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The paper presents and compares approaches for controlling forest companies’ risk associated with ad-
vance planning under variable future timber prices and demand. Decisions to be made in advance are
which stands to cut and which new access roads to build in each period, while maximizing profit under
manageable risk. We first developed a tighter, improved formulation of our earlier deterministic mixed
0-1 model (see Andalaft et al. (2003)), and its stochastic counterpart for a set of representative scenar-
ios, an extension of our simplified risk-neutral version (see Alonso-Ayuso, Escudero, Guignard, Quinteros,
and Weintraub (2011)). Using the expected value of the stochastic parameters might produce poor or
even infeasible solutions if some extreme scenarios are realized. A stochastic model, however, enables
the planner to make more robust decisions. In particular, being able to control risk in early periods is
important, as firms tend to emphasize short term financial results. We tested two risk measures that
extend the classical Conditional Value-at-Risk (CVaR) by controlling the risk at a subset of intermediate
periods (time-inconsistent TCVaR) or at a subset of scenario groups (time-consistent ECVaR), with time
consistency as given in Homem-de Mello and Pagnoncelli (2016) and others. We also combined TCVaR
and ECVaR into what we call MCVaR. We analyzed the planned and implementable policies of all above
risk measures in a broad computational experiment, on a large size realistic instance. The results show
that ECVaR, TCVaR and MCVaR outperform the classical CVaR approach. MCVAR usually provides better
solutions for the first periods with overall profit distribution similar to the other measures for the planned
policy, TCVaR gives the highest profit results for the implementable policy, while ECVaR gives the highest
profit at the end of the time horizon in both policies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

a specific problem addressing various issues that arise in forestry
planning, namely, planning the harvest of forest land designated

Forest companies must plan the sustainable harvest of their re-
sources over a given time horizon. Cut timber is then sold in spe-
cific local and international markets. They have to meet demand,
primarily from pulp plants and sawmills. The main aim of the
companies is to maximize profit while complying with environ-
mental regulations. In previous studies we formulated and solved
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for timber production and the construction of access roads needed
to transport the timber. Good surveys of forest-based supply chain
planning cover such aspects as planting, cutting, construction of
access roads for transportation. See Bredstrom, Lundgren, Ron-
nqvist, Carlsson, and Mason (2004), Marques, Borges, Sousa, and
Pinho (2011), Pinho, Moreira, Veiga, and Boaventura-Cunha (2015),
and Ronnqvist (2003), among others. Starting in the 70s, environ-
mental and wildlife issues were increasingly considered in forest
management models at different planning levels.

In the last 30 years the twin problems of planning harvesting
and access road construction have been addressed jointly using
mathematical optimization models and computational tools. The
advantage of integrating the two processes in a single mixed O-
1 model was demonstrated in Jones, Hyde, and Meachan (1986),
whose solutions are from 15 to 45% better than with models that
optimized the processes separately.
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There exist relevant studies on the different phases of forestry
planning, especially regarding access road construction and har-
vesting. The problem we deal with may be formulated in terms of
a partition of the forest into harvesting units, called stands. For a
chosen time horizon one must determine which stands will be cut
in each period, which roads need to be constructed to access those
stands and when, and what quantity of wood will be transported
from one point to another. These decisions are made in Andalaft
et al. (2003) and references therein, among others. Our approach
did benefit from these earlier reports. Some ion to an optimiza-
tion criterion, typically profit maximization. A model for solving
the harvesting problem considering road building and adjacency is
provided in Candia (2010), which constrains the possibility of har-
vesting adjacent stands for observing the maximum clearfell areas
regulations.

Selling prices of forest products are a key element in forestry
planning. Price fluctuations have a direct impact on profits from
sales and figure prominently in the planners’ decision-making. The
role played by randomness in forestry planning is closely related to
the length of the chosen time horizon. Planners who must make
tactical decisions are therefore concerned about price variations
during a time horizon of two to five years. Although the most rel-
evant source of uncertainty is prices, uncertainty in tree growth,
timber demand and losses due to fires is also significant. The ap-
proach developed in this paper analyzes decision-making under
uncertainty in wood selling prices and demand. We assume that
they can be modeled over time by means of a set of scenarios with
different associated probabilities.

In mathematical terms, the deterministic version of the prob-
lem, which assumes that all parameters are known, may be for-
mulated as a mixed 0-1 linear optimization model. Even this case
is difficult to solve, due to its size and the presence of thousands
of binary variables. Approaches for solving this problem have been
described in Andalaft et al. (2003), Constantino and Martins (2017),
Guignard, Ryu, and Spielberg (1998), Henningsson, Karlsson, and
Ronnqvist (2007), and Weintraub and Navon (1976) of them use
strengthening of the formulation and decomposition techniques
such as Lagrangean relaxation to obtain very good solutions in
reasonable computation times with low residual gaps. We should
point out that the forest planning problems studied in Andalaft
et al. (2003), Guignard et al. (1998), and Weintraub and Navon
(1976) consider either the expected scenario or a single scenario.

A stochastic optimization model enables the planner to make
more robust decisions by taking into account the stochastic behav-
ior of the selling price and demand of timber. It considers a rep-
resentative range of timber price scenarios over time, maximizing
the expected value instead of merely analyzing a single (e.g., av-
erage) scenario as performed in the deterministic version of the
problem. It is assumed that the realization of the scenarios at a
given period is probabilistically conditioned by the realization of
these scenarios in the earlier periods. So, the values of the deci-
sion variables at a given node in a multi-period scenario tree also
depend on the realization of the uncertain parameters in the an-
cestors of the node. That is, the values of the variables depend on
the values of the parameters and the value of the variables in the
scenario groups with one-to-one correspondence with the nodes
up to the period that the node belongs to, being a unique solution
for those scenarios. So, the non-anticipativity principle introduced
in Wets (1974) is satisfied. See e.g., Birge and Louveaux (2011), and
Pflug and Pichler (2014) for the main concepts on stochastic opti-
mization via scenario tree analysis.

There is a variety of papers incorporating risk and uncertainty
into forest models, comparing it with a deterministic approach.
A good survey and analysis is presented in Pasalodos-Tato et al.
(2013), where different sources of risk and uncertainty are con-
sidered, namely, forest inventory, timber growth prediction, mate-

rial hazards as fires, markets (timber prices), climate change, etc.
Also different methodologies are shown for problems going from
stand to regional levels. These include stochastic dynamic pro-
grams, fuzzy set theory, Monte Carlo techniques, scenario simula-
tion, stochastic optimization with recourse, chance constrained op-
timization and Markov Chains, among others. Our work considers
a multistage forest planning problem, when uncertainty is in tim-
ber prices and demand. Uncertainty is defined through a scenario
representation, where each scenario is a realization of values of
prices and demand for each period along the time horizon. We did
present elsewhere (Alonso-Ayuso, Escudero, Guignard, Quinteros, &
Weintraub, 2011) a risk neutral (RN) multi-period stochastic mixed
0-1 model based on a finite set of representative scenarios for the
price uncertainty. The model is a stochastic counterpart of a tighter
version of the deterministic model introduced in Andalaft et al.
(2003). For problem solving we developed a matheuristic version
of the decomposition algorithm called Branch-and-Fix Coordination
(BFC) presented in Alonso-Ayuso, Escudero, and Ortufio (2003). The
computational results outperformed those obtained by consider-
ing the expected value approach. The latter approach is a popular
measure for solving stochastic optimization problems. It consists
of replacing the scenario realizations of the uncertainty in the pa-
rameters with the average (i.e., expected) value. In problems with
parameters with high variability, the results of the model using av-
erage values could be misleading; notice that a solution could be
worse than that from the stochastic optimization, or even be in-
feasible if more-extreme scenarios are realized, for which the so-
lutions based on expected values are not well covered. A progres-
sive hedging decomposition approach is presented in Veliz, Wat-
son, Weintraub, Wets, and Woodruff (2015) for solving the forest
harvesting planning problem, where the model is based on the de-
terministic one given in Andalaft et al. (2003).

On the other hand, to our knowledge, Pagnoncelli and Piazza
(2012) is the first study where forest harvesting planning with
uncertain timber price is addressed by considering risk manage-
ment, as opposed to a risk-neutral (RN) approach, in stochastic
optimization. A stochastic dynamic programming approach as well
as the popular (time-inconsistent!) classical Conditional Value-at-
Risk (CVaR)? risk averse measure, see Pflug and Pichler (2016),
and Rockafellar and Uryasev (2000), are used for determining the
best harvesting policy; however, the logistic aspects of the prob-
lem (road construction, transportation, etc.) are not considered.
(It is worth to point put that the work by the same authors in
Piazza and Pagnoncelli (2014) is the risk neutral counterpart of
the CVaR application presented in Pagnoncelli and Piazza (2012).
The CVaR measure thus reduces the negative impact on the solu-
tion in low-probability high-loss scenarios in the forestry planning
problem. Since the profit is for the whole time horizon, the risk
reduction is performed up to the last period of the time horizon
and, then, any scenario influences the VaR value and, as a conse-
quence, it does the solution of any other scenario (so, CVaR does
not have the time-consistency property as in defined in Homem-
de Mello and Pagnoncelli (2016) and others). Recently, Eyvindson,
Petty, and Kangas (2017) presented a two-stage stochastic program
with recourse for the timing of the next forest inventory and the
accompanying adjustments to the forest management plans includ-
ing CVaR-based risk management.

A state-of-the-art review on robust optimization for forest har-
vesting planning is presented in Bajgiran, Zanjani, and Noureifath
(2017), where it is assumed that there is not enough information
about the probability distribution, nor a set of available scenar-

! For time-consistency and -inconsistency, see Section 2.3.

2 Informally, CVaR at a given level 8 ¢[0, 1] is the expected profit of the 8 pro-
portion of the worst scenarios, and then, risk-averse models propose a solution with
the maximum CVaR.
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Year Exports Prices
2000 100.0  100.0
2000 1124 709 1900
2002 122.6 67.3
2003 132.8 71.9 170,0
2004 1554 822 1500
2005 157.2 80.2
2006 1613 895 1300 —Quanity
2007 184.4 102.4 110,0 Prices
2008 188.0 108.9
2009 1763 812 700
2010 1639 118.1 70,0
2011 185.0 1213 500
2012 181.7 1029 8588388588858 8%
2013 185.2 107.6 SIIJISIK&KIKIIKRIRER
2014 1946 1094

Fig. 1. Chilean forest exports index of wood quantity and prices. (base: Avr. year 2000=100).

ios to represent the stochasticity of the uncertain parameters. Spe-
cially, the uncertainty in distribution and inventory planning in the
pulp production is handled in Carlsson, Flinsberg, and Rénnqvist
(2014) by considering a rolling horizon in a robust optimization
approach where the uncertainties are described as an arbitrary
polytope and formulated as explicit constraints. However, a for-
est harvesting planning model is proposed in Bajgiran et al. (2017),
where the robust-based cardinality constrained method Bertsimas
and Sim (2004) is considered. Roughly, the known bounds of the
intervals of the uncertain parameters in the functions (either the
objective one or the constraints) are explicitly considered in the
model, but only restricted to a modeler-defined fraction of the un-
certain parameters, where iteratively only a fraction of a reference
value inside the intervals is also considered in the model.

In this paper, we consider a real problem of harvesting and road
building which was developed for Forestal Millalemu and reported
in Andalaft et al. (2003). It handled 17 forest areas. In Alonso-
Ayuso et al. (2011), uncertainty in prices and demands was incor-
porated in a scenario structure, considering risk neutral decision
makers. It was solved for only one forest area, in a much simpli-
fied version of the original problem, considering 18 scenarios. In
this work, the original problem is solved, not the simplified one,
2 and 3 forest areas are considered in the instances to experiment
with and, in particular, it is assumed that a decision maker would
want to minimize risk in earlier periods, which requires a signifi-
cantly higher number of scenarios.

The case study under consideration is representative of the for-
est industry and it presents a realistic planning problem of timber
harvesting and road building under uncertainty in Chile. Forestry
is Chile’s second largest source of exports, surpassed only by cop-
per mining. According to data from INFOR (Instituto de Investi-
gacion Forestal de Chile - the Chilean Institute of Forest Research),
the forest industry exports in 2014 exceeded for the first time the
barrier of US$6 billions, registering a sum of US$ 6094.3 millions,
which represents an increase of 6.7% over 2013. Such a figure con-
firms the magnitude of the industry and underlines the importance
of providing its planners with efficient decision-making tools. See
in Fig. 1 the evolution of the wood demand and price from 2000
to 2014.

The main contributions of this work over what was previously
published in the literature are as follows:

1. The real original model in Andalaft et al. (2003) is introduced
instead of the simplified version in Alonso-Ayuso et al. (2011).

The 18 scenario approach developed in Alonso-Ayuso et al.
(2011) is extended to 144 scenarios in order to handle in a
proper way considerations of risk at intermediate periods. This
led to a much more difficult problem to solve, which forced us
to strengthen the formulation.

. We introduce methodology to handle risk at earlier periods.
This is an important contribution, especially from a managerial
point of view. Having negative results in earlier periods is more
troublesome than just the consideration of a discount rate. In
most firms short term financial results are vital when evaluat-
ing the performance of management, making longer term suc-
cess secondary. Thus, reducing risk in early periods is impor-
tant. Time-inconsistent and time-consistent versions of CVaR
are dealt with in the forest harvesting planning problem, let
us name them TCVaR (for Time-inconsistent CVaR) and ECVaR
(for Expected CVaR). The former considers profit risk reduction
at modeler-defined intermediate periods, instead of considering
only profit up to the last period of the time horizon for the
whole set of scenarios, and the latter considers the profit up
to the last time period but individualized for given scenario
groups. These measures provide better solutions for the first
periods than the classical CVaR, while, as the results of the case
study show, at least, the overall profit distribution remains sim-
ilar to that obtained by the old measure.

. An extensive computational experiment comparing the differ-
ent approaches with different parameter settings has been per-
formed on the stochastic version of the real problem presented
in Andalaft et al. (2003). In particular, the measures EV (Ex-
pected Value), RN, ECVaR, TCVaR and MCVaR (a mixture of the
last two) are tested. Both types of policies, namely the planned
and implementable ones are considered for the risk averse mea-
sures.

TCVaR and MCVaR could be very interesting, particularly for
long time horizons, since the risk reduction is forced at interme-
diate periods, although it may deteriorate the profit at the end of
the time horizon and, then, they are suboptimal to ECVaR in that
sense. The latter one (that is time-consistent) is very beneficial, see
Homem-de Mello and Pagnoncelli (2016), Pflug and Pichler (2016),
Rudloff, Street, and Valladao (2014), and Shapiro (2009), among
others, since by construction it performs risk reduction in individ-
ual groups of scenarios (instead of considering its whole set). The
rationale behind a time-consistent risk averse measure is that the
solution value to be obtained in a given node, say n, of the mul-
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tistage scenario tree, should not be influenced by the realizations
of the uncertain parameters related to the nodes that are not in
the ancestor path from the root to node n of the scenario tree.
Notice that the group of scenarios in one-to-one correspondence
with those other nodes cannot occur at node n and successors.
See in Rudloff et al. (2014) an economic interpretation and prac-
tical consequences of a time-consistent risk averse measure, con-
sidering ECVaR as a pilot measure. In any case. it is up to the
decision-maker to choose the measure to consider, so that if the
aim is controlling the profit at intermediate periods at the price of
a moderate reduction in profit up to the end of the time horizon,
then MCVAR could be the measure of choice for the planned pol-
icy and TCVaR is the choice for the implementable policy. On the
other hand, if the aim is to optimize the profit up to and including
the last period then TCVaR and MCVaR could be suboptimal and
ECVaR is the measure of choice.

The goal of the tactical forestry planning addressed in this work
is to determine a policy for forest harvesting and access road con-
struction that will maximize the expected profit in the scenarios.
Given the uncertainty in wood price and demand along the time
horizon, the constraints should be satisfied at each node of the sce-
nario tree. Additionally, one will consider the time-consistent and
-inconsistent versions of the risk-averse CVaR measure. The timber
land under consideration is subdivided using geographic informa-
tion systems (GIS) into units or stands for harvesting purposes.

The remainder of the paper is organized as follows. In Section 2,
the multi-period mixed 0-1 stochastic problem is considered, with
the risk neutral model presented in Section 2.1. Section 2.2 intro-
duces our scheme for scenario tree generation to represent the un-
certainty. Section 2.3 studies the ECVaR, TCVaR and MCVaR vari-
ants of the CVaR risk-averse measure. Section 3 describes the forest
harvest planning problem as a case study to test the behaviour of
the risk-averse measures examined in this work. Section 4 presents
the main computational results comparing the risk averse ap-
proaches and their impact on the final solution. Finally, we discuss
the main conclusions of the work and outline future research plans
in Section 5. Appendix A presents the new mathematical formula-
tion for the deterministic version of the problem to be dealt with
in this work, and Appendix B describes some additional computa-
tional results.

2. Model building in stochastic optimization
2.1. Expected value and risk neutral models

For representing the uncertainty in wood demand and prices, a
scenario analysis approach is used, where the scenario set can be
visualized as a tree. Let 7 denote the set of periods in the time
horizon, where T = |T| is the number of periods and let 2 be the
finite set of representative scenarios. A scenario w € €2 is a particu-
lar realization of the uncertain parameters along the time horizon,
represented in the tree as a root-to-leaf path. A node of the tree
represents the event where a realization of uncertain parameters
and decision variables for a given period takes place. Notice that
the group of scenarios that have the same realization of the un-
certain parameters up to any given period have the same value
for the decision variables up to the period and thus satisfy the
well-known nonanticipativity principle. Notice that there is a one-
to-one correspondence between nodes and scenario groups for the
same period. Let n and N denote a node and the lexicographically
numbered set of nodes {1,...,|N|} in the tree, respectively, and
let N* denote the subset of nodes that belong to period t, such
that NV = UrerNT, NTNNT =g for t € T\ {T}. To facilitate the
presentation of the scheme for the scenario tree generation given
in Section 2.2, let A0 = {0}, M1 = {1} and NT+! = {INT| 4+ 1}. Let
also Q"cQ denote the subset of scenarios in one-to-one corre-

Q=0"={8,...,195Q*={8,...,13}
N?={2,3};0(4) =2; AT = {1,3,7}

Fig. 2. A multi-period scenario tree.

spondence with node n in the tree. For scenario w € Q2 the weight
w® represents the probability of its occurrence. Let A" and S" de-
note the sets of ancestor and successor nodes to node n (including
itself in both of them), respectively, for n € N. Let 8" € 8" denote
the set of immediate successors of node n e A. Note: N is sin-
gleton, A! = {1} and &" = ¢ for n € N'T. Finally, let o(n) denote the
immediate ancestor node of node n, for n e N\ {1}, where n =1
is the root node of the scenario tree.

As an example, let us consider the decision tree in Fig. 2. Each
node, say n, represents a point in time where a decision can be
made. Once a decision is made, some contingencies may occur (in
this example the number of contingencies varies from two to three
for periods 1 to 3), and information related to those contingencies
is available at the beginning of the next period.

Without loss of generality, let us consider the following syn-
thesized mixed 0-1 model that gives a compact view of the de-
terministic multi-period mixed 0-1 model (7)-(A.13) shown in
Appendix A for this forestry planning problem,

zpy =max Y _(ajx' +biy")

teT

subject to Y (A'x" +B{y") =h', VteT, 1)
t'eT:t'<t
xl e {0, 1}™O yt e RYO, VteT,

where EV stands for Expected Value, x' and y' are the ny(t) and
ny(t) dimensional vectors of the 0-1 and continuous variables, re-
spectively, aﬁ and bt1 are the vectors of the coefficients of the ob-

jective function, AL and B! are the constraint matrices of period
t for the 0-1 and continuous variables in its ancestor period t’
(including itself), respectively, and ht is the right-hand-side vector
(ths) for period t. Note: a} and bf1 can be considered as the unit
profit related to the variables in vectors x! and y!, respectively.

Without loss of generality, let us consider the synthesized com-
pact representation of the multi-period mixed 0-1 model for max-
imizing the expected value of the objective function in the set of
scenarios €2 in the scenario tree, such that the so-called Risk Neu-
tral (RN) model can be expressed as

Zgy = max y_ w"(ajx" + biy")

neN

sty (AixT+ By =h", VneN, (2)
qe A"
X" e {0, 1} y8 e RV Vn e N,
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where w" is the weight or probability of node n in the scenario
tree and is computed as 3", qon W?; A" € A" is the set of ancestor
nodes to node n with nonzero elements in the constraints matri-
ces of node n; x" and y" are the vectors of the 0-1 and continu-
ous variables for node n, respectively; aj and b} are the vectors of
the objective function coefficients for the 0-1 and continuous vari-
ables, respectively; Al and BJ are the constraint matrices of node
n for the variables in x4 and y9 in ancestor node q of node n, re-
spectively; h" is the rhs for node n; and ny(n) and ny(n) are the
numbers of 0-1 and continuous variables, for n € A, respectively.

As an additional notation to be used throughout the rest of the
work, let t(n) denote the period from set 7 to which node n be-
longs. Notice that A" for n € NT is the set of nodes for scenario
ne g, so, for convenience, let n = w for n € NT.

2.2. Representing the uncertainty. Multi-period scenario tree
generation scheme

It is beyond the scope of this work to present a methodol-
ogy for multi-period scenario tree generation and reduction; see
e.g., Heitsch and Romisch (2009), Ledvey and Romisch (2015), and
Pflug and Pichler (2015) for alternative ways of performing it. A
rigorous development of scenario trees for future wood prices is
extremely complex. We follow a proposal in Rios, Weintraub, and
Wets (2016) to generate the scenario tree for our case.

Let us consider that the tree structure represented in set
N, Vt e T and that the wood prices are mean-reverting as other
commodities. Their stochastic behaviour can then be modeled
through the stochastic differential equation,

dp(t) = (v — p(t))d: + o p(t)dw(t), p(0) = po,

where p(t) is the price at period t, p(0) is the present price (or an
estimate) at time 0, u is the speed of price convergence towards
its long-term value v, o is the standard deviation and w(t) is a
Wiener process. The solution of the equation can be expressed as
follows (see Rios et al. (2016) for more details),

t>0,

p(0) = v(1 —e ™) + p(0) exp[—(u + %Zt + ow(t))],

which corresponds to a displaced log-Gaussian process with mean
and variance

E[p(t)] = v(1 — e ) + poe™,
VIp(t)] = (p(0)e )2 (et — 1).

Using data from 1988 to 2009, Rios et al. (2016) proposes the fol-
lowing estimation for the coefficients of the process associated to
sawtimber:

po=1.0749, v=1.1998, u=00462, o2 =0.0319.

For pulp-wood, again on the 1988-2009 database, the coefficients
are as follows:

po = 0.5501, © = 0.0979,

Modeling export quality timber is not presented in Rios et al.
(2016); thus we considered, based on historical data, that export
quality is 20% more expensive than sawtimber. Additionally, in or-
der to consider some variability in the prices, a random perturba-
tion of 10%, at most, has been introduced in the timber price for
each market.

By following the ideas in Rios et al. (2016) for building robust
scenario trees, available information about price is used to conduct
an analysis of the cumulative distribution functions (CDF) associ-
ated to the densities. The main step of the methodology applied to
the case study from period t =1 to period t = |7| consists of ob-
taining a finite set of points that summarize the CDF, giving flex-
ibility for considering specific segments of the domain, e.g., tail

v = 0.5623, o = 0.0086.

events. For that purpose, the CDF is split in a finite number of
segments with a one-to-one correspondence with the nodes in set
N, Vt e T; then, the information of each segment is assigned to
a representative point. Formally, let £&; be a random variable with
support Ey, with probability density function f¢(t) and cumulative
distribution function Fg(t). In addition, for the nodes i = INET 4+ 1]
and j = |N!] (i.e., the lexicographically ordered first and last nodes
of period t, respectively), let C* = {c;, ..., cj,1} be a partition of the
interval [0, 1],

¢i=0ci=1ci<cp1, Vnefi...,j}, and
J

Ulen. caral = 10,11,

n=i

Considering the value of Fgl evaluated in Ct, the cy-quantiles of &,

say Qc, are obtained, for c, € Ct, Vn € A;, which define the parti-
tion of the support of &;. Note: Depending on the set Ct, the ap-
proach allows the number of scenarios to be changed, as well as
the segments of the support of &;. Once the segments are defined,
the expected value of the random variable for each one can be ex-
pressed as

E"=E(&1Q, <& < Q)

To generate the scenarios for the product demands, a similar
scheme is considered by assuming that they are normally dis-
tributed. As in Andalaft et al. (2003), the model considers lower
and upper bounds on the demand of each wood product to be
offered in different markets. These bounds are different for each
product g and market m at any node of the scenario tree. There-
fore, for a given product g and market m, let us consider a node
n € N with its set S" of the immediate successors in the tree, and
os is the order in the set related to node s € S" from 1 to k = |S"|,
k being the last node in that set. The demand, say ¢° in node s € S"
can be approximated by a normally distributed random variable
with mean u" and standard deviation o", lower and upper bounds,
say Qo1 and Q%, Qo?s being the %—quantile of the normal distri-

Vnefi...,j}.

bution N(u", o™). Note: Instead of the 0- and 1-quantiles of the
normal distribution (which, in fact, are —co and +o0, respectively),
we consider the 0.001- and 0.999-quantiles.

For computing the demand bounds of any node, say s € S™, the
parameters of the normal distribution to be used N(uS, o°) are
computed as follows: The mean u’ is the conditional expectation
of the random variable ¢ in the interval defined by the bounds

(QE s Qai), i.E.,
k k

MS:E(Q'"IQ% SC”SQ%),

and, for the computational experience reported in Section 4, the
standard deviation o° is set to 0.3u’. Note: The parameters for
the distribution function of the demand at the root node are a
modeler-defined data.

As an example, let us consider the three-period scenario tree
depicted in Fig. 3 where 7 = {1, 2, 3}, the root node is n =1 and
its immediate successor set S' is {s=2,...,5}. For a decision
maker-driven data with @ = 2000 and o = 600, the lower and up-
per bounds for the demand at the nodes in period t =2 are as
follows:

Node 2: Qo1 = 146 and Q% = 1505.
Node 4: Q% = 2000 and Q% = 2495.

Node 3: Q% = 1505 and Q% =2000.
Node 5: Q% = 2495 and Qg gg9 = 3854.

The normal distribution associated with the random variable &3
used for computing the bounds on the demand for the immedi-
ate successor node set $3 has a mean equal to: p3 = E(¢![1505 <

¢! <2000) = 1811.
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Node 1
&= N(p' =2000,0' = 600)

Node 3
= N(u® =1811,03 = 543)

1
3 1
: .3 :

1577 1+ 2045 3489
Qi ! Qz Qo.999

3 | 3

E((€*1505 < &' < 2000)=1811 = mean of &3

Fig. 3. Demand scenario tree generation.

2.3. CVaR-based risk averse management

The aim of the RN model (2) is simply to maximize the ex-
pected value of the objective function without any hedging against
the uncertainty in the parameters. For that reason, the main crit-
icism that can be made to this very popular mean measure is
that it ignores the variability of the objective function value in
the set of scenarios and, in particular, the left tail of the un-
desirable scenarios. There are, however, other approaches that,
additionally, deal with risk management; see in Alonso-Ayuso
et al. (2014) a comprehensive computational comparison of the
most popular time-inconsistent risk-averse measures. Well-known
theoretical research suggests that the measures based on quan-
tiles are good functions for risk management. Among them, the
Value-at-Risk (VaR) and Conditional VaR (CVaR), see Guigues and
Sagastizbal (2013), Homem-de Mello and Pagnoncelli (2016), Pflug
(2000), Pflug and Pichler (2016), Rockafellar and Uryasev (2000),
and Shapiro, Dencheva, and Ruszczynski (2009). have become a
benchmark for many applications in the financial, supply chain, en-
ergy, transportation and productions planning sectors, among oth-
ers.

Definition 1. VaRg (X, €2, P) of a solution X for a given set of sce-
narios €2, each one with a probability of occurrence in P, is the
highest value, say «, such that the probability of occurrence of any
of those scenarios with a profit smaller than « is lower than f§,
where 8 (0, 1) is a modeler-defined parameter.

Notice that the advantage of the VaR measure over the tradi-
tional maxmin measure is obvious, since it specifies the bound B
on the probability of the occurrence of a scenario whose profit
is below «. It does not however consider how bad the scenar-
ios with a profit below o can be. As an alternative, the classi-
cal CVaRg (X, €2,P) measure for linear models was introduced in
Rockafellar and Uryasev (2000), being expressed as

z:maxa—% dowela— Y (@xi+ byt . (3)

axy
weQ2 qeA» i

In this section, we present two modifications of model RN (2) that
allow risk management by taking into account the profit for those
non-desirable scenarios, i.e., those with profit below «, by consid-

ering extensions of the classical CVaR. As many other risk averse
approaches in the literature, CVaR reduces the probability of a neg-
ative impact of the model’s solution in the unwanted scenarios.
However, it does not consider scenarios with higher profit than «.
On the contrary, decision makers usually look for a trade-off be-
tween risk minimization and profit maximization. For this reason,
the risk measures are usually combined with the optimization of
the expected value of the objective function, leading to the follow-
ing mean-risk model, see Schultz and Tiedemann (2006),

ZevaR = max[y Z w"(ajx" + by") + ,o(a 1 Z Wwvw>:|
neN :3 weQ

(4a)

s.t. > (AlX9+ Bly) = h"

qe A

VneN (4b)

o — > (alx?+biy?) <v” Yo e Q (4c)

qeAe

X" e {0, 1} yn e RV VneN (4d)

v e R,y Yw e Q (4de)

o eR, (4f)

where « is a continuous variable that computes the
VaRﬁ((x,y),Q,P) associated with each solution, v® is a non-
negative variable that collects the difference (if it is positive)
between « and the profit for scenario w. Note that v® is strictly
positive only for scenario w with profit below «, y is a non-
negative parameter for the expect function value and p > 0 is also
a weight factor.

Function (4a) is the composite function of the RN expected
function (i.e., profit), the weighted VaR and the weighted nega-
tive expected shortfall on reaching the VaR profit. The constraint
system (4b) is the RN scenario node-based system. Constraints
(4c) define VaR and the shortfall of each scenario profit on reach-
ing it. The bounds (4d)-(4f) give the variables’ domain.
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Observe that the CVaR model (4) maximizes the expected profit
and the highest profit (i.e., VaR) at the end of the time horizon for
which the weighted expected scenario shortfall on reaching that
VaR is minimized. That very popular risk reduction measure may
have two big drawbacks depending on the modeler-defined aim to
consider. First, observe that the VaR profit and the related scenario
expected shortfall are evaluated for the whole set of periods (i.e.,
at the end) of the time horizon. And, second, all scenarios in the
tree are considered in the same set for obtaining the VaR profit
without differentiating between categories (i.e., groups).

It could therefore be interesting to consider a modeler-defined
intermediate subset of periods for avoiding low-probability high-
loss scenarios up to those periods in the time horizon. In that case,
the classical CVaR is not the most appropriate risk averse measure.
As an alternative, we propose the TCVaR measure, see Section 2.3.1,
in which the objective function considers the profit VaR and re-
lated expected shortfall up to each of the chosen periods in the
scenarios.

Another alternative is the ECVaR measure, see Section 2.3.2,
where a set of scenario groups from the whole set is considered
in one-to-one correspondence with the nodes that belong to a
modeler-defined subset of periods. The profit risk reduction for
each of those groups is considered for obtaining the profit VaR
and the related expected shortfall up to the last period in the time
horizon. The measure complies with the time-consistency defini-
tion given in Homem-de Mello and Pagnoncelli (2016), Kozmik and
Morton (2015), Rudloff et al. (2014), and Shapiro (2009), among
others, whose rough statement in Kozmik and Morton (2015) says:
‘At each state of the system, optimality of a decision policy should
not involve states which cannot happen in the future’. It is the def-
inition to be used throughout this work.

A computational comparison of the measures TCVaR, ECVaR and
MCVaR is reported in Section 4. Among other results (such as the
profit distribution) it shows the following results for each mea-
sure (say, m) and up to the chosen periods in the time horizon
for both policies, planed and implementable: Number of scenarios
out of set 2 where the measure has the highest profit among the
three measures (let us name such set @), and the expected dif-
ference between the highest profit among those measures and the
profit given by the measure in the scenario subset Q\2;,. That in-
formation may support the decision making when focusing on the
profit performance for the periods of interest.

2.3.1. Time-inconsistent multi-period TCVaR measure

The CVaR model (4) only performs risk management for the
profit but, in many contexts, the decision maker wants to manage
the risk for other functions such as the one that measures the en-
vironmental impact. Let 7 denote the set of functions where risk
management could be performed in the value )", _ o (a?x” + b'fly”),
Vf e F for the set of scenarios w < 2. The model also measures
and controls the risk at the end of the time horizon. However,
since the value of the function f under risk-control for each sce-
nario is calculated as the sum of the values of the function at the
nodes A%, this approach does not prevent very bad results at any
of the stages. Notwithstanding, it could eventually be compensated
by good results in the others stages.

It may thus happen that bad results at intermediate nodes in
the solution of model (4) drive the decision maker to a situation of
no-return. To avoid such situations, risk management can be per-
formed, as stated above, at some intermediate time periods; let us
denote 7} C T the subset of periods where function f is under risk
control (note that for singleton set 7} = {T}, the classical CVaR is
obtained). So, model (4) can be extended to consider multi-period,
multi-function risk management, resulting in the following model

Period: 1 2 3 4

Tr = {34}

Tree associated tot =4 ———

Tree associated to ¢t = 3

Fig. 4. The multi-period scenario tree and the related subtree for t = 3.

related to the TCVaR measure,

Zrcvar = max[y D wh(aix" + biy")
neN

+ ZZp}(a} - % > an'})] (5a)

feftef’, [ nent

st Y (Aix?+Bily?) = h"

qe A"

Ve N (5b)
a;—Z(aj’rxq-i-bj{yq)gU? VneN', teT; feF (50
qe A"

X e {0, 1}m0 yn c R Ve A (5d)

v eRy VneN', teTs feF (5e)
af eR VteT; feF, (5f)
where !

¥ is VaRﬂ} for function f e F up to period t 7} in the

time horizon for the whole set of scenarios, i.e., set N, v; is a
non-negative variable that gives the shortfall of the scenario group
in one-to-one correspondence with node n for reaching VaR a}(")
up to period t(n), and p} and ,B; for t e 7; are modeler-defined
parameters, such that p} weighs the risk reduction importance for
the pair (¢, f) and /3]5 is related to the importance given to the ex-
pected shortfall on reaching a} in the scenarios.

Function (5a) is like (4a) but now the risk reduction-based part
takes the weighted VaR and the related expected shortfall of the
value of each function up to the chosen periods where the risk
reduction is to be performed. Constraints (5c) define the function-
based VaR in those periods. They also define the related shortfall
of the function-value of the scenario group in one-to-one corre-
spondence with a node that belongs to the chosen periods.

As an illustration, consider the four-period scenario tree in
Fig. 4 and consider that Tf = {3, 4}, then TCVaR model (5) performs
risk management by minimizing the CVaR associated to the two
types of depicted scenario subtrees.

Among other remarks on the VaR and CVaR measures, Pflug
(2000) is the first work, as far as we know, that observes that CVaR
is a coherent measure according to the standards setup in Artzner,
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Delbaen, Eber, and Health (1999), see also Artzner, Delbaen, Eber,
Health, and Ku (2007), since it satisfies the properties of transla-
tion invariance, positive homogeneity, monotonicity and convexity.

2.3.2. Time-consistent multi-period ECVaR measure

One desirable constrained qualified property for a solution of a
multi-period model is time-consistency in the sense that the solu-
tion to be obtained for any node, say n, of the scenario tree and
its successor node set §" in the related submodel ‘solved’ at pe-
riod t(n) should have the same value as the solution obtained for
that node and its successors in the original model ‘solved’ at pe-
riod t=1. It is worth pointing out that the above mentioned con-
strained qualification consists of requiring that the value of the
variables in the ancestor nodes to be considered in the model ‘to
solve’ at period t(n) for the subtree rooted with node n is precisely
the one obtained in the original model ‘solved’ at period t = 1. In
the words of Rudloff et al. (2014), an optimal policy is time consis-
tent if and only if the future planned decisions are actually going to
be implemented.

It is well known that the RN model (2) is time-consistent,
while the risk measures CVaR and TCVaR are not. It was shown in
Homem-de Mello and Pagnoncelli (2016) that the time-consistency
property of CVaR depends on parameter ﬂ}: the smaller it is, the
higher the probability of consistency of CVaR, in the sense that
the difference between the solution obtained for the original prob-
lem and the solution for the problem ’solved’ at any other period
decreases.

As a time-consistent alternative to the TCVaR model (5), the
risk management can be performed at any node ne N : t(n) < T,
considering the scenarios in the associated subtree with root in
node n of the original scenario tree. Let 7} c T denote the sub-
set of periods where the risk reduction in the value of the func-
tion indexed with fis to be performed, for f € F. Observe that any
group of scenarios, say 2", is in one-to-one correspondence with
the related node n in the tree. The ECVaR model for performing the
required risk reduction in the forest harvest planing problem is a
straightforward extension of the synthesized model considered in
Homem-de Mello and Pagnoncelli (2016) for a general case. It can
be expressed as

Zgcvar = max[y Z w'(aix" + biy")
neN

XA Wa-g Ywp)] 6

feFteT;  nent f weQn

st. Y (Aix?+Biy?) = h"
qeA"

VneN (6b)

a a
af = Y (afx+ blyh) < v}
gede

YVoeQ" neN', teT; ferF

(6¢)

X" e {0, 1} yn ¢ Rv(M YneN (6d)

v e Ry VoeQ" neN', teT;, feF

of €R VneN', teT; feF, (6f)
where a? is VaRﬁ} for function f € F at the end of the time hori-

zon for the set of scenarios in ", and v is a non-negative vari-
able that gives the shortfall of scenario w for reaching a?, for
we Q"

Period: 1 2 3 4

Tree associated to t = 1

Fig. 5. Multi-period scenario tree and the related subtree for t = 2.

Function (6a) is like (5a) but now the risk reduction-based part
takes the weighted VaR and the related expected shortfall of the
value of each function up to the last period in the time horizon in
the chosen scenario groups. Constraints (6¢) define the function-
based VaR in those scenario groups in one-to-one correspondence
with a node that belongs to any of the chosen periods. They also
define the related shortfall of the function-value of each scenario
that belongs to the VaR-related group. It is worth pointing out
that model (6) is close to the average VaR proposals introduced
in Gaivoronski and Plug (2005), Pflug and Pichler (2016), and Pflug
and Ruszczynski (2005).

As an illustration, for the scenario tree in Fig. 5, consider that
Tf = {1, 2}, then the ECVaR model (6) performs the risk manage-
ment by minimizing the CVaR associated to the whole set of sce-
narios for t =1, and the set of scenarios Q" in the |N'| =3 de-
picted subtrees, each rooted with node n, for n e N't, for t = 2.

The ECVaR measure as presented in model (6) belongs to the
family of Expected Conditional Risk averse Measures (ECRMs) consid-
ered in Homem-de Mello and Pagnoncelli (2016), where the time-
consistency property of those measures is proved, according to the
definition introduced there. Notice that the proof only requires
the measure to have the properties of translation-invariance and
monotonicity. See some variants in Bion-Nadal (2008), Carpentier,
Chancelier, Cohen, De Lara, and Girardeau (2012), Collado, Papp,
and Ruszczynski (2012), De Lara and Leclere (2016), Pflug and Pich-
ler (2016), Pflug and Pichler (2015), Rudloff et al. (2014), Ruszczyski
(2010), and Shapiro (2009). The particularization of the definition
in our context is as follows:

Let (ﬂyq YqgeN, ﬁ‘f’) Yw e and 6{? Vn e NT, te7~}, fe]-')
denote any of the optimal solutions of the original ECVaR model
(6), and z} . is the solution value in that model where only the
terms related to the subtree 4" US" are considered. It can be ex-
pressed as

Zicvar =V Z wi (a7 + biy?)
gec Anugn

£ X wa -

feF qedm:t(q)eT;

> weiy)

1
t
ﬂf(lJ) fore

For any node n € NV, let us define the ECVaR" submodel from
(6) as follows:

e The scenario subtree that supports the ECVaR" submodel in-
cludes the nodes in set A" (from the original scenario tree) plus
the subtree rooted with node n whose nodes are in set S".
The input data of the submodel are the same as in model
(6) for any scenario tree of any scenario set 2.
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Final destination 3

Final destination 1

Final destination 2

@ origin node

A intermediate node
o access to stands
stocking yards
==== Public road
Existing road
---- Potential road

Fig. 6. Areas and (potential and existing) logistic structure.

« Finally, in the submodel the variables in vectors x and y? Vq ¢
A"\ {n} are fixed to the values in £4 and y9, respectively

Let Zpoyzn denote the value of an optimal solution of the
ECVaR" submodel. Therefore, the ECVaR measure is a time-consistent
one, since the following assertion is true:

n —
ZEcvaR = ZECVaR™

Another consistent CVaR-based measure that may ben consid-
ered as an alterative to model ECVaR (6) is the nested risk measure
introduced in Kozmik and Morton (2015), Philpott, de Matos, and
Finardi (2013), and Shapiro (2009). The nested mechanism of the
CVaR submodels for each period in set ”Tf f € F, however, makes
its decomposition more difficult.

Note: ECVaR, as well as any other ECRM, is usually very suitable
for using decomposition algorithms (such as Escudero, Monge, and
Romero-Morales (2015), and Zou, Ahmed, and Sun (2016), among
others) for solving large-scale instances.

An interesting question is: What version, either the time-
consistent one or the time-inconsistent version of a risk averse
measure, performs better for risk management? The computational
experiments whose main results are reported in the next section
may help to answer that question.

3. The case study

The above risk averse measures have been tested in the real
forestry problem presented in Andalaft et al. (2003). For that pur-
pose, its deterministic mixed 0-1 model has been tightened and
extended to the stochastic version in order to be able to include
the uncertainty in timber prices and demand (see the determinis-
tic version in Appendix A). The known data used in the experiment
are based on Andalaft et al. (2003) while the multi-period scenario
tree for representing the uncertainty due to the variability of the
timber price and demand along the time horizon is generated ac-
cording to the scheme presented in Section 2.2. In Section 3.1, a
detailed description of the forestry planning problem is shown, and
then, in Section 3.2 the main characteristics of the three instances
used for testing are presented.

3.1. The forestry problem

Consider the following management planning problem in the
timber industry. The firm under consideration owns plantation
lands that are divided into areas. Within each area there are dif-
ferent stands, considered homogeneous as defined by age of trees,
soil quality (site index), and volume available per hectare (see
Fig. 6). All areas are planted with pine trees, which mature at age

22-28. The stands that can be harvested during the time horizon
are therefore known. Growth-simulator models developed by the
forest firms are used to estimate timber yields in future periods.
In this kind of problems, the time horizon considered is usually
two to five years (in the computational experience three years are
considered).

On the demand side, timber production goes to export, to
sawmills, and to pulp plants, as logs. While in reality there are
many different products, defined mainly by log length and diame-
ter, at this level of planning we define only a few basic aggregate
products, referred to as export, sawmill, and pulp. Usually a higher-
level quality can be used for lower-level purposes, at a loss in sale
revenue. For example, the pulp mill takes any type of timber, while
only export quality can be exported. The main goal of the planning
process is to match the supply of standing timber with demand
for timber product of specific grades, lengths, and diameters, and,
thus, reducing losses in revenues due to down-grading and non-
profitable additional cutting.

The problem also considers the logistics of producing and de-
livering those timber products. Most timber areas are near paved
public roads, but in order to get access to the different stands in
each area, inside the areas private roads are needed. At the begin-
ning of the time horizon there are potential roads, i.e., roads that
can be built, as well as existing roads. In any later period there
are roads already built and projected ones. In addition to taking
into account the existence or nonexistence of roads, one also has
to consider their surface quality. First, private roads can be built of
either dirt or gravel, and this has an impact on operations. Gravel
roads are more expensive to build, but lead to lower transportation
costs and can be used year-round, while dirt roads are only useful
in the dry summer. Next, road building and upgrading should be
carried out in proper sequence so as to be consistent, timed with
stand harvesting, as well as to avoid excessive road building. In ad-
dition, road building can only be carried out in summer.

Harvested timber can be stocked from summer to winter in
stocking yards; it makes sense to keep in the stocking yards from
summer to winter some of the timber harvested in stands accessed
via dirt roads, which can only be harvested in summer. The stock-
ing yards are located where there exist gravel road connections to
the area exit, so that timber harvested in summer can also be sent
to destinations in winter.

Finally, consider the production and delivery of timber demand.
Aggregate demands are projected to future periods, often as lower
and upper bounds and so are the expected prices. Cable logging (or
towers) carry out harvesting for steep areas, while skidders harvest
flat terrain. Timber hauling is carried out by truck to such destina-
tions as ports, pulp plants, sawmills, or stocking yards. Harvesting
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markets
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@ origin node
A intermediate node
° access to stands
stocking yards
final destinations / markets
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s=== Public road
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---- Potential road

Fig. 7. Logistic network.

machinery and crews are usually subcontracted with yearly con-
tracts. There is no clear way to evaluate the fixed costs needed
to install the harvesting machinery process, so firms replace this
cost by a policy of harvesting at least 10 or 15 hectares for larger
stands, and harvest the whole stand for smaller areas.

To summarize, the basic decisions to be considered in each pe-
riod are as follows:

stands to be harvested;

e roads to be built (in gravel or dirt) and roads to be upgraded
from dirt to gravel;

« amount of timber production, by aggregate product for harvest-
ing to satisfy demand;

o amount of timber transported to destinations or stocked from

summer to winter, if applicable.

As an example, a logistic infrastructure for the problem is de-
picted in Fig. 6. Observe that there are public roads for transport-
ing the material from the two harvesting areas and two stocking
yards. Each harvesting area is accessible through an existing gravel
road, but there are other possible access roads. Not all stands
are accessible through the existing roads and additional roads are
needed to be able to access them.

The logistic structure can be modeled as a network where the
nodes can be defined as follows:

Stands: stands can be represented by nodes in the network as-
sociated to an access point.

Origins: Each access point to a stand is linked to an origin node,
such that one or more stands are accessible from each origin
point, but the stands are only accessible from one origin.
Stocking yards.

Final destinations.

Intermediate points: road junctions (linking different pieces of
roads, public or private).

Notice that products are sent to the markets from the final des-
tination nodes or directly from the stocking yards.

The set of links in the network includes all roads in the model
(public and private, existing or potential for the latter) and the
connections between origins and stands. Fig. 7 shows the network
associated with the logistic structure depicted in Fig. 6.

See Appendix A for the detailed mathematical formulation of
the deterministic version of the problem. Note that this model
incorporates all the features of the real problem presented in
Andalaft et al. (2003) that were deleted in the simplified version
of Alonso-Ayuso et al. (2011). These include : (a) The three basic

Table 1

Instance description.
Ins. na S c I £P B rE2 Ha Q M
i1 2 1 0o 15 7 7 0 6274 3 7
i2 3 4 0 20 7 10 0 6940 3 7
i3 2 21 0 33 8 16 9 216.1 3 7

timber products, rather than one; (b) The two types of road cate-
gories, dirt and gravel, with the possibility of upgrading from dirt
to gravel; and (c) The possibility of transferring Summer produc-
tion to Winter deliveries via use of stocking yards. In order to solve
this more complex model, given the high number of scenarios con-
sidered, as shown next, its need to be tightened.

In this deterministic model, all parameters are assumed to be
known at the beginning of the time horizon, including timber
prices and demand along the time horizon. Wood demand and
prices can, however, vary along the time horizon, see Fig. 1. No-
tice the volatility of the uncertain parameters which are, therefore,
very difficult to predict. In order to be able to solve the far more
complex resulting stochastic model, the deterministic model pre-
sented in the Appendix A is a tightened version of that in Andalaft
et al. (2003) (see constraints (7g) and (7h) and (12b)-(12i)). This
allows carrying out the broad experiments reported in Section 4.

The instances in Section 4 used for testing the risk averse re-
duction measures are based on Andalaft et al. (2003), in which a
deterministic version of the problem was solved using real data
from the forest company Forestal Millalemu. It consisted of 17
forests, geographically separated, each connected through public
roads to demand nodes. It produced three wood qualities (for ex-
port, sawmills and pulp plants) that were sent to different des-
tinations, either final markets or processing plants. In this work,
different instances have been created by selecting subsets of the
areas in order to obtain small but yet realistic examples where the
stochastic version could be solved in a reasonable computing time.
The time horizon considered is three years and each year is divided
into two seasons (summer and winter). 7, therefore, includes six
time periods (also called stages). The first time period is consid-
ered to be summer.

3.2. Description of the instances

The main characteristics of the instances considered in this
work are shown in Table 1. The headings are as follows: na, num-
ber of areas; S, number of stands; C, number of stocking yards;
7, number of nodes; £P, number of potential roads; £E4 and CEg,
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Fig. 8. Forestry scenario tree.

Table 2
Model dimensions.
Deterministic model (1) RN model (2)
Ins. m nc n01 m nc n01 12| IV
il 1531 2399 220 158,919 234,070 22,880 144 589
i2 1916 3311 268 198,288 323,598 27,592 144 589
i3 2365 4063 350 245,806 397,136 35,825 144 589

number of existing roads in dirt and in gravel, respectively; Ha, to-
tal forest surface; ©, number of harvest products; and M, number
of markets.

The  scenario  tree  structure  corresponds to a
1x12x12x1x1x1 model, where the second stage has 12
nodes, each of the second-stage nodes has 12 sons, and the
nodes in the rest of the stages have only one son, resulting in
12 x 12 = 144 scenarios, see Fig. 8. To build the data for the sons
of a node, 4 price scenarios and 3 demand scenarios have been
combined in order to obtain 12 combinations.

The size of the mathematical formulation of the determinis-
tic model (only one scenario) and the compact formulation of the
risk neutral (RN) approach of the stochastic model are shown in
Table 2. The headings are as follows: m, number of constraints, nc,
number of continuous variables, n01, number of binary variables,
|€2], number of scenarios in the scenario tree, and |A/|, number of
nodes in the scenario tree. Note: Risk management is considered
for only the objective function (the net present value of the prof-
its), i.e., set F is a singleton.

The dimensions of the mathematical formulations for the risk
management models TCVaR (5) and ECVaR (6) are very similar to
the dimensions of the RN model (2). Model (5) adds one «-variable
for each stage for which the risk management is performed (i.e.,
|7| variables), one v-variable for each node in the stages in T
(ie, k=Y ;7 |N']), and the related k constraints. Model (6) adds
k a-variables, |2| v-variables, and the related |2| constraints. In
the instances of the experiment, there are fewer than 300 new
constraints and continuous variables. Taking into account the di-
mensions of model (2) (see Table 2), there are less than 0.2% and
0.1% increments in the number of constraints and variables, respec-
tively.

4. Results

The analysis of the computational performance of the CVaR
versions and its comparison with RN is organized as follows:
Section 4.1 presents the comparison of the results for the deter-
ministic (i.e., Expected value, EV) model (1) of the forest harvest-
ing planning and the related RN model (2). Section 4.2 performs
a comparison between the planned policy of TCVaR and ECVaR
models (5) and (6), and MCVaR, a mixture of both, versus the RN
model. The objective is to analyze the impact of those measures on

the solution. The comparison is performed on the expected profit,
VaR and CVaR (for specific values of the parameters in the last
two) as well as on the profit distribution along the scenarios at
periods t =1, 2,6 related to the measures RN, CVaR, ECVaR, TC-
VaR and MCVaR. The comparison between these results takes as
a reference (with value 100) the expected profit of the WS (Wait-
and-See) model, since it is an upper bound on the expected profit
in any of the measures under consideration. It is obtained from
the optimal profit of the scenarios considered individually (i.e., it is
the RN profit where the non-anticipativity constraints are relaxed).
Section 4.3 performs a similar analysis of the risk measures dealt
with in this work, but the implementable policy is considered (ex-
plaining the rolling horizon scheme that is used), instead of the
planned one. The differences between both types of policies are
emphasized at the end of the section and also in Section 5. Ad-
ditionally, Appendix A discusses the impact of the changes for dif-
ferent parameters in the risk averse measures.

The computational experiments were conducted in the HW/SW
platform given by a workstation under the Linux operating sys-
tem (version Ubuntu GNU/linus 14.04.1) with 64 bits, 2 proces-
sors Intel(R) Xeon(R) CPU E5-2630 @ 2.3 gigahertz, 64 gigabyte of
RAM DDR3 1600 megahertz ECC and 24 virtual cores. The model
has been implemented with GAMS 24.3.2. The optimization uses
one of the state-of-the-art commercial optimization engines, CPLEX
12.6.1; the optimality gap has been set to 2%.

Note: The reporting of the results of the experiment is made by
taken benefit of the use of boxplots. It is a standardized way that,
in our case, allows to display the summary of the distribution of
the scenario profit quantified in the following five statistical mea-
sures: minimum, first quartile, median, third quartile, and maxi-
mum. The central box spans from the first quartile to the third one.
The segment inside the rectangle shows the median. The whiskers
above and below the box show the locations of the minimum and
maximum. Additionally, the mean (expected profit), and the com-
puted VaR (c-VaR) and CVaR (c-CVaR) are shown in each boxplot.
Note: In all experiments, it has been set up y = 1.

4.1. Computational comparison between the deterministic EV and RN
models

Let us start with a comparison between the traditional deter-
ministic EV model (1), where the uncertain parameters have been
replaced with their expected values, and the RN model (2). Let the
well-known Expected profit of the Expected Value (EEV) be ob-
tained by applying the EV solution to the scenarios. Let also WS
(Wait-and-See) denote the expected profit obtained by solving the
independent scenario models, which is an upper bound on the ex-
pected profit of the original RN model. Notice that the WS solution
does not usually satisfy the non-anticipativity constraints (NAC).
The methodology for obtaining the EEV is very well established for
the two-stage setting, see Birge and Louveaux (2011), but it is not
for the multistage one, see Escudero, Garin, and Pérez (2007). Al-
ternatively, we propose the following methodology for obtaining
EEV in a rolling horizon type of calculation (see Agustin, Alonso-
Ayuso, Escudero, and Pizarro (2012) for more details): (1) The so-
lution for the first stage is taken from the EV solution, (2) Once
the solution up to stage t — 1 is fixed, |N*| independent scenario
subtrees remain, (3) The EV solution is independently obtained for
the scenario subtrees, whose root nodes are the nodes in set A%,
so that the solution for each root node is fixed to its EV solution,
(4) The models where only the stages T — 1 and T are involved are
mixed 0-1 two-stage problems, where the first stage nodes be-
longs to set AT-1, and finally they are solved. At the end of the
process there is a solution for each scenario, such that EEV is the
weighting of the solution values of the scenarios as calculated by
the procedure.
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Table 3

EV model (1) and RN model (2): Results and profit distribution for instance i2.

Profit distribution

4000

EEV RN WS
Solution value 2415 2507 2597
Greatest scen. solution value 3525 3879 4228
Median 2399 2451 2517
c-VaR 1959 1959 2091
c-CVaR 1589 1851 2008
Smallest scen. solution value 587 1668 1897
CPU time tq (secs) 11 33810 125

)
*

o

1000 - e Expected profit

= 0.10-VaR
* 0.10-CVaR

WS

EEV RN

The main results related to the RN, WS and EEV solutions for
instance i2 are shown in Table 3. No results are reported for in-
stances i1 and i3, since the EV solution becomes infeasible at some
stage of the procedure. For the EEV, RN and WS solutions, c-VaR
is the 0.10-quantile of the profit vector for the set of scenarios
(that is, 10% of the scenarios have a profit lower than c-VaR, and
c-CVaR gives the expected profit for those scenarios whose profit
is lower than c-VaR). We can observe that the EEV solution value
(in this case, the expected profit) is 5.5% smaller than the RN profit
but only 2.2% smaller than the computed VaR profit. However, the
computed CVaR and the smallest scenario-related profit obtained
in the EEV approach are very poor, comparing with the ones ob-
tained by the RN model (2). Therefore, the RN maximization of the
expected profit in the scenarios along the time horizon also pro-
vides better results in terms of risk than the EEV results for the
traditional EV approach.

The boxplots associated with the distribution of profits along
the different scenarios for the EEV, RN and WS solutions are also
shown in Table 3. (Notice that the latter is taken as the reference).
From those boxplots, it can be concluded that the solution pro-
vided by the EEV approach is worse than the one provided by the
RN model (2), given the worse values of the statistical measures.
It highlights the CVaR and the lower tail of the profit distribution,
with very poor values for the worst-case scenarios.

4.2. Computational comparison between the RN, TCVaR, ECVaR and
MCVaR models. A planned policy

The main input for the comparison to be performed between
the models RN (2), TCVaR (5), ECVaR (6) and MCVaR is as follows:

o TCVaR performs the risk management in two points, namely, an
intermediate period and the end of the time horizon, so, say,
71 = {3, 6}. The parameters Bt for those periods have been set
up to 0.10.

e ECVaR performs the risk management in each of the given sub-
trees in the scenarios tree. Considering the tree structure de-
picted in Fig. 8, period t = 2 is the only intermediate one where
the risk can be controlled by ECVaR, besides of course t =1,
then, 77 = {1,2}. The parameters 8! and B2 have been set up
to 0.10 and 0.18, respectively. Observe that the |N!| = 12 nodes
in t =2 have 12 sons each, thus each weight is 0.0833. On
the other hand, it has been decided to perform the experiment
with a greater value for the S-parameters in order to penalize
not just one scenario per subtree, but two at least.

e MCVaR combines the TCVaR and ECVaR models such that the
risk management is carried out by using ECVaR for the scenario
groups in one-to-one correspondence with the nodes in period
2 and TCVaR for the nodes in periods 3 and 6. That is, MCVaR

performs the risk management at period 6 but individualized
for each group of scenarios in period 2 and, simultaneously, it
performs a risk management for the whole set of scenarios up
to periods 3 and 6.

Notice that the traditional CVaR (4) is a particular case of TC-
VaR for 7; = {6} and ECVaR for 7; = {1}. These risk management
approaches are biobjective mean-risk models. All of them include
in the objective function different weights for each time period in
77, where the risk is controlled. It is well known in multiobjective
optimization that each combination of these weights gives a effi-
cient solution; see in Appendix B the results of our testing with
different combinations.

The results of the best tested combination in our experiment
are shown in Table 4, where the expected profit, computed VaR
and computed CVaR up to the end of periods t =1, 2,6, are pre-
sented. Notice that most of the studies in the literature focus the
analysis in the comparison of the profit distribution at the end of
the time horizon (t =6 in the forest harvesting problem). How-
ever, taking into account that, usually, (1) the available informa-
tion changes along the time and, therefore, the model will be
re-optimized once new information is available, and (2) decision-
makers may want to obtain good decisions at the beginning of the
time horizon (and, in this case, periods t = 1,2 correspond to the
first year), it seems convenient to improve profits at these first pe-
riods as well as the profit at the end of the time horizon.

As can be observed in Table 4, all stochastic models practically
provide the same expected profit at the end of the time horizon
(t =6), while c-CVaR and c-VaR are slightly higher for the risk
averse approaches. However, the risk averse models provide an ex-
pected profit for t = 1,2 (especially, for the former) much higher
than RN as well as a significant improvement in c-VaR and c-CVaR.
In short, it can be observed that the risk averse measures move the
profits to the early periods. On the other hand, the expected profit
is only slightly deteriorated at the end of the time horizon (t = 6)
compared with the RN profit. Finally, it is not a surprise that the
classical CVaR measure provides higher expected profit (at the end
of the time horizon) than the other risk averse measures, due to
the fact of the weaker risk reduction that is considered.

Besides these statistics, it is also important to consider the
profit distribution in the set of scenarios, instead of just the ex-
pected one. For that purpose, next to each table, the boxplots are
shown for the profit distribution at the end of the three periods
that are considered for risk reduction in the instances. The set of
boxplots on the right figure of each table shows the profit distri-
bution at the end of the time horizon (t = 6), the lower figure in
the left part shows the profit at the end of t =2 (corresponding
to the end of the first year of harvesting) and the upper left fig-
ure corresponds to the profit at the end of t = 1 (corresponding to



A. Alonso-Ayuso et al./European Journal of Operational Research 267 (2018) 1051-1074

1063

Table 4
Results and profit distribution for the different approaches. Planned policy.
Instance i1
::gg: e Expected profit -
| v c-VaR 3500 o —
tStat. RN CVaR ECVaR MCVaR TCVaR WS =1 "~ = T T T T
1 2 2 3 6 3 6 200 — - : | |
PP P1P1IPL  P1P1 200 - j 3000 | i : :
5 i 5 i 5 i 5 " ECVaRMCVaRTCVaR ‘;,E | i
1 Expected 17.3 164 169 169 174 287 OV (611 (5,114 (1149)
2 Expected 37.9 380 409 436 401 499 — 1™ =
c-VaR 339 330 358 372 355 321 | j
c-CVaR 324 328 348 355 342 283 | B oy | oo
6 Expected 92.9 930 928 922 924 1000 .l . = E _ l ¥
c-VaR 693 698 703 703 699 798 §@% TR | ] v v
c-CVaR 64.0 644 649 649 648 745  wo ¥ T S S A
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aR (5,1/4) (5,1/4,5) (1/4,5) CVaR (5,1/4) (5,1/4,5) (1/4,5)
Instance i2
1400 Profit until period 1 — 4500 - Profit until period 6
w|  ————F8 _
¢ Stat. RN CVaR ECVaR MCVaR TCVaR WS 2] f
pipi pipiet pipd ol o o+
5 i 5 i 5 i 5 AN " ECVaRMCVaR TCVaR ‘;,E 3500 - : 3 |
1 Expected 33.9 417 41.1 404  41.1 385 CURR (B 1114 (149)
2 Expected 51.4 56.6 585 593 582 563 am] — ] oo
c-VaR 473 535 559 550 558 443 S
c-CVaR 472 530 555 545 553 331 ‘' = %$%$- EBHHE
6 Expected 96.6 960 955 957 955 100.0 = v
c-VaR 755 768 715 767 771 805 ] e ¥ ¥ ¥ ¥
cCVaR 713 731 737 736 739 713 |5 Spegeaeren r L
500 1 % c-CvaR L
" EGUGRMCVARTOUaR vjg . | ECVaRMGUaRTOVaR ng
CVaR (5,1/4) (5,1/4,5) (1/4,5) CVaR (5,1/4) (5,1/4,5) (1/4,5)
Instance i3
:zzz: e Expected profit e
v c-VaR | 4000 4 —
fSta. RN CVaR ECVaR MCVaR TCVaR Ws o - ———B8 | |
pipt  piptpl  pipt o | : T
5 i 5 i 5 % 5 y " ECVaRMCVaRTCVaR s 3000
1 Expected 27.2 294 332  31.7 333 352 O e (14
2 Expected 429 462 487 494 463 512 | ] =
c-VaR 366 41.7 450 443 448 402 - - | E .
cCVaR 365 415 48 437 439 354 ™ - [8
6 Expected 94.5 96.1 950 940 944 1000 | E% ¥ % | ; ¥ ¥ ; ¥
c-VaR 695 708 732 723 720 768 w| = M *
c-CVaR 62.1 664 687 678 676 734 Bt

600

ECVaRMCVaRTCVaR \yg
GVaR (5,1/4)(5,1/4,5) (1/4,5)

ECVaRMCVaRTCVaR \yg
CVaR (5,1/4)(5,1/4,5) (1/4,5)

the first semester in the time horizon). Note that in the latter case,
the solution proposed by all the stochastic optimization models is
the same for all scenarios (the boxplot is just a dot), since the non-
anticipativity principle is satisfied, while the WS approach provides
(by construction) a different profit for each scenario. It can also be
observed that at the end of t = 2, ECVaR, TCVaR and MCVaR lead
to a better solution than RN, since not only the expected profits
are higher (as shown in the tables), but also the improvement is
due to the profit distribution in the set of scenarios.

Let us consider the results for instance i2. It can be observed
that all the stochastic measures practically provide the same ex-
pected profit and profit distribution at the end of the time hori-
zon (t =6). However, ECVaR, MCVaR and TCVaR are advancing
high profit to period t =1, where the ECVaR and TCVaR prof-
its are higher than in MCVaR. Additionally, the expected profit as
well as the other statistics (median, quartiles, minimum and max-
imum) for t = 2 in MCVaR are higher than in the other three mea-
sures. It should be noted that the boxplot in TCVaR shows that this



1064 A. Alonso-Ayuso et al./European Journal of Operational Research 267 (2018) 1051-1074

Table 5
Comparison of the three measures: ECVaR, MCVaR and TCVaR.
Planned policy.

Instance il
ECVaR MCVaR TCVaR
t #best  dev.best  #best  dev.best  #best  dev.best
1 0 1.88 144 0.00 144 0.00
2 24 10.12 108 1.35 24 13.09
3 1 4.29 98 1.80 42 5.86
6 22 0.64 71 171 54 0.75
Instance i2
ECVaR MCVaR TCVaR
t #best  dev.best  #best  dev.best  #best  dev.best
1 144 0.00 0 1.52 144 0.00
2 60 3.74 72 1.70 36 3.54
3 47 1.84 54 118 51 1.90
6 64 1.98 34 118 50 1.67
Instance i3
ECVaR MCVaR TCVaR
t #best  dev.best  #best  dev.best  #best  dev.best
1 0 0.34 0 5.01 144 0.00
2 84 8.87 60 4.46 0 8.57
3 70 4.70 57 2.28 17 4,62
6 79 2.64 40 3.28 25 248

approach provides a more concentrated profit distribution than the
other two risk averse measures, and notice that less variability in
future profits is also a desirable property.

In summary, the main conclusions that can be drawn from the
experiment reported in Table 4 are as follows:

o All the stochastic models provide similar expected profit at the
end of the time horizon (t = 6). The profit distribution is also
very similar for the four models, although the risk averse mea-
sures have better (i.e., smaller) lower profit tails.

e The risk averse measures usually provide a better profit than
the risk neutral measure for periods t = 1, 2.

Table 5 shows some other results for periods t =1,2,3,6 on
the same experiment shown in Fig. 4. They are closely related
to the comparison of the three risk averse measures, namely
m =ECVaR, MCVaR, TCVaR. Remember that 7 = {1,2} for ECVaR,
7 =1{1,2,3} for MCVaR and 7 = {3, 6} for TCVaR. We use the fol-
lowing notation: profity, ., profit obtained in scenario @ by mea-
sure m up to period ¢, for w € 2; best?” = max;{profity .}, highest
profit among the three measures in scenario w up to period ¢, for
we; and QmC§?, subset of scenarios where the profit profity,
obtained by measure m was not the highest best” up to period t.
The headings are as follows for each measure m and up to each
period t: #best, number of scenarios where measure m has the
highest profit up to period t out of the |2| = 144 scenarios in the
experiment; dev.best, expected difference (in percentage) between
the highest profit best?” and the profit profit;, , obtained by mea-
sure m up to period t, among the subset of scenarios 2, (i.e., the
set of scenarios where measure m does not provi(l:)le the best profit).

weQm W (best?’—profity,
= 1002 QZaJeQ(m W(i)befttwf m’[) NO_
tice that the highest the number #best and the smaller the differ-
ence dev.best, the higher the quality of measure m up to period
t.

It can be expressed as dev.best

The conclusion that can be drawn from the experiment is that
MCVaR advances the profit to the first periods and ECVaR is usu-
ally the most profitable (at the end of the time horizon).

4.3. Computational comparison between the RN, TCVaR, ECVaR and
MCVaR models. An implementable policy

In this section the comparison that is performed in Section 4.2,
in particular, for the risk averse models (2), (5) and (6) is expanded

to consider the suggestion made in Rudloff et al. (2014). It consists
of presenting a rolling horizon scheme for an implementable policy
in the RN, TCVaR, ECVaR and MCVaR risk measures.

Implementable RN solution

The RN solution for period t = 1 is the one obtained from the
original RN model (2). By fixing that value, the model is decom-
posed into |[N?| =12 independent submodels with 12 scenarios
each. After that, solving each submodel results in the rest of the
RN solution.

Implementable TCVaR solution

The first step considers the original model (5) supported by the
full scenario tree. The subset of risk averse periods is 7 = {3, 6} as
for the planned policy, and ,of =0.25 and p]3 = 5. The risk reduc-
tion on the profit is performed in the whole scenario set 2. The
profit is taken into account up to the end of the time horizon for
t = 6 and only up to the nodes in subset A'* for t = 3. So, there are
two places for risk reduction.

After fixing the solution for period t =1 to the value obtained
from solving the original model (5) in the first step, the second one
considers |[A2| = 12 independent submodels (5). Each submodel is
supported by a scenario subtree rooted with node n, for n e A2
as for RN, but now 7 = {4, 6} (note that the scheme has advanced
one period in the implementation), o8 = 5 and p* = 0.25. The risk
reduction is performed in each scenario subset Q", for ne AN,
where the profit is taken into account up to the end of the time
horizon, and only up to the nodes in subset A4, Thus, by construc-
tion, there are 24 places for risk reduction.

Implementable ECVaR solution

The first step considers the original model (6) also supported
by the whole scenario tree. The subset of risk averse periods is
7 = {1, 2} as for the planned policy, and p] =5 and p? = 0.25. The
risk reduction on the profit is performed in the whole scenario set
Q for t = 1 as well for each scenario subset Q" for n e Nt for t = 2.
The profit in both risk reduction steps is taken into account up to
the end of the time horizon. So, there are 13 places for risk reduc-
tion.

After fixing the solution for period t =1 to the value obtained
from solving the original model (6) in the first step, the second one
considers |A2| = 12 independent submodels (6). Each submodel is
supported by a scenario subtree rooted with node n, for n e A2
as for RN and TCVAR, but now 7 = {2}. (Note that the pilot case
only allows singleton scenario groups for t > 2). The risk reduction
is performed in each scenario subset Q", for n € N2 as in the first
step, where the profit is taken into account up to the end of the
time horizon, but, for being coherent, 1012 =5 instead of 0.25. Thus,
there are 12 places for risk reduction.

Implementable MCVaR solution

The first step considers the mixture of the original models
(6) and (5), so-called MCVaR, supported by the whole scenario
tree. The subset of risk averse periods is 7 = {1, 2,3} as for the
planned policy, and p] =5 and p? = p3 = 0.25. The risk reduction
on the profit is performed in the whole scenario set Q for t =1 in
the ECVaR-part of the joint MCVaR model, for each scenario sub-
set Q" for n e N in period t =2 in the ECVaR-part of the joint
model, and for the whole set Q for t = 3 in the TCVaR-part of the
joint model. The profit is taken into account up to the end of the
time horizon for periods t = 1,2 and only up to the nodes in sub-
set Nt for t = 3. So, by construction, there are also 14 places for
risk reduction.

After fixing the solution for period t =1 to the value obtained
from solving the joint original model solved in the first step, the
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second one considers |[N2| = 12 independent submodels as a mix-
ture of the related models (6) and (5). Each submodel is sup-
ported by a scenario subtree rooted with node n, for n € A2 as for
RN, TCVaR and EVCaR, but now 7 = {2,4} (note that the scheme
has advanced one period in the implementation), and ,0]2 =5 and
,of = 0.25. The risk reduction is performed in each scenario subset
Q" for n e Nt in period t =2, where the profit is taken into ac-
count up to the end of the time horizon, and only up to the nodes
in subset N for t = 4. Thus, there are also 24 places for risk re-
duction.

Remark. The second steps of the time horizon-based schemes for
obtaining the implementable TCVaR and MCVaR solutions in the pi-
lot case are identical. However, the solutions could be different,
since both schemes start with different solutions for period t =1,
they have been obtained in their first steps.

Observe from the results shown in Table 6 that MCVaR is usu-
ally the best measure for all periods, but the last one (t = 6) where
ECVaR is generally the most profitable one.

From the analysis of the results shown in Table 7 for the im-
plementable policy, we can observe that ECVaR is clearly the cham-
pion in the periods t = 2, 3,6 for instance i3, TCVaR is clearly the
champion in period t =1 for the three instances, and MCVaR is
the champion in periods t = 2,3 for instances i1 and i2 and close
to the other measures in the rest of the experiments.

Comparing the expected profit results and profit distribution
shown in Table 4 (planned policy) and Table 6 (implementable pol-
icy), for the three risk averse CVaR measures, it can be observed
that MCVaR is not the champion measure in the latter as it was in
the former. See in the next section a discussion about the oppor-
tunity of considering the implementable policy versus the planned
one and the meaning of the latter.

5. Discussion and outline of future research plans

In this work, we have formulated and solved a multi-period
stochastic mixed 0-1 model for planning forest harvesting and
road building. We consider uncertainties in timber prices and de-
mand along the time horizon, by analyzing a finite set of discrete
scenarios, as already shown, contrary to the traditional approach
that uses average (i.e., expected) values for the uncertain parame-
ters. Contrary also to the most frequent approaches in the stochas-
tic optimization literature, the model proposed in this work con-
siders that the parameters’ uncertainty is not independent period-
wise, but it is based on the probability distribution of the param-
eters’ realizations, which depend on the realization of the same or
other uncertain parameters in the previous periods.

The main contribution of the work has been to extend the risk
management on the solution of the risk neutral (RN) model for the
forest harvesting problem, by considering two versions of the very
popular CVaR risk averse measure in a stochastic model. It can be
observed that the main advantage of the risk averse measures is
that they advance the profit to early periods at the price of a very
small deterioration (in the experiment, at least) in the expected
profit at the end of the time horizon. That is, risk averse measures
provide higher profits at early periods than EV and RN, in addition
to reducing the variability of the profits for unwanted scenarios
(i.e., low-probability scenarios with a profit in unwanted quantiles).

One version of the risk averse measure is the time-consistent
ECVAR. It allows risk reduction on the values of the given function
(in this case, the harvesting profit) for the whole time horizon in
the scenario groups in one-to-one correspondence with the nodes
in the scenario tree that belong to a modeler-defined subset of pe-
riods. The other version is the time-inconsistent TCVaR. It allows
risk reduction to be performed on the values of the objective func-
tion in the whole set of scenarios up to a modeler-defined subset

of periods of the time horizon. Risk management can thus be per-
formed at intermediate periods, a very useful additional tool for
a decision-maker who needs to plan for a long time horizon. The
performance of both risk averse measures has been analyzed and
compared with the traditional EV and RN measures, by considering
the solutions obtained for a set of large instances of the forestry
planning problem. We have also experimented with the so-called
MCVAR measure, a mixture of the other two CVaR versions dealt
with in the work. An interesting advantage of TCVaR and MCVaR
over ECVAR is that they can be used in all periods. On the contrary,
by construction, the periods of the time horizon whose nodes do
not have successor subtrees cannot not be used for building the
groups of scenarios in ECVaR. Observe that in the instances we
have experimented with, risk reduction can be performed for the
periods t=2,3,4,5,6 by using TCVaR, while it can only be performed
for periods 1 and 2 when using ECVaR. Notice that, by construc-
tion, TCVaR for t = 6 is the same as ECVaR for t = 1. At any rate,
our provisional conclusion is that the mixture MCVaR takes advan-
tage of both risk averse measures in the planned policy. Its obvious
drawback is the computing time. See below our future plan to ad-
dress this issue.

On the other hand, as expected given the tightness of the RN
model (2), the computing time that is required by plain use of
the state-of-the-art MIP solver CPLEX is very reasonable (up to 4
hours, approx) for the HW/SW platform that we have used for such
large-sized instances (up to 250,000 constraints, 400,000 continu-
ous variables and 36,000 0-1 variables). Notice that the WS and EV
measures required up to 123 and 11 seconds, respectively. Models
TCVaR (5), ECVaR (6) and the mixture MCVaR, however, require a
much higher computing effort (very frequently reaching the time
limit of 24 hours, even though the optimality gap allowed for the
MIP solver was 2%), see Appendix B.

Another important issue that was dealt with in this work is
the computational analysis of the implementable policy versus the
planned one when deciding about the accuracy of the assess-
ment on the quality of the risk measures under consideration. The
planned policy is a more frequent approach in the literature than
the implementable one for assessing the goodness of models, risk
measures and even decomposition algorithm for problem solving.
Probably, it is due to the difficulty to handle risk averse measures
for multistage problems in the latter policy. Notice that the anal-
ysis based on the planned policy could only be correct if it is as-
sumed that the planned decisions (solution of future nodes along
the time horizon) are to be implemented. Since, by construction,
a time inconsistent model does not guarantee that, then, perform-
ing post-optimization analysis on the planned policy is misleading.
We have reported the main results from the solution of the risk
measures RN, TCVaR, ECVaR and MCVaR by considering the imple-
mentable policy versus the planned one. In the former policy we
have used a rolling horizon scheme that is very similar to the one
presented in Agustin et al. (2012), albeit only for the RN measure
in that work.

The overall conclusion from the results of our experiment is:
In the planned policy, MCVaR could be the measure of choice if
the main goal of the decision maker is the profit advancement to
early periods, and ECVaR is usually the most profitable one (at the
end of the time horizon) and, then, it is the measure of choice if
the main goal of the decision maker is to obtain the highest profit.
And, in the implementable policy: TCVaR is the measure that most
advances the profit to the first period, and ECVaR continuous being
the most profitable measure (at the end of the time horizon).

In our future research plan, we will develop a decomposi-
tion methodology for reducing the computational effort needed
for solving the instances while dealing with the risk averse mea-
sures. Notice that the model requires groups of cross scenario con-
straints (as many groups as the number of nodes in the subset
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Table 6
Results and profit distribution for the different approaches. Implementable policy.
Instance i1
Profit until period 1 Profit until period 6
1400 J—
1200 3 3500
t Stat. RN ECVaR MCVaR TCVaR WS ol - 0

1 Expected 17.3 16.9 16.9 17.4 287
2 Expected 37.9 41.7 43.7 440 499
c-VaR 339 373 37.7 36.5 321
c-CVaR 324 35.6 35.8 341 283
6 Expected 929 92.6 92.2 91.6 100.0
c-VaR 693 703 70.4 69.6 79.8
c-CVaR 64.0 649 64.9 64.3 745

800 -
600 -
400 -
200 -

3000

T T T T T
RN ECVaR MCVaR TCVaR WS

Profit until period 2 2500

1800

1600

1400

1200

1000 4

2000 H I

- e

ol vV Y v
800 | A ! * * * * -
. ected profit V4 — - - —
600 - v c-VaR *
* c-CVaR L 1000
400 T T T T T T T T T T
RN ECVaR MCVaR TCVaR WS RN ECVaR MCVaR TCvaR WS
Instance i2
Profit until period 1 Profit until period 6

t Stat. RN ECVaR MCVaR TCVaR WS
Expected 33.9 41.1 40.5 41.1 385
2 Expected 514 58.7 58.6 587 563
c-VaR 473 56.0 553 55.9 443
c-CVaR 472 559 54.6 55.9 331
6 Expected 96.6 95.6 95.9 944 100.0
c-VaR 755 772 76.6 75.0 805
c-CvaR 713 738 73.6 70.7 773

—_—

1400
1200 -
1000 4
800
600 -
400 -
200 -

4500

4000

3500

T T T T
RN ECVaR MCVaR TCVaR WS

Profit until period 2

2000 4

1500

1000

3000

ceo-e cams

EEEEE

* i =
e Expected profit :
v c-VaR ; 1500 4
507 % c-CvaR .
T T T T T T T T T T
RN ECVaR MCVaR TCVaR WS RN ECVaR MCVaR TCvaR WS
Instance i3
Profit until period 1 Profit until period 6

t Stat. RN ECVaR MCVaR TCVaR WS
1 Expected 27.2 332 31.7 333 352
2 Expected 429 48.6 48.8 48.5 512
c-VaR  36.6 45.0 44.9 447 402
c-CVaR 365 44.6 44.2 442 354
6 Expected 94.5 92.5 93.2 94.0 100.0
c-VaR 695 721 71.7 717 76.8
c-CvaR 62.1 67.7 67.2 675 734

1200

1000 4

800 -

600

400 -

200

4000

3500

; ‘ ‘ ; ‘ i
RN ECVaR MCVaR TCVaR ws

Profit until period 2

1400

1200 -

1000 -

800 -

600 -

2500

- maal

===l
E|¥%¥

v
o K
e Expected profit : 1000 :
v c-VaR ' .
* c-CVaR L
' i T T T T T T T T
RN ECVaR MCVaR TCVaR WS RN ECVaR MCVaR TCVaR WS

of periods considered), such that the nice structure of the sce-
nario tree based constraints is destroyed. And, so, typical decom-
position algorithms cannot be used with an affordable compu-
tational effort for solving large-sized problems. Hence, given the
large dimensions of the instances and the problems’ complex-

ity, it is unrealistic to seek for an optimal solution. Our research
effort on developing suitable decomposition algorithms will be
twofold: On the one hand, our effort will be concentrated on spe-
cific versions of Lagrangean Decomposition (Guignard, 2003; Guig-
nard & Kim, 1987), the so-called scenario Cluster Dualization and
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Table 7
Comparison of the three measures: ECVaR, MCVaR and TCVaR. Imple-
mentable policy.

Instance i1

ECVaR MCVaR TCVaR

#best  dev.best  #best  dev.best  #best

-~

dev.best

1 0 2.77 0 2.77 144 0.00
2 12 7.07 48 314 84 3.62
3 40 2.55 69 2.83 35 3.55
6 72 0.50 43 0.86 29 1.67
Instance i2
ECVaR MCVaR TCVaR
t #best dev.best #Dbest dev.best #best dev.best
1 144 0.00 0 1.52 144 0.00
2 48 3.03 72 1.87 24 2.71
3 44 1.66 49 118 51 1.66
6 56 185 34 112 54 173
Instance i3
ECVaR MCVaR TCVaR
t #best dev.best #best dev.best #best dev.best
1 0 0.34 0 5.01 144 0.00
2 72 3.95 60 2.79 12 240
3 54 1.65 39 1.76 51 154
6 58 3.37 33 1.85 53 0.85

Lagrangean Relaxation (CDLR) algorithms (Escudero, Garin, & Un-
zueta, 2017b) for providing strong upper bounds on the solution
value of the problem, and on a type of Lagrangean heuristic for ob-
taining (hopefully, good) feasible solutions with guaranteed good-
ness gap for the TCVaR measure. On the other hand, given the
structure of the scenario tree, and considering that the scenario
groups belong to a modeler-defined subset of periods, the ECVaR
measure has a suitable structure to be exploited. Then, the algo-
rithm could be chosen from a computational comparison between
different decomposition methodologies, such as an scenario CDLR,
a version of the Progressive Hedging methodology (Rockafellar &
Wets, 1991; Veliz et al., 2015) called Regularized Cluster Progres-
sive (Escudero, Garin, Monge, & Unzueta, 2017) , and an step-
wise dependent non-Markovian-based Stochastic Nested Decompo-
sition (Aldasoro, Escudero, Merino, Monge, & Pérez, 2015; Escud-
ero, Monge, & Romero-Morales, 2017c; 2015; Zou et al., 2016). The
benchmark testbed will include problems in forestry planning from
this work, supply chain management from Aldasoro et al. (2015),
and Escudero et al. (2017c), preparedness resource allocation plan-
ning in humanitarian logistics from Escudero et al. (2017a), rapid
transit network design planning from Cadarso, Escudero, and Marin
(2016), and electricity generation and transmission capacity ex-
pansion planning from Alonso-Ayuso, Escudero, and Martin-Campo
(2016).
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Appendix A. Deterministic forestry model

In this appendix, a tighter formulation of the deterministic
mixed 0-1 model in Andalaft et al. (2003) is presented. It allows
to solve the related stochastic version for the large-sized instances
in the experiment whose computational experience is presented in
Section 4. This new version of the model includes a redefinition of
the variables associated to road building and upgrading and, on the

other hand, the step variables-based model is used instead of the
impulse variables-based one). Additionally, some constraints are
reformulated in order to tighten the model, specifically the con-
straint systems (6g) and (6h) and (11b)-(11i).

Notation
The parameters and variables are denoted with capital and
small letters, respectively.

Sets
e T={1,...,T}, set of time periods (summer and winter sea-
sons).

o 75, 7W, set of summer and winter time periods, respectively,
such that T=75uTY, TSNTW = 4.

e 9=1{q1,q,...,qg}, harvest product. It can be considered an

ordered set, such that product g has higher quality than prod-

uct ¢’ provided that g <gq’. A higher-level quality can be used
for lower level purposes, at a loss in sale price.

S, set of stands.

e G=(Z,L), where T is the set of nodes in the network and £ is

the set of links.

7, set of nodes in the road network, Z = 70 Uz UZF U C, where

C is the set of stocking yards, Z0 is the set of origin nodes (it

has some stands associated), Z! is the set of intermediate nodes

(a junction in the roads network), and ZF is the set of final des-

tination nodes (it is directly connected to the markets).

 §;, set of stands associated with origin node i, S; C S, Vi e 70,

o £, set of links (potential or existing) in the road network. A link
is an edge linking two consecutive nodes in the road network.

* R ={d, g}, road standards, d being for dirt and g for gravel.

o CE [P set of existing and potential links, respectively.

o rEd rEg set of existing links in dirt and gravel, respectively.
Note 1: All public roads exist from the beginning of the time
horizon and they are in gravel. Note 2: Existing roads in dirt
(i.e., private roads) can be upgraded to gravel. Note 3: Existing
or potential dirt links cannot be used in winter, so, they should
be upgraded to gravel in case they are to be used.

e M, set of markets.

» M;, set of markets served from node i (where i is a final desti-
nation or stocking yard), Vi € ZF U C. Note: M; € M.

e I'(i), adjacency set of node i, for ieZ. Note: jeI'(i) <
{i,jleT < iel().

Constraint-related parameters
« BY, amount of timber (m3) of quality q produced per ha in
stand s if harvested in period ¢, (this parameter is determined
through a growth simulator), Vs € S,q e Q,t € 7.
« As, upper bound in the area (ha) of stand s that can be har-
vested, Vs € S.
As, lower bound in the area (ha) of stand s to be harvested in
any time period, if any, Vs € S.
N;, maximum number of periods that stand s can be harvested.
Note 1: It depends on A, such that combined with A; it tries to
concentrate the harvesting of a stand in a reasonable number
of time periods with a minimum area to be harvested, at least.

Note 2: A possible value for N5 could be {g—ﬂ, Vs eS.

. U,.‘jr, flow capacity (cubic meters) on link {i, j} built in standard
r available in period t, V{i, j} € £,r € R,t € T. Note: The flow in
a link can be in both directions.

. ;?,fz*,;f lower and upper bound on demand (cubic meters) of

product k at destination m in period t, Vge Q,me M,t e T.

C., capacity (cubic meters) of stocking yard c, Vc € C.

e 74 and 7y, latency (i.e., number of periods) required for mak-
ing available a potential link in dirt and in gravel, respectively,
since the time period that is decided to build it. Note: If a link
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is available in any of the first t; — 1 (7 — 1) periods, then it is
assumed that the decision to build it is made before the begin-
ning of the time horizon.

Objective function parameters at their et present value (NPV)

R% and S¥, unit selling price and unit penalization cost for un-
met demand of timber of quality g, respectively, in market m in
period t, Yq € Q,m € M, t e T. Note: S >~ R,

P¢, unit harvesting cost per ha in stand s in period t, Vs € S, m
M, teT.

Fiﬁ, unit production cost per cubic meters of timber of quality
q in node i in period t, Vie 70,q € Q,t € T.

D?jtr, unit transportation cost of timber of quality q through link
{i, j} in standard r in period t, V{i, j} e L, re R,qe Q. t € T.

5?,;, unit transportation cost of timber of quality q from node i
to market m in period t, Vie ZF UC,m e M;,qe Q. t € T.

H,Fjr, cost of building link {i, j} in standard r, V{i, j} € £, r e R.
ﬁ,fj, cost of upgrading link {i, j} from standard dirt to gravel in

period t, ¥{i, j} e LPULEd t e T.
HE, unit stocking cost in yard c in period t, Vc e C,t € T.

Binary variables

ijr =1 if link {i, j} is built in standard r by time period t (it
is available 7, time periods later), and otherwise, 0, V{i, j} €
£P t e T,r e R. Notice that wler is called a step variable, it
makes the model stronger than when using the counterpart
impulse variable, see e.g., Guignard et al. (1998) for forest
harvesting.

vle =1 if link {i, j} is upgraded from dirt to gravel by time pe-
riod t, and otherwise, 0, V{i, j} € £P,t e T. Note: The upgrade is
available 7 time periods later, and the link cannot be upgraded
in the same time period it is built.

et =1, if stand s is harvested in period t, and otherwise, 0, Vs €
S,t e T. Notice that, by construction, it is a so-called impulse
variable.

Continuous variables

xL, area (hectare) of stand s harvested in period t, Vs € S, t € T.

. y?t, volume (cubic meters) of timber of quality g harvested in

all stands associated with origin i during period t, Vi e 70, q €
Q,teT.

fgtr flow (cubic meters) of timber of quality g transported on
link {i, j} built in standard r in period ¢, V{i,j} e £L,re R,q ¢
Q,t € T. Note: fgtr =0 for all existing links in dirt ({i, j} € £F
and r =d) and for all potential links in dirt in winter ({i, j} €
LP r=dand t e TV).

fl‘fr flow (cubic meters) of timber of quality g transported from
node i on link {i, c} in standard r to its adjacent c in period t,
Viel'(c),ceC,reR,qe Q. teT.

fg;, flow (cubic meters) of timber of quality q transported from
node i (i.e., a final destination or a stoking yard) to market m
at period t, Vie ZF UC,qe Q,me M;, t € T.

z%, amount (cubic meters) of timber delivered as quality q to
destination m in period t, Vg € Q,m € M, t € T. Note: The tim-
ber delivered to the market at the price of quality g can actually
be (in part or totally) of a higher quality.

z,; ', unmet timber demand (cubic meters) of quality q re-
quested at destination m in period t, Vge Q,me M,t € T.

Constraints

1

Road network design. Decisions about new links or upgrades to
gravel can only be taken in summer (since is the only period
where the work can be done):

=1 <yt Vii,j} e £l t € T5, (7a)

Wijr = Wijrs

> Wiy =

A. Alonso-Ayuso et al./European Journal of Operational Research 267 (2018) 1051-1074

wil=wi,  VijyeclteT?, (7b)
vle‘l <vi,  Viij}e cluck teTs, (7c)
vt =1, YlijlecltucterV (7d)

A link cannot be upgraded from dirt to gravel if it has not been
built two periods earlier (i.e., one year), at least:
v =wil,  YiijyecfteT. (7e)

Road incompatibility: A link cannot simultaneously be built in
dirt and in gravel:

dowh <1, V{ijleclteTV. (7)
reR

Note: A link built in dirt can be upgraded to gravel, but cannot
be built in gravel.

Origins-to-roads triggers: If a stand is not connected to a ex-
isting link at the beginning of the time horizon and it is har-
vested, then one potential link has to be built, at least. Fur-
thermore, if a stand is not connected to a existing link and
it is harvested in winter, then one potential link has to be
built in gravel, at least, by this time period, see Andalaft et al.
(2003) for more details. For Vi e 70 such that {{i, jlecE:je

F(i)} =0

> el <minft,Ng} > wa;rf

t'eT:t'st {i,jlecP reR

VseS,teT, (7g)

Z el < min{N}, N}

t'eTW:t'<t
> (Wi + vfj"fg), VseSus;,teT", (7h)
{i.jlecr

where NV = |{t/ e TW : t/ < t}].

Road-to-road triggers (Andalaft et al., 2003; Guignard et al.,
1998): If a potential link {i, j} that is not connected to a ex-
isting one is built, then, one of the links connecting {i, j} must
be built, at least:

> Ywh,. Mijlecl:cincf=preT,

reR {i",j'}eclijl reR
(71)

where £{7} is the set of links adjacent to {i, j}.

. Harvesting decisions:
Ael <xt <Ael, VseS.teT, (8a)
Y x<A.  VseS. (8b)
teT
Y eb<Ns, Vses, (8¢c)
teT

where constraints (8a) bound the harvested area per stand and
time period, constraints (8b) bound area harvested per stand,
and constraints (8c) bound the number of periods that a stand
can be harvested. Notice that (8c) is redundant for the 0-1
model but it is tightening its LP relaxation.

. Production by origin

qt ,t qt
> B =y

SeS;

VieZl,qe Q,teT. 9)
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4. Flow constraints for origin nodes (10a), intermediate nodes

(10Db), and final destination nodes (10c):

ALY =Y Y M Viergearer

reR jel'(i) reR jel (i)
(10a)
Yo =2 > fl. VieZlqegteT,  (10b)
reR jel (i) reR jel (i)
YD M= Y fh, VieTfqeQteT.
reR jel (i) reR jel (i) meM;
(10c)

For stocking yards, arrivals in summer must be equal to dis-
patches in winter, (10d). On the other hand there are neither
arrivals in winter nor dispatches in summer, (10e) and (10f):

oofl=3Y fE&. VeeCqeQiteTS, (10d)

reR,iel(c) meM.

f& =0, VreR.ceCiel(0).qeQteT", (10e)

f& =0, VYqgeQrcelmeMc,teTS (10f)

. Demand constraints. The amount of timber delivered to a mar-
ket as quality q is bounded by the flow arriving to the nodes
that can serve that market. Notice that the timber’s quality can
be higher than requested at a lost. as state above:

> 20t < YooY fll, YgeQmeMteT,

q'€Q:q'<q q'€Q:q'<qieIfuC
(11a)

2% <z 47 <70 VgeomeMiteT. (11b)

. Capacity constraints
Capacity at stocking yards (in summer):

YYD <G VYeec.teT . (12a)
qeQreR iel(c)

Flow through a potential link in dirt (i.e., r = d) is only allowed
in any period if the link has been previously built in dirt and
not upgraded to gravel:

S+ ff) < Ula (Wi~ ™). Vlihe e e .
qeQ

(12b)
If there is any flow on dirt through a potential link in dirt be-
tween the beginning of the time horizon and period ¢, the link
must have been built by time period t:

t! t .. S
> Z( o l‘;d) UigWi®s Vi jye Ll teT?,
t'eT:t'<t geQ
=d (dirt). (12¢)
Even more, if there is some flow on dirt through a potential

link in dirt during or after time period t, the link cannot have
been upgraded by time period t:

t - ..
YO (A fl) <UL (1), Viijyecl ceTs.
t'eT:t<t' qeQ
(12d)
The dirt links are only available in summer, so, no flow is al-
lowed through them in winter:

fly+fly=0 YaeQfijlecl teT?. (12e)

Flow through a potential link in gravel is only allowed at any
time period if the link has been built in gravel or upgraded
from dirt to gravel by that period:

Z Z(fﬁtg quz;) ug( [Tg+vt Tg)’ Vi{i.jtecl teT.

t'eT:t'<t qeQ
(12f)

For an existing link in dirt, flow is only allowed provided they
have not been upgraded to gravel:

> 2 351 sz) Ujja (1 — vl i), Yiij)e £t e 7S

t'eT:t<t' qeQ
(12g)

For such links, flow on gravel is allowed only if it has been up-
graded:

Yo D (fl ) <ULYE Vi jY e £M e T (12h)
t'eT:t'<tqeQ
For existing links in gravel, flow is upper bounded:
Z(fg;+ fﬁfg) Ufjg, Vii,jl et teT. (12i)
qeQ
7. Variables’ domain definition:
wi, e{0,1}  V{ijleLlteT rer,
etef{0,1} VseS,teT,
v; 0,1} V{i,jleLlteT,
x>0 VseSteT,
fl =0 VgeQieIfucmeM;teT,
f;j.;zo V{ii,jleL,reR,qe Q,teT,
y>0 Vier®qeQteT,
L zT>0 Vgeo meM,teT.
Objective function
The objective function under consideration consists of maximiz-

ing the profit NPV, i.e., income minus cost. It can be expressed as
follows:

max» {1 Y > Rhzh

teT | meMqeQ

IPITEEED M TS DI

meM qeQ seS ie70 qeQ

Table 8

TCVaR: Results for model (5).
Inst.  p3  p$  Zwp Zvip GAP  t; (seconds)
i1 11 271635 266312 196 1866418
il % 5 9594.78 9388.87 2.16 > 24 hour?
il 5 % 8966.35 8798.92 1.87 2945.52
i1 5 5 14994.94 14723.37 1.81 15856.19
i2 % % 3428.40 3362.39 1.92 45987.24
i2 % 5 12627.90 12432.10 1.98 13841.28
i2 5 % 11347.15 11129.96 191 7012.70
i2 5 5 20308.53 19999.71 1.52 2536.65
i3 11 281385 274307 252 =24 hour®
i3 % 5 9993.54 9679.57 3.14 > 24 hour?
i3 5 % 8634.14 8464.95 1.96 20850.28
i3 5 5 1552.34 1521.90 1.96 72990.54

2 Elapsed time limit reached (24 hour).
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Appendix B. Additional computational results
B1. Computational comparison between the TCVaR and RN models

We have tested the impact of managing the risk in two points,
namely, an intermediate period and the end of the time horizon,

+ Z Z Z fl‘}; (A13) so, say, 71 = {3, 6}, and, in order to ascertain better the impact of
ieTFuC MeM; qeQ the risk-averse term on the objective function, different combina-
tions of the weight parameter p{ have been tested, for t € 7.
Table 9
TCVaR: Results and profit distribution.
Instance i1

Profit until period 1

Profit until period 6

TCVaR ::gg: © Expected profit RE
3 6 3 6 3 6 3 6 v c-VaR : —_ —_ — -
P1P1 PIPL  P1PL  P1P1 "0 * o-CvaR 3 A
t Stat RN i i i 5 5 i 55 WS 4622: __- 3000 o
1 Expected 17.3 174 174 304 190 287 wm| — — — o R T R N
2 Expected 37.9 394 40.1 517 414 499 TV TORTOTR TOaR s EEE E.
c-VaR 339 360 355 499 39.1 321, Ty 3 : ¥
c-CVaR 324 356 342 491 385 283 | T el T T T LT
6 Expected 92.9 925 924 742 91.1 100.0w0|
c-VaR 693 694 699 24 668 79.8 =- - .
c-CVaR  64.0 64.1 648 -13.6 620 745*| + — = = °1 v
L =" *
600 - ;F - | ?
o TCVaR TCVaR TCVaR TCVaR g TGVaR TGVaR TCVaR TCVaR g
(1/4,1/4) (1/4,5) (5,1/4) (5,5) (1/4,1/4) (1/4,5) (5,1/4) (5,5)
Instance i2
VAR wor i
3 6 3 6 3 6 3 6 1000 4 _— -
P1P1 P1P1 P1P1T P1P1 ] — : 4000 :
t Stat. RN i i i 5 5 i 55 WS 2227 3 000 T N
1 Expected 33.9 36.1 41.1 42.7 423 385 mo i Lo T |
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(1/4,1/4) (1/4,5) (5,1/4) (5,5)

TCVaR TCVaR TCVaR TCVaR g
(1/4,1/4) (1/4,5) (5,1/4) (5,5)




A. Alonso-Ayuso et al./European Journal of Operational Research 267 (2018) 1051-1074

Table 10
ECVaR: Results for model (6).

Inst.  p!  p}  Zwp Zvip GAP  t, (seconds)
i1 % 0 244442 2396.36 1.96 35033.26
i1 I 1 287561 2819.26 196 111153

i1 % 5 1114.98 10934.02 193 14771.75

i1 5 0 9321.70 9139.42 1.95 80076.30
il 5 % 9754.30 9579.14 1.96 54083.62
i1 5 5 18000.40 17651.02 1.99 1179.69

i2 % 0 1419.94 1383.30 1.96 11392.24
2 11 302571 296638 196 1837489
i2 % 5 3576.17 3506.06 1.96 17933.73
i2 5 0 12259.96 12025.93 191 16544.01
i2 5 % 12814.18 1256.99 1.94 37515.63
i2 5 5 23263.51 22859.61 173 2654.12

i3 % 0 2501.44 2452.40 1.96 66026.98
i3 11 206705 288259 285  >24 hour
i3 % 5 11367.54 11185.94 1.60 38454.60
i3 5 0 9655.31 9471.58 1.90 19253.64
i3 5 % 10141.07 9932.20 2.06 > 24 hour?
i3 5 5 18462.22 18113.08 1.89 43353.94

2 Elapsed time limit reached (24 hour).

The solution obtained by the TCVaR model (5) is shown in
Table 8. The headings are as follows: p3 and p$, weight factors
in the objective function for the risk management in t =3 and 6,
respectively; Zyyp, best upper bound for the optimal solution pro-
vided by the MIP solver at the time at which the solver’s execution
is stopped; Zy;p, solution value of the incumbent solution; GAP, re-
lated optimality gap defined as 100%; and nn, number of
nodes in the B&C tree that have been explored up to the stopping
time, say ¢ty (seconds), of the solver’s execution.

Table 9 shows the expected profit, computed VaR and com-
puted CVaR obtained from the profit up to the end of periods
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t =1, 2, 6 for the instances il, i2, and i3. As a reference, the last
column shows the results for the WS approach. Different results
are presented for TCVaR, depending on the pairs (p]3, pf) of the
weight parameters that have been used for t = 3, 6.

As can be observed, all stochastic models practically provide the
same expected profit at the end of the planning horizon (t = 6),
while c-CVaR and c-VaR are slightly higher. However, TCVaR pro-
vides an expected profit for t = 1,2 (especially, for the former)
much higher than RN as well as a significant improvement in
c-VaR and c-CVaR.

It is worth analyzing the results related to the combination
(p3 =5, p% = 0.25) as shown in Table 9. Notice that period t = 6 is
the last one in the time horizon considered in the experiment. It is
a simulation where the decision-maker is assumed to give a higher
weight to CVaR for ¢t = 3 than to CVaR for t = 6. As a result, it can
be observed that the expected profit and the profit distribution up
to t =6 (i.e., the profit that considers the whole time horizon) in
the whole set of scenarios are very poor with respect to the same
results up to t = 3; in fact, they are very good for t =1 and 2, as
shown in the tables. Notice also that the profit results are very dif-
ferent for a simulation with opposite priorities. It is worth paying
attention to this p