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Wild birds in Chile Harbor diverse avian
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Abstract
While the circulation of avian influenza viruses (IAV) in wild birds in the northern hemisphere has been well
documented, data from South America remain sparse. To address this gap in knowledge, we undertook IAV
surveillance in wild birds in parts of Central and Northern Chile between 2012 and 2015. A wide diversity of
hemagglutinin (HA) and neuraminidase (NA) subtypes were identified and 16 viruses were isolated including low
pathogenic H5 and H7 strains, making this the largest and most diverse collection of Chilean avian IAVs to date. Unlike
IAVs isolated from wild birds in other South American countries where the genes were most like viruses isolated from
wild birds in either North America or South America, the Chilean viruses were reassortants containing genes like
viruses isolated from both continents. In summary, our studies demonstrate that genetically diverse avian IAVs are
circulating in wild birds in Chile highlighting the need for further investigation in this understudied area of the world.

Introduction
While much is known about avian influenza A virus

(IAV) prevalence in Eurasian and North American wild
birds1–3, widespread surveillance is lacking in much of the
Southern Hemisphere 4.
With over 4000 km of coast and hundreds of wetlands

for wintering and breeding5, the Chilean mainland is
home to many migrant species including those on the
Pacific and Atlantic flyways2, 4. Yet little is known about
IAV in Chilean bird populations. Previous reports are
limited to the isolation of three low pathogenic avian
influenza (LPAI) subtypes most closely related to viruses
isolated from North American shorebirds, an H4N8 virus
in domestic turkey, and a highly pathogenic avian influ-
enza (HPAI) H7N3 virus in commercial poultry in 20025–
7. Most recently, a LPAI H7N6 virus was detected in a
commercial turkey farm in central Chile that also had
origins in wild birds (H.-W., in preparation). Thus, the

goal of this study was to begin defining the prevalence and
diversity of AIVs in Chilean wild birds.

Materials and methods
Sample sites and sample collection
From June 2012 to September 2015, 4036 fresh wild

bird feces were collected from 23 sampling sites consist-
ing of wetlands, shorelines, estuaries, and lagoons in
Central and Northern Chile (Fig. 1) as described8. Given
the lack of data regarding IAV in Chilean wild birds, we
conducted exploratory seasonal sampling in June to July
2012 (n= 216), March 2013 (n= 379), November 2013 (n
= 899), and April 2014 (n= 1138) before undertaking a
more targeted, risk-based approach to identify the optimal
sites and sample numbers to ensure statistical power.

Surveillance site selection
All sites recognized as wild bird concentration areas in

Chile were characterized by species diversity, number of
inter hemispheric migratory species, number of resident
species, and species already recognized as reservoirs of
IAV. For each variable four categories were created (by
the median and Q1 and Q3). Then each variable was
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weighted by researcher’s knowledge (10%, 10%, 10%, and
70%, respectively). With this information, a risk score was
calculated for each site to focus the surveillance in high-
risk areas for IAV.

Calculating statistical power
The wild bird concentration at the sites was considered

our sampling unit. Our target population was the feces at
each site, and we assumed that from each site we would
have at least 1000 fresh feces. Based on the following
formula9 to allow the identification of at least one positive
sample, assuming a prevalence of 1.3%, and a confidence
level of 95%, 205 samples must be collected.

n ¼ 1ð � /ð Þ ^ 1=Dð Þ � N � D� 1ð Þ=2ð Þ;

where
● n= required sampling size
● ∝= 1-confidence level
● D= estimated minimum number of positive samples

(population size * expected prevalence)
● N= population size

Sample screening and virus isolation
Viral RNA was extracted from 50 μl of the swab sample

on a Kingfisher Flex Magnetic Particle Processor (Thermo
Fisher Scientific, USA) using the Ambion MagMAX-96
AI/ND Viral RNA Isolation kit (Life Technologies Cor-
poration, Grand Island, NY, USA)10. RNA was screened
using a Bio-Rad CFX96 Real-Time PCR Detection System
on a C1000 Thermocycler (Bio-Rad, Hercules, CA, USA),
with TaqMan Fast Virus 1-Step Master Mix (Applied
Biosystems, Foster City, CA, USA) and primers/probe
specific for the influenza M gene11. Samples with a
fluorescence cycle threshold (Ct) value ≤38 were con-
sidered positive. Virus isolation was attempted in
embryonated chicken eggs on all samples with a Ct ≤35 as
previously described12. Host species were identified using
primers designed to amplify a segment of the mitochon-
drial cytochrome-oxidase I as described 13.

Virus sequencing
Full-length genomes were obtained using universal oli-

gonucleotide primer sets14 and Sanger sequencing as
previously described8. Sequences can be accessed under
GenBank numbers KX101128 to KX101209 and
KX185892 to KX185931.

Phylogenetic analysis
Influenza gene sequences were obtained from the NCBI

Influenza Virus Database (https://www.ncbi.nlm.nih.gov/
genomes/FLU/Database) as accessed in November 2017.
Only full-length genes from the Americas, Europe, and
Asian avian strains were included while duplicates were
excluded. Sequence assembly, visual inspection, and
trimming to remove nucleotides outside the coding region
was performed using BioEdit version 7.2.5 (ref. 15) and
alignment performed with MUSCLE version 3.8.3 (ref. 16).
The best-fit nucleotide substitution models were selected
individually for each gene by ModelTest in in Mega 7 (ref.
17). Phylogenic relationships for each gene were inferred
by Maximum Likelihood (ML), incorporating a general
time-reversible model of nucleotide substitution with a
gamma-distributed rate variation among sites and a pro-
portion of invariant sites (GTR+G+ I). One thousand
bootstrap replicates were performed to infer the robust-
ness of the ML trees using RaxML version 8.0 (ref. 18). ML
inference was repeated at least three times per dataset to
assure tree topology was maintained. Final trees were
constructed using TreeGraph2 and FigTree v1.4.3 (ref. 19).
For the analysis of internal genes, we obtained all publicly
available genes of wild bird origin obtained between 1976
and 2017 from Eurasia and the Americas. We then ran-
domly selected 10 strains/year/location per gene for the

Fig. 1 Location of surveillance sites in Chile. Positive sites are in red
while negative sites are in blue. Subtypes obtained at each site are
indicated in callout boxes
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analysis. This process was repeated at least twice and final
tees were run at least three times to assure consistency in
consultation with Dr. Justin Bahl. The final number of
selected taxa per tree is specified in Supplemental Fig-
ures S1 to S22 that include expanded trees showing all
sequences included for analysis.

Statistical analysis
All statistics were calculated using Excel 2013 (Microsoft

Corporation, Redmond, WA, USA). Graphs were produced
using GraphPad Prism software (La Jolla, CA, USA).

Results
AIV prevalence and host species
Of the 4036 fecal samples collected, 115 were positive

for influenza virus M gene by rRT-PCR. Prevalence dif-
fered by season (Table S1) and site (Table S2). Compar-
isons between seasons (winter/spring) v/s (summer/fall)
found that summer/fall had a higher positivity than win-
ter/spring (Wilcoxon test, p= 0.007). Not surprisingly,
the three most intensely sampled sites accounted for over
half the total sampling effort (n= 2508) and yielded 73%
of the overall positives samples. Twelve bird species,
primarily from the Anseriformes order including Yellow-
billed pintails (Anas georgica) and Yellow-billed teals
(Anas flavrostris), were identified as the primary host
(Table S3). They also supported the largest strain diver-
sity. Other host species included Chiloé wigeon (Anas
sibilatrix), mallards (Anas platyrhynchos), Red-fronted
coot (Fulica rufifrons), oystercatchers (Haematopus), gulls
(Larus), Black necked stilt (Himantopus mexicanus), Gray
plover (Pluvialis squatarola), and Whimbrel (Numenius
phaeopus) (Table S2).

Viral diversity and unique reassortants
Full genomic sequences were obtained from the 16 iso-

lates and partial sequences were obtained from 20 positive
swab samples. Diverse HA (H1, H3, H4, H5, H6, H7, H8,
H9, H11, and H13) and NA (N1, N2, N3, N6, and N9)
subtypes were identified for a total of 11 HA/NA combi-
nation (Fig. 1 and Table S2). While similar IAV subtype
diversity was described in samples collected between 2006
and 2011 in Perú20, the Chilean viruses contain unique
combinations of genes like viruses isolated from both North
and South America (Table S4). The most diverse viruses
identified were the A/American oystercatcher/Chile/C1307/
2015 and A/Grey Plover/Chile/C1313/2015 H9 viruses
isolated from Northern Chile (Fig. 1 and Table S4), which
are 4+ 4 and 6+ 2 North to South American lineage
viruses, respectively. The phylogenetic trees for each virus
and gene can be found in Supplementary Figures S1 to S21.
These data highlight that influenza viruses in Chilean wild
birds harbor widespread HA and NA diversity with unique
combinations of genes found in both North and South

America, unlike viruses from elsewhere in the American
continents.

Discussion
This heavy intermix of gene segments from different

origins found in Chilean IAVs breaks with the paradigm
of an isolated gene pool found in South America20–22.
IAVs isolated from wild birds in Argentina were com-
posed of genes unique to viruses isolated in South
America21, 23, while Colombian wild bird viruses were
most similar to those isolated in North America8, 10. In
contrast, wild birds in Brazil had viruses from both
lineages but not reassortants24. These data suggest that
Chile may be a possible point of confluence where North
and South American IAVs intermix, contrary to what has
been reported in neighboring countries, like Argentina,
Brazil, Peru, and Colombia8, 10, 20, 24–27. Geographically
and evolutionarily, it is intriguing to speculate that genetic
diversity in Chilean wild birds could possibly be predicted
by latitude. Wild birds in Northern Chile may have more
frequent exposure to North American lineage viruses
versus those in Central or Southern Chile; i.e. the further
South you are in Chile, the less influx of North American
gene segments and a greater presence of South American
lineage genes. However, further surveillance in Chile as
well as the rest of South America is necessary to fully test
this hypothesis. Further, the identification of H5 and
H7 subtypes is concerning given the risk to domestic
poultry. Active and serological surveillance is underway to
determine if domestic poultry in backyard production
systems in areas surrounding our wild bird surveillance
sites have been exposed to the identified IAVs.
In summary, we describe the presence of a wide array of

IAV subtypes in Chilean wild birds with unique genetic
diversity. Increased surveillance is needed to better
understand the role of Chile in this genetic diversity
between North and South America, the ecology and epi-
demiology of IAV in Chile, and to understand the risk of
these viruses to domestic animal populations.
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