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A B S T R A C T

Mass balance of a glacier is an acceptedmeasure of howmuchmass a glacier gains or loses. In theory, it is
typically computed by integral functional and empirically, it is approximated by arithmetic mean.
However, the variability of such an approach was not studied satisfactory yet. In this paper we provide a
dynamical system of mass balance measurements under the constrains of 2nd order model with
exponentially decreasing covariance. We also provide locations of optimal measurements, so called
designs. We study Ornstein–Uhlenbeck (OU) processes and sheets with linear drifts and introduce K
optimal designs in the correlated processes setup. We provide a thorough comparison of equidistant,
Latin Hypercube Samples (LHS), and factorial designs for D- and K-optimality as well as the variance. We
show differences between these criteria and discuss the role of equidistant designs for the correlated
process. In particular, applications to estimation ofmass balance of Olivares Alfa and Beta glaciers in Chile
is investigated showing that simple application of full raster design and kriging based on inter- and
extrapolation of points can lead to increased variance.[129_TD$DIFF] We also show how the removal of certain
measurement points may increase the quality of the melting assessment while decreasing costs. Blow-
ups of solutions of dynamical systems underline the empirically observed fact that in a homogenous
glaciers around 11 well-positioned stakes suffices for mass balance measurement.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Glacier mass balance is an important measure of the glacier
health, since accounts for the mass gains and losses during a
specific period of time, normally a [130_TD$DIFF]hydrological or calendar year
(Rivera et al., 2016). We will focus in the glaciological method
(Cogley et al., 2012), here themass balance ismeasured at stakes or
poles’ networks installed on the glacier surface, whose distribution
depends on altitude, slope, topography, and other parameters. In
many cases, the distribution is skewed or seriously limited by
accessibility (mainly due to crevasses) or logistical constrains.
tatistics and Linz Institute of
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Torres),
A. Rivera).
These measurements are ideally done at monthly frequency, but
accessibility or budget limitations reduce the number of surveys,
sometimes to a very minimum of two per year, one in the
accumulation season peak and another in the ablation season
maximum. The stakes height above the snow/ice surface at the
beginning of the mass balance year (normally at the end of the
ablation season), is therefore compared to successive measure-
ments along the year, when snow/ice density must be also
determined in order to convert vertical heights into water
equivalent volumes (Cuffey and Paterson, 2010). The discrete
mass balance data must be integrated over the entire glacier
surface byapplying geo-spatial interpolationmethods or simply by
computing the arithmetic mean of measurements (Cogley et al.,
2012).

The effective sample size has been addressed previously in
(Cogley, 1999), where the analysis of multiple time series of point
mass balance measurements have shown that correlation
decreases along differences in elevation between the points. A
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similar conclusion is obtained in Fountain and Vecchia (1999),
where the dominant effect of the gradient of mass balance with
altitude was shown [131_TD$DIFF]to bemore relevant than transverse variations.
Hence, the number of mass balance measurements required to
determine the mass balance appears to be scale invariant for small
glaciers (<10km2) with five to ten stakes being enough.

In this paper we define [132_TD$DIFF]an underlying dynamical system, thus
putting measurement locations and underlying parameters into
dynamical relation. Such dynamical systems can appear naturally
because of various modelling modalities (see Stehlík et al., 2016,
2017). Based on this background we discuss the statistical
optimality of stakes distributed over the glacier. A problem which
arises is that neither locations nor measurements themselves are
independent. This is why we provide a comparison between
monotonic and space-filling designs, introduced in the case of
Ornstein–Uhlenbeck (OU) sheets in Baran et al. (2013); [133_TD$DIFF] Baran and
Stehlík (2015). We consider both, D- and K-optimality and
minimization of variance of arithmetic mean. Practically, we study
Smit's paradox (Smit,1961) for planar Ornstein Uhlenbeck process,
so called OU sheet.

In the next sectionwe show different designs strategies, then in
Section 3, we consider OU processes and OU sheet. [134_TD$DIFF] We continue
with Section 4 where we provide a motivating example on mass
balance for glaciers Olivares Alpha and Beta in Chile. Some results
follow in Section 5 where the simulation on defined optimal design
criteria allows us to compare different design strategies. Section 6
contains the unpleasant increment of variance after using kriging
methods for the estimation of the mass balance.[135_TD$DIFF] Moreover, the
variance changes after the removal of stakes, even showing a
decrease of it under a particular covariance structure. Finally,
Section [136_TD$DIFF]7 provides a dynamical system and blow-ups in order to
technically explain interrelations between parameters and design
points. We show, that under some generic circumstances variance
of mass balance estimator can grow with the number of stakes.

2. Optimal design under correlated errors

In many situations we can meet problems of unavoidable
increase of variance (this can be related to Smit's work Smit, 1961)
when using additional interpolation or extrapolation by simple
kriging. Hence, more sophisticated designs than usage of full
rasterization of the grid, namely equidistant, factorial, Latin
Hypercube Samples under S-optimality (LHS*) and Latin Hyper-
cube Samples optimal with respect to Euclidean distances (LHS+)
designs are compared with respect to D- and K-optimality as well [137_TD$DIFF]
as the variance. Therefore, mass balance estimation of glaciers
Olivares Alpha and Beta, important meltwater contributors to the
Maipo River in Santiago, requires proper data sampling techniques.
To construct such techniques, we need to deal with optimal design
strategies.

The determination of optimal designs for models with
correlated errors is substantially more difficult and for this reason
not sufficiently developed. A stochastic process with parameter-
ized mean and covariance is observed on a compact set. The
information obtained from observations is measured through the
information functional (defined on the Fisher information matrix
(FIM)). We focus on efficient designs for parameters of correlated
processes and discuss the role of equidistant designs for correlated
processes. Such designs have been proven to be optimal for
parameters of trend of stationary Ornstein–Uhlenbeck process (see
Kiselák and Stehlík, 2008). For such a process a study of small
samples and asymptotical comparisons of the efficiencies of
equidistant designs was provided whilst taking both the param-
eters of trend as well as the parameters of covariance into account.
If only trend parameters are of interest, the designs covering more
or less uniformly the whole design space will rather be efficient
when correlation decreases exponentially (see Kiselák and Stehlík,
2008). Some other issues on designs for spatial processes, i.e.
identifiablity and existence of optimal designs, are given in Dette
et al. (2008);[138_TD$DIFF] Müller and Stehlík (2009); [139_TD$DIFF] Stehlík et al. (2008). The
role of heteroscedasticity is studied in Boukouvalas et al. (2014).

Exact K-optimal designs have been firstly introduced by Ye and
Zhou (2013) in the setup of polynomial regression models and
were later extended in Rempel and Zhou (2014). Both of these
setups consider cases having independent errors. K-optimality is a
new design criterion for the construction of regression designs,
based on the condition number of the information matrix. Thus, K-
optimal design minimizes the condition number k(M) of Fisher
information matrix M, i.e.

kðMÞ ¼ l1ðMÞ
lpðMÞ ;

if lp(M)>0 and 1 otherwise. Here, l1(M) and lp(M) are the
largest and the smallest eigenvalues, respectively.

Multicollinearity is a common problemwhen estimating linear
or generalized linear models. It occurs when there are high
correlations among the predictor variables, leading to unreliable
and unstable estimates of regression coefficients. However, many
data analysts do not realize that there are several situations in
which multicollinearity can be safely ignored, and we hope that K-
optimal design is a helpful tool in this direction [140_TD$DIFF](see Baran, S., K-
optimal designs for parameters of shifted Ornstein-Uhlenbeck
processes andsheets. J. Stat. Plan. Inference 186 (2017), 28–41).

3. Ornstein–Uhlenbeck process and sheet

Consider the stochastic process [141_TD$DIFF]

YðsÞ ¼ a1 þ a2sþ eðsÞ; ð1Þ
where C([142_TD$DIFF]e(s), e(t)) = exp(�r|s� t|). For model (1) the Fisher
information matrix Mu(n) on the unknown parameter vector
u = (a1, a2) based on observations {Y(si), i =1, 2, . . . , n}, n�2,
equals[212_TD$DIFF][213_TD$DIFF][214_TD$DIFF][215_TD$DIFF]

MuðnÞ ¼ HðnÞCðnÞ�1HðnÞ>; where HðnÞ :
¼ ð 1 1 � � � 1

s1 s2 � � � sn
Þ;

and C(n) is the covariance matrix of the observations (see Pázman,
2007;[143_TD$DIFF] Xia et al., 2006). On the other hand, consider now the
stationary process[141_TD$DIFF]

Yðs;tÞ ¼ u þ eðs;tÞ ð2Þ
with design points taken from a compact design space
X ¼ ½a1;b1� � ½a2;b2�, where b1> a1 and b2> a2 and [141_TD$DIFF]eðs;tÞ; s;t 2 R,
is a stationary Ornstein–Uhlenbeck sheet, that is a zero mean
Gaussian process with covariance structure[208_TD$DIFF][141_TD$DIFF]

E eðs1;t1Þeðs2;t2Þ ¼
~s2

4ab
expð�ajt1 � t2j � bjs1 � s2jÞ; ð3Þ

where a > 0;b > 0; ~s > 0. We remark that [216_TD$DIFF]e(s, t) can also be
represented as [208_TD$DIFF]

eðs;tÞ ¼ ~s

2
ffiffiffiffiffiffiffi
ab

p e�at�bsW ðe2at;e2bsÞ;

where W ðs;tÞ; s;t 2 R, is a standard Brownian sheet (Baran et al.,
2013). Under this setup we compute Fisher information (FIM) for
four designs defined in Section 2. Eq. (4) computes FIM for
equidistant design points on the diagonal of a square [0, 1]� [0, 1]
(also equidistant on diagonal line (EDL) hereafter). Eq. (5)
calculates FIM for factorial design with points in [0, 1]� [0, 1].
Fisher information matrix calculation for the LHS designs (both
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LHS* and LHS+) is based on Eq. (5). Eqs. [146_TD$DIFF](4) and (5) show the
differences in the computation of Mu(n), representing FIM of u
with respect to n, the number of design points: [217_TD$DIFF][218_TD$DIFF]

MuðnÞ ¼ 1þ
Xn�1

i¼1

1� qi
1þ qi

; where qi ¼ expð�adi � bdiÞ ð4Þ

[219_TD$DIFF][220_TD$DIFF][221_TD$DIFF]

MuðnÞ ¼ 1nC
�1ðn;rÞ1n; with covariance definedby ð3Þ ð5Þ

[222_TD$DIFF]and a > 0;b > 0;~s > 0. Moreover, we have di = |ti� ti+1| and di = |
si� si+1|. In the following computations, parameters a and bwere
set 1 and ~s = 2. Hence, the fraction of the covariance structure in
Eq. (3) equals to one.

4. Glaciological context

The Olivares basin (33�100 S – 70�080 W) is the most glaciated
area of the Maipo River where [147_TD$DIFF]the Chilean capital Santiago is
located. The Olivares [148_TD$DIFF]basin has approximately 77km2 of ice
distributed among 148 glaciers. The basin has experienced a strong
area shrinkage in recent decades, with about 25 km2 of area lost
since 1955. In the upper part of this basin there are several glaciers,
including Olivares Alfa (3.8 km2 in 2015, Fig. 1 left) and Beta
(7.4 km2 in 2015, Fig. 1 right). These two glaciers were joining
together in 1955, but are now separated by a number of bare rocks
and moraine terrains. These glaciers have been studied in detail by
CECs (Center for Scientific Studies, Valdivia, Chile) since they are
important meltwater contributors to the Maipo River. The mass
balance program initiated in 2012 shows a strong negative value
for both glaciers in the last two years. Thismass balance program is
important for understanding the glacier responses to annual
variations in the meteorological conditions affecting the region.
This issue is a focus of increasing concern in Chile, since in the last 7
years, the central Andes of Chile have experienced one of the most
prolonged and driest periods in the historical record. All noted
information underpins the national relevance of the zone of
glaciers Olivares Alfa and Olivares Beta. Therefore, this natural
phenomena has to be studied in depth and with major care.
[(Fig._1)TD$FIG]

Fig. 1. Illustrations of glaciers Oliva
5. Simulations

5.1. Comparison with respect to D- and K-optimality criterion

The following simulation study compares efficiencies of D- and
K-optimality criterion for the models with constant and linear
trend.[149_TD$DIFF] In this regard, we compare the four designs equidistant,
factorial, LHS with respect to S-optimality, denoted as LHS* and
improved-LHS based on optimal Euclidean distances, abbreviated
via LHS+. Fig. 2 provides visualizations1 of both LHS designs for
n =6, 7, 10, 15. Note that for factorial design we only consider n =4
observations in this paper, which are located at the edges of the [0,
1]� [0, 1] square, yielding {(0,0), (0,1), (1,0), (1,1)}. Equidistant
design results in points with equal distances on the diagonal of the
aforenamed square.

For the sake of averaging out present variation in the
simulation, 1000 replicates are computed and the harmonic mean
(due to its robustness property in comparison to e.g. arithmetic
mean) of efficiencies is computed. [150_TD$DIFF]The estimated efficiencies are
summarized in Table 1 for constant trend [223_TD$DIFF]with a ¼ b ¼ ~s ¼ 1.[224_TD$DIFF]
Efficiencies were computed as the values of D- and K-optimality
criteria were divided by their corresponding maximum and
minimum values per design points, respectively. Notice that their
absolute values are provided in the tables. More precisely, we
consider efficiencies of [225_TD$DIFF]K-optimality as the inverse of the values
divided by theirminimumvalues. As the header of the table shows,
the first column displays the number of generated design points
and the second one efficiencies with respect to FIM with
equidistant on diagonal line design points. In the third column
efficiency resulting from factorial design is shown and the [154_TD$DIFF]lasttwo
columns present the results for the two different optimizing
approaches of Latin Hypercube Samples [155_TD$DIFF]designs. The same
structure as for D-criterion in columns 2–5 is provided for K-
criterion in columns 6–9.

Table 1 shows that factorial design (constant based on n =4)
outperforms its opponents for less than inclusive 20 observations
under D-criterion. However, it is shown that LHS under S-
optimality has higher efficiency based on the harmonic mean of
res Alfa (left) and Beta (right).

1 These were performed with the functions geneticLHS and improvedLHS of
the R-package lhs (Carnell, 2012).
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Fig. 2. Visualizations of LHS with respect to S-optimality (black squares) and LHS based on optimal Euclidean distances (red triangles) for n =6 (topleft), 7 (topright), 10
(bottomleft), and 15 (bottomright). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Table 1
Harmonic means of efficiencies of D-criterion and of K-criterion for equidistant, factorial, LHS* (S-optimality) and LHS+ (improved LHS as optimal with respect to Euclidean
distances) under constant trend.

n D-criterion K-criterion

Equidistant Factorial LHS* LHS+ Equidistant Factorial LHS* LHS+

2 0.0282 1.0000 0.0049 0.0081 0.1793 1.0000 0.4023 0.4092
3 0.0144 1.0000 0.0844 0.0771 1.0000 9.5634 6.9041 6.5843
4 0.0387 1.0000 0.0280 0.2367 1.0000 3.3019 3.0389 2.5691
5 0.0542 1.0000 0.1949 0.1093 1.0000 2.2344 2.2830 2.0234
6 0.0650 1.0000 0.1217 0.0890 1.0000 1.7943 1.9345 1.6759
7 0.0730 1.0000 0.2156 0.1259 1.0000 1.5546 1.7311 1.4489
8 0.0791 1.0000 0.2464 0.1417 1.0000 1.4040 1.5578 1.4037
9 0.0839 1.0000 0.2969 0.0496 1.0000 1.3006 1.4310 1.3086
10 0.0878 1.0000 0.3083 0.4260 1.0000 1.2253 1.3243 1.2282
15 0.0997 1.0000 0.5540 0.4012 1.0000 1.0316 0.9822 1.0189
20 0.1058 1.0000 0.7841 0.4871 1.0000 0.9496 0.7776 0.8708
30 0.0924 0.8250 1.0000 0.7096 1.0000 0.8756 0.5621 0.6612
40 0.0689 0.5985 1.0000 0.7306 1.0000 0.8413 0.4299 0.5259
50 0.0567 0.4839 1.0000 0.7483 1.0000 0.8215 0.3557 0.4384
75 0.0381 0.3181 1.0000 0.7583 1.0000 0.7960 0.2439 0.3079
100 0.0286 0.2365 1.0000 0.7677 1.0000 0.7835 0.1865 0.2368
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1000 experiments for at least 30 design points. In contrast to that,
equidistant design performs best under K-criterion except [156_TD$DIFF]for
having two observations, where factorial design is preferable
(recall that factorial design always bases on 4 observations).

Fig. 3 provides the development of the harmonic means of
relative efficiencies of D- (left) and K-optimality criteria (right)
under constant (top row) and linear (bottom row) trend. This
enables to graphically compare the performances between the two
models with respect to the number of design points as well as
between the analyzed designs. Strong variation in the efficiency of
both LHS designs is apparent for less than 20 observations.
However, LHS under S-optimality performs uniformly better than
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Fig. 3. Relative efficiencies for D- (left) and K-optimality criteria (right) under given designs and various number of design points under constant (top row) and linear (bottom
row) trend.
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LHS under optimal Euclidean distances when having more than 15
observations [157_TD$DIFF]with respect to D-optimality.

Table 2 compares the performance of the efficiency for the
model under a linear trend. Therein, one can observe the same
Table 2
Harmonic means of efficiencies of D-criterion (column 2-5) and of K-criterion (column 6–
with respect to Euclidean distances) under linear trend.

n D-criterion

Equidistant Factorial LHS* LHS+

2 0.0282 1.0000 0.0275 0.0307
3 0.0144 1.0000 0.0700 0.0947
4 0.0387 1.0000 0.1171 0.1244
5 0.0542 1.0000 0.1730 0.1361
6 0.0650 1.0000 0.2060 0.1775
7 0.0730 1.0000 0.2689 0.1854
8 0.0791 1.0000 0.3154 0.2305
9 0.0839 1.0000 0.3473 0.2625
10 0.0878 1.0000 0.4254 0.2846
15 0.0997 1.0000 0.6155 0.4083
20 0.1058 1.0000 0.8943 0.6239
30 0.0870 0.7763 1.0000 0.8027
40 0.0640 0.5558 1.0000 0.8302
50 0.0527 0.4501 1.0000 0.8229
75 0.0264 0.2185 1.0000 0.7504
100 0.0282 1.0000 0.0121 0.0153
performance under D-optimality criterion as in the constant case,
except for the case of 100 observations where factorial design is
more efficient. Another difference to the results for the model
under constant trend is the highest efficiency of factorial design for
9) for equidistant, factorial, LHS* (S-optimality) and LHS+ (improved LHS as optimal

K-criterion

Equidistant Factorial LHS* LHS+

0.1793 1.0000 0.4630 0.4327
1.0000 9.5634 10.4295 10.9103
1.0000 3.3019 3.7605 3.8640
1.0000 2.2344 2.5829 2.5183
1.0000 1.7943 2.0226 2.1212
1.0000 1.5546 1.8217 1.7789
1.0000 1.4040 1.6533 1.6230
1.0000 1.3006 1.4798 1.4766
1.0000 1.2253 1.4156 1.4197
1.0000 1.0316 0.9995 1.0388
1.0000 0.9496 0.7918 0.9105
1.0000 0.8756 0.5584 0.6333
1.0000 0.8413 0.4271 0.4931
1.0000 0.8215 0.3644 0.4235
1.0000 0.7835 0.1817 0.2263
0.1793 1.0000 0.4156 0.3983



Table 3
Ratio of efficiencies of D-criterion (column 2–5) and of K-criterion (column 6–9) for equidistant, factorial, LHS* (S-optimality) and LHS+ (improved LHS as optimalwith respect
to Euclidean distances).

n D-criterion K-criterion

Equidistant Factorial LHS* LHS+ Equidistant Factorial LHS* LHS+

2 1.0000 1.0000 5.5870 3.8048 1.0000 1.0000 1.1508 1.0576
3 1.0000 1.0000 0.8285 1.2275 1.0000 1.0000 1.5106 1.6570
4 1.0000 1.0000 4.1903 0.5255 1.0000 1.0000 1.2375 1.5040
5 1.0000 1.0000 0.8879 1.2453 1.0000 1.0000 1.1314 1.2446
6 1.0000 1.0000 1.6926 1.9957 1.0000 1.0000 1.0456 1.2657
7 1.0000 1.0000 1.2473 1.4724 1.0000 1.0000 1.0523 1.2278
8 1.0000 1.0000 1.2797 1.6263 1.0000 1.0000 1.0613 1.1562
9 1.0000 1.0000 1.1697 5.2907 1.0000 1.0000 1.0341 1.1284
10 1.0000 1.0000 1.3799 0.6681 1.0000 1.0000 1.0690 1.1560
15 1.0000 1.0000 1.1110 1.0175 1.0000 1.0000 1.0176 1.0195
20 1.0000 1.0000 1.1406 1.2808 1.0000 1.0000 1.0183 1.0456
30 0.9410 0.9410 1.0000 1.1312 1.0000 1.0000 0.9934 0.9577
40 0.9285 0.9285 1.0000 1.1363 1.0000 1.0000 0.9935 0.9376
50 0.9300 0.9300 1.0000 1.0996 1.0000 1.0000 1.0246 0.9660
75 0.6942 0.6868 1.0000 0.9896 1.0000 0.9844 0.7446 0.7351
100 0.9859 4.2276 0.0121 0.0199 0.1793 1.2763 2.2276 1.6820

154 M. Stehlík et al. / Ecological Complexity 31 (2017) 149–164
100 observations under K-criterion. Recall that the model with
constant trend identifies equidistant design to bemost efficient for
these design points.

For the sake of comparing the model under constant and linear
trend, we computed relative ratios (linear/constant) in Table 3, of
the relative efficiencies based on the harmonic means of 1000
Table 4
Arithmetic mean of efficiency for OU-sheet of FIM for different number of design
points of equidistant on diagonal line, factorial, LHS* (S-optimality) and LHS+

(improved LHS as optimal with respect to Euclidean distances)

n EDL Factorial LHS* LHS+

2 0.8240 1.0000 0.6818 0.6780
3 0.9001 1.0000 0.7680 0.7663
4 0.9190 1.0000 0.8103 0.8140
5 0.9260 1.0000 0.8320 0.8405
6 0.9294 1.0000 0.8488 0.8607
7 0.9313 1.0000 0.8703 0.8780
8 0.9324 1.0000 0.8834 0.8904
9 0.9331 1.0000 0.8938 0.9011
10 0.9336 1.0000 0.9029 0.9096
15 0.9348 1.0000 0.9327 0.9400
20 0.9351 1.0000 0.9505 0.9597
30 0.9354 1.0000 0.9704 0.9815
40 0.9354 1.0000 0.9830 0.9940
50 0.9331 0.9975 0.9891 1.0000
75 0.9221 0.9857 0.9906 1.0000
100 0.9158 0.9789 0.9919 1.0000

[(Fig._4)TD$FIG]

Fig. 4. Overall development of efficiency of FIM for number
replicates. Note that values equal to one show equality of the two
models. However, ratios smaller than 1 indicate the linear trend
model as less efficient and for ratios larger than 1 vice versa.
Naturally, the closer the ratio is to zero and the higher the value is,
linear trend model is much more and much less efficient,
respectively.

5.2. Design optimality with an OU sheet

According arithmetic means for efficiencies (calculated as
previously) [158_TD$DIFF]of OU sheet with respect to FIM for several design
points are listed in Table 4, [159_TD$DIFF](with the same structure as the
previous tables) based on 1000 replicates. Certainly, Mu(n)
increases with larger number of design points and different
magnitudes of increases between the approaches are obtained
(values not reported here). [160_TD$DIFF]Table 4 follows the same structure as
the previous tables. Fisher information for the factorial design
equals to 3.9147 for every n, because this computation can only be
performed for the four possible points. Further computations of
this design are impossible in this setup without additional
conditions. Table 4 shows that LHS designs have higher efficiency
beginning with at least 50 (75 in the case of optimal Euclidean
distances) observations. Thereby, LHS under S-optimality is
preferable over LHS optimal with respect to Euclidean distances.

Fig. 4 contains two plots showing the development of efficiency
with respect to FIM taking both, the number of design points and
of design points (left) and a zoom to 2�n�20 (right).



Table 5
Arithmetic mean of efficiency for OU-sheet of FIM for different number of design
points (n), a=1, b =10, ~s ¼ 1 with equidistant on diagonal line, factorial, LHS*

(S-optimality), and LHS+ (improved LHS as optimal with respect to Euclidean
distances).

n EDL Factorial LHS* LHS+

2 0.5046 1.0000 0.5043 0.5043
3 0.7528 1.0000 0.7556 0.7555
4 0.9655 0.9939 1.0000 0.9994
5 0.9084 0.7967 1.0000 0.9994
6 0.8396 0.6652 1.0000 0.9991
7 0.7710 0.5716 1.0000 0.9991
8 0.7074 0.5014 1.0000 0.9990
9 0.6507 0.4469 1.0000 0.9990
10 0.6008 0.4033 1.0000 0.9990
15 0.4290 0.2728 1.0000 0.9991
20 0.3328 0.2077 1.0000 0.9996
30 0.2316 0.1427 1.0000 1.0000
40 0.1797 0.1102 0.9996 1.0000
50 0.1482 0.0907 0.9993 1.0000
75 0.1060 0.0648 0.9989 1.0000
100 0.0849 0.0518 0.9987 1.0000

[(Fig._5)TD$FIG]

Fig. 5. Development of efficiency for OU-sheet of FIM for number of Design Points,
a =1, b=10, ~s ¼ 1.
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the four introduced designs into account. The left plot shows that
factorial design leads to highest efficiency with less than 40 design
points. The calculated arithmetic means of efficiency for the two
LHS designs overtake EDL design beginning with approximately 15
observations. FIM for equidistant on diagonal line design is
increasing slowly (from n =10 to n =100, D =0.5901; exact values
not reported here). Hence, the higher the number of observations
the larger is the difference in terms of FIM compared to the two LHS
approaches. We can also observe that LHS with optimal Euclidean
distances performs better than factorial design with n higher than
40. In contrast to that, LHS under S-optimality condition shows
higher FIM only for n�75. On the right hand side of Fig. 4 we
highlight the developmentof FIMwhen considering designs from2
to 20 observations. Thereby, optimizing LHS with respect to
Euclidean distances results in higher Fisher information compared
to its counterpart basing on S-optimality for n>3. Moreover, it is
shown that more than 15 observations are needed to compute
higher FIM from Latin Hypercube designs with optimal Euclidean
distances and S-optimality, respectively, compared to EDL design.

5.3. Computation and comparison for different parameters

The aim of this section is to emphasize the impact on the
performance of the Fisher information (and its efficiency) on the
four introduced designs due to changes in the parameters, i.e. by
varying b.

5.3.1. Sensitivity analysis for a = 1, b = 10, ~s ¼ 1
In this simulationwe change the values of the parametersa;b;~s

to 1, 10 and 1. Hence, the effect of an increase in b on the Fisher
information can be observed. Moreover, this leads to the fact that
the fraction in the correlation structure is unequal to 1, in contrast
to the previous setup. Table 5 and Fig. 5 show the arithmetic mean
of efficiencies of Fisher information based on 1000 experiments.
Analogously, the (same) four defined designs, given the introduced
change in b, are compared per (same set of) design points with
respect to each other. In this setup the most efficient design varies
per increased design points n. Factorial design is most efficient for
n being smaller and equal to 3. Following to that, LHS computed
under S-optimality condition is most efficient for n between [161_TD$DIFF]4 and
30 observations, whereas computations with at least 30 design
points indicate LHS under optimal Euclidean distances as most
efficient (note that there is a tie for n=30). Computations have
shown stronger increases in FIM compared to the previous
parameter setup (values not reported). Accordingly, both LHS
approaches perform very similarly, which can also be seen in their
very similar values of efficiency for n larger than 10. Hence, Fig. 5
shows that Latin Hypercube Samples designs optimized with
respect to Euclidean distances almost overlaps with LHS under S-
optimality. Moreover, the difference with respect to efficiency of
FIM between both LHS and EDL as well as factorial designs
increases with increasing number of design points.
5.3.2. Sensitivity of the simulation for different b and n
Table 6 shows the calculations of efficiency of FIM for the

introduced designs, where a respectively ~s are equal to 1 and b
uses every integer between 1 and 10. Hence, 10 calculations for
every number of observations are necessary, whereby the first
column for each designs is a calculation with b=2. In order to
account for simulation errors, arithmetic mean of the efficiencies
based on 1000 experiments are provided. The purpose behind this
sensitivity check is to observe the impact of amisclassification ofb,
given the known true parameter is 2. We can conclude from this
comparison that an increase in b leads to largest increases in LHS
designs compared to equidistant on diagonal line design,
regardless of the number of observations. Moreover, within every
designwe can observe higher efficiency for higher values of b. EDL
design shows a better performance in terms of efficiency with
respect to FIM for small numbers of design points. However, by
increasing b and n one will obtain higher efficiency from Latin
Hypercube designs. Due to roundings on two decimal places one
obtains duplicates of highest efficiencies (equal to 1) per number of
design points (Figs. 6 and 7).

5.4. Computation and comparison of variance

This section compares the variance with respect to the four
known designs and the number of observations.When considering
all pairs of (si, ti) 8 i =1, . . . , n one obtains a n�n-covariance
matrix according to (3). Hence, the sum of these elements results
in an estimator of the variance. Analogously to previous
computations, 1000 experiments were conducted and the arith-
metic mean of the variance per design and observation number are
reported in Table 7. These replicates enable to average out the
simulation effects under a small scale study, i.e. small number of
observations. Note that in this paper we only consider n=4 for
factorial design, wherefore the variance of this design remains
constant. We can observe very similar variances for both LHS
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designs, decreasing from about 0.175 to 0.1419, the magnitude of
the variance of the factorial design. In contrast to that, variance of
equidistant design increases from 0.1317 to about 0.1413. However,
it still shows smaller variance compared to the three other designs
for 100 observations.

6. Application

6.1. Kriging based techniques used for estimation of mass balance

Typically Kriging interpolations are overspread in GIS softwares
and one important technique may be overseen, namely a not
necessary rasterization of glacier areas, where no dense measure-
ments are taken. However, this rasterization can critically increase
the unwanted variance. This is illustrated for the case of Olivares
glaciers in the following examples.

In [162_TD$DIFF]Olivares Alfa the area is represented byN =4731 points for full
raster and we receive a variance of V4731 = 0.6001. In the original
sample of 10 stakes we receive a variance of V10 = 0.6 However, we
need to point out that if a typical glaciological approach was used
to compute the rest of values by kriging (based on ArcGIS), thenwe
would neglect the variance of kriging in the full raster approach.
For Olivares Beta instead we have N =8830 for the full raster and
computed a variance of V8830 = 0.64. In the original sample of 10
stakes we receive a variance of V10 = 0.54. Thus, we can conclude
that adding full raster of points is artificial and may increase the
variance of mass balance estimations. Another typically used
method is geostatistical method (Thiessen poligons) (Burrough,
1986).

D and K-optimality can provide a good benchmark for
applications. In this section we consider mass balance of glacier
as a functional of interest. The mass balance is defined as

mT ¼ 1
T

R T
0 YðtÞdt. We will show that it is preferable to use just

the observations (without the additional interpolation or extrapo-
lation by simple kriging) in order not to increase the variance. In
particular, we recall Smit's paradox Smit (1961).

6.2. The case of an OU process

Let Y(t) be stationary, and # = EY(t). When the process is
observable on the interval [0, T], the mean # may be (unbiased)
estimated with

YNþ1 :¼ 1
N

XN
k¼0

YðkT=NÞ:

One might be inclined to expect that VarðmTÞ � VarðYNþ1Þ; since
“the estimator mT utilizes the whole realization rather than a finite
number of points”. However, there are equidistant designs jn for
which

VarðYNþ1Þ < VarðmTÞ:
The following [163_TD$DIFF]Examples 1 and 2 show that less points can decrease
the variance.

Example 1. Further information on this example can be found in
Example 3 of (Näther, 1985). We have X = [�1, 1] and cov(Y(x1), Y
(x2)) = exp(�|x1� x2|) [164_TD$DIFF]

j5 ¼ f�1;� 0:5;0;0:5;1g:

We have VarðYNþ1Þ ¼ 0:529 and Var(mT) = 0.568. To explain the
paradox: in general, mT is not the best linear unbiased estimator
(BLUE) for #.

[165_TD$DIFF]The variance of Y can increase by use of additional observations:



Fig. 6. Development of efficiency for OU-sheet of FIM for number of design points from 1 to 100, a =1, and b = {1, . . . , 10}, ~s ¼ 1.
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[(Fig._6)TD$FIG]
[(Fig._7)TD$FIG]

Fig. 7. Development of variance for design points from 1 to 100.

Table 7
Computation of variance according to (3) for equidistant on diagonal line, factorial,
LHS* (S-optimality) and LHS+ (improved LHS as optimal with respect to Euclidean
distances) designs

n Equidistant Factorial LHS* LHS+

2 0.1317 0.1419 0.1751 0.1752
3 0.1313 0.1419 0.1577 0.1576
4 0.1322 0.1419 0.1509 0.1512
5 0.1332 0.1419 0.1479 0.1479
6 0.1341 0.1419 0.1462 0.1463
7 0.1348 0.1419 0.1453 0.1449
8 0.1355 0.1419 0.1443 0.1443
9 0.1360 0.1419 0.1439 0.1439
10 0.1365 0.1419 0.1435 0.1435
15 0.1380 0.1419 0.1426 0.1427
20 0.1389 0.1419 0.1424 0.1423
30 0.1398 0.1419 0.1421 0.1421
40 0.1403 0.1419 0.1420 0.1420
50 0.1406 0.1419 0.1420 0.1420
75 0.1410 0.1419 0.1419 0.1419
100 0.1413 0.1419 0.1419 0.1419



Table 10
Computation of the variance of an OU sheet with covariance structure defined in
(3), a regular grid on [0, 1]� [0, 1] of {52, 92, 172} points was considered.

a/b 0.1 1 10

[124_TD$DIFF]52 points
0.1 0.8551924 0.4891167 0.18695728
1 0.4891167 0.2797442 0.10692790
10 0.1869573 0.1069279 0.04087153

[125_TD$DIFF]92 points
0.1 0.8647388 0.50394437 0.11956635
1 0.5039444 0.29368398 0.06967976
10 0.1195663 0.06967976 0.01653229

[125_TD$DIFF]172 points
0.1 0.87050431 0.51586037 0.09532551
1 0.51586037 0.30569857 0.05648984
10 0.09532551 0.05648984 0.01043872

[(Fig._8)TD$FIG]

Fig. 8. Mass balance and altitude of the stakes located in Olivares Alfa glacier, for
periods 2013–2014 and 2014–2015. Both linear regression (in blue), and generalized
regression (in red) are plotted. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

[(Fig._9)TD$FIG]
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[166_TD$DIFF]Example 2. This example considers Example 4 of (Näther,1985).
Thereby, we have X = [�1, 1], cov(Y(x1), Y(x2)) = exp(�|x1� x2|)
and j5 = {�1, �0.5, 0, 0.5, 1}, j9 are equidistant designs.We
obtain VarðYðj5ÞÞ ¼ 0:529 andVarðYðj9ÞÞ ¼ 0:542:However, the
BLUE-variance is 0.5.

Thus, we can conclude averaging over the points obtained from
OU process may increase variance of the arithmetic mean.

6.3. What is happening for case of OU-sheet?

In order to detect the effect in the case of OU-sheet we start by
providing [167_TD$DIFF]Example 3.

Example 3. Let us check how big is the chance to get a decrease
of variance for OU sheet defined over [0,1]2, whenwe have a =1,
b = 0.5 and we compare the variance for mean evaluated for (1)
two point design D2 : = {(0, 0), (t, s)} (2) three point design,
wheremid point (s/2, t/2) is added to designD2.We received that

VðX2Þ ¼ 2þ2expð�xÞ
4 and VðX3Þ ¼ 3þ4expð�x=2Þþ2expð�xÞ

9 , where x = s + t/

2.We have a boundary line x ¼ �2ln 3
5 onwhich VðX3Þ � VðX2Þ is

changing the sign. This means that, based on geometric
probability, we have 88% of probability to increase variance
by adding a 3rd point.

Therefore, more care should be taken in designing for mass
balance measurements on glaciers. The next subsection illustrates
this fact on simulated data. The parameter sensitivity can be
observed in Tables 8 and 9 for the process defined in (1), while for
the sheet defined in (3) the results can be found in Table 10.

6.4. Linear relationship between mass balance and altitude

The relationship between altitude and mass balance has been
addressed in several works, such as Rasmussen and Andreassen
(2005) where linear regularity was found in 10 Norwegian glaciers
and a measurement at one altitude was developed, while in Kuhn
(1984) a glacier classification criteria was developed by exploiting
the mass balance profile on altitude.[168_TD$DIFF] This latter work followed the
one in Lliboutry (1974), where the mass balance at a certain
location on the glacier (or altitude) is decomposed into the sum of
its spatial and temporal contributions. In Cogley (1999) the
correlation between time series of stakes’ measurements was
discussed, concluding that stakes [169_TD$DIFF]closer to each other were highly
correlated and this correlation decreased with higher altitude
differences. Therefore, making more measurements in the vicinity
of a stake will not necessarily add new information. The optimal
number of stakes is discussed in Fountain and Vecchia (1999)
where two equations, a quadratic regression, and [170_TD$DIFF]a piecewise
Table 9
Computation of the variance of an OU process with covariance structure defined in
(1), using r = {0.1, 5, 10} and s = {0.1, 10}. Equispaced design on [0, 1] of five points
was considered.

s/r 0.1 5 10

0.1 0.207 0.200 0.200
10 72.676 2.997 0.417

Table 8
Computation of the variance of an OU process with covariance structure defined in
(1), and using r = {0.1, 5, 10}. Equispaced design on [0, 1] of five points was
considered.

r 0.1 5 10

j5 0.924 0.228 0.202

Fig. 9. Mass balance and altitude of the stakes located in Olivares Beta glacier, for
periods 2013–2014 and 2014–2015. Both linear regression (in blue), and generalized
regression (in red) are plotted. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)



Table 11
Coefficient of determination for regressions of mass balance and altitude.

Olivares Alfa Olivares Beta

2013–2014 2014–2015 2013–2014 2014–2015

Linear 0.94 0.96 0.93 0.91
Generalized 0.92 0.95 0.86 0.64

M. Stehlík et al. / Ecological Complexity 31 (2017) 149–164 159
weighted linear spline, involving mass balance and altitude are
studied. This work concludes that the number of stakes appears to
be scale invariant and that five to ten stakes are enough.

In Figs. 8 and 9 [171_TD$DIFF]the profile of mass balance and altitude for two
seasons can be seen. Two regressions are fitted, a linear one (in
blue) and a generalized one (in red)which includes the correlation,
parameters for the latter are computed as:

b̂ ¼ argminbðXib� YÞTC�1ðXib� YÞ
n o

¼ ðXT
i C

�1XiÞ�1XT
i C

�1Y;

where Y is a vector of mass balance measurements, Xi is the design
matrix of glacier i =1, 2 (Alfa or Beta [172_TD$DIFF]). This matrix includes
components for the intercept and slope (linear relationship with
altitude) of the regression, while C is a matrix defined as:

C ¼
X2
i¼1

ðXi � XiÞðXi � XiÞT þ I;

here Xi denotes the mean of the mass balance in glacier i, and the
regularization matrix I with entries equals to one in the diagonal

[(Fig._10)TD$FIG]

Fig. 10. Transformed stakes’ locations to the domain [0, 1

[(Fig._11)TD$FIG]

Fig.11. Boxplot of the coefficient of variation computed over all possible designs after rem
the OU sheet covariance matrix are a = 0.59, and b=2.3.
and zero otherwise.[173_TD$DIFF] This regularization allows to avoid the
singularity of matrix C. The coefficient of determination (R2) of
both regressions on the two glaciers can be seen in Table 11.

This example shows that for some glaciers linear regression is
oversimplifying the dependence on altitude. Thus in general one
should test several higher order models, before automatic usage of
parsimonious linear regression.
6.5. Coefficient of variation and the optimal number of stakes

The logistics for a mass balance program of a glacier can be very
difficult and costly. One big goal of these programs is to obtain the
most reliable information while minimizing costs. This is why it is
of interest to minimize the number of stakes used in the mass
balance programs (Fountain and Vecchia, 1999). In order to study
several stakes’ designs, the coefficient of variation of all possible
configurations after the removal of one to five stakes is computed.
First, stakes coordinates are transformed from latitude and
longitude units to UTM 19S, and then normalized to the unit
square [0, 1]� [0, 1], as it can be seen in Fig. 10.

All possible designs after the removal fromone tofive stakes are
listed. [174_TD$DIFF]Their coefficients of variation are computed when the
parameters of the OU sheet covariance matrix are a =0.59 and
b =2.3. These parameters are chosen by marginal correlations of
lag one. The results of this methodology can be seen in the two
boxplots of Fig. 11.

The design after the removal of 5 stakes, which minimized the
coefficient of variation for each glacier, can be seen in Fig. 12. A
]� [0, 1] of glaciers Olivares Alfa and Olivares Beta.

oving stakes in the Olivares Alfa and Olivares Beta glaciers. The parameters used for



[(Fig._13)TD$FIG]

Fig. 13. Boxplot of the coefficient of variation computed over all possible designs after removing stakes in the Olivares Alfa glacier. The parameters used for the OU sheet
covariance matrix are a, b = {0.1, 1, 5}.

[(Fig._12)TD$FIG]

Fig.12. Optimal locations, in the sense ofminimizing the design coefficient of variation, of 5 stakes over Olivares Alfa and Olivares Beta glaciers, using an OU sheet covariance
structure with a= 0.59 and b=2.3.
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sensitivity analysis is also computed by allowing parameters a and
b to take values in the set {0.1, 1, 5}, as we can see in Figs.13 and 14.
As the parameters grow bigger (implyingmore independent data),
the removal of stakes always increases the coefficient of variation.
However, in the presence of dependent data (smaller values of a
and b) it is possible to decrease the coefficient of variation if a good
design is chosen. This clever selection allows us to decrease the
dispersion in our measurement and to obtain more reliable data.
7. Dynamical system for measurements

7.1. Singularities and increase of Variance

Here we illustrate an interesting special case of the Ornstein–
Uhlenbeck process, generated by

dxt ¼ �r xt dt þ s dWt; r > 0;



[(Fig._14)TD$FIG]

Fig. 14. Boxplot of the coefficient of variation computed over all possible designs after removing stakes in the Olivares Beta glacier. The parameters used for the OU sheet
covariance matrix are a, b= {0.1, 1, 5}.
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when r approaches zerowith s becomes infinite in such away, that
rs2 approaches a fixed constant (see Rybicki, 1994). Usually it is
accomplished by letting s2 ¼ D

2r ; where D is a constant, called the
diffusivity. This limiting case is often called the Gaussian random
walk process. The correlation function s2e�rd of the random walk
may not be defined in such a setup, since we have singularity

s ! þ1 as r ! 0þ: ð6Þ
However, the variogram defined as

cðtÞ ¼ Eð½xt � xtþt �2Þ ¼ 2s2ð1� e�rjtjÞ ¼ D
r
ð1� e�rjtjÞ

[175_TD$DIFF]hasmeaning in the limit, namelyc(t) =D|t| . In Stehlík and Kise�lák
(2016) [176_TD$DIFF]it was shown that also the limit r!0+ together with s ¼

[(Fig._15)TD$FIG]

Fig. 15. Densities h depending on distance |s1� t1|2 [0, 1
ffiffiffiffiffi
2r

p
gives an interesting interpretation for the blow up of the limit

of the regular solutions of the sequence of Dirichlet problems for
the Poisson equation.

[177_TD$DIFF]The behavior of variance of arithmetic mean Var 1
m

Pm
i¼1 Xi

� �
,

under singularity (6) can have several modalities. To illustrate [178_TD$DIFF]this,
we consider the general variance decomposition of the form

Var½X� ¼ 1
m2

Xm
i¼1

Var½Xi� þ
2
m2

X
1�i<j�m

Cov½Xi;Xj�:

Let us have a look on four following scenarios. Herewe assume that
observations are measured at equidistant points.
	

] f
Assume that ŝ does not depend on the number of observationsm
but r̂ does such that rd
 lnm for every two consecutive
or fixed a =s =b =1 and distance |s2� t2| equal 1.
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observations. Then Cov½Xi;Xj� ¼ e�ðj�iÞlnm ¼ 1
mj�i ; where j� i�1.

Then for m!1 rd goes to infinity and
[179_TD$DIFF]

Var½X� 
 s2

m
þm� 1

m2 ! 0:
[180_TD$DIFF]	
 Assume now that ŝ does not depend on the number of
observations m but r̂ does such that (j� i)rd�1, j� i�1. Then
Cov½Xi;Xj� 
 1 yields

[179_TD$DIFF]

Var½X� 
 s2

m
þm� 1

m
! 1

for m!1 .
[181_TD$DIFF]	
 Let ŝ depend onm, such that it goes to infinity for largemmore
quickly than

ffiffiffiffiffi
m

p
and rd does not. Then we have

[179_TD$DIFF]

Var½X� 
 s2ðmÞ
m

þm� 1
m

K ! 1
for m!1, where K>0 is a constant.
[181_TD$DIFF]	
 Assume finally that ŝ ¼ ŝðmÞ !
ffiffiffi
C

p
> 0 (in practical situation C

is large enough for specific finite value of m, e.g. C is not such
mC�1) for m!1 and r̂ such that rd
 lnln(m +1)� e lnm for
e>0 such that ln(m +1)>me. Thus, [182_TD$DIFF] we can conclude that

Var½X� 
 C
m

þm� 1
m

C eelnm�lnlnðmþ1Þ ¼ C
m

þ C
ðm� 1Þ

m
me

lnðmþ 1Þ
! 1for m!1 . [183_TD$DIFF]Hence, we can see that under certain developments of

dynamical system for measurements, we can get very high
variance for the increasing number of stakes.

7.2. Analytical description of dynamical systems and blow-ups

Consider now the stochastic process

YðtÞ ¼ mðtÞ þ eðtÞ; ð7Þ
where e(t) is a zero mean Gaussian process with stationary
exponential covariance function CðeðsÞ;eðtÞÞ ¼ pðs;rÞ e�hr;js�tji; s;t 2
Rn; r 2 Rn

þ;s > 0; js� tj :¼ js1 � t1j; . . . ;jsn � tnj and continuous
function p.

The relationship between the Gaussian distribution and the heat
equation (alsocalled thediffusionequation) isevident. Fromnowwe
fix all time [184_TD$DIFF]variables except for one. Moreover, for the density h of Y
[(Fig._16)TD$FIG]

Fig. 16. Densities h depending on parameter b2 [0
wecan conclude the following. LetSk,l : =C(e(tk), e(tl)), k, l =1, . . . ,
m and @

@ti
S ¼: Di; i ¼ 1; . . . ;n which exists a.e., then

@
@ti

h ¼ 1
2

Xm
k;l¼1

Di
k;l

@
@yk@yl

h�
Xm
k

@
@ti

m
@
@yk

h

limti!0þ h ¼ d; for all others timesbeing fixed zero
ð8Þ

in which the limit is as usual understood in the weak sense. This
follows directly from the form of derivatives. Clearly, if [185_TD$DIFF]the normal
density function h (with covariance matrix S) satisfies problem
(8), then [209_TD$DIFF][210_TD$DIFF][211_TD$DIFF]

jdetSj�1 @
@ti

detS ¼ trðDiS
�1Þ and @

@ti
S

�1 ¼ �S�1
DiS

�1

must hold. Nevertheless, @
@ti

SS
�1

� �
¼ 0 implies

@
@ti
S

�1 ¼ �S�1 @
@ti
S

� �
S

�1
. Therefore,[186_TD$DIFF] the second condition is

fulfilled if @
@ti
S ¼ Di holds. On the other hand Jacobi's formula [187_TD$DIFF]

gives us directly that also the first condition holds under this
assumption. But this means that our process is closely related to
the diffusion problem (8). We will now discuss the relation to
linear dynamical system. [188_TD$DIFF]Definition 1 can be understood as a
generalization of thematrix exponential function. This allows us to
study this problem as a dynamical system (Figs. 15–17).

[189_TD$DIFF]Definition 1. A family T(t) of bounded linear operators on X to X
is said to be a C0-semigroup (or linear dynamical system) on X if T
(0)h =h and T(t + s) h= T(t)T(s)h for all s;t 2 Rþ and if T(t)h is
continuous in (t, h) on Rþ � X.

[190_TD$DIFF]The semigroup condition is nothing else than an expression of
the Markov property. Problem (8) can be understood as the
abstract IVP

_hðtiÞ ¼ AhðtiÞ; hð0Þ ¼ h0 2 DðAÞ for ti 2 Rþ;

where A :D(A)!X is [191_TD$DIFF]a linear operator defined by rhs of (8) on
dense domain D(A) in X. The trajectories h(ti, h0) = T(ti)h0, for h02X
but h0 =2D(A), are called general solution. Here,[192_TD$DIFF] by multiplication T
(ti)h we mean a convolution. Then for f bounded and measurable

TðtiÞ f ðxÞ ¼
Z
Rn

f ðyÞhðti;x � yÞdy:

Notice that the infinitesimal generator A of a strongly
continuous semigroup T is defined by

Af ¼ lim
ti#0

ðTðtiÞ � idÞf
ti

¼ lim
ti#0

Ey½f ðYðtiÞÞ� � f ðyÞ
ti
, 1.3] for fixed a =s =1 and distances equal 1.



[(Fig._17)TD$FIG]

Fig. 17. Densities h depending on parameter s>0 for fixed a=b=1 and distances equal 1.
[(Fig._18)TD$FIG]

Fig. 18. Contours of probability P for process (1) for fixed r, two values C.
[(Fig._19)TD$FIG]

Fig. 19. Contours of probability P for process (2) with a =b =1 for two values C.
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whenever the limit exists and for the family of processes Y(t) we
can define the associated Markov semigroup by the conditional
formula

TðtiÞ f ðyÞ ¼ E½f ðYðtiÞÞjYð0Þ ¼ y�
We now show that [193_TD$DIFF]the semigroup can generate a stochastically

unbounded system in some sense. Theorem 1 says that it strictly
depends on thediffusionmatrix (whichyields covariance structure).
Theorem 1. If [194_TD$DIFF]

lim
r ! 0
r 2 Rn

þ

pðs;rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2hr;js�tji

p
¼ 0;

then the systems { lnh(Y(t);r)}r>0 and {h(Y(t);r)}r>0 are stochasti-
cally unbounded.
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[195_TD$DIFF]Proof. Without loss of generality we consider m =2. Set

t ¼ ðt1;t2Þ ¼ ðt;sÞ and |s� t| =d. Then YðtÞ � N ð½mðtÞ;mðsÞ�T ;SÞ;
where S ¼ pðs;rÞ 1 q

q 1

� �
, [196_TD$DIFF]q = e�hr,di. It is easy to check that

detS!0, for r!0 and from continuity of the map r!S(r) we [197_TD$DIFF]
also have detS(0) = 0 . Now let C>0 be arbitrary constant.
Nevertheless S�1 and trS�1 does not change its sign. This
means that under one additional (see inequality below) S
generates an ellipse Y ¼ fy : yTS

�1
y < �2lnð2peCðdetSÞ1=2Þg (here we

have used [198_TD$DIFF]the fact that the problem is invariant under affine
transformation). Since [199_TD$DIFF]

P :¼ PðlnhðYðtÞ; rÞ > CÞ ¼
Z
Y
dnðyÞ;

we have for

r > 0 : hr;di < �1
2
ln 1� e�2C

4p2

� �
;

the formula ([200_TD$DIFF]Gaussian measure of Y ) P ¼ 1� 2peCpðs;rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
:

So finally lim r ! 0
r 2 Rn

þ

P ¼ 1:
[201_TD$DIFF]This theorem can be applied for the process (1), where n =1,
m(t) =a1 +a2 t, [202_TD$DIFF]r= r, p(s, r) = 1 and q = e�r|s�t|. Notice that it does
not hold for the process (2), where n =2, m(t) = u, r= (a, b), [203_TD

$DIFF]pðs;rÞ ¼ ~s
2

ffiffiffiffiffi
ab

p and q = e�a|t1�s1|�b|t2�s2|, since lim r ! 0
r 2 Rn

þ

P is not
zero. In fact it does not exist (Figs. 18 and 19).

[204_TD$DIFF]The authors in Stehlík and Kise�lák (2016) showed that also [226_TD$DIFF]a
process given by the two dimensional system of linear stochastic
differential equations[227_TD$DIFF][228_TD$DIFF]

dXt ¼ ðAðtÞXt þ aðtÞÞ dt þ sðtÞdW t; 0 � t < 1; X0 ¼ j:

ð9Þ
a(t)
0 and constant coefficients A =diag(�r1, � r2) and
s ¼ diagð

ffiffiffiffiffiffiffiffi
2r1

p
;

ffiffiffiffiffiffiffiffi
2r2

p
Þ, Q = I and j � N ð0;IÞ; is stochastically un-

bounded.

[206_TD$DIFF]Remark 1. They also showed that blow-up occurs for two
dimensional (dependent) process given by system (9), whereas

a(t)
0 and AðtÞ ¼ �r1 0
�r2 0

� �
, s ¼ s 0

0 0

� �
with Q = I and

j � N ð0;IÞ, whereas the process Xt ¼ ðX1
t ;� r2

R t
0 X

1
s dsÞ, is the

Ornstein–Uhlenbeck process and its time integral, which is
also Gaussian.

8. Conclusions

Themoderate number of stakes for small glaciers (<10km2) has
been [207_TD$DIFF][116_TD$DIFF]an empirically well observed fact. However, there was a lack
of theoretical justifications. This paper aims to overcome this gap.
We introduce a 2nd order spatial field model for mass balance
measurements and evaluate its aggregated value, namely empiri-
cal mass balance. We derive a dynamical system and show that
under its generic singularity, variance of mass balance estimator
can grow with the number of stakes. This phenomenon relates
both to blow-ups and severe interrelations between parameters
and design points for stakes.

We also studied good design strategies for stakes allocations.We
illustrated that monotonic design should be taken as an interesting
benchmark design for cases when researchers expect non-revers-
ibilityof time(processcannot stepback in time). In factwehave seen
that efficiencies formonotonic designs are comparable (if not better
in certain setups) to the efficiency of space-filling designs. More
discussion and statistical derivation can be found in Baran and
Stehlík (2015). We also compared several designs, namely equidis-
tant, factorial, LHS* (S-optimality) and LHS+ (improved LHS as
optimal with respect to Euclidean distances). These kind of designs
can be of help for mass balance computations in glaciology, where
simpleapplicationof full rasterdesigncan leadto increasedvariance,
which is undesirable. This was also illustrated on real data example
for Chilean glaciers Olivares Alfa and Beta and its stakes locations,
where if we assume certain covariance structure, the removal of
stakes can lead to a variance increase or decrease, showing us the
importance of the underlying design.
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