaks of the solution as expected.

For Two Heat source problem, Method 1 shows a very localized refined mesh, focusing
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where the peaks of the solution are, this causes better convergence rates than the homo-
geneous refinement, using 5% refinement strategy a more regular refined mesh is obtained
causing small improvements on the convergence rates compared to the other refinement
strategies. For Method 2, the results are similar to Method 1, like for Poisson’s problem,
with a slightly difference on the convergence rate being a little unsteady. Results of Method
3 are not similar as the results of the other methods, using L2-norm the convergence rate
behaves very odd, due to the inability to detect both peaks of the solution, unlike with
H1-norm that focuses the refinement near the peaks of the solution with such an irregular
pattern that makes the convergence rate worse than the homogeneous one.

As with the Poisson’s problem, the best results as with the best convergence rates are the
results of both Method 1 and Method 2. Both methods show accurate refinement near the
sharp peaks of the solution. Method 3 on the other hand presents very inaccurate results
because of the inability to refine the cells near the peaks of the solution, causing worse con-
vergence rates than the homogeneous rate.

Testing the two different geometry parameterizations, one can conclude that the geometry
parameterization does affect the solution, varying the convergence rate. Due to the deformed
mesh that the irregular parameterization creates, for further analysis a new error indicator
that involves the deformations of the cells could be tested, to counteract the effect of the
deformation for each cell.
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Conclusion

An in-depth study of GIFT was conducted for three benchmark problems for Poisson’s equa-
tion, demonstrating that pairing NURBS geometry with the PHT-Spline field is possible in
general. However, for some choices of the geometry parameterization, the optimal conver-
gence rate was achieved, while for others - not. Three error indicators and two different
refinement strategies were tested and it was shown, that the residual-based error indicator
(Method 2) yields the most improvement in the convergence rate and it’s capable of capturing
sharp solution peaks. An L2-norm error indicator (Method 1) based on the comparison of
the numerical solution with the analytical data, also showed significant improvement in the
convergence rate. The adaptive refinement, based on the hierarchical error indicator (Method
3), showed worse results in comparison with the uniform or homogeneous refinement. And
finally, the dependence of the solution on the geometry parameterization was tested and it
was observed, that the irregular geometry parameterizations should be avoided, as the error
in numerical solution accumulates along the boundaries of the geometry elements, leading to
the bad overall performance of the method.
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