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Abstract

We address a two-period equilibrium model with securitization of collateral-backed promises. Borrowers
may suffer extra-economic default penalties and debts are pooled into collateralized loans obligations (CLO),
allowing different seniority levels among tranches in a same CLO.

As securities with lower priority receive nothing unless those with higher priority are fully paid, we will
have a non-convex set of feasible payment rates. Even in this context, equilibrium always exists. Moreover,
although CLO have endogenous payments, the durability of the collateral will avoid pessimistic beliefs about
the future rates of default.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In financial markets, securitization of debt contracts has been a mean for financial institutions
to reduce risk in their balance sheets. It allows better portfolio diversification, as investors have
access to a broader pool of contracts, also called asset-backed securities (ABS). In this sense, this
type of financial innovation has an important role to improve efficiency.

From the risk distribution perspective, one of the usual ways in which a given poll of assets is
securitized into a family of ABS is allowing senior-subordinated structures among the different
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derivatives at the moment of payments. These structures are called collateralized loan obligations
(CLO).

Our objective is to insert CLO in a general equilibrium model, generalizing the seminal works
that extend the traditional general equilibrium model to allow for credit risk, collateral and extra-
economic penalties (see Geanakoplos, 1996; Geanakoplos and Zame, 2002; Dubey et al., 2005).
Moreover, we are interested in study the role of physical collateral requirements to avoid excess
of investor pessimism about the futures rates of default.

Our economy has two time periods and there is uncertainty about the state of nature in the
second period. Commodities may be durable, assets are real, and a finite number of agents can
trade on spot markets. There are two types of contracts available in financial markets: (i) primitive
assets, that are sold by the borrowers and are backed by physical collateral requirements; and (ii)
derivatives, which are bought by the lenders and are backed by classes of primitives. In case of
default, borrowers are burdened by the seizure of collateral requirements. Also, as in Dubey et
al. (2005), individuals can suffer extra-economic penalties, which reflect the existence of legal or
moral enforcements and may differ among agents.1

We suppose that claims are pooled into derivatives. These ABS are families of tranches, which
receive payments following a senior-subordinated structure, guaranteeing that tranches with lower
priority receive nothing unless those with higher priority are fully paid. As financial markets are
anonymous, lenders take the rates of payment of the derivatives as given. At equilibrium, these
rates are determined in such manner that the total value of deliveries matches the total value of
payments.

Now, because financial returns are endogenous, it is possible to prove the existence of an
equilibrium in a trivial way. If primitive assets have zero prices and lenders expect to suffer total
default, any pure spot market equilibrium constitutes an equilibrium for our economy. Note that a
pure spot markets equilibrium always exists, under usual neoclassical assumptions on preferences.

However, it is not rational that lenders expect to suffer total default in a derivative, whenever
both the depreciated collateral and the original promises of their primitives have positive values.
For these reasons, we propose and show the existence of an equilibrium refinement in which over-
pessimistic beliefs are ruled out. The refined equilibrium will be one in which agents can expect
to suffer total default, in a given state of nature, only on derivatives that are backed by primitives
that have either zero real promises or zero depreciated bundle of collateral requirements.

1.1. Insertion in the literature and contributions

The study of securitization structures in a general equilibrium context, in which agents can
default in their promises, has experienced an increasing importance over the last few years.

Geanakoplos (1996) and Geanakoplos and Zame (2002) studied the existence of an equilibrium
in models in which borrowers are burdened by collateral requirements in order to protect lenders
from credit risk. In these models, the only enforcement in case of default is the seizure of the
collateral. Therefore, borrowers make strategic default and trade directly with lenders, that expect
to receive the minimum between the depreciated value of the collateral and the value of the original
promises. In this context, equilibrium existence follows from the scarceness of physical collateral
requirements, which guarantees that short sales are bounded at equilibrium. Our financial structure

1 In an early version of this article we internalize non-economic default penalties into an structure of non-ordered
preferences for consumption. Also, we treat the case of pass-trough securities, i.e. asset-backed securities that distribute
default pro-rata. For more details, see Steinert and Torres-Martı́nez (2004).
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extend these models, as (abstract) intermediaries can issue more than one derivative, allowing for
senior-subordinated structures.

Other types of models allow default without physical collateral requirements, but they burden
borrowers by extra-economic penalties, proportional to the real value of default. In this context,
Zame (1993) studies the advantages of default in order to promote efficiency, and Dubey et al.
(2005) prove the existence of an equilibrium in a two-period model with incomplete markets.

As pointed out by Dubey et al. (2005), in models in which agents take payment rates of assets as
given, the existence of a pure spot market equilibrium can be easily proved. This problem comes
from very pessimistic beliefs of lenders about future rates of payment. In order to avoid this
pathology and to allow assets to be traded at equilibrium, it is interesting to refine this equilibrium
concept.

In our model, as primitives are backed by physical bundles, we can introduce a refinement
concept using the fact that primitive assets deliver, in case of default, at least the depreciated value
of the collateral. Thus, lenders expect to receive a positive payment when the physical collateral,
associated to the underlying primitives, does not disappear from the economy. Although we cannot
guarantee that assets are traded at equilibrium, our refinement concept assures that the absence
of negotiation is not a consequence of over-pessimistic beliefs.

The rest of the paper is organized as follows: Section 2 describes the model; in Section 3 we
discuss the role of collateral to avoid over-pessimistic beliefs, and state our refinement concept;
and Section 4 is devoted to analyze the assumptions and to state our main result about existence.
Finally, we make the proof of equilibrium existence in Appendix A.

2. Model

We consider a two-period economy in which there is no uncertainty at the first period, t = 0
(i.e., only one state of nature, denoted by s = 0, is reached). At the second period, t = 1, a state
of nature is revealed among a finite number of possibilities, s∈ S. For convenience of notation,
we put S∗ = {0} ∪ S.

At each state s∈ S∗ a finite number of perfect divisible commodities l∈L are negotiated in
spot markets. These goods can be durable and they may suffer depreciation contingent to the state
of nature. This structure is given by matrixes Ys ∈ R

L×L
+ . Thus, when an agent chooses a bundle

x at t = 0, he expects to receive a bundle Ysx if the state of nature s∈ S is reached.
Commodities in L are traded, at each s∈ S∗, at prices ps ∈ R

L+. Let p = (ps; s∈ S∗) be the
commodity price process and p−0 = (ps; s∈ S).

A finite number of agents, h∈H , trades commodities at every state, choosing consumption
allocations inXs = R

L+. Moreover, at each s, agents receive an initial endowment whs ∈ R
L++. Let

X = �s∈ S∗Xs and Ws =∑h∈Hwhs for all s∈ S∗.
We consider a financial structure in which assets are subject to credit risk. Borrowers can

negotiate real securities, called primitive assets, which are subject to default and backed by
physical collateral requirements. On the other side, financial intermediaries, which are limited
to pool individual claims, make an asset-backed securitization of these debts contracts, selling
derivatives to the lenders.

Formally, a finite number of collateral-backed primitive assets k ∈K can be sold at t = 0 for
unitary prices (qk; k ∈K) ∈ R

K+. These assets make real promises As,k ∈ R
L+ at each state s∈ S.

When an agent h sells ϕhk units of the primitive k, he pays an amount qkϕhk and he is burden to
constitute a bundle Ckϕhk , where Ck is the unitary collateral requirement of k, which all agents
take as given.



712 M. Steinert, J.P. Torres-Martı́nez / Journal of Mathematical Economics 43 (2007) 709–734

Furthermore, we suppose that in case of default agents can be burdened not only by the seizure
of the depreciated bundle of collateral, but also by utility penalties, which are incorporated in
their preferences, as in Dubey et al. (2005). With this penalties the market can induce agents to
pay more than the collateral value at t = 1.

Hence, an agent h, who borrows ϕhk units of k, delivers, at each state s∈ S, a non-negative
amount δhs,k, which is chosen jointly with the portfolio and consumption allocations and satisfies

δhs,k ≥ min{psAs,k;psYsCk}ϕhk .
In the other side, lenders can negotiate securities backed by the promises made by the borrowers.

Also, families of securities are backed by classes of primitives. Thus, we suppose that the set K
is partitioned, exogenously, into a finite number of disjoint classes, denoted by A ⊂ K.

Let J be the collection of all derivatives that can be traded on the market. The promises
within each class A are pooled by a financial intermediary, that issues a finite collection
J(A):={j1(A), j2(A), . . . , jn(A)(A)} ⊂ J of short-lived real assets.

Each j ∈ J(A) makes individual real promises As,j ∈ R
L+ at each s∈ S and can be bought at

price qj at the first period. We assume that jm(A) has priority over the assets (jr(A))r>m in relation
to promise payments. We denote by θhj the number of units of asset j that a lender h buys.

Lenders know the securitization structure (i.e., they know what are the priorities among assets
in the same family) and markets are anonymous. Thus, they expect to receive for each unit of the
asset j ∈ J(A) a percentage of the original promises, given by a payment rate rs,j ∈ [0, 1].

As tranches with lower priority suffer default before those with higher priority levels, if jm(A)
pays in full at state s∈ S (i.e. rs,jm(A) = 1), then all the derivatives jm

′
(A), withm′ < m, pay in full

too (i.e. r
s,jm

′ (AC) = 1). Moreover, if an asset jm(A) gives a partial default (i.e. rs,jm(A) ∈ (0, 1)),
then all the tranches with higher priority over it pay in full (i.e. r

s,jm
′ (AC) = 1, for m′ < m)

and all the derivatives that are subordinated to jm(A) give total default (i.e. r
s,jm

′ (A) = 0, for

m′ > m).2

Therefore, we suppose that, at each state of nature, anonymous payment rates associated to
derivatives in J(A), belong to the non-empty, compact and non-convex set

R(A):={(r1, . . . , rn(A)) ∈ [0, 1]n(A) : ∃m, (rm′ = 1 ∀ m′ < m) ∧ (rm′ = 0 ∀ m′ > m)}.
As we said above, each h∈H is characterized by preferences that may depend on the real

amount of default. Formally, the utility associated to an allocation (xh, ϕh, δh, θh) is given by

Vh(p−0; (xh, ϕh, δh, θh)) = Uh(xh) −
∑
s∈ S

∑
k ∈K

λhs,k

psvs
[psAs,kϕ

h
k − δhs,k]

+
,

whereUh : X → R+ is the utility for consumption and λhs,k ≥ 0 the penalty that agent h suffer, at

state s, for each unit of default on primitive k ∈K.3 Moreover, as in Dubey et al. (2005), vectors
(vs; s∈ S) ∈ R

L×S
++ are exogenously fixed to transform nominal default into real terms.

Finally, as agents are price takers, given commodity prices p, given a price vector for both
primitive and derivative assets q = (qk, qj)k ∈K,j ∈ J , and given anonymous payment rates for the

2 Note that, when primitives are securitized into only one derivative, we could assume that agents take as given the
nominal payment Ns,j = rs,jpsAs,j . Thus, the financial intermediary would issue endogenous asset-backed derivatives.
However, as a consequence of the senior-subordinated structure, in the general case we need to define separately both
original promises and rates of payment.

3 Given z∈R, [z]+ = max{z, 0}.
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derivatives r = (rs,j)(s,j) ∈ S×J , an agent h∈H can choose non-negative consumption-financial

allocations [xh, ϕh, δh, θh] subject to

• First period budget constraint

p0x
h
0 +

∑
A⊂K

⎛
⎝ ∑
j ∈ J(A)

qjθ
h
j −

∑
k ∈A

qkϕ
h
k

⎞
⎠ ≤ p0w

h
0, (1)

• Collateral requirements constraint

xh0 ≥
∑
k ∈K

Ckϕ
h
k , (2)

• Payments constraints

δhs,k ≥ min{psAs,k;psYsCk}ϕhk ∀ (s, k) ∈ S ×K. (3)

• Second period budget constraints

psx
h
s ≤ psw

h
s + psYsx

h
o +

∑
A⊂K

⎛
⎝ ∑
j ∈ J(A)

rs,jpsAs,jθ
h
j −

∑
k ∈A

δhs,k

⎞
⎠ ∀ s∈ S. (4)

When prices are (p, q), and rates of payment are r, the budget set of the agent h∈H , denoted
by Bh(p, q, r), is given by the collection of non-negative consumption-financial allocations
(xh, ϕh, δh, θh) that satisfy conditions (1)–(4) above.

It follows that our economy with CLO markets E(S∗,H,L,F) is characterized by
the set of states of nature S∗, the set of agents characteristics H = (X,Vh,wh)h∈H ,
the physical market structure L = (L, (Ys)s∈ S, (Ws)s∈ S∗ ) and the financial structure F =
[A, J(A), (As,k, As,j)s∈ S, Ck](k,j) ∈K×J,A⊂K.

Definition 1. An equilibrium for the economy E(S∗,H,L,F) is given by prices and rates of
payment

[p̄, q̄, r̄] ∈ P:=R
L×S∗
+ × R

J
+ × R

K
+ × [0, 1]S×J ,

and allocations

[x̄h, ϕ̄h, δ̄h, θ̄h] ∈ X:=X× R
K
+ × R

K×S
+ × R

J
+,

for each agent h∈H , such that

(A) For each agent h∈H , (x̄h, ϕ̄h, δ̄h, θ̄h) ∈Bh(p̄, q̄, r̄).
(B) Physical Markets are cleared

∑
h∈H

x̄h0 = W0,
∑
h∈H

x̄hs = Ws + YsW0 ∀ s∈ S.

(C) Agents make optimal choices, i.e. for each h∈H and (xh, ϕh, δh, θh) ∈Bh(p̄, q̄, r̄):

Vh(p̄−0; (x̄h, ϕ̄h, δ̄h, θ̄h)) ≥ Vh(p̄−0; (xh, ϕh, δh, θh)).
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(D) For each A ⊂ K, the value of derivatives aggregate purchases must match the value of the
aggregate short sales

∑
h∈H

∑
j ∈ J(A)

q̄j θ̄
h
j =

∑
h∈H

∑
k ∈A

q̄kϕ̄
h
k .

(E) At each state s∈ S and for each class A ⊂ K, the total payments of the derivatives must be
equal to the total deliveries made by the borrowers

∑
h∈H

∑
j ∈ J(A)

r̄s,jp̄sAs,jθ̄
h
j =

∑
h∈H

∑
k ∈A

δ̄hs,k.

(F) At each state s∈ S, payment rates must be consistent with the financial structure

(r̄s,j)j ∈ J(A) ∈R(A) ∀ A ⊂ K.

Conditions (E) and (F) imply that, for a given tranche jm(A) which is negotiated and has strictly
positive promises values, its equilibrium rate of payment r̄s,jm(A) takes into account the payments
made to the previous tranches, in the sense that

r̄s,jm(A) = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0; min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
h∈H

∑
k ∈A

δ̄hs,k −
m−1∑
i=1

p̄sAs,ji(A)

∑
h∈H

h

θ̄
ji(A)

p̄sAs,jm(A)

∑
h∈H

θ̄h
jm(A)

; 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

Finally, it is important to remark that the existence of utility penalties can allow borrowers to
raise more capital than the collateral value. However, if extra-economic penalties do not exist, the
value of the unitary physical collateral will be, at equilibrium, strictly greater than the value of the
asset. Otherwise, when an agent makes the joint operation of buying the collateral and selling the
promises, he has an arbitrage opportunity, since he raises non-negative transfers today, receives
non-negative returns tomorrow and has the right to consume the collateral requirements.

3. Collateral avoids over-pessimistic beliefs

Our definition of equilibrium could generate misleading results. When agents are allowed to
have pessimistic beliefs about the derivatives rates of payment it is always possible to trivially
guarantee the existence of an equilibrium.

In fact, suppose that the price of primitives and the rates of payment of derivatives are equal
to zero, i.e. (q̄k, r̄s,j)(s,j,k) ∈ S×J×K = 0. Since an agent h does not expect to receive any payment

if he buys a derivative, he has no incentive to do it, so the allocation θ̄h = 0 is optimal. Similarly,
since primitive assets have zero price, ϕ̄h = 0 is optimal for each agent h∈H . Furthermore, as
agents will not have any promise to pay at the second period, δ̄hs,k = 0, for each (s, k) ∈ S ×K,
is also optimal. Therefore, the model becomes equivalent to a general equilibrium model with
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durable goods and without financial markets. Existence of a pure spot market equilibrium in this
framework is not difficult to prove.

Note that, when over-pessimistic beliefs are allowed, the proof mentioned above would be as
good as any other. Thus, it would not be satisfactory to guarantee the existence of equilibrium
without excluding this possibility.

It is worth to note that this problem is not idiosyncratic to our model. In fact, it should be
considered at every model in which agents take the payment rates of assets promises as given.
Although the expected rates of payment are determined endogenously in equilibrium, if derivatives
are not traded, any rate of payment is consistent with equilibrium. Thus, agents could be extremely
pessimistic, believing that no deliveries would be made in any state, for any asset, which in turn
leads to non-negotiation of derivatives.

In their seminal paper, Dubey et al. (2005) address this topic proposing a refined equilibrium
concept in order to avoid these over-pessimistic beliefs. They define a ε-boosted equilibrium as an
equilibrium of an abstract economy, in which exists an external agent who buys and sells ε units
of each asset (that may be interpreted as a government that guarantees an infinitesimal minimum
delivery rate), and always delivers the total promises, injecting new commodities in the economy.
Therefore, lenders are not over-pessimistic and the rates of payment at each ε-boosted equilibrium
are strictly positive. When ε goes to zero, they obtain a refined equilibrium.

In their refinement, Dubey et al. (2005) use the touch of optimism introduced by the ε-agent
to banish extremely pessimistic beliefs about the future rates of default. In our model, however,
physical collateral requirements introduce a new dimension: it is natural to suppose lenders will
expect to receive positive payments when the depreciated collateral bundles of the underling
primitives are different from zero. In this sense, collateral avoids over-pessimistic belief without
having to use an external agent.

More formally, we propose another refinement concept in which we guarantee that, at each
state of nature, when primitives associated with a CLO give positive returns, independent of extra-
economic enforcements, the most senior tranche, which made non-zero promises at this state, has
a non-zero payment rate. Also, when some derivative has a positive rate of payment, at least one
of the primitives that backs it has positive price.

Definition 2. An equilibrium [(p̄, q̄, r̄); (x̄h, ϕ̄h, δ̄h, θ̄h)h∈H ] is non-trivial if the expected pay-
ment rates are not over-pessimistic. That is, at each state s∈ S and for each class A ⊂ K, if

min
k ∈A

{p̄sAs,k; p̄sYsCk} > 0,

then

[r̄s,jm(A) > 0 ∀ m ≤ m∗
s (A)] ∧ [∃k′ ∈ A, q̄k′ > 0],

where m∗
s (A):= min{m : ‖As,jm(A)‖1 �= 0} when

∑
j ∈ J(A)As,j �= 0, and m∗

s (A) = n(A) other-
wise.

Note that it would not be reasonable to ask agents to expect more optimistic rates of payment,
since they do not know what is the total amount of primitives that was sold by the borrowers. In
fact, rates of payment depend, in equilibrium, on both the total units of primitives sold and the
total units of derivatives bought.

Finally, note that even with our refinement concept, it is possible that, at equilibrium, it does
not exists a class of primitives that satisfies the conditions stated in Definition 2. In this case, a
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pure spot market equilibrium can be assured in a trivial manner and, as we said above, our proof is
superfluous. Hence, we discuss below, after the statement of the assumptions, the characteristics
over the financial structure that guarantee that a family of derivatives has an equilibrium with
non-trivial rates of payment.

4. Equilibrium existence

In order to guarantee the existence of a refined equilibrium we will make the following
assumptions.

Assumption 1. For each agent h∈H , the function Uh : X → R+ is continuous, concave and
strictly increasing.

Assumption 2. For each primitive k ∈K, collateral requirements Ck are different from zero.

Assumption 3. Given x = (xl; l∈L) ∈ R
L+, let ‖x‖max = maxl∈Lxl. We assume that, for each

h∈H :

lim
x∈RL++;‖x‖max→+∞

Uh(x) = +∞.

Assumption 4. For each (k, j) ∈K × J , real promises Ak = (As,k)s∈ S and Aj = (As,j)s∈ S are
different from zero. Moreover, for each class of primitives A ⊂ K:∑
k ∈A

(As,k)l �= 0 ⇔
∑

j ∈ J(A)

(As,j)l �= 0 ∀ (s, l) ∈ S × L.

It is important to remark that physical collateral requirements, which back promises in case of
default, will guarantee that at equilibrium short sales of primitives are bounded (see Assumption
2). Hypothesis 3 will guarantees that all equilibrium commodity prices are uniformly bounded
from below at each state of nature s∈ S∗ (see Lemma 4 in Appendix A). This property on prices
is sufficient to assure that it exists an equilibrium with non-trivial rates of payment.

In the other hand, Assumption 4 assure that, independently of the price level, one derivative
has positive real promises if and only if at least one primitive also has it.

Theorem 1. Under Assumptions 1–4 our economy E(S∗,H,L,F) has a non-trivial equilibrium.

Note that, as we suppose that preferences are strictly monotonic on consumption, equilibrium
commodity prices (if they exist) will be strictly positive, p̄ � 0, which implies that for each class
of primitives A a necessary and sufficient condition to guarantee that

min
k ∈A

{p̄sAs,k; p̄sYsCk} > 0

is that mink ∈A{‖As,k‖1; ‖YsCk‖1} > 0.
It follows that, a family of derivatives will have positive rates of payment at s∈ S if both

mink ∈A‖As,k‖1 > 0 and mink ∈A‖YsCk‖1 > 0. Thus, under our assumptions, the requirement
that guarantees that a family of derivatives has a non-zero vector of rates of payment is independent
of equilibrium prices.
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Appendix A. Proof of the theorem

Let�n+:={z∈ R
n+ :
∑n
i=1zi = 1}. In order to guarantee the equilibrium existence, we consider

prices (p0, qK, qJ ) that belong to the convex-compact set

	 =
⎧⎨
⎩(p0, qK, qJ ) ∈ R

L
+ × [0, 1]K × R

J
+ : (p0, qJ ) ∈�#L+#J

+ ,

∑
j ∈ J(A)

qj ≤
∑
k ∈A

qk ∀ A ⊂ K

⎫⎬
⎭ ,

where qK = (qk)k ∈K, qJ = (qj)j ∈ J . Moreover, for each state of nature s∈ S, we assume that

commodity prices ps ∈�L+. Note that, given a finite set A, �A+:=�#A+ .
For convenience of notation, letπ = (p, q, r) be a generic vector of prices and rates of payment.

A generic allocation for an agent h will be denoted by ηh = (xh, ϕh, δh, θh), and η = (ηh)h∈H
denotes a generic vector of allocations.

Also, we will define for each h∈H the decision correspondence �h as follow:

�h(p−0, η
h):={η̂h ∈ X : Vh(p−0; η̂h) > Vh(p−0; ηh)}.

Remark 1. Suppose that there are non-trivial equilibria for any economy E that satisfies, at
each s∈ S,

∑
k ∈AAs,k ≤∑j ∈ J(A)As,j , for every A ⊂ K. Then, it is possible to find a non-

trivial equilibrium for any economy E′ in which primitive and derivative promises only satisfy
Assumption 4.

In fact, for such E′ we have that[∑
k ∈A

(A′
s,k)l �= 0

]
⇔
⎡
⎣ ∑
j ∈ J(A)

(A′
s,j)l �= 0

⎤
⎦ ∀ (s, l) ∈ S × L, (A.1)

and consequently there exists λ∈ R++ such that
∑
k ∈AA′

s,k ≤∑j ∈ J(A)λA
′
s,j , for each A ⊂ K,

for each s∈ S.
Let (π̄, η̄) be an equilibrium for the economy E, which is equal to E′ except for the derivatives

promises, that are given by As,j = λA′
s,j .

Consider the allocation (π̄′, η̄′) given by (p̄′, q̄′
K, r̄

′; x̄′, ϕ̄′, δ̄′) = (p̄, q̄K, r̄; x̄, ϕ̄, δ̄), θ̄′ = λθ̄ and
q̄′
J = (1/λ)q̄J . One can easily verify that the allocation (π̄′, η̄′) is an equilibrium for the economy
E′.

It follows that, without loss of generality, we can assume that
∑
k ∈AAs,k ≤∑j ∈ J(A)As,j for

each A ⊂ K, for each s∈ S.
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Lemma 1. Given π = (p, q, r), if allocations (ηh)h∈H = (xh, ϕh, δh, θh)h∈H satisfies equilib-
rium conditions (A)–(C) then, for each agent h∈H , the vector (xh, ϕh, δh) is uniformly bounded.

Proof. Condition (B) implies that, at the first period,
∑
h∈Hxh0 = W0. Thus, it follows that, for

each commodity l∈L and for each agent h∈H , the consumption allocation satisfies xh0,l ≤ W0,l.

Moreover, it follows from Condition (A) that ηh ∈Bh(π) and, therefore∑
k ∈K

Ck,lϕ
h
k ≤ xh0,l ≤ W0,l. (A.2)

Then, summing over l∈L, we obtain that

ϕhk ≤ 
k:= 1∑
l∈L

Ck,l

∑
l∈L

W0,l, (A.3)

which implies that short sales are bounded. Now, equilibrium condition (B) guarantees that, at
each state s∈ S,

∑
h∈Hxhs = Ws + YsW0. Since each term on left hand side, in the last equation,

is non-negative, it follows that bundles xhs are bounded.
Finally, as commodity prices, at each state of nature s∈ S, belong to the simplex �L+, the

value of primitive promises, psAs,kϕhk , is bounded for each (h, k) ∈H ×K. Thus, payments δh

are bounded from above, node by node, primitive by primitive. �
Now, we will truncate endogenous variables in order to find an optimal allocation for the

economy. Our goal is to prove that, given upper and lower bounds on allocations, there exists an
equilibrium for a truncated economy (as defined below). Furthermore, we show that this truncated
equilibria allocations converge, when the appropriated limit is taken, to an equilibrium allocation
of our original economy E(S∗,H,L,F).

The truncated economy EM . We define, for each

M ∈M:={(M1,M2) ∈ R
2
++ : M1 < M2},

a truncated economy EM in which the structure of uncertainty and the physical markets are the
same as in E(S∗,H,L,F).

Each agent h∈H can demand commodities, can sell primitives k ∈K and can buy derivatives
j ∈ J restricted to the space of allocations XM , which is given by the set of vectors ηh ∈ X that
satisfies

‖xh‖∞ ≤ M1, ‖ϕh‖∞ ≤ 2
, ‖θh‖∞ ≤ 2(#H)
,

‖δh‖∞ ≤ 2
max(s,k) ∈ S×K‖As,k‖1,

where ‖‖∞ denotes the sup-norm and
:=maxk ∈K
k is the maximum of upper bounds on short
sales defined on Lemma 1.

Moreover, in order to guarantee the existence of a non-trivial equilibrium, we need to find a
lower bound away from zero for the anonymous rates of payment of the derivatives. To attempt
this, given a class A ⊂ K, we define the truncated space of CLO payment rates as the set of
vectors (rs,jm(A)) ∈ R

n(A)
+ that belongs to

ϒsM(A):=
n(A)∏
m=1

[βs,mM (A), 1],
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where, for each m∈ {1, . . . , n(A)}:

β
s,m
M (A) =

⎧⎪⎪⎨
⎪⎪⎩

1

M1
if min
k ∈A

{‖As,k‖1, ‖YsCk‖1} > 0 ∧m ≤ m∗
s (A),

1

M2
in other case.

(A.4)

Therefore, in the economy EM , the space of prices and rates of payment π = (p, q, r) is given
by

PM :=	× (�L+)
S ×

∏
A⊂K

∏
s∈ S

ϒsM(A).

For a given vector of prices and anonymous payment rates π ∈ PM , let BhM(π) = Bh(π) ∩ XM

be the truncated budget set. For each agent h, we define the truncated decision correspon-

dence �h,M : (�L+)
S × XM � XM as the restriction of the correspondence �h to the space

XM .
Now, associated to each h∈H , we define a reaction correspondence ψhM : PM × X

H
M � XM

by

ψhM(π, η) =
{
ḂhM(π) if ηh /∈ BhM(π),

ḂhM(π) ∩�h,M(p−0, η
h) if ηh ∈BhM(π),

where ḂhM(π) denotes the interior of BhM(π) relative to XM . Reaction correspondences are also
defined for each state s∈ S∗. Let ψ0

M : PM × X
H
M � 	 be

ψ0
M(π, η) =

⎧⎨
⎩(p′

0, q
′
K, q

′
J ) : p′

0

[∑
h∈H

xh0 −W0

]
+
∑
j ∈ J

q′
j

∑
h∈H

θhj −
∑
k ∈K

q′
k

∑
h∈H

ϕhk > 0

⎫⎬
⎭ ,

and, for each s∈ S, let ψsM : PM × X
H
M � �L+ be

ψsM(π, η) =
{
p′
s ∈�L+ : p′

s

(∑
h∈H

[xhs − Ysx
h
0] −Ws

)
> ps

(∑
h∈H

[xhs − Ysx
h
0] −Ws

)}
.

Given a class A, for each s∈ S, and for each m∈ {1, 2, . . . , n(A)}, we define the reaction
correspondence

ψ
s,jm(A)
M : PM × X

H
M � [βs,mM (A), 1],

as the set function that associates, to each vector (π, η) ∈ PM × X
H
M , the set of numbers

r′ ∈ [βs,mM (A), 1] that satisfies

(
r′psAs,jm(A)

∑
h∈H

θhjm(A) +
m−1∑
i=1

rs,ji(A)psAs,ji(A)

∑
h∈H

θh
ji(A) −

∑
k ∈A

∑
h∈H

δhs,k

)2

<

(
m∑
i=1

rs,ji(A)psAs,ji(A)

∑
h∈H

θh
ji(A) −

∑
k ∈A

∑
h∈H

δhs,k

)2

.
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Definition 3. Given M ∈M, an equilibrium for the truncated economy EM is a vector

(π̄, η̄) = ((p̄M, q̄M, r̄M), (x̄hM, ϕ̄
h
M, δ̄

h
M, θ̄

h
M)h∈H ) ∈ PM × X

H
M,

at which all the reaction correspondences defined above have an empty value.

Lemma 2. Given a vectorM ∈M, if Assumptions 1 and 2 hold, there exists an equilibrium for
the truncated economy EM .

Proof. Observe that from Assumption 2, ḂhM(π) has non-empty values and has open graph.
Then, it follows from Assumption 1, that the reaction correspondences (ψsM)s∈ S∗ , (ψhM)h∈H , and

(ψs,jM ){(s,j) ∈ S×J(A),A⊂K} satisfy the assumptions of the Gale-Mas-Colell Fixed Point Theorem
(see Gale and Mas-Colell, 1975, 1979), that is, all correspondences are lower hemicontinuous
with convex and open values, have the same domain, and the product of the image spaces coincides
with theirs domains.

Thus, there exists a vector (π̄M, η̄M) ∈ PM × X
H
M such as

• ψhM(π̄M, η̄M) = ∅ or η̄hM ∈ψhM(π̄M, η̄M), for each agent h∈H ;
• ψ0

M(π̄M, η̄M) = ∅ or ((p̄M)0, q̄M) ∈ψ0
M(π̄M, η̄M);

• ψsM(π̄M, η̄M) = ∅ or (p̄M)s ∈ψsM(π̄M, η̄M), for each state of nature s∈ S;

• ψ
s,jm(A)
M (π̄M, η̄M) = ∅ or (r̄M)s,jm(A) ∈ψs,jm(A)

M (π̄M, η̄M), for each state of nature s∈ S, for
every A ⊂ K and for each m∈ {1, 2, . . . , n(A)}.

Clearly it is not possible to η̄hM /∈ BhM(π̄M), because in this case it would neither be a fixed
point, nor an empty value. Moreover, we can not have η̄hM ∈ψhM(π̄M, η̄M) because it contradicts
the fact that η̄hM /∈ �h,M((p̄−0)M, η̄

h
M). Thus, we must have ψhM(π̄M, η̄M) = ∅, for each agent

h∈H .
As noted above, η̄hM ∈BhM(π̄M). Adding over the agents, it follows that

(p̄M)0

[∑
h∈H

(x̄hM)0 −W0

]
+
∑
A⊂K

⎛
⎝ ∑
j ∈ J(A)

(q̄M)j
∑
h∈H

(θ̄hM)j −
∑
k ∈A

(q̄M)k
∑
h∈H

(ϕ̄hM)k

⎞
⎠ ≤ 0.

Thus, ((p̄M)0, q̄M) /∈ ψ0
M(π̄M, η̄M) and, therefore, ψ0

M(π̄M, η̄M) is an empty set. Finally, one

can easily see that, from its definition, correspondences ψsM and ψs,j
m(A)

M can not have a fixed

point. Then, we have that ψsM(π̄M, η̄M) = ∅ and ψs,j
m(A)

M (π̄M, η̄M) = ∅. �

Now, when mistakes are not possible, we suppress the subscript of the allocations (π̄M, η̄M).
So, withM ∈M fixed, we already know that an equilibrium allocation for the truncated economy,
(π̄, η̄), satisfies η̄h ∈BhM(π̄) and �h,M(p̄−0, η̄

h) ∩ ḂhM(π̄) = ∅.
Also, as �h,M(p̄−0, η̄

h) and ḂhM(π̄) are open sets, it follows that �h,M(p̄−0, η̄
h) ∩

closure [ḂhM(π̄)] = ∅. As ḂhM(π̄) is a non-empty and convex set, we conclude that
�h,M(p̄−0, η̄

h) ∩ BhM(π̄) = ∅. Furthermore, sinceψ0(π̄, η̄) = ∅, for any (p′, q′
K, q

′
J ) ∈	we have

that

p′
0

[∑
h∈H

x̄h0 −W0

]
+
∑
A⊂K

⎛
⎝ ∑
j ∈ J(A)

q′
j

∑
h∈H

θ̄hj −
∑
k ∈A

q′
k

∑
h∈H

ϕ̄hk

⎞
⎠ ≤ 0. (A.5)
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Thus, suppose that
∑
hx̄
h
0,l −W0,l > 0 for some l∈L. Then, setting p′

0,l = 1, p′
0,l′ = 0 for all

l′ �= l, qJ = 0 and qK = 0, we obtain a contradiction. In the other side, suppose that
∑
hθ̄
h
j >∑

hϕ̄
h
k for some pair (k, j) ∈ A × J(A). Thus, letting p0 = 0, qj = 1, and qj′ = 0 for all j′ �= j,

qk = 1, and qk′ = 0 for all k′ �= k, we obtain a contradiction with Eq. (A.5). It follows that∑
hx̄
h
0,l −W0,l ≤ 0 for l∈L, and

∑
hθ̄
h
j ≤∑hϕ̄

h
k for each pair (k, j) ∈ A × J(A), and for all

A ∈K.

Lemma 3. There exists M∗
1 > 0 such that, for each M1 > M∗

1 , if Assumptions 1–3 hold, each
equilibrium allocations (π̄, η̄) for EM , with M = (M1,M2) ∈M, satisfies

(3.1) For each agent h∈H , η̄h ∈BhM(π̄);
(3.2) �h,M(p̄−0, η̄

h) ∩ BhM(π̄) = ∅ ∀ h∈H ;
(3.3)

∑
h∈Hx̄h0 = W0;

(3.4)
∑
j ∈ J(A)q̄j

∑
h∈H θ̄hj =∑k ∈Aq̄k

∑
h∈Hϕ̄hk , for each class A ⊂ K;

(3.5) For each s∈ S, A ⊂ K, jm(A) ∈ J(A), the payment rate r̄s,jm(A) minimizes the function

(
rF

s,m
A

(π̄, η̄) +
m−1∑
i=1

r̄s,ji(A)F
s,i
A

(π̄, η̄) −
∑
k ∈A

∑
h∈H

δ̄hs,k

)2

,

subject to r ∈ [βs,mM (A), 1], where

F
s,i
A

(π̄, η̄):=p̄sAs,ji(A)

∑
h∈H

θ̄h
ji(A);

(3.6) For each (s, l) ∈ S∗ × L, the consumption allocations (x̄hs,l)h∈H satisfy, x̄hs,l < M∗
1 ;

(3.7) For each s∈ S and l∈L
∑
h∈H

x̄hs,l − (YsW0)l −Ws,l ≤
∑
j ∈ J

r̄s,jp̄sAs,j
∑
h∈H

θ̄hj −
∑
k ∈K

∑
h∈H

δ̄hs,k;

(3.8)
∑
hθ̄
h
j ≤∑hϕ̄

h
k for each pair (k, j) ∈ A × J(A), for all A ⊂ K.

Proof. As discussed above, items (3.1), (3.2) and (3.8) hold for eachM = (M1,M2) ∈M. Now,
as
∑
hx̄
h
0,l −W0,l ≤ 0 for l∈L, there exists M ′

1 such that, for each M1 > M ′
1, an equilibrium

consumption allocation of the economy EM satisfies x̄h0,l < M1. Thus, given M1 > M ′
1, suppose

that agent h equilibrium allocation satisfies

p̄0x̄
h
0 +

∑
j ∈ J

q̄jθ̄
h
j −

∑
k ∈K

q̄kϕ̄
h
k < p̄0w

h
0 .

As x̄h0 is interior, there exists x̂h0 � x̄h0 such that η̂h = (x̂h0, ϕ̄
h, δ̄h, θ̄h) ∈BhM(π̄). From the strict

monotonicity of �h,M on x0, we have that �h,M(p̄−0, η̄
h) ∩ BhM(π̄) �= ∅, which contradicts item

(3.2). Thus, for each agent h, first period budget constraint must hold with equality. Summing
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over the agents, it follows that

p̄0

[∑
h∈H

x̄h0 −W0

]
+
∑
j ∈ J

q̄j
∑
h∈H

θ̄hj −
∑
k ∈K

q̄k
∑
h∈H

ϕ̄hk = 0. (A.6)

Now, given A, defining k′ as∑
h∈H

ϕhk′ = min
k ∈A

∑
h∈H

ϕhk ,

it follows from
∑
h∈H θ̄hj ≤∑h∈Hϕ̄hk , for all (j, k) ∈ J(A) × A, that

∑
j ∈ J(A)

q̄j
∑
h∈H

θ̄hj −
∑
k ∈A

q̄k
∑
h∈H

ϕ̄hk ≤
∑

j ∈ J(A)

q̄j
∑
h∈H

ϕ̄hk′ −
∑
k ∈A

q̄k
∑
h∈H

ϕ̄hk′

=
∑
h∈H

ϕ̄hk′

⎛
⎝ ∑
j ∈ J(A)

q̄j −
∑
k ∈A

q̄k

⎞
⎠ ≤ 0, (A.7)

where the last inequality is a consequence of
∑
j ∈ J(A)q̄j ≤∑k ∈Aq̄k.

It follows from (A.7) and from the inequality
∑
hx̄
h
0 ≤ W0 that the left hand side of Eq. (A.6)

is a sum of non-positive terms. Thus, each term must be zero, and condition (3.4) hold, i.e.∑
j ∈ J(A)

q̄j
∑
h∈H

θ̄hj −
∑
k ∈A

q̄k
∑
h∈H

ϕ̄hk = 0,

for each class A ⊂ K.
Furthermore, suppose that there exists a commodity l∈L such that,

∑
h∈Hx̄h0,l < W0,l. From

Eq. (A.6), we must have p̄0,l = 0. But it follows from the strict monotonicity of�h,M on x0,l that
BhM(π̄) ∩�h,M(p̄−0, η̄

h) �= ∅, which is a contradiction. Therefore, item (3.3) holds.
Now, for a given CLO jm(A), state s∈ S, and M � 0, it follows from Lemma 2 that for all

r ∈ [βs,mM (A), 1]:

(
rF

s,m
A

(π̄, η̄) +
m−1∑
i=1

r̄s,ji(A)F
s,i
A

(π̄, η̄) −
∑
k ∈A

∑
h∈H

δ̄hs,k

)2

≥
(

m∑
i=1

r̄s,ji(A)F
s,i
A

(π̄, η̄) −
∑
k ∈A

∑
h∈H

δ̄hs,k

)2

.

Therefore,

r̄s,jm(A) ∈ argmaxr ∈ [βs,m
M

(A),1] −
(
rFs,m(π̄, η̄) +

m−1∑
i=1

r̄s,ji(A)F
s,i(π̄, η̄) −

∑
k ∈A

∑
h∈H

δ̄hs,k

)2

,

and item (3.5) holds.
Now, given an equilibrium (π̄, η̄) for the abstract economy EM , with M = (M1,M2) and

M1 > M ′
1, we know thatψsM(π̄, η̄) = ∅ for each state of nature s∈ S. Then, for all prices p′

s ∈�L+
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we have

p′
s

(∑
h∈H

[x̄hs − Ysx̄
h
0] −Ws

)
≤ p̄s

(∑
h∈H

[x̄hs − Ysx̄
h
0] −Ws

)
. (A.8)

Moreover, it follows from item (3.1) that η̄h ∈BhM(π̄) for each agent h∈H . Thus, given an state
of nature s∈ S:

p̄s

(∑
h∈H

[x̄hs − Ysx̄
h
0] −Ws

)
≤
∑
j ∈ J

r̄s,jp̄sAs,j
∑
h∈H

θ̄hj −
∑
k ∈K

∑
h∈H

δ̄hs,k. (A.9)

Letting, at Eq. (A.8), p′
s,l = 1 and p′

s,l′ = 0 for each l′ �= l, we have from (A.8), (A.9) and item
(3.3) that

∑
h∈H

x̄hs,l − (YsW0)l −Ws,l ≤
∑
j ∈ J

r̄s,jp̄sAs,j
∑
h∈H

θ̄hj −
∑
k ∈K

∑
h∈H

δ̄hs,k, (A.10)

which proofs (3.7). As in the economy EM , (a) the positions on primitives, ϕ̄hj , are bounded by

above by 2
 and (b) the aggregated purchase of each derivative,
∑
h∈H θ̄hj , is bounded by the

total short position on primitives; it follows from Eq. (A.10) that

∑
h∈H

x̄hs,l − (YsW0)l −Ws,l ≤ 2
∑
j ∈ J

‖As,j‖1(#H)
. (A.11)

Then, for each l∈L:

x̄hs,l ≤ max(s,l) ∈ S×L

⎧⎨
⎩Ws,l + (YsW0)l + 2

∑
j ∈ J

‖As,j‖1(#H)


⎫⎬
⎭ ∀ h∈H, (A.12)

which guarantees that consumption allocations x̄hs , s∈ S, are uniformly bounded from above,
independently of the value of M1 > M ′

1. Moreover, item (3.3) guarantees that first period
consumption allocations, x̄h0 , are also uniformly bounded, independent ofM = (M1,M2). There-
fore, there exists M∗

1 > M ′
1 such that, x̄hs,l < M∗

1 , for any (s, l) ∈ S∗ × L, which proofs item
(3.6). �

Definition 4. GivenM ∈M, a M-semi-equilibrium is an allocation (π̃M, η̃M) ∈ PM × X
H
M which

satisfies items (3.1)–(3.7).

It is important to remark that item (3.8) does not enter into the definition of M-semi-equilibrium.
Note that, givenM = (M1,M2), it follows from Lemma 3 that, for a givenM1 > M∗

1 , an M-semi-
equilibrium always exists. We will suppress the subscript M on M-semi-equilibrium allocations
when mistakes are not possible.

Lemma 4. Under Assumptions 1 and 2, there exists M∗∗
1 > 0 such that, for each M-semi-

equilibrium (π̃, η̃), withM1 > M∗∗
1 , the commodity prices p̃s,l, with (s, l) ∈ S∗ × L, have a uniform

lower bound p > 0 independent of M = (M1,M2).
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Proof. It follows from Assumption 3 that, given an agenth∈H and a scalar ε > 0, there exists, for
each xh ∈X and for each pair (s, l) ∈ S∗ × L, a constantZhs,l(x

h, ε) ∈ R++ such that the allocation

yh, with

yhs′,l′ =
{
ε if (s′, l′) �= (s, l),

Zhs,l(x
h, ε) if (s′, l′) = (s, l)

is strictly preferred to xh by agent h. Moreover, we can always suppose that functions Zhs,l :
X× R++ → R++ are non-decreasing in x.

FixM = (M1,M2) withM1 > M∗
1 . It follows from (3.6) that a M-semi-equilibrium allocation

(π̃, η̃) satisfies x̃hs,l < M∗
1 , for all (s, l) ∈ S∗ × L, which guarantees that p̃s,l > 0.4 Moreover, for

each (s, h) ∈ S ×H , mhs :=minps ∈�L+psw
h
s > 0, because �L+ is compact.

Define, for each pair (l, l′), the compact set

G(l, l′) =
{
p0 ∈ R

L
+ :

(
p0,l′ ≥ 1 − p0,l

#L+ #J − 1

)
∧ (∃(qK, qJ ), (p0, qK, qJ ) ∈	)

}
.

Since 0 /∈ G(l, l′), we have that

mh0:=min
l∈L

min
l′ �=l

min
p0 ∈G(l,l′)

p0w
h
0 > 0 ∀ h∈H.

As for any M-semi-equilibrium (π̃, η̃) the vector (p̃0, q̃J ) ∈�#L+#J
+ , in order to guarantee

that, for a given l∈L, p̃0,l is uniformly bounded (independent of M), we have to consider two
possibilities.

Case I. There exists a commodity l′ �= l for which p̃0,l′ ≥ (1 − p̃0,l)/(#L+ #J − 1).

In this case, p̃0 ∈G(l, l′), which implies that p̃0w
h
0 ≥ mh0. Thus, any agent h can choose the

allocation (x̂h, 0, 0, 0), defined by

x̂hs′′,l′′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε if (s′′, l′′) �= (0, l),

min

⎧⎪⎪⎨
⎪⎪⎩

h
m
0

2p̃0,l
,M1

⎫⎪⎪⎬
⎪⎪⎭ if (s′′, l′′) = (0, l),

where ε:=minh∈H {mh0/2; mins∈ Smhs /2} > 0.
On the other hand, since each allocation (x̃h)h∈H is uniformly bounded

Zh0,l(x̃, ε) ≤ Z̃ε:=maxh∈Hmax(s′′,l′′) ∈ S∗×LZhs′′,l′′ ((M
∗
1 , . . . ,M

∗
1 ), ε). (A.13)

As the right hand side in the inequality above does not depends on M, there exists (M∗
1 )′ ≥ M∗

1
such that, if M1 > (M∗

1 )′, Z̃ε < M1. Thus, it follows from Assumption 3 and from the optimal-
ity condition (3.2) that, for each M-semi-equilibrium with M1 > (M∗

1 )′, Z̃ε > mh0/2p̃0,l, which

4 In other case, as preferences are strictly monotonic on consumption, each agent h∈H could increase the consumption
of a zero-price commodity, choosing another allocation η̂h that improves their situation and still belongs to the budget set
BhM (π̃), which contradicts item (3.2).
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implies that

p̃0,l ≥ pI
0
:=maxh∈H

mh0

2Z̃ε
> 0. (A.14)

Case II. There exists an asset j ∈ J for which q̃j ≥ (1 − p̃0,l)/(#L+ #J − 1).

Define W0 = minl∈LW0,l. Note that there always exists an agent h(p̃0) ∈H that can demand
W0/#H units of each good at the first period, without making any financial transaction. In fact,
suppose that such agent does not exist. Then, it follows from the first period budget constraint
that p̃0w

h
0 < ‖p̃0‖1(W0/#H) for all h∈H . Assumption 1, however, implies that

∑
h∈Hp̃0w

h
0 ≥

‖p̃0‖1W0, which is a contradiction.
Moreover, since we are restricting (p0, qK, qJ ) ∈	, it follows that there exists k ∈K for which

q̃k ≥ (1 − p̃0,l)/((#L+ #J − 1)#K).
Now, h(p̃0) can demand the bundle x̂h(p̃0), defined as

x̂h(p̃0)
s′,l′ =

⎧⎨
⎩
ε′ if (s′, l′) �= (0, l),

min

{
ε′ + qkγ

p̃0,l
,M1

}
if (s′, l′) = (0, l),

where ε′:=minh∈H {W0/2#H ; mins∈ Smhs /2} > 0, selling γ units of the primitive k, without mak-
ing any other financial transaction, and paying all his promises at the second period, where γ
satisfy

γ‖Ck‖1 ≤ W0

2#H
; γ ≤ 2
(#H); γ‖As,k‖1 ≤ ε′ ∀ s∈ S.

Therefore, this allocation belongs to the budget set of agent h(p̃0) and γ is independent on
prices. Hence, it follows from Assumption 3 and from optimality condition (3.2) that there exists
(M∗

1 )0 > (M∗
1 )′ such that, for each M-semi-equilibrium, with M = (M1,M2), if M1 > (M∗

1 )0
then ε′ + (q̃kγ/p̃0,l) ≤ Z̃ε′ , which implies that

p̃0,l ≥ pII
0

:= γ

γ + (#L+ #J − 1)#KZ̃ε′
> 0. (A.15)

Therefore, first period M-semi-equilibrium commodity prices (where M1 > (M∗
1 )0) satisfies

p̃0,l ≥ p
0
:= min{pI

0
;pII

0
}.

Now, since p̃0,l ≥ p
0
, define εS as

εS :=min
h∈H

{
min
p0 ∈	1

p0w
h
0; min
s∈ S

1

2
mhs

}
> 0,

where 	1 denotes the set of prices p0 ≥ p
0
(1, 1, . . . , 1) such that there exists prices (qK, qJ ) for

which (p0, qK, qJ ) ∈	.
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Thus, for a given M-semi-equilibrium (π̃, η̃), withM1 > (M∗
1 )0, and for a fixed pair (s, l) ∈ S ×

L, any agent can demand an allocation (x̂h, 0, 0, 0), defined as

x̂hs′,l′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εS if (s′, l′) �= (s, l),

min

⎧⎪⎨
⎪⎩

h
m
s

2p̃s′,l′
,M1

⎫⎪⎬
⎪⎭ if (s′, l′) = (s, l).

Then, there exist M∗∗
1 > max{Z̃εS , (M∗

1 )0} such that, if M1 > M∗∗
1 , then Z̃εS > mhs /2p̃s′,l′ .

This implies that the commodity M-semi-equilibrium prices at the second period are uniformly
bounded from below by

p̃s,l ≥ p
s
:=maxh∈H

mhs

2Z̃εS
> 0. (A.16)

Therefore, we conclude that, for each M-semi-equilibrium (π̃, η̃) with M1 > M∗∗
1 , the com-

modity prices (p̃s)s∈ S∗ satisfy p̃s,l ≥ p:=mins∈ S∗p
s

∀ (s, l) ∈ S∗ × L. �

Now, take M = (M1,M2) ∈M such that M1 > M∗∗
1 . Fix an M-semi-equilibrium allocation

(π̆, η̆) that also satisfies item (3.8) (it is sufficient to take an equilibrium of the truncated economy
EM).

Given a class A, it follows from items (3.4) and (3.8) that, if there exists a primitive k ∈ A that
satisfies

∑
h∈Hϕ̆hk > mink′ ∈A

∑
h∈Hϕ̆hk′ , then q̆k = 0.

Analogously, if there exists j′ ∈ J(A) such that
∑
h∈H θ̆hj′ < maxj ∈ J(A)

∑
h∈H θ̆hj , then q̆j′ =

0. Moreover, optimality conditions on agents allocations (item (3.2)) implies that, for such j′,
r̆s,j′ p̆sAs,j′ = 0 for all s∈ S. However, as (i) the payment rate of j′ is bounded from below by
(1/M2) > 0, and (ii) the commodity prices, at each state s∈ S, are strictly positive; we must have
that ‖As,j′ ‖1 = 0 for all s∈ S, which is a contradiction with Assumption 4. Therefore, q̆J � 0
and

∑
h∈H θ̆hj′ =∑h∈H θ̆hj for all j, j′ ∈ J(A), A ⊂ K.

Thus, as it follows from item (3.4) that

∑
j ∈ J(A)

q̆j
∑
h∈H

θ̆hj =
∑
k ∈A

q̆k min
k′ ∈A

∑
h∈H

ϕ̆hk′ ,

using (3.8), we have that,
∑
h∈H θ̆hj = mink′ ∈A

∑
h∈Hϕ̆hk′ for all j in J(A).

In conclusion,
∑
h∈H θ̆hj =∑h∈Hϕ̆hk , for all pair (k, j) ∈ A × J(A) such that the M-semi-

equilibrium price q̆k is strictly positive.
Define a new allocation (π̃, η̃) ∈ PM × X

H
M as

(π̃; x̃h, δ̃h, θ̃hj ) = (π̆; x̆h, δ̆h, θ̆hj ) ∀ j ∈ J,

ϕ̃hk =
{
ϕ̆hk if q̆k > 0,

0 if q̆k = 0
∀ h∈H, ∀ k ∈K.
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It follows that the allocation (π̃, η̃) is still a M-semi-equilibrium. Moreover, for a given A, the
following conditions are satisfied∑

h∈H
θ̃hj =

∑
h∈H

ϕ̃hk ,∀ (k, j) ∈ A × J(A) for which q̃k > 0; (A.17)

∑
h∈H

ϕ̃hk = 0 ∀ k ∈K for which q̃k = 0. (A.18)

In the other hand, given a M-semi-equilibrium (π̆, η̆), consider any allocation (π̆′, η̆′) with
(p̆′, q̆′, η̆′) = (p̆, q̆, η̆) and, for each derivative jm(A) ∈ J(A):

r̆′s,jm(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
∑
h∈H

θhjm(A) = 0 ∧m < m∗
s (A),

β
s,m
M (A) if

∑
h∈H

θhjm(A) = 0 ∧m ≥ m∗
s (A),

α(jm(A)) if
∑
h∈H

θhjm(A) �= 0 ∧ ‖As,jm(A)‖1 = 0,

r̆s,jm(A) otherwise,

(A.19)

where α(jm(A)) ∈ [βs,mM (A), 1]. It follows that BM(π̆′) ⊂ BM(π̆). Thus, as r̆s,j appears
multiplied by As,j and

∑
h∈H θ̆j at item (3.5), we conclude that (π̆′, η̆′) is also a M-semi-

equilibrium.

Lemma 5. There exists M
∗
1 > 0 such that for each M = (M1,M2) ∈M, with M1 > M

∗
1 , there

exists a M-semi-equilibrium (π̃, η̃) in which for every class A ⊂ K we have

(5.1) The rates of payment (r̃s,j)j ∈ J(A) ∈Rs
M(A), for all s∈ S, where 5

Rs
M(A):={r ∈ϒsM(A) : ∃r′ ∈R(A), rm = max{r′m, βs,mM (A)}}.

(5.2) 0 ≤
∑

j ∈ J(A)

r̃s,jp̃sAs,j
∑
h∈H

θ̃hj −
∑
k ∈A

∑
h∈H

δ̃hs,k ≤ 2

M2

∑
j ∈ J(A)

‖As,j‖1(#H)2
 ∀ s∈ S.

(5.3) For any s∈ S, if r̃s,jm(A) = β
s,m
M (A) then either m = m∗

s (A) or βs,mM (A) = 1/M2.

(5.4) Given a state of nature s∈ S, for each m < m∗
s (A), r̃s,jm(A) = 1.

Proof. GivenM = (M1,M2) ∈M, withM1 > M∗∗
1 , take a M-semi-equilibrium (π̆, η̆) that sat-

isfies Eqs. (A.17) and (A.18). From Lemma 4 and previous comments, we know that such a
M-semi-equilibrium exists.

5 Equivalently, the set Rs
M (A) can be defined as

Rs
M (A):={r ∈ϒsM (A) : ∃m, 1 ≤ m ≤ n(A), (rm′ = 1, ∀ m′ < m) ∧ (rm′ = βs,m(A), ∀ m′ > m)}.
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Thus, consider a different allocation (π̃, η̃) with (p̃, q̃, η̃) = (p̆, q̆, η̆) and, for each derivative
jm(A), r̃s,jm(A) defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
∑
h∈H

θhjm(A) = 0 ∧m < m∗
s (A),

β
s,m
M (A) if

∑
h∈H

θhjm(A) = 0 ∧m ≥ m∗
s (A),

r̆s,jm(A) if
∑
h∈H

θhjm(A) �= 0 ∧ ‖As,jm(A)‖1 �= 0,

1 if
∑
h∈H

θhjm(A) �= 0 ∧ ‖As,jm(A)‖1 = 0 ∧m = 1,

r̃s,jm−1(A) if
∑
h∈H

θhjm(A) �= 0 ∧ ‖As,jm(A)‖1 = 0 ∧m �= 1 ∧ r̃s,jm−1(A) = 1,

β
s,m
M (A) if

∑
h∈H

θhjm(A) �= 0 ∧ ‖As,jm(A)‖1 = 0 ∧m �= 1 ∧ r̃s,jm−1(A) �= 1.

(A.20)

Since (π̃, η̃) respects Eq. (A.19), (π̃, η̃) is a M-semi-equilibrium and it still satisfies Eqs. (A.17)
and (A.18). We will show that (π̃, η̃) satisfies all conditions of this lemma. �

Fix a class A ⊂ K. It follows from (24) that condition (5.4) holds. To guarantee that items
(5.1)–(5.3) hold, we will analyze two cases.

Case I. Suppose that
∑
h∈Hϕ̃hk = 0 for all k ∈ A.

It follows from item (3.4), and from the fact that q̃j > 0 for j ∈ J , that
∑
h∈H θ̃j = 0 for all

j ∈ J(A) (see discussion before Lemma 5). Thus, for any (rs,j)j ∈ J(A) ∈ϒsM(A), we have that

∑
j ∈ J(A)

rs,jp̃sAs,j
∑
h∈H

θ̃hj −
∑
k ∈A

∑
h∈H

δ̃hs,k = 0 ∀ s∈ S,

because δ̃hs,k = 0, for each pair (s, k) ∈ S ×K. Consequently, whenever the primitives are not
negotiated, the property (5.2) holds.

Moreover, since
∑
h∈H θ̃hjm(A) = 0 for all m∈ {1, 2, . . . , n(A)}, it follows from (A.20) that

(r̃s,jm(A))
n(A)
m=1 belongs to Rs

M(A) and, therefore, item (5.1) holds. Moreover, item (5.3) also holds.

Case II. Suppose that
∑
h∈Hϕ̃hk > 0 for some k ∈ A.

It follows from (A.17) that
∑
h∈H θ̃hj > 0 for all j ∈ J(A). Since (π̃, η̃) is a M-semi-equilibrium,

we know that r̃s,jm(A) belongs to

argmaxr ∈ [βs,m
M

(A),1] −
(
rF

s,m
A

(π̃, η̃) +
m−1∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃) −
∑
k ∈A

∑
h∈H

δ̃hs,k

)2

, (A.21)

where Fs,i
A

(π̃, η̃):=p̃sAs,ji(A)
∑
h∈H θ̃hji(A).
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As
∑
h∈H θ̃hj > 0 for all j ∈ J(A), Fs,i

A
(π̃, η̃) = 0 if and only if ‖As,ji(A)‖1 = 0. Now, define

for each state of nature s∈ S the set

Is
A

= {m : ‖As,jm(A)‖1 �= 0}.
If Is
A

is empty, then it follows from (A.20) that r̃s,jm(A) = 1, for allm∈ {1, 2, . . . , n(A)}. Thus,
item (5.1) holds in this case. Otherwise, suppose that Is

A
�= ∅ and consider the following claims.

Claim 1. Given m∈ Is
A

, if

F
s,m
A

(π̃, η̃) ≤
∑
k ∈A

∑
h∈H

δ̃hs,k −
m−1∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃) (A.22)

holds, then r̃
s,jm

′ (A) = 1, for each m′ ≤ m that belongs to Is
A

.

Proof. As m∈ Is
A

, if (A.22) holds, then rs,jm(A) = 1 is the unique maximizer of the objective
function in (A.21), and consequently r̃s,jm(A) = 1. Now, suppose that there exists m′ ∈ Is

A
such

that r̃
s,jm

′ (A) < 1 and m′ < m. Since (A.22) holds for m

m′∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃) <
∑
k ∈A

∑
h∈H

δ̃hs,k, (A.23)

which is a contradiction with condition (3.5). Therefore, r̃
s,jm

′ (A) = 1. �

Claim 2. Given m∈ Is
A

, if

β
s,m
M (A)Fs,m

A
(π̃, η̃) <

∑
k ∈A

∑
h∈H

δ̃hs,k −
m−1∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃) < F
s,m
A

(π̃, η̃) (A.24)

holds, then r̃s,jm(A) ∈ (βs,mM (A), 1):

r̃s,jm(A)F
s,m
A

(π̃, η̃) =
∑
k ∈A

∑
h∈H

δ̃hs,k −
m−1∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃), (A.25)

and r̃
s,jm

′ (A) = 1 for each m′ < m with m′ ∈ Is
A

.

Proof. If (A.24) is satisfied, the global maximum of the function in (A.21) is attainable and,
therefore, (A.25) holds. Moreover, we have that r̃s,jm(A) ∈ (βs,mM (A), 1). Now, suppose that there
exists m′ < m such that r̃

s,jm
′ (A) < 1 and m′ ∈ Is

A
. Since (A.24) holds for m, we have that

0 <
∑
k ∈A

∑
h∈H

δ̃hs,k −
m′∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃), (A.26)

which is a contradiction with (3.5). Therefore, r̃
s,jm

′ (A) = 1. �

Claim 3. Given m∈ Is
A

, if

∑
k ∈A

∑
h∈H

δ̃hs,k −
m−1∑
i=1

r̃s,ji(A)F
s,i
A

(π̃, η̃) ≤ β
s,m
M (A)Fs,m

A
(π̃, η̃) (A.27)

holds, then r̃
s,jm

′ (A) = β
s,m′
M (A) for each m′ ≥ m that belongs to Is

A
.
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Proof. If (A.27) holds, then βs,mM (A) is the unique maximizer of function in (A.21) and, therefore,
r̃s,jm(A) = β

s,m
M (A). Since (A.27) is valid for each m′ > m, if m′ ∈ Is

A
, then r̃

s,jm
′ (A) = β

s,m
M (A).

It is easy to see that eachm∈ Is
A

satisfies the conditions of one and only one of the claims above.
Additionally, the set of m∈ Is

A
that satisfies the conditions of a specific claim may be empty.

Furthermore, the following facts are valid:

• There exists at most one m∈ Is
A

for which conditions of Claim 2 holds.
• If m∈ Is

A
satisfies the condition of Claims 1 and 2, then each m′ < m, with m′ ∈ Is

A
, satisfies

the condition of Claim 1.
• If m∈ Is

A
satisfies the condition of Claims 2 and 3, then each m′′ > m, with m′′ ∈ Is

A
, satisfies

the condition of Claim 3.

Suppose that there exists m∈ Is
A

that satisfies the condition of Claim 2. Then, it follows from
(A.20) that (i) r̃

s,jm
′ (A) = 1, for all m′ < m; (ii) r̃s,jm(A) ∈ (βs,mM (AC), 1); and (iii) r̃

s,jm
′′ (A) =

β
s,m′′
M (A), for all m′′ > m. This guarantees that condition (5.1) holds in this case.

If there exists no m∈ Is
A

that satisfies condition of Claim 2, we have two possibilities:

• There exists m∈ Is
A

such that r̃s,jm(A) = β
s,m
M (A). In this case, define m̃ = min{m′ ∈ Is

A
:

r̃
s,jm

′ (A) = β
s,m′
M (A)}. Items above guarantee that m̃ satisfies the condition of Claim 3. This

implies, using (A.20), that

r̃
s,jm

′ (A) = 1 ∀ m′ < m̃; r̃
s,jm

′ (AC) = β
s,m′
M (A) ∀ m′ > m̃.

• All m∈ Is
A

satisfy r̃s,jm(A) = 1. Thus, r̃
s,jm

′ (A) = 1, for all m′ ∈ {1, 2, . . . , n(A)}.

We conclude that (5.1) always holds.
We will now prove that (5.2) and (5.3) always hold when

∑
h∈H θ̃hj > 0 for all j ∈ J(A).

It follows from Eqs. (A.17) and (A.18), jointly with Assumption 4 that

∑
k ∈A

∑
h∈H

δ̃hs,k =
∑

{k ∈A:q̃k �=0}

∑
h∈H

δ̃hs,k ≤
∑

{k ∈A:q̃k �=0}
p̃sAs,k

∑
h∈H

ϕ̃hk

= p̃s
∑

{k ∈A:q̃k �=0}
As,kmaxj ∈ J(A)

∑
h∈H

θ̃hj ≤ p̃s
∑

j ∈ J(A)

As,j
∑
h∈H

θ̃hj . (A.28)

Thus, it follows from (3.5) and (A.28) that having

∑
j ∈ J(A)

r̃s,jp̃sAs,j
∑
h∈H

θ̃hj <
∑
k ∈A

∑
h∈H

δ̃hs,k,

would lead us to a contradiction. Therefore∑
j ∈ J(A)

r̃s,jp̃sAs,j
∑
h∈H

θ̃hj ≥
∑
k ∈A

∑
h∈H

δ̃hs,k.
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Now, as we assume that
∑
k ∈Aϕ̃hk > 0, for some k ∈ A, budget feasibility and Lemma 3 assure

that ∑
k ∈A

∑
h∈H

δ̃hs,k ≥ (#A)pmin
k ∈A

{‖As,k‖1, ‖YsCk‖1}maxj ∈ J(A)

∑
h∈H

θ̃hj . (A.29)

Assume that mink ∈A{‖As,k‖1, ‖YsCk‖1} > 0. Thus

ςs(A):=(#A)pmin
k ∈A

{‖As,k‖1, ‖YsCk‖1}

is strictly positive. Moreover, by the definition of ϒsM(A), we have βs,mM (A) = 1/M1, for all
m ≤ m∗

s (A). Thus, there existsM
∗
1 (A) > M∗∗

1 such that for each M-semi-equilibrium, withM1 >

M
∗
1 (A), we can assure that (1/M1)‖As,jm∗(A)(A)‖1 < ςs(A). It implies

1

M1
p̃sAs,jm

∗
s (A)(A)

∑
h∈H

θ̃h
jm

∗
s (A)(A)

< ςs(A)
∑
h∈H

θ̃h
jm

∗
s (A)(A)

≤
∑
k ∈A

∑
h∈H

δ̃hs,k, (A.30)

and it follows from the fact that, for any m < m∗
s (A), ‖As,jm(A)‖1 = 0 and from (3.5) that both

m∗
s (A)∑
m=1

r̃s,jm(A)p̃sAs,jm(A)

∑
h∈H

θ̃hjm(A) −
∑
k ∈A

∑
h∈H

δ̃hs,k ≤ 0, (A.31)

and r̃
s,jm

∗
s (A)(A)

> β
s,m∗

s (A)
M (A) = 1/M1.

Therefore, when mink ∈A{‖As,k‖1, ‖YsCk‖1} > 0, if r̃s,jm(A) = β
s,m
M (A) then r̃s,jm(A) = 1/M2.

In fact, otherwise r̃s,jm(A) = 1/M1, which implies that m ≤ m∗
s (A), contradicting (A.30) and the

fact that r̃
s,jm

∗
s (A)(A)

> 1/M1.

In the other side, if mink ∈A{‖As,k‖1, ‖YsCk‖1} = 0, from definition we have that βs,mM (A) =
1/M2 for each m∈ {1, 2, . . . , n(A)} and, consequently, if r̃s,jm(A) = β

s,m
M (A), then r̃s,jm(A) =

1/M2.
Thus, item (5.3) holds.
Now, arguments above imply that

∑m
i=1r̃s,ji(A)p̃sAs,ji(A)

∑
h∈H θ̃hji(A) −∑k ∈A

∑
h∈H δ̃hs,k

is greater than zero if and only if r̃s,jm(A) = β
s,m
M (A) = 1/M2. Thus, define m∗∗ = min{m :

r̃s,jm(A) = 1/M2}. Note that m∗ < m∗∗.
Finally,

0 ≤
∑

j ∈ J(A)

r̃s,jp̃sAs,j
∑
h∈H

θ̃hj −
∑
k ∈A

∑
h∈H

δ̃hs,k

=
m∗∗−1∑
m=1

r̃s,jm(A)F
s,m
A

(π̃, η̃) +
n(A)∑
m=m∗∗

r̃s,jm(A)F
s,m
A

(π̃, η̃) −
∑
k ∈A

∑
h∈H

δ̃hs,k

≤
n(A)∑
m=m∗∗

1

M2
p̃sAs,jm(A)

∑
h∈H

θ̃hjm(A) ≤ 2

M2

∑
j ∈ J(A)

‖As,j‖1(#H)2
,

which guarantees that item (5.2) always holds. Therefore, lemma holds taking M
∗
1 =

maxA⊂KM
∗
1 (A). �



732 M. Steinert, J.P. Torres-Martı́nez / Journal of Mathematical Economics 43 (2007) 709–734

Lemma 6. For each M = (M1,M2) ∈M with M1 > M
∗
1 , there exists a M-semi-equilibrium

(π̃, η̃) in which conditions (5.1), (5.2) hold and the following properties are satisfied:

(6.1) For each (s, l) ∈ S × L

∑
h∈H

x̃hs,l − (YsW0)l −Ws,l ≤ 2

M2

∑
A⊂K

∑
j ∈ J(A)

‖As,j‖1(#H)2
;

(6.2) For each h∈H , �h(p̃−0, η̃
h) ∩ Bh(π̃) = ∅.

Proof. We know from Lemma 5 that there exists, for each M ∈M with M1 > M
∗
1 , a M-semi-

equilibrium (π̃, η̃) that satisfies conditions (5.1), (5.2). Therefore, fix (π̃, η̃) in which all the above
properties hold. Item (6.1) follows directly from items (3.7) and (5.2).

Suppose that it exists y = (x, ϕ, δ, θ) ∈�h(p̃−0, η̃
h) ∩ Bh(π̃). It follows from Assumption 2

that there exists λ∈ (0, 1] (sufficiently small) such that z:=λy + (1 − λ)η̃h ∈�h(p̃−0, η̃
h) and

is an interior point of XM relative to X (this is a consequence of the fact that η̃h has this
property). Therefore, as z∈BhM(π̃) we have a contradiction with item (3.2), which assure that
�h,M(p̃−0, η̃

h) ∩ BhM(π̂) = ∅. �
Finally, the proof of Theorem 1 is a direct consequence of the lemma below.

Lemma 7. There exists a non-trivial equilibrium for the economy E(S∗,H,L,F), which can
be obtained as the limit of a sequence of M-semi-equilibriums when M2 goes to infinity and
M1 > M

∗
1 .

Proof. We know from Lemma 6 that there exists, for each M ∈M with M1 > M
∗
1 , a M-semi-

equilibrium (π̃M, η̃M) that satisfies conditions (5.1), (5.2), (6.1), (6.2).
Fix a M1 > M

∗
1 and construct a sequence of M-semi-equilibriums (π̃M2 , η̃M2 ), indexed only

by M2, which satisfy the above conditions for all M2. It follows from the fact that (π̃M2 , η̃M2 )
belongs to a compact set, independent ofM2, that there exists a convergent subsequence. We will
denote the limit of this subsequence as (π̂, η̂).

It is straightforward that items (3.3) and (3.4) still hold for the limit allocation (π̂, η̂). Moreover,
one can easily see that at the limit items (3.1), (5.2), (6.1) become, respectively,

(3.1*) For each h∈H , η̂∈Bh(π̂);
(5.2*) For each class A ⊂ K and each s∈ S

∑
j ∈ J(A)

r̂s,jp̂sAs,j
∑
h∈H

θ̂hj −
∑
k ∈A

∑
h∈H

δ̂hs,k = 0;

(6.1*) For each (s, l) ∈ S × L∑
h∈H

x̂hs,l − (YsW0)l −Ws,l ≤ 0;

where item (3.1*) follows from the closed graph of the budget set correspondence Bh.

We know that, for each M2, the second-periods budget constraints are satisfied with equality.
Then, the limit second period budget constraints still hold with equality. This fact, jointly with
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item (6.1*) above, imply that, for each (s, l) ∈ S × L∑
h∈H

x̂hs,l − (YsW0)l −Ws,l = 0. (A.32)

Therefore, in order to assure that (π̂, η̂) is a non-trivial equilibrium we need to show that the
properties of Definition 2 hold, jointly with items (C) and (F) of Definition 1.

First, we will assure, for each h∈H , the individual optimality of the allocation η̂h at prices
π̂. We affirm that, for every h∈H , there is nothing in the interior of the budget set that is
strictly preferred that η̂h. Suppose, by contradiction, that there is an allocation y such that
y∈�h(p̂−0, η̂

h) ∩ Ḃh(π̂). Since�h is lower hemicontinuous correspondence and (π̃M2 , η̃M2 ) →
(π̂, η̂), there exists yM2 ∈�h((p̃−0)M2

, η̃M2 ) such that yM2 → y. Since ḂM has open values, for
M2 sufficiently large, yM2 ∈�h((p̃−0)M2

, η̃hM2
) ∩ Ḃh(π̃M2 ), which is a contradiction with (6.2).

Thus, �h(p̂−0, η̂
h) ∩ Ḃh(π̂) = ∅.

It follows from Lemma 4 that the M-semi-equilibrium commodity prices are uniformly bounded
away from zero. Therefore, the limit allocation has prices strictly greater than zero. This implies
that the interior of the limit budget set has non-empty values, Ḃh(π̂) �= ∅. Now, as Bh also has
convex values, we have that the closure of Ḃh(π̂) is equal to the original budget set, Bh(π̂). Then,
it follows that �h(p̂−0, η̂

h) ∩ Bh(π̂) = ∅. That completes the proof of optimality.
Second, take as given A ⊂ K and s∈ S. Note that, every convergent sequence of elements

belonging to Rs
M(A) for each M2 has a limit at R(A). Indeed, as R(A) is a compact set we can

assume, without loss of generality, that there exists a subsequence ((rs)M2
)
M2>M1

⊂ R(A) such
that

(a) (rs)M2
= ((rs,m)M2

;m∈ {1, . . . , n(A)}).
(b) There exists r̂ = (r̂s,m;m∈ {1, . . . , n(A)}) ∈R(A) such that

lim
M2→+∞(rs)M2

= r̂.

(c) For each M2 (in the subsequence)

(r̃s,jm(A))M2
= max{(rs,m)M2

, β
s,m
M (A)} ∀ m∈ {1, . . . , n(A)},

where M = (M1,M2).

Note that, taking the limit as M2 goes to infinity, item (c) above implies that, for each
m∈ {1, . . . , n(A}, r̂s,jm(A) ≥ r̂s,m. As our objective is to prove that (r̂s,j)j ∈ J(A) ∈R(A), assume
that there exists m∈ {1, . . . , n(A)} such that r̂s,jm(A) > r̂s,m.

It follows that, for M2 sufficiently high, (r̃s,jm(A))M2
= β

s,m
M (A), with M = (M1,M2).

If mink ∈A{‖As,k‖1, ‖YsCk‖1} = 0 then condition (5.3) implies that r̂s,jm(A) = 0, a contradic-
tion. In other case, if mink ∈A{‖As,k‖1, ‖YsCk‖1} > 0, then item (5.3) guarantee thatm = m∗

s (A)
and r̂s,m∗

s (A) < 1/M1. Moreover, r̂
s,jm

′ (A) = r̂s,m′ for anym′ �= m∗
s (A). Thus, (r̂s,j)j ∈ J(A) ∈R(A).

Finally, fix a class A ⊂ K and state s∈ S. As the parameter M1 is fixed, the definition of
Rs
M(A) assure that, when mink ∈A{‖As,k‖1, ‖YsCk‖1} > 0, then for any M2 > M1 we have that

(r̃s,jm(A))M2
≥ 1/M1 for each m ≤ m∗

s (A). Thus, limit rates of payment satisfy[
min
k ∈A

{‖As,k‖1, ‖YsCk‖1} > 0

]
⇒ r̂s,jm(A) ≥ 1

M1
∀ m ≤ m∗

s (A). (A.33)
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Using the fact that p̂s,l ≥ p > 0, for all l∈L, we conclude that[
min
k ∈A

{p̂sYsCk; p̂sAs,k} > 0

]
⇒ r̂s,jm(A) > 0 ∀ m ≤ m∗

s (A). (A.34)

Also, as r̂
s,j

m∗
s (A)
A

> 0, optimality conditions on agents allocations and Assumption 4 guarantee

that (q̂j; j ∈ J(A)) �= 0. Thus, as (p̂, q̂K, q̂J ) ∈	, there exists at least one primitive k ∈ A for
which q̂k > 0. That conclude the proof that (π̂, η̂) is a non-trivial equilibrium. �
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