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Introduction: The aim of the study was to describe the normal orbital volume and its most important
relationships with other clinical variables.
Methods: We designed a correlation study and consecutive normal CTs scans were included. Orbital
volume and facial anthropometrics were measured and correlated between them. Two independent and
blind observers made all the measurements. Uni and multivariate statistical analysis were performed in
order to create a predicting model for orbital volume.
Results: A total of 199 consecutive patients were included in the study (398 orbits). The mean Orbital
Volume (OV) was 24.5 ± 3.08 cc. Adequate intra and interobserver reliability was observed. There were
no differences between the right and left orbit (p¼0.73). The male average OV was 24.9 ± 3.03 cc, the
female OV was 23.9 ± 3.08 cc. Age group analysis demonstrated a slow increase in OV beyond thirty
years, but these differences were not significant (p¼0.98). Only the age, total facial height, facial width
and the interorbital distance were significant and were included in the predictive model of OV.
Conclusion: We have characterized the normal orbital volume,variations and associations. In order to
further advance in the understanding of the clinical implications the abnormal orbital volume must be
fully studied.

© 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights
reserved.
1. Introduction

In cases of maxillofacial trauma, orbital fractures are among the
most challenging and complex fractures to treat (Friesenecker et al.,
1995; Meyer et al., 1998; Hollier and Thornton, 2002; Manolidis
et al., 2002). Ocular dystopia after orbital fracture may be due to
an increase in bony orbital volume and/or scarring of the soft tissue
surrounding the orbital globe (Hawes and Dortzbach, 1983;
Manson et al., 1986a; Waterhouse et al., 1999; Hartstein and
Roper-Hall, 2000; Burnstine, 2002; Gellrich et al., 2002). The loss
of the structural bone and ligament support, reshaping of orbital
soft tissue under the influence of gravity, and the forces of scar
contracture remodeling are the main mechanisms for post-
traumatic enophthalmia (Manson et al., 1986b; Ramieri et al.,
2000). The association between orbital volume (OV) and ocular
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dystopia has been previously evaluated (Bite et al., 1985; Charteris
et al., 1993; Whitehouse et al., 1994; Schuknecht et al., 1996; Ploder
et al., 2002; Neuschwander et al., 2005). Many studies have found a
positive correlation between OV and the degree of enophthalmus
d for each 1 cc increase in OV there is approximately 1 mm of
enophthalmus (Fan et al., 2003). This is the reason why measure-
ment of OV in patients with orbital fractures has been used to
predict possible future enophthalmia and thus help in the surgical
decision-making process (Raskin et al., 1998; Ahn et al., 2008.).

Currently there is no large-scale population study that describes
normal orbital volume, its normal variations, and its relationships
with other variables such as age, sex, and cephalic anthropometry.
Moreover, there is no evidence about the diagnostic and thera-
peutic implications of pathological orbital volume. Early detection
of patients with risk factors for developing post-traumatic orbital
complications is essential for the proper selection of patients who
will require surgery. Consequently, the aim of this study was to
describe the normal orbital volume and its most important re-
lationships with other clinical variables in order to help us in the
surgical decision-making process.
Elsevier Ltd. All rights reserved.
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2. Material and methods

2.1. Design and patients

We designed a correlation study, and sampling was conducted
using the radiology database of the Hospital del Trabajador de
Santiago. The sample was stratified by age and sex, according to the
population pyramid for Chile. We selected consecutive computed
tomographies (CTs) of patients reported as normal by the radiolo-
gist. Review board permissions were obtained from our institutions
and all the patients signed informed consent forms in order to
participate in the study.
2.2. Measurements

The dependent variable was orbital volume measured from CTs
of healthy patients. These measurements were made using
Extended Brilliance Workspace V 3.0.1 2012 (Phillips Healthcare,
Best, The Netherlands), based on a previously described method
(Kolk et al., 2007, 2008). The procedure comprises five stages. The
first is getting a symmetrical three-dimensional image scan for
better alignment and comparison. Second, the cursor is used to
measure orbital volume using the software's filling option and
multiplanar selection. The upper, lower, lateral, and medial limits
are determined by the bony walls of the orbit. The anterior orbital
boundary is defined by the orbital rim, including the anterior
lachrymal crest. Finally, the posterior boundary is defined by the
most anterior portion of the optic canal, being an area that rarely
fractures and is easily located in the CTs (Fig. 1).

To better understand orbital anatomy and its implications in
orbital trauma and reconstruction, we have identified three areas in
the orbital cavity. We believe that these three areas show different
behaviors in traumatized orbits and therefore differ in their
Fig. 1. Limits of the normal orbital volume fo
importance in the clinical consequences of post-traumatic disorder.
The volumes of these areas were measured in each case, and the
relationship between the volume of each to the overall volume of
the orbit under study was analyzed. The anterior zone extended
from the previously defined orbital rim, to the first coronal slice
containing the anterior border of the inferior orbital fissure. The
central zone was considered from the rear edge of the previous
area, to the coronal section that identifies the orbital process of the
palatine bone. This area includes the key area described by
Hammer (Forbes et al., 1985). The posterior zone extended from the
boundary of the previous area to the most anterior portion of the
optic canal (Fig. 2).

The relationships of the independent variables with OV were
assessed. Demographic variables were age and gender. Variables
measured using the CTs were: total facial height (distance between
the glabella and menton); midfacial height (distance between the
glabella and sub-nasal point); facial width (larger, horizontal, bizy-
gomatic distance); skull base (distance between Sella and nasion);
transverse dimension of the skull (larger horizontal bi-temporal
distance); external interorbital distance (between the most lateral
point of both bony orbits); intercanthal distance (between the inner
edges of the internal palpebral fissure); canthal index (intercanthal
distance as a percentage of external interorbital distance).

All themeasurements weremade by two independent and blind
observers. Each observer performed two measurements of each
variable, separated by 30 days. They had previously undergone a
training program in order to improve the learning curve.
2.3. Statistics

The sample size for a correlation study requires approximately
20 observations per independent variable. There were nine inde-
pendent variables, giving a total of 180 patients (360 orbits).
r CT measurements (see text for details).



Fig. 2. The orbital volume was divided into three areas based on different behaviors of the fractured orbital floor: anterior, central, and posterior (see text for details).
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Descriptive statistics were performed using histograms to illustrate
the distribution of the dependent variable. Measurements were
summarized by mean and standard deviation. The correlation be-
tween continuous variables was measured using the Pearson co-
efficient. A Student's t-test was used to compare means, and a
multiple linear regression model was used to assess whether OV
was determined by the independent variables and to create a for-
mula that might predict normal OV.

3. Results

A total of 199 consecutive patients were included in the study
(Table 1). There were 119 males (59.8%) and 80 females (40.2%),
with amean age of 38.4± 14.9 years (range 15e84). All the patients'
CTs underwent a protocol performed by two independent ob-
servers. Each observer carried out two OV measurements on the
right side and two on the left side, with a total number of 1592
measurements. The right OV intraobserver variability was r¼ 0.978
(p < 0.0001) for observer 1 and r ¼ 0.678 (p < 0.0001) for observer
2. The left OV intraobserver variability was r ¼ 0.982 (p < 0.0001)
for observer 1 and r¼ 0.959 (p< 0.0001) for observer 2. Meanwhile,
the OV interobserver variability for the right side was r ¼ 0.869
(p < 0.0001) and for the left side was r ¼ 0.981 (p < 0.0001).

The OV analysis by side, gender, and age is shown in Table 2. The
mean global OV was 24.5 ± 3.08 cc with a range of 16.9e35 cc. The
data demonstrated a normal distribution. Themean OV for the right
side was 24.45 ± 3.09 cc and for the left side was 24.56 ± 3.29 cc
(p ¼ 0.73). Average OV was 24.9 ± 3.03 cc for males and



Table 1
Patient characteristics.

Studied population, n ¼ 199

Characteristics
Age (years) Mean SD Range

38.5 14.9 15e84
Gender n (%)
- Female 80 (40.2)
- Male 119 (59.8)
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23.9 ± 3.08 cc for females (p ¼ 0.010). Age group analysis demon-
strated a slow increase in OV beyond 30 years (p ¼ 0.98). The mean
volumes by side for each orbital area (anterior, central, and poste-
rior) are shown in Table 3. The anterior orbital zone global mean
volume was 17.30 ± 2.6 cc, the central orbital zone global mean
volume was 5.40 ± 1.77 cc, and the posterior orbital zone mean
global volume was 2.00 ± 0.64 cc.

Table 4 summarizes the anthropometric face measurements for
the studied population and their correlation with the global OV.
Mean total facial height was 133.39 ± 10.09 mm (r ¼ 0.381,
p < 0.0001). Meanmidfacial height was 64.39 ± 3.55mm (r¼ 0.231,
p ¼ 0.001). Mean facial width was 109.77 ± 5.99 mm (r ¼ 0.520,
p < 0.0001). Mean skull base distance was 61.39 ± 4.1 mm
(r¼ 0.257, p¼ 0.0002). Themean transversal dimension of the skull
was 132.48 ± 7.41 mm (r ¼ 0.257, p ¼ 0.0002). The mean internal
intercanthal distance was 20.24 ± 2.76 mm (r ¼ 0.503, p ¼ 0.480).
Finally, the mean interorbital distance was 99.24 ± 4.17 mm
(r ¼ 0.488, p < 0.0001).

Table 5 shows the multivariate regression model and the for-
mula for predicting OV. Within the studied variables only age, total
facial height, facial width, and the interorbital distance were sta-
tistically significant, and were included in the predictive model for
OV. This formula allowed us to create a smartphone application
Table 2
Global mean orbital volume by side, gender, and age.

Mean orbital volume (cc) Standard devia

Global 24.50 3.08
Right side 24.45 3.09
Left side 24.56 3.29
Male 24.91 3.03
Female 23.89 3.08
Age <20 24.05 3.25
Age 20e30 23.58 2.28
Age 30e40 25.11 3.45
Age 40e50 25.48 3.66
Age 50e60 25.64 3.09
Age >60 26.20 2.95

Table 3
Mean volume by orbital zone.

Mean (cc) Standard devia

Anterior zone
- Global 17.30 2.60
- Right volume 17.27 2.63
- Left volume 17.40 2.69
Central zone
- Global 5.40 1.77
- Right volume 5.49 1.77
- Left volume 5.30 1.76
Posterior zone
- Global 2.00 0.64
- Right volume 2.00 0.65
- Left volume 2.01 0.62
named Orbital-V, which is available for free in Google Play and App
Store.
4. Discussion

Normal anatomy is defined as the morphological characteristics
most frequently seen in the population that guarantee an optimal
function. In humans there is great variability in this normal anat-
omy, but these morphological variations almost never compromise
function. The statistical and physiological criteria involved in this
definition allow us to better understand characteristics that are
abnormal, infrequent, and deviated from the standard (Schubert
et al., 1990). Characterizing a normal structure is essential in
setting limits for average values, to comprehend its function, and to
recognize its relationships to other normal structures. A deep un-
derstanding of normality makes studying abnormality an easier
task. This was the main purpose of our study d to thoroughly
describe the normal OV, as well as its different components, re-
lations, and clinical implications.

While the ideal study for determining patterns of normality is
the cross-sectional study, it is considered to be inefficient in eco-
nomic terms. Obtaining a representative random sample of the
general population would have been very difficult, and taking a CT
scan of all individuals would have resulted in extremely elevated
costs. In our study, consecutive normal head and neck CT scans
were included and 398 orbits were measured. A standardized CT
scan technique considered to be the reference standard for OV
calculationwas used. In various experimental studies using silicone
model skulls and liquid measurements, this technique had an ac-
curacy greater than 95%, with a high correlation (Bentley et al.,
2002; Cunningham et al., 2005; Tahernia et al., 2009; Oh et al.,
2013). In our study, measurements were made by two indepen-
dent radiology technicians, completing a total of 1592 measure-
ments with high intra- and interobserver variability. This
tion Range of maximum volume (cc)

16.90e35.00
16.70e33.80 p ¼ 0.73
17.10e36.30
18.80e35.03 p ¼ 0.010
16.88e30.91
16.90e28.90 p ¼ 0.980
20.01e27.66
20.65e31.53
19.50e35.04
19.78e30.65
21.00e30.96

tion Range (cc) Pearson correlation

9.40e25.60 r ¼ 0.823
p ¼ 0.000110.40e25.60

9.40e24.20

2.20e12.30 r ¼ 0.750
p ¼ 0.00012.20e11.40

2.20e12.30

0.90e4.40 r ¼ 0.509
p ¼ 0.00010.90e3.80

0.90e4.40



Table 4
Anthropometric assessment of the face and correlations with global orbital volume (OV).

Mean (mm) Standard deviation Range (mm) Pearson correlation with OV

Facial height 133.39 10.09 77.40e155.20 r ¼ 0.381
p < 0.0001

Mid facial height 64.39 3.55 55.80e74.40 r ¼ 0.231
p ¼ 0.0010

Facial width 109.77 5.99 96.20e123.40 r ¼ 0.520
p < 0.0001

Skull base distance 61.39 4.10 50.70e73.20 r ¼ 0.257
p ¼ 0.0002

Internal intercanthal distance 20.24 2.76 13.15e27.15 r ¼ 0.503
p ¼ 0.480

Interorbital distance 99.24 4.17 88.20e111.20 r ¼ 0.488
p < 0.0001

Transversal midventricular distance 132.48 7.41 108.40e157.70 r ¼ 0.257
p ¼ 0.0002

Table 5
Multivariate regression model and prediction of orbital volume.

Variable Coef. Std. error p > t

- Age 0.0395 0.0028 0.046
- Facial height 0.0468 0.0002 0.003
- Facial width 0.158 0.0043 0.017
- Interorbital distance 0.134 0.0149 0.070

Orbital volume ¼ (age � 0.0395) þ (facial height � 0.0468) þ (facial
width � 0.1587) þ (interorbital distance � 0.1347) e 14.
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observation validates the method as an accurate and reliable
technique for OV measurement.

Our results are similar to those from other small published se-
ries, using a variety of measuringmethods, that have shown normal
OV to be between 16 cc and 30 cc (Wang et al., 2008; Andrades
et al., 2009; Acer et al., 2009; Noser et al., 2010). Interestingly, we
observed a significant difference between male and female OV in
the univariate analysis, but this difference was not statistically
significant in the multivariate analysis. This does not mean that
volume dissimilarities between males and females must not be
taken into consideration from a clinical standpoint. The absence of
gender as part of the predicting formula obtained in the multivar-
iate analysis could be explained by the fact that gender differences
are reflected in all the anthropometric measurements performed in
the study. Age subgroup analysis also showed an interesting rela-
tionship with OV. Beyond 30 years, there was a steady increase in
OV with age. Enlargement of OV with age is a new observation that
may be explained by the bone resorption process that happenswith
aging. Although these differences were not significant in the uni-
variate analysis, they reached statistical significance in the multi-
variate linear regression and were an important factor in the OV
prediction formula.

We divided the orbit into three zones that have been implicated
in different orbital globe dystopias (34). The anterior orbital zone
has almost no influence on orbital globe position and represents
70.61% of the global OV. The central zone may cause a drop of the
orbital globe or hypophthalmia when compromised, and repre-
sents 22.04% of the global OV. The posterior zone is implicated in
the generation of enophthalmos and represents just an 8.16% of the
global OV. Surprisingly, a modification of less than 30% of the
posterior OVmay cause orbital globe malposition due to the conical
configuration of the orbit.

Almost all of the anthropometric variables studied showed a
statistically significant positive correlation with OV. The only
exception was intercanthal distance, which showed a low correla-
tion with a non-significant p-value. Age, facial height, facial width,
and interorbital distance were statistically significant in the
multivariate analysis, andwere included in the predictivemodel for
OV. This formula can allow you predict the normal OV with a
±2.18 cc error in patients without a normal contralateral orbit to
use as a reference. Although knowing the normal OV is important,
no volume value is set as an absolute indication for surgery because
of the large overlap in the ranges of OV differences. However, more
important than a cutting value is the difference between values. For
example, if the difference between the normal and fractured orbits
is over 2 cc, an ocular dystopia of over 2 mm may be clinically
observed, so this would help in deciding on surgery. Also, this
difference may help us understand howmuch surgical correction is
required, and also allow easier evaluation of postoperative results.
To really incorporate these observations into clinical practice, a
detailed understanding of the pathological OV is essential. We are
now conducting a similar study of unilateral orbital fractures to
better comprehend the abnormal pathological OV and its clinical
implications.
5. Conclusion

In this study we have characterized normal OV, its variations,
and its associations. Using these data, we have developed a formula
that allows OV calculation with high precision, by considering the
patients' age, facial height, facial width, and interorbital distance.
To further advance understanding of the clinical implications of our
study, the abnormal orbital volume must be fully studied.
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