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a b s t r a c t 

In this work, the classical soft-margin Support Vector Machine (SVM) formulation is redefined with the 

inclusion of an Ordered Weighted Averaging (OWA) operator. In particular, the hinge loss function is 

rewritten as a weighted sum of the slack variables to guarantee adequate model fit. The proposed two- 

step approach trains a soft-margin SVM first to obtain the slack variables, which are then used to induce 

the order for the OWA operator in a second SVM training. Originally developed as a linear method, our 

proposal extends it to nonlinear classification thanks to the use of Kernel functions. Experimental results 

show that the proposed method achieved the best overall performance compared with standard SVM and 

other well-known data mining methods in terms of predictive performance. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Support Vector Machines (SVMs) [31] has gained popularity

mong researchers and practitioners thanks to its theoretical ad-

antages, such as superior predictive performance, adequate gen-

ralization to new samples thanks to the Structural Risk Minimiza-

ion (SRM) principle [32] , and the absence of local minima via con-

ex quadratic optimization [21,31] . Support Vector Machines has

een successfully applied in various domains, including computer

ision [3] , medical diagnosis [27] , bioinformatics [7,9,22] , and doc-

ment classification [45] , among others. 

When dealing with data, it is necessary many times to aggre-

ate the information in order to provide a representative view.

n the literature, there are many aggregation operators [4,16,42] .

he Ordered Weighted Average (OWA) [36,40] is a very popular

ne. The OWA operator is an aggregation operator that provides

 parameterized family of aggregation operators between the min-

mum and the maximum. From a decision-making point of view,

he OWA allows decision makers to analyze the data according to

heir own optimistic or pessimistic attitudes. The OWA operator

as been extended and generalized within a wide range of frame-

orks [12] . For example, Yager and Filev [39] presented the in-

uced OWA (IOWA) operator, and that work was further extended

y Merig’o and Gil-Lafuente [24] using generalized and quasi-
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rithmetic means. Other studies use OWA operators with distance

easures [23,34] , moving averages [25] , utilities [15] , Bonferroni

eans [5,38] , interval numbers [35,43] , and fuzzy information [44] .

In this work, a novel SVM strategy based on OWA operators

s introduced for binary classification. The idea is to replace the

raditional hinge loss function by a weighted sum using an OWA

perator, penalizing the classification errors unevenly according to

heir distance from the hyperplane. A two-step algorithm is pro-

osed: First, the classical soft-margin SVM is trained, given the or-

er of the samples in terms of their distance from the classifier

s the relevant output for this step. Next, SVM is re-trained using

n OWA operator, leading to a final classifier aimed at being more

ffective than the traditional SVM but with the same complexity.

he method is first presented as a linear classification strategy, and

ubsequently extended as a Kernel method. 

This paper is structured as follows: previous work on OWA op-

rators and Support Vector Machines are discussed in Section 2 .

he proposed framework for SVM classification based on OWA op-

rators is described in Section 3 . In Section 4 , experimental results

sing benchmark datasets are given. Finally, the main conclusions

f this study are presented in Section 5 . 

. Theoretical background on OWA operators and SVM 

lassification 

In this section, the concept of OWA operators is first introduced,

iscussing the relevant variants that are considered for the de-

elopment of our proposal. Next, we describe the mathematical

https://doi.org/10.1016/j.knosys.2018.02.025
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• The generalized OWA when g(b) = b . 
derivation of the soft-margin SVM developed by Cortes and Vap-

nik [10] , and its extension to nonlinear classification. 

2.1. The ordered weighted average 

The OWA operator [36] aggregates the information providing a

parameterized family of aggregation operators between the mini-

mum and the maximum. It is widely used when aggregating the

data according to the attitudinal character of the decision maker.

Note that the OWA operator does not assign a weight directly to

each of the elements of a set. Instead, it weights the data according

to the ranking they achieve inside the set when comparing their

numerical values. This situation is very useful when there is no

information about the degrees of importance of the weights. The

OWA operator is defined as follows: 

Definition 1. An OWA operator of dimension n is mapping OWA :

R 

n → R that has an associated weighting vector W of dimension n

with 

∑ n 
j=1 w j = 1 and w j ∈ [0, 1], such that: 

OWA (a 1 , a 2 , . . . , a n ) = 

n ∑ 

j=1 

w j b j (1)

where b j is the j th largest of the a i . 

A wide range of possible aggregation operators can be obtained

when varying the weighting vector. The following ones are worth

noting among others [24,37] : 

• If w 1 = 1 and w j = 0 for all j � = 1, the OWA operator becomes

the maximum. 

• If w n = 1 and w j = 0 for all j � = n , we get the minimum. 

• The median-OWA occurs under two different situations that de-

pend on the size of n . If n is odd, it appears when w (n +1) / 2 = 1

and w j = 0 for all others. And if n is even, the median is not

a single number and an additional method is required. A com-

mon one is to assign w n/ 2 = w (n/ 2)+1 = 0 . 5 and w j = 0 for all

others. 

• If w j = 1 /n, for all j , the OWA becomes the classical arithmetic

mean. 

• The step-OWA operator appears when w k = 1 and w j = 0 for

all j � = k . Note that it includes the maximum, the minimum, and

the odd median as particular cases. 

• The olympic-OWA makes an average of all the weights except

the first and the last one. That is, w 1 = w n = 0 , and for all oth-

ers w j = 1 / (n − 2) . 

• The generalized S-OWA operator appears if w 1 =
(1 /n )(1 − (α + β)) + α, w n = (1 /n )(1 − (α + β)) + β, and

w j = (1 /n )(1 − (α + β)) for j = 2 to n − 1 , where α, β ∈ [0, 1]

and α + β ≤ 1 . Observe that if α = 0 , it becomes the ‘and-like’

S-OWA and if β = 0 , the ‘or-like’ S-OWA. 

There are many other approaches in the literature for obtaining

the OWA weights [24,37] . A practical approach is to use linguistic

quantifiers [19,36] . The weights are generated by using a regular

increasing monotone (RIM) quantifier Q as follows: 

w j = Q 

(
j 

n 

)
− Q 

(
j − 1 

n 

)
∀ j. (2)

Note that the weights generated through this method accom-

plish 

∑ n 
j=1 w j = 1 and w j ∈ [0, 1]. This approach can generate a

wide range of weighting vectors. The following ones are used in

this study [19] : 

• Basic linguistic quantifier: 

Q(r) = r α α ≥ 0 . (3)
Here, the weights are obtained by using: 

w j = 

(
j 

n 

)α

−
(

j − 1 

n 

)α

∀ j. (4)

• Quadratic linguistic quantifier [28] : 

Q q (r) = 

(
1 

1 − α(r) 0 . 5 

)
α ≥ 0 , (5)

and the weights are calculated in the following way: 

w j = 

( 

1 

1 − α
(

j 
n 

)0 . 5 

) 

−
( 

1 

1 − α
(

j−1 
n 

)0 . 5 

) 

∀ j. (6)

• Exponential linguistic quantifier: 

Q e (r) = e −αr . (7)

The weights for this quantifier are obtained as follows: 

w j = e −α( j n ) − e −α( j−1 
n ) ∀ j. (8)

• Trigonometric linguistic quantifier: 

Q t (r) = arcsin (rα) , (9)

with the following formula for the weights: 

w j = arcsin 

(
α

(
j 

n 

))
− arcsin 

(
α

(
j − 1 

n 

))
∀ j. (10)

The OWA operator is monotonic, commutative, bounded, and

dempotent. In order to characterize the aggregation, there are sev-

ral measures including the degree of orness-andness and the en-

ropy of dispersion [36] . The degree of orness is formulated as fol-

ows: 

(W ) = 

n ∑ 

j=1 

w j 

n − j 

n − 1 

(11)

Note that the andness is the complement of the orness. That is,

ndness = 1-orness. 

The entropy of dispersion follows the methodology of

hannon [30] and applies it onto the OWA operator as follows: 

(W ) = −
n ∑ 

j=1 

w j ln (w j ) (12)

Note that H(W ) = 0 for the step-OWA and its particular cases

hile the maximum entropy appears for the arithmetic mean be-

ause the weights show the highest dispersion between them.

hus, H(W ) = ln n . 

The OWA operator can be generalized by using generalized

nd quasi-arithmetic means forming the generalized OWA and the

uasi-arithmetic OWA (Quasi-OWA) operator [13,24] . The Quasi-

WA operator is very similar to the OWA operator with the differ-

nce that we introduce a strictly continuous monotonic function.

hat is: 

uasi − OWA (a 1 , a 2 , . . . , a n ) = g −1 

( 

n ∑ 

j=1 

w j g(b j ) 

) 

(13)

here g ( b ) is a strictly continuous monotonic function. 

Observe the following particular cases of the Quasi − OWA op-

rator: 

• The OWA operator when g(b) = b. 

• The quadratic OWA when g(b) = b 2 . 

• The geometric OWA if g ( b ) → b 0 . 

• The cubic OWA when g(b) = b 3 . 

• The harmonic OWA if g(b) = b −1 . 
λ
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Fig. 1. Geometrical interpretation for the soft-margin SVM method. The support 

vectors are circled. 
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OWA operators have been applied in a wide range of fields [40] .

ote that there are some studies that have considered the use of

WA operators in the context of SVM classification [1,18,41] , but,

nlike our proposal, they do not modify the SVM formulation. Ala-

lan et al. [1] , for example, proposed an ensemble of SVM classi-

ers for pattern recognition on hyperspectral images, using OWA

perators for combining the various model outputs. 

.2. Support vector machines 

Consider the general binary classification problem of classifying

 objects belonging to two sets denoted by I 1 and I 2 . Each object

 ( i = 1 , . . . , m. ) has n features which are stored in the i -th row of

n m × n matrix X . For each object i, y i defines its label as follows:

 i = 1 if object i belongs to set I 1 or y i = −1 if object i belongs to

et I 2 . 
In broad terms, SVM constructs a separating hyperplane w 

	 x +
 = 0 that classifies the objects x i correctly, while maximizing the

eparation margin between both classes 2 
‖ w ‖ (see Fig. 1 ). 

The margin maximization is theoretically motivated by the er-

or bounds of the technique’s generalization properties. Thus, the

robability of misclassifying a new object is bounded by a func-

ion that decreases with the value of the margin [31] . The follow-

ng quadratic programming (QP) problem is solved by SVM: 

min w ,b, ξ
1 
2 ‖ 

w ‖ 

2 + C 
m ∑ 

i =1 

ξi 

s.t. y i (w 

	 x i + b) ≥ 1 − ξi , i = 1 , . . . , m, 

ξi ≥ 0 , i = 1 , . . . , m, 

(14) 

here C > 0 is a parameter that controls the relative importance

f the model fit over the margin maximization [31] . For a given

raining sample i, ξ i represents how far it lies on the wrong side

f the corresponding canonical hyperplane [31] . The canonical hy-

erplanes are the ones that ‘support’ the classifier, defining the

oundaries for the margin [6] (the dashed lines in Fig. 1 ). 

To build a non-linear decision surface, SVM maps the training

oints of dimension n onto a feature space of higher dimension us-

ng a projection function φ( · ). Thanks to the duality theory, SVM is

ble to construct a nonlinear classifier without the need of defining

his projection function φ( · ). In the dual form of Formulation (14) ,

he training examples appear only as scalar products, allowing the

se of a Kernel function K( x i , x s ) = φ( x i ) · φ( x j ) . The Kernel-based
ersion for the soft-margin SVM method follows [29] : 

max α
m ∑ 

i =1 

αi − 1 
2 

m ∑ 

i,s =1 

αi αs y i y s K(x i , x s ) 

s.t. 
m ∑ 

i =1 

αi y i = 0 , 0 ≤ αi ≤ C, i = 1 , . . . , m, 

(15) 

here α are the Lagrange multipliers related to the constraints in

14) . Among the various Kernel functions, a frequent choice is the

aussian, which has the following form: 

(x i , x s ) = exp 

(
−|| x i − x s || 2 

2 σ 2 

)
, (16)

here σ > 0 is the width parameter [29] . Formulation (15) can

e solved efficiently, using the Sequential Minimal Optimization

SMO) technique [26] , for example. 

Finally, the decision rules for these two SVM formulations

ollow: given a new sample x ∗ with an unknown label, y ∗ =
ign ( w 

	 x ∗ + b) and y ∗ = sign ( 
∑ 

i ′ ∈ SV αi ′ y i ′ K(x i ′ , x ∗) + b) for the lin-

ar and Kernel-based case, respectively [6] , where SV is the set of

upport vectors, i.e. all samples from the training set with αi > 0. 

. The proposed framework for SVM classification based on 

WA operators 

The main idea is to modify the loss function used in SVM clas-

ification by incorporating an OWA operator. In order to do this,

 two-step methodology is proposed: First, the soft-margin SVM

ethod is applied (Formulation (14) ) to obtain the distance be-

ween each training sample and its respective canonical hyper-

lane, given by ξ‡ = 1 − y i (w 

	 x i + b) . Notice that this first SVM

raining serves only as an ordering method. Next, the soft-margin

VM formulation is redefined by including an OWA operator, in-

tead of the hinge loss function, where the aggregation is ordered

y the ξ‡ values in ascending order. 

The reasoning behind the proposed approach is to weight down

orrectly-classified samples, increasing the importance of boundary

ases and misclassified objects in a second training process. This

dea resembles adaptive methods like Adaboost, in which subse-

uent classifiers are tweaked in favor of those objects misclassi-

ed by previous learners in an iterative process [14] . Notice that

‡ is similar to ξ when ξ > 0; that is, a data point is either in-

ide the margin or misclassified, but ξ‡ can be negative, represent-

ng the distance of a correctly classified sample to its correspond-

ng canonical hyperplane. The measure ξ‡ is chosen over ξ for the

WA operator since it allows sorting all observations avoiding ties.

t is important to keep in mind that most ξ values can be zero in

atasets with little class overlap. 

Formally, an OWA operator is defined by constructing a weight-

ng vector W , with W i ∈ (0 , 1) ∀ i = 1 , . . . , m and 

∑ 

i W i = 1 , using

n OWA quantifier, or an alternative method from the literature

see Section 2 ). The quantifier parameter α can be set via cross-

alidation. Notice that the OWA weighting vector W is different

rom the solution vector w obtained by SVM. 

The first SVM is trained using the standard hinge loss function,

ith ξ‡ 
1 

being the relevant output for this step. Then, the OWA op-

rator F (ξ‡ 
1 
, ξ2 , W ) = W 

	 ξ∗
2 

is used in the objective function of the

econd SVM problem, where ξ∗
2 is the vector consisting of ξ2 put

n a descending order based on ξ‡ 
1 
; that is, W i is the weight asso-

iated with the i th largest value of ξ‡ 
1 
. Following the idea behind

WA operators, weighting vector W is associated with a particu-

ar ordered position based on the ξ‡ 
1 

values rather than on a par-

icular element. Therefore, the OWA operator F is used on a new

et of slack variables ξ2 , whose values are determined in a second

VM optimization process, but with the order induced by the val-

es obtained in the first SVM model. Notice that each weight is
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Table 1 

Descriptive information for all datasets. 

Dataset No. of examples % Class(min.,maj.) No. of features 

IONO 351 (64.1,35.9) 34 

WBC 569 (62.7,37.3) 30 

AUS 690 (55.5,44.5) 14 

DIA 768 (65.1,34.9) 8 

GC 10 0 0 (70.0,30.0) 24 

SPL 10 0 0 (51.7,48.3) 60 

Table 2 

Performance for all methods and datasets. 

Linear/traditional methods Kernel methods 

k -NN NB Logit SVM l OWA–SVM l SVM k OWA–SVM k 

IONO 79.2 83.2 83.6 84.5 86.0 95.1 94.0 

WBC 95.9 92.7 95.2 97.4 97.6 97.7 97.9 

AUS 84.5 79.3 85.8 86.2 87.1 86.5 87.6 

DIA 70.4 71.8 72.5 72.7 73.5 72.3 73.3 

GC 62.9 69.4 70.0 69.8 70.2 69.7 71.1 

SPL 71.1 84.2 80.1 80.9 81.7 88.1 88.5 
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re-ordered to match the corresponding sample from the first SVM

training. The proposal is detailed in Algorithm (1 ) for the linear

Algorithm 1 OWA–SVM Algorithm, linear version. 

Input: Training tuples (x i , y i ) , SVM soft-margin parameter C, OWA

quantifier parameter α. 

Output: SVM classifier (w , b) . 

1. ξ‡ 
1 

← soft-margin SVM training, Formulation (14), with param-

eter C. 

2. W ← OWA quantifier based on quantifier parameter α. 

3. (w , b) ← OWA–SVM training: 

min w ,b, ξ2 

1 
2 ‖ 

w ‖ 

2 + 

C 

W 

· F (ξ‡ 
1 
, ξ2 , W ) 

s.t. y i (w 

	 x i + b) ≥ 1 − ξ2 ,i , i = 1 , . . . , m, 

ξ2 ,i ≥ 0 , i = 1 , . . . , m. 

(17)

where W is the mean value of vector W . The idea behind this

quotient is to normalize the effect of the weights W . 

version. 

Algorithm (1) can be extended easily to Kernel functions. The ξ‡

values can be computed from the solution of the dual SVM formu-

lation: It follows from the derivation of the dual problem of For-

mulation (14) that w 

	 x i becomes 
∑ 

i ′ ∈ SV αi ′ y i ′ K(x i ′ , x i ) when Ker-

nel functions are introduced [6] . Then, 

ξ ‡ 
i 

= 1 − y i 

( ∑ 

i ′ ∈ SV 
αi ′ y i ′ K(x i ′ , x i ) + b 

) 

, ∀ i = 1 , . . . , m. (18)

It also follows from the dual of the soft-margin SVM formula-

tion (see [6] ) that, for a given sample i = 1 , ., m, the value of its La-

grange multiplier αi is upper-bounded by the trade-off parameter

C . However, if we redefine the SVM objective function from C �i ξ i 

to C 

W 

· ∑ 

i W i ξi , then αi ≤ C·W i 

W 

. Algorithm (2 ) presents the Kernel-

Algorithm 2 OWA-SVM Algorithm, Kernel-based version. 

Input: Training tuples (x i , y i ) , SVM soft-margin parameter C, OWA

quantifier parameter α. 

Output: SVM classifier (α, b) . 

1. ξ‡ 
1 

← Kernel-based SVM training, Formulation (15), with param-

eter C and using Eq. (18). 

2. F (ξ‡ 
1 
, W ) ← OWA operator, order induced by ξ‡ 

1 
, and weights W

obtained via an OWA quantifier based on quantifier parameter

α. 

3. (α, b) ← OWA-SVM training: 

max α
m ∑ 

i =1 

αi − 1 
2 

m ∑ 

i,s =1 

αi αs y i y s K(x i , x s ) 

s.t. 
m ∑ 

i =1 

αi y i = 0 , 

0 ≤ αi ≤ C·W i 

W 

, i = 1 , . . . , m. 

(19)

based OWA–SVM method. 

Next, we studied the performance of the proposed method em-

pirically, comparing it with well-known data mining methods on

benchmark datasets from the UCI Repository. 

4. Experimental results 

We applied the proposed approaches to the following datasets

from the UCI Repository [2] : Ionosphere (IONO), Wisconsin Breast
ancer (WBC), Australian Credit (AUS), Pima Indians Diabetes

DIA), German Credit (GC), and Splice (SPL). Table 1 summarizes

he metadata for each dataset, including the total sample size and

er-class proportion, and the number of features. 

The following binary classification approaches are studied and

eported: 

• Soft-margin SVM, linear (SVM l , Formulation (14) ) and Kernel-

based version (SVM K , Formulation (15) ). This method was im-

plemented using the LIBSVM toolbox [8] . 

• The k nearest neighbors method ( k -NN). The idea behind this

approach is to assign a label to a new sample based on the la-

bels of the k observations from the training set that are closest

to this new sample, using majority voting. The Euclidean dis-

tance is used to determine the nearest neighbors [17] . 

• The naïve Bayes method (NB). The idea is to apply the Bayes

theorem assuming that all features are independent of each

other. The method computes the a posteriori probability for

each of the two classes under this assumption, and the class

with maximum probability is assigned to the new sample [17] . 

• The logistic regression approach (Logit). This method constructs

a linear classifier, similar to linear SVM, in which the coeffi-

cients are estimated using maximum likelihood estimation [17] .

• The proposed OWA-SVM method in its linear (OWA-SVM l ,

Algorithm (1 )) and Kernel-based method (OWA-SVM k ,

Algorithm (2 )). 

Regarding model selection, a grid search was performed for

VM parameters C and σ (Kernel methods only), using 10-

old cross-validation with the following set of parameters: C, σ ∈
 2 −7 , 2 −6 , . . . , 2 6 , 2 7 } . For our proposal, four different quantifiers

ere studied: Basic RIM, quadratic, exponential, and trigonomet-

ic. We explored the following values for the quantifier parameter:

∈ {0.2, 0.4, 0.6, 0.8}. Finally, k = 5 was used for the k -NN method.

Next, a summary of the results is presented in Table 2 . This

able shows the performance of each method for all six datasets

sing AUC ( ×100) as the performance metric. The highest AUC is

ighlighted in bold type for each dataset, in which Kernel methods

ere studied as a different group. 

In Table 2 , it can be observed that the best overall performance

s achieved with the proposed methods for both linear/traditional

nd Kernel-based approaches. For the first group, OWA-SVM l per-

orms best in five of the six cases, being second in terms of per-

ormance on the Splice dataset. For the Kernel-based group, OWA-
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Table 3 

Holm’s post-hoc test for pairwise comparisons. All methods. 

Method Mean Rank Mean AUC p value α/ (k − i ) Action 

Linear/traditional methods 

OWA-SVM l 1.17 82.68 – – not reject 

SVM l 2.33 81.92 0.2012 0.0500 not reject 

Logit 3.17 81.20 0.0285 0.0250 not reject 

NB 3.83 80.10 0.0035 0.0167 reject 

k -NN 4.50 77.33 0.0 0 03 0.0125 reject 

Kernel methods 

OWA-SVM k 1.17 85.40 – – not reject 

SVM k 1.83 84.90 0.1025 0.0500 not reject 

Table 4 

Holm’s post-hoc test for pairwise comparisons: OWA quantifiers. 

Method Mean Rank Mean AUC p value α/ (k − i ) Action 

OWA–SVM l 

Basic Rim 1.33 83.37 – – not reject 

Exponential 2.50 83.03 0.1175 0.0500 not reject 

Quadratic 2.58 83.10 0.0935 0.0250 not reject 

Trigonometric 3.58 82.78 0.0025 0.0167 not reject 

OWA–SVM k 

Trigonometric 2.08 85.12 – – not reject 

Quadratic 2.17 85.03 0.9110 0.0500 not reject 

Basic Rim 2.50 84.92 0.5762 0.0250 not reject 

Exponential 3.25 84.85 0.1175 0.0167 not reject 

Table 5 

Holm’s post-hoc test for pairwise comparisons: OWA quantifier parameter α. 

Method Mean Rank Mean AUC p value α/ (k − i ) Action 

OWA–SVM l 

α = 0 . 2 2.17 83.65 – – not reject 

α = 0 . 4 2.33 83.65 0.8231 0.0500 not reject 

α = 0 . 8 2.50 83.57 0.6547 0.0250 not reject 

α = 0 . 6 3.00 83.58 0.2636 0.0167 not reject 

OWA–SVM k 

α = 0 . 4 2.25 85.10 – – not reject 

α = 0 . 8 2.25 85.08 1.0 0 0 0 0.0500 not reject 

α = 0 . 2 2.75 85.08 0.5023 0.0250 not reject 

α = 0 . 6 2.75 84.93 0.5023 0.0167 not reject 

Table 6 

Average running times, in seconds. All methods and datasets. 

OWA–SVM l OWA–SVM k k-NN Logit NB 

Step 1 a Step 2 b Step 1 a Step 2 b 

AUS 0 ′′ .05 4 ′′ .27 0 ′′ .10 2 ′′ .28 0 ′′ .06 0 ′′ .02 0 ′′ .01 

WBC 0 ′′ .03 2 ′′ .54 0 ′′ .10 1 ′′ .69 0 ′′ .06 0 ′′ .25 0 ′′ .02 

DIA 0 ′′ .04 5 ′′ .98 0 ′′ .11 3 ′′ .31 0 ′′ .02 0 ′′ .003 0 ′′ .002 

GC 0 ′′ .15 6 ′′ .78 0 ′′ .26 4 ′′ .65 0 ′′ .13 0 ′′ .03 0 ′′ .03 

IONO 0 ′′ .01 0 ′′ .78 0 ′′ .03 0 ′′ .57 0 ′′ .03 0 ′′ .17 0 ′′ .01 

SPL 0 ′′ .24 6 ′′ .29 0 ′′ .48 3 ′′ .93 0 ′′ .20 0 ′′ .10 0 ′′ .14 

a The first step for OWA-SVM is equivalent to soft-margin SVM implemented in 

LIBSVM since the computation of the OWA operator takes less than 0.01 seconds. 
b The second step for OWA-SVM is equivalent to soft-margin SVM implemented 

in MATLAB’s ‘quadprog’ solver since the computation of the OWA operator takes 

less than 0.01 seconds. 
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a  
VM k also performed better than SVM k in five of the six datasets;

he latter performed better on the Ionosphere dataset. 

Next, The Holm’s test was used to study the statistical signif-

cance of the above results. This test was suggested by Demšar

11] for comparing various machine learning methods in terms of 

erformance. The average rank is computed for each technique.

hen, pairwise comparisons are performed between each method

nd the top-ranked one. From these comparisons, Z statistics are

btained, with their corresponding p values. Each p i is compared

ith α/ (k − i ) , where k is the number of algorithms and α the sig-
ificance level (usually 5%, see [11] for more details). This analysis

s presented in Table 3 for both groups. 

From the Holm’s test results reported in Table 3 , it can be con-

luded that the proposed OWA-SVM l achieves the best overall per-

ormance, being able to outperform Naïve Bayes and k -NN statis-

ically, with α = 5% . Although OWA-SVM l has an average rank of

.17, being best in five of six datasets, it is not able to outper-

orm either logistic regression or SVM l . Similarly, OWA-SVM k can-

ot outperform SVM k with an average rank of 1.17. 

Next, the Holm’s test was used for comparing the various

uantifiers studied for OWA–SVM l and OWA–SVM k . We recall that

our different quantifiers (Basic RIM, quadratic, exponential, and

rigonometric) and four different values for α ( α ∈ 0.2, 0.4, 0.6, 0.8)

ere studied for each method. Table 4 presents the results of the

olm’s test for pairwise comparisons between the quantifiers for

WA–SVM l and OWA–SVM k , while Table 5 presents the same ex-

rcise for the four α values. 

In Tables 4 and 5 , it can be seen that no quantifier is able to

utperform the others with statistical significance, all being rela-

ively similar in terms of the average rank and AUC. It can be no-

iced in Table 4 that the worst quantifier for OWA–SVM l in terms

f average rank is the best one for OWA–SVM k (Trigonometric

uantifier), and that quantifiers are very close in terms of aver-

ge AUC. It can be concluded that all quantifiers are almost equally

ood at identifying the right weights W for the OWA operator. 

Finally, the running times are presented in Table 6 for all meth-

ds and datasets. For the proposed OWA–SVM, we split the run-

ing time in two steps: Step 1 corresponds to the first SVM train-

ng performed using LIBSVM, while Step 2 is the second SVM

raining performed using a generic QP solver (MATLAB’s ‘quad-

rog’ function). Since the computation of the OWA function, which

orresponds to evaluating the quantifier and sorting the samples

ased on the slack variables, is extremely fast (less than 0.01 sec-

nds), the running times for OWA–SVM are equivalent to those for

VM, either using a highly-optimized solver (LIBSVM, Step 1), or a

eneric one (‘quadprog’, Step 2). Notice that these two problems

ave a similar complexity. These experiments were performed on

n HP Envy dv6 with 16 GB RAM, 750 GB SSD, a i7-2620M pro-

essor with 2.70 GHz, and using Microsoft Windows 8.1 Operat-

ng System (64-bits). Each entry in Table 6 represents the average

raining time (in seconds) of all runs of the ten-fold crossvalidation

rocedure. 

It can be observed on Table 6 that all training times are

ractable and relatively similar. The only exception is the second

tep of our algorithm, which is considerably slow in comparison

ith the remaining methods and, in particular, with SVM using

IBSVM (OWA–SVM Step 1). As mentioned before, this is exclu-

ively because of the optimization approach used since both steps

re of the same complexity. The difference relies in the hyperpa-

ameter C , which is a scalar in the first step and a vector in the

econd one ( 
C·W i 

W 

, see Formulation (19)). Unfortunately, a vector is

ot a valid input parameter for LIBSVM, and therefore we used a

eneric QP solver for the second step. 

. Conclusions and future developments 

In this work, a novel binary classification approach based on

he concept of OWA operators was presented. The main idea is

o penalize the classification errors unevenly with a weighted sum

ccording to their distances from their respective canonical hyper-

lanes. An OWA operator is then constructed to replace the hinge

oss function in the soft-margin SVM formulation. Various OWA

uantifiers were explored empirically, showing that our proposal

utperforms other well-known classification methods. 

Our method is presented first as a linear classification approach,

nd subsequently extended as a Kernel method. Linear methods
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provide a better understanding of the process that generates the

data, but they are not able to capture more complex patterns [17] .

In our experiments we observe that the results are relatively simi-

lar among all the models studied in four of the six datasets. For the

remaining two, however, Kernel methods are able to outperform

all the other approaches, demonstrating the importance of Kernel

methods when predictive performance is of prime interest. 

There are various opportunities for future research. In terms

of the OWA quantifiers, no significant differences were observed

among the four quantifiers studied, according to our experiments.

The same holds for the different values for the quantifier parame-

ter α. A meta-learning study is suggested as a future development,

aiming at understanding the behaviour of various quantifiers us-

ing datasets various characteristics. Another possible research line

is the use of different OWA operators to induce order in the train-

ing samples. Induced OWA (IOWA), for example, allows the use of

a different criterion to sort the samples, avoiding the need for the

first SVM training, and thus speeding up the algorithm. Another in-

teresting approach is the use of the weighted OWA (WOWA) oper-

ator [23,35] since it integrates the weighted average and the OWA

operator in the same formulation. Finally, the proposed strategies

can be used in applied contexts, such as business analytics and

computer vision. Since our proposal leads to best predictive perfor-

mance compared to other well-known machine learning methods,

it becomes an interesting alternative in applications for which an

increase in performance translates in profitable decision-making,

such as credit scoring or churn prediction. The flexibility that SVM

provides allows the use of profit metrics in combination with our

proposal for a goal-oriented machine learning framework [20,33] . 
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