UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS AGRONÓMICAS ESCUELA DE AGRONOMÍA

MEMORIA DE TÍTULO

IMPLEMENTACIÓN DE UN SISTEMA DE PRODUCCIÓN INTEGRADA EN UVA DE MESA EN EL VALLE DE COPIAPÓ.

MARÍA JOSÉ HIDALGO ESCOBAR

SANTIAGO, CHILE

2006

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS AGRONÓMICAS ESCUELA DE AGRONOMÍA

IMPLEMENTACIÓN DE UN SISTEMA DE PRODUCCIÓN INTEGRADA EN UVA DE MESA EN EL VALLE DE COPIAPÓ.

Memoria para optar al Título Profesional de: Ingeniero Agrónomo. Mención: Fruticultura.

MARÍA JOSÉ HIDALGO ESCOBAR

PROFESOR GUÍA	Calificaciones
Tomás Cooper C. Ingeniero Agrónomo, Dr. Sc. Agr.	6.5
PROFESORES CONSEJEROS	
Carlos Benavides Z. Ingeniero Agrónomo	6.5
Bruno Razeto M. Ingeniero Agrónomo, M.S.	6.5

Santiago, Chile

AGRADECIMIENTOS

A mi profesor Don Tomás Cooper, por su confianza y apoyo a lo largo del desarrollo de este trabajo y por incentivarme a terminarlo. A la Srta. Antonella Gargiullo, con quien tuve la libertad de discutir cualquier tipo de ideas relacionadas con esta memoria.

A los Sres. Aldo Ghiglino, Mario Holvoet y Mauricio Santana, por su paciencia y siempre buena voluntad en el día a día de mis evaluaciones en sus campos.

A mis amigas y compañeras Claudia y Sandra con quienes tuve la oportunidad de compartir todos los años maravillosos de mi paso por la Universidad, momentos que me acompañan día a día.

A mis padres, Víctor y Patricia, a quienes dedico este trabajo, porque en todo momento han estado conmigo, y son, uno de los tesoros más preciados en mi vida, junto con mis hermanos Pato y Chio.

Y Totita, mi fiel compañera.

Gracias a todos ellos.

ÍNDICE

	Página
RESUMEN	1
PALABRAS CLAVE	1
ABSTRACT	2
KEY WORDS	2
INTRODUCCIÓN	3
OBJETIVOS	4
REVISIÓN BIBLIOGRÁFICA	5
Producción integrada en el mundo Producción integrada en Chile Situación del cultivo de uva de mesa en el Valle de Copiapó	5 6 6
MATERIALES Y MÉTODO	8
Ubicación de los ensayos Sitio 1 Sitio 2	8 8 8
Sistemas de producción Diseño de los sistemas de producción Criterios de diseño en los sistemas de manejo Riego Fertilización Protección Fitosanitaria Poda Cosecha	8 8 9 9 9 9
Descripción de los sistemas de producción Sitio 1. Var. Thompson Seedless SIP SMC Sitio 2. Var. Flame Seedless SIP SMC	10 10 10 10 10 10

Establecimiento de la línea base agronómica	11
Características del suelo	11
Propiedades físicas y morfológicas del perfil	11
Propiedades químicas del suelo	12
Nematodos	12
Características de agua de riego	12
Caracterización de las plantas	12
Antecedentes del parronal	12
Preparación profesional	13
Puntos críticos para la implementación de la Producción Integrada	13
Evaluaciones durante la temporada	13
Estados fenológicos	13
Crecimiento vegetativo	13
Número de racimos por planta, numero de flores y bayas por racimo	13
Estado fitosanitario	14
Trips	14
Chanchitos Blancos	14
Burrito de la vid	14
Botritis	14
Oidio	14
Malezas	15
Estado nutricional	15
Producción y Calidad de la fruta	15
Evaluaciones a Cosecha	15
Rendimiento y tamaño de la fruta	15
Calidad de la fruta	16
Madurez	16
Peso de racimos	16
Tamaño y peso de bayas	16
Incidencia de defectos	16
Aptitud de almacenamiento	16
Pudrición	16
Deshidratación	16
Desgrane	17
Diseño Experimental y análisis estadístico	17
RESULTADOS Y DISCUSIÓN	18
Línea base agronómica	18
Características del suelo	18

Propiedades físicas y morfológicas del perfil	18
Sitio 1. Var. Thompson Seedless	18
Sitio 2. Var. Flame Seedless	19
Propiedades químicas del suelo	20
Sitio 1. Var. Thompson Seedless	20
Sitio 2. Var. Flame Seedless	21
Nemátodos	21
Características del agua de riego	22
Caracterización de las plantas	22
Sitio 1. Var. Thompson Seedless	22
Sitio 2. Var. Flame Seedless	22
Antecedentes de los parronales	23
Sitio 1. Var. Thompson Seedless	23
Poda	23
Raleo y arreglo de racimos	23
Reguladores de crecimiento	23
Producción	23
Manejo fitosanitario	24
Aplicación de fertilizantes	25
Plagas y enfermedades	25
Preparación técnica	25
Sitio 2. Var. Flame Seedless	25
Poda	25
Raleo y arreglo de racimos	26
Reguladores de crecimiento	26
Producción	26
Manejo fitosanitario	26
Aplicación de fertilizantes	27
Plagas y enfermedades	27
Puntos críticos para la implementación de la producción integrada	28
Sitio 1. Var. Thompson Seedless	28
Sitio 2. Var. Flame Seedless	28
Establecimiento del sistema de producción integrada	29
Poda	29
Raleo y arreglo de racimos	29
Reguladores de crecimiento	29
Manejo fitosanitario	30
Aplicación de fertilizantes	33
Comparación de ambos sistemas de manejo	34
Evaluaciones durante la temporada 2002 - 2003	36
Estados fenológicos	36

Sitio 1. Var. Thompson Seedless	36
Sitio 2. Var. Flame Seedless	36
Crecimiento vegetativo	37
Número de bayas por racimo	37
Número de racimos por planta	37
Estado fitosanitario	38
Trips de California	38
Chanchitos Blancos	38
Botritis	38
Oidio	38
Malezas	39
Estado nutricional de los parronales	39
Producción y calidad de la fruta	40
Evaluaciones a cosecha	40
Cosecha	40
Rendimiento y tamaño de bayas	40
Calidad de la fruta	41
Madurez, peso de racimos y tamaño y peso de bayas	41
Incidencia de defectos	42
Aptitud de almacenamiento	43
Pudrición, deshidratación y desgrane	43
Sitio 1. Var. Thompson Seedless	43
Sitio 2. Var. Flame Seedless	44
CONCLUSIONES	45
LITERATURA CITADA	46

RESUMEN

La Producción Integrada de Fruta (PIF) es un sistema de producción que permite obtener fruta de alta calidad, asegurando una mayor protección del ambiente y la salud humana. En Europa, se ha adoptado en forma creciente este sistema de producción que considera las exigencias de los consumidores, como calidad, productos sanos y producidos bajo sistemas amigables con el medio ambiente y la salud de los trabajadores.

En este trabajo, con el objetivo de determinar la factibilidad de implementar la producción integrada en uva de mesa en el Valle de Copiapó se diseñaron sistemas de Producción Integrada para dos parronales, de las variedades Flame Seedless y Thompson Seedless. Se evalúo el efecto de la aplicación de los sistemas integrados sobre la producción y calidad de la uva durante un año.

Los Sitios Integrados de Prueba, que fueron manejados de acuerdo a la Producción Integrada se diferenciaron del manejo tradicional principalmente en los siguientes aspectos: se utilizó pesticidas que se encuentran aceptados en la PI y su aplicación se basó en un monitoreo del nivel de las plagas y enfermedades.

Estos Sitios integrados de Prueba presentaron en general resultados positivos. Se logró reducir las aplicaciones de productos químicos y, a su vez, favorecer el uso de productos menos tóxicos para la salud humana y el medio ambiente y se logró producir uva de calidad similar a la uva producida bajo un sistema convencional.

PALABRAS CLAVE

Flame Seedless Thompson Seedless Protección del ambiente Monitoreo de plagas y enfermedades

ABSTRACT

The integrated fruit production (IFP) is a production system that allow to obtain high quality fruit, assuring a better environmental and human health protection. In Europe has been adopted, to satisfy the market's requirement for healty and high quality products, developed with trough and environmental – friendly process.

Integrated systems were design in two comercial vineyards var. Flame Seedless and Thompson Seedless in the North zone of Chile. The effects of this systems on the yields and grape quality during the first year were evaluated.

The Integrated Experimentation Systems, differ from traditional management mainly with regard to the folloing aspects: pesticides used were those accepted in the Integrated Production and the application of the pesticides was based on a monitoring of the plagues and diseases.

The Integrated Experimentation Systems showed positive results. The application of chemical products could be reduced, favouring the use of products that are less toxic for the human health and the environment.

It was possible to obtain grape under an integrated system of production, with similar quality than the grape that was produce an a convencional system.

KEY WORDS

Flame Seedless
Thompson Seedless
Environmental protection
Monitoring of the plagues and diseases

INTRODUCCIÓN

La demanda por fruta proveniente de sistemas de producción respetuosos del medio ambiente ha ido en aumento en los últimos años, lo que hace necesario realizar investigación sobre el tema, tanto por razones de sustentabilidad ambiental, la protección de la salud humana y por las exigencias del mercado de exportación. La implementación de la Producción Integrada de Fruta (PIF) en Chile es de gran importancia y para ella se debe desarrollar la tecnología necesaria *in situ*.

De acuerdo con la definición general de la Organización Internacional para la Lucha Biológica (OILB), la producción integrada de uva se define como la producción económica de uvas de alta calidad, dando prioridad a métodos seguros ecológicamente, minimizando los efectos secundarios nocivos del uso de agroquímicos de manera de salvaguardar el ambiente y la salud humana (Cross y Dickler, 1994; OILB/SROP, 1999; Quiroz, 2001; Yuri, 2001).

Es importante destacar que los mercados receptores de fruta chilena serán cada vez más exigentes en cuanto a la calidad del producto, privilegiándose las producciones que provengan de sistemas de producción ecológicamente más seguros y por ende más sanos para el consumidor. Una producción limpia con mayor cuidado del ambiente y de la salud humana otorga mejor posibilidad de comercialización e industrialización de la fruta chilena.

El Valle de Copiapó presenta condiciones muy favorables para la producción de uva de mesa, como alta radiación y baja incidencia de enfermedades y plagas, pero asimismo en algunos casos se ve limitado por las características de suelo, sumado a las inadecuadas prácticas de manejo que realizan muchos productores, tales como el uso de una calendarización fija de sus actividades, principalmente en lo que se refiere a aplicación de productos fitosanitarios, además del empleo de productos no selectivos y altamente tóxicos. Es importante implementar un sistema de producción que permita aprovechar al máximo los recursos, conservar el medio ambiente y a su vez contribuir a la obtención de fruta de excelente calidad.

Objetivos

Objetivo general

- Determinar la factibilidad técnica de implementar la producción integrada en uva de mesa en el Valle de Copiapó.

Objetivos específicos

- Determinar los puntos críticos para la producción integrada de uva de mesa en dos parronales representativos del Valle de Copiapó.
- Diseñar, implementar y evaluar dos sitios de producción integrada de uva de mesa en el Valle de Copiapó.

REVISIÓN BIBLIOGRÁFICA

Chile se ha convertido en uno de los principales exportadores de fruta fresca del mundo, destacándose como primer exportador de uva de mesa del Hemisferio Sur y segundo a nivel mundial para esta especie. Anualmente se exportan 91.700.000 cajas (temporada 2004-2005) principalmente a Norteamérica (con más de 50 millones de cajas) y a Europa (con más de 25 millones).

Sin embargo la apertura de nuevos mercados, y el aumento de las exportaciones a otras regiones como Medio y Lejano Oriente y Latinoamérica, han contribuido a la importancia de Chile como productor de uva de mesa (Lobato y Valenzuela, 2001).

El consumidor de los países desarrollados y compradores de fruta acentúan sus preferencias hacia productos más saludables y naturales, y a sistemas de producción sustentables y seguros para el medio ambiente y la salud humana. Es en este aspecto que la producción integrada de fruta es una herramienta fundamental, ya que tiene la ventaja de reducir significativamente el uso de agroquímicos, y permite obtener fruta de calidad similar o superior a la producida bajo un sistema de manejo convencional.

Los objetivos de la producción integrada en uva, según la OILB/SROP (1999), son:

- Promover una viticultura que respete el ambiente y sea económicamente viable.
- Asegurar la producción sustentable de uva de alta calidad con un mínimo uso de productos fitosanitarios.
- Proteger la salud de los agricultores durante la manipulación de productos fitosanitarios.
- Fomentar y mantener la diversidad biológica.
- Priorizar el uso de control biológico, como mecanismo de regulación natural.
- Conservar y favorecer el equilibrio a largo plazo.
- Minimizar la contaminación del agua, suelo y aire.

Producción integrada en el mundo

Las últimas cuatro décadas han sido testigo de cambios fundamentales en la agricultura europea. La superproducción, la puesta en peligro de especies salvajes y la contaminación de las aguas subterráneas y de superficie son consideradas actualmente como restricciones importantes de la agricultura intensiva. La única forma de vencer el reto son modelos sostenibles del uso de la tierra, más seguros para el medio ambiente. Estos modelos se basan en la sustitución de productos agroquímicos contaminantes, en particular productos fitosanitarios y fertilizantes, por tecnologías sostenibles y más seguras para el medio ambiente (El Titi y Boller, 1995).

Suiza con el grupo Galti y otros, fue el primer país en adoptar este sistema productivo a principios de los ochenta, lo mismo que productores de fruta de Alemania de la zona de Baden- Wunrttemberg; así como en Bolzano o Sudtirol, en el norte de Italia, y el grupo Covapi en Francia (Cooper y Fresno, 2001).

Producción integrada en Chile

El proyecto iniciado más tempranamente en el tema, es el desarrollado por la Facultad de Ciencias Agronómicas de la Universidad de Chile. Este programa comenzó en 1997 financiado por FONDEF, y tuvo como objetivo el desarrollar las bases técnicas, económicas y operacionales que permitieran la incorporación de Chile al sistema de producción integrada de frutas. De la misma forma se creó el Centro Nacional de Producción Integrada (CENPIF), cuyos objetivos son: promover la producción integrada de frutas y sus derivados en Chile, con énfasis en la calidad del producto final, la protección del medio ambiente y la salud humana, desarrollar investigación, docencia y capacitación; y certificar fruta bajo producción integrada en Chile (Cooper y Fresno, 2001).

Situación del cultivo de uva de mesa en el Valle de Copiapó

Este Valle se caracteriza por la producción de primores, gracias a las condiciones climáticas favorables de la zona, salvo en áreas cercanas a la costa. Esto, sumado a un gran desarrollo tecnológico del cultivo, hace que la producción de uva de mesa se encuentre a la vanguardia en el contexto nacional (Lobato y Valenzuela, 2000).

El factor más positivo de esta zona es que entrega su producción exportable de uva de mesa desde la segunda quincena de noviembre y se prolonga hasta principios de febrero, lo que determina que en el Hemisferio Norte obtenga los más altos precios para esta especie (Espinoza, 1999).

Las condiciones climáticas de esta zona la hacen muy favorable para la producción de frutales y vides, la amplitud térmica diaria es muy alta (sobre 20° C) con lo cual se favorece la maduración de los cultivos y se reduce la incidencia de muchas enfermedades de climas húmedos (Lobato y Valenzuela, 2001).

En cuanto a las variedades, desde que se iniciaron las plantaciones masivas de uva de mesa en el norte (1979/80), Thompson Seedless y Flame Seedless han sido las más importantes, lo que se mantiene hasta hoy. La variedad Thompson Seedless ocupa una superficie de 4.920 ha., con un 32,8% y Flame Seedless con 3.783 ha., ocupando el 25,3% nacional. Por su parte el Valle de Copiapó, cuenta con 5.883 ha., plantadas de uva de mesa (CIREN, 1999).

Respecto del nivel tecnológico de los productores si bien es alto, éste es irregular existiendo en un sector de productores una alta tendencia a realizar labores y aplicaciones en forma calendarizada, es decir, no hay análisis para el caso de la fertilización y no se realiza monitoreo para decidir el control de plagas o enfermedades.

MATERIALES Y MÉTODO

Ubicación de los ensayos

El estudio se realizó en dos parronales del Valle de Copiapó, durante la temporada 2002-2003, los cuales se describen a continuación:

Sitio 1: Ubicado en la localidad de Los Loros, comuna de Tierra Amarilla, con 4,6 ha., plantadas en 1981, con la variedad Thompson Seedless. La distancia de plantación es de 3 x 3,5 m, y presenta una densidad de 952 plantas/ha. El sistema de conducción es tipo parronal español. El sistema de riego es de tipo goteo, a través del cual se realiza la fertilización.

Sitio 2: Ubicado en la localidad de Nantoco, comuna de Tierra Amarilla, con 2,8 ha plantadas en 1984 con la variedad Flame Seedless. La distancia de plantación es de 3,3 x 3,3 m, y presenta una densidad de 918 plantas/ha. El sistema de conducción es tipo parronal español. El sistema de riego es de tipo goteo, a través del cual se realiza la fertilización.

Sistemas de producción

Para ambos sitios, el estudio consistió en manejar en forma diferenciada dos sectores del parronal, uno con un sistema integrado de prueba (SIP) y otro con un sistema de manejo convencional (SMC). La superficie de cada sistema de producción se resume en el Cuadro 1.

Cuadro 1. Superficie de cada sistema de producción, para los Sitios 1 y 2.

Sitio	Sistema de producción	Sistema de manejo	
	integrada (SIP)	convencional (SMC)	
	Hectá	íreas.	
Sitio 1: Los Loros	2,47	1,67	
Sitio 2: Nantoco	2,10	1,13	

Diseño de los sistemas de producción

Los sistemas de producción integrada (SIP), se diseñaron de acuerdo a las Normas de la OILB/SROP considerando aspectos tales como, fertilización y manejo de suelo,

reguladores de crecimiento, control de malezas, manejo fitosanitario, cosecha y post cosecha.

Los sistemas de manejo convencional (SMC), siguieron de acuerdo a la calendarización de las actividades y plan de manejo de cada productor.

Criterios de diseño en los sistemas de producción

Riego: El programa de riego, en la variedad Thompson Seedless se realizó a calendario, en ambos sistemas de manejo, por periodos de tiempo (horas) fijas por semana. En la variedad Flame Seedless, tanto en SIP como en SMC se estableció en base a las necesidades reales del cultivo, para lo cual se utilizaron las lecturas de tensiómetros, inspección periódica de calicatas, y a las características físicas del suelo.

Fertilización: La fertilización en la variedad Thompson Seedless, tanto en SIP como SMC se realizó a calendario (unidades históricas aplicadas por temporada). En la variedad Flame Seedless, en ambos sistemas de producción se manejó considerando el balance de nitrógeno y aspectos como, producción esperada y características del suelo (profundidad, textura, materia orgánica). Para la fertilización nitrogenada, se consideró el suministro del suelo y rendimiento total de la planta, para el caso de fósforo y potasio se realizaron aportes de corrección, para mantener un nivel de dichos elementos en el suelo. Los microelementos se manejaron de acuerdo a la sintomatología y resultado de los análisis foliares. Se adoptó esta metodología para cada uno de los sitios, ya que era imposible separar los sistemas (SIP y SMC) en 2 sectores de riego.

Protección fitosanitaria: El manejo fitosanitario en los SIP, consideró principalmente el uso de productos permitidos en PI, especificados en las Directrices Generales y las aplicaciones se realizaron ajustándose a la presión de la plaga o enfermedad, basándose en los registros de monitoreo fitosanitario periódico, reduciendo el número de aplicaciones, salvo para el caso de botritis y oidio, donde las aplicaciones fueron preventivas, especialmente las realizadas después de la lluvia que afecto al Valle en el mes de Octubre de 2002. En los SMC no se consideraron los monitoreos y las aplicaciones se realizaron a calendario.

Poda: Tanto en SIP como en SMC dependió de los hábitos de fructificación de las variedades y no hubo diferencias entre los sistemas.

Cosecha: En los SIP se llevó a cabo determinando el momento oportuno desde el punto de vista de los sólidos solubles, para lo cual se dio seguimiento al nivel de sólidos 15 días previo a la fecha tentativa de la primera cosecha.

Descripción de los sistemas de producción

En ambos sitios en estudio se establecieron dos sistemas de producción, el Sitio Integrado de Prueba (SIP) y el Sistema de Manejo Convencional (SMC) que se describen a continuación:

Sitio 1: Var. Thompson Seedless

SIP. Corresponde a una estrategia de manejo integrado, desde el punto de vista de la utilización de productos fitosanitarios, considerando principalmente las restricciones de uso de los productos el sentido de utilización de productos y estrategias de aplicación permitidos en las directivas europeas de producción integrada. Para el control de oidio se utilizó una rotación de productos entre los cuales se encontraba Azufre, Systhane (myclobutanil) y Quadris (azoxystrobin), con aplicaciones preventivas y basadas en monitoreos. Para control de plagas no se realizaron aplicaciones debido a que los monitoreos no justificaban aplicaciones de productos fitosanitarios. No se utilizó control de malezas mediante productos herbicidas. Los nemátodos sin embargo se controlaron con productos como QL Agri (extracto de quillay) y quitina natural, debido a que los resultados de análisis de suelo indicaban presencia de éstos.

SMC. Este sector se manejó en forma convencional, diferenciándose del SIP principalmente en: a) el uso de agroquímicos basado en un programa de aplicaciones calendarizadas, en el caso de los fungicidas si bien había preocupación y rotación de productos, no se respetaba la dosis de la etiqueta de los productos, b) en el manejo y tipo de productos utilizados para el control de nemátodos y c) en el manejo de la fruta antes, durante y después de la cosecha.

Sitio 2: Var. Flame Seedless

SIP. El criterio utilizado en este sistema, consideró el reemplazo de productos fitosanitarios, empleando solo aquellos permitidos por las Directrices de la producción integrada. Este sistema a diferencia del anterior consideró para el caso de las enfermedades fungosas, que las aplicaciones fueran según el resultado de los monitoreos, se realizó solo una aplicación preventiva post lluvia. Los productos considerados fueron Acoidal WG (azufre), Acoidal Flo (azufre), Stroby SC (kresoxim-methyl) y Azufre. El control de Trips, se basó 100% en los monitoreos, y se utilizó para su control Success 48 EC (spinosad). Se

realizó una estrategia de control de malezas que contempló control mecánico (azadón) y control químico con herbicidas sistémicos (glifosato), de acuerdo a la emergencia de malezas, estado fenológico y cubrimiento, con el objetivo de mantener la cubierta vegetal en niveles no dañinos para el parronal.

SMC. Este sector se manejó en forma convencional, diferenciándose del SIP principalmente en: a) el uso y tipo de productos fitosanitarios basado en un programa de aplicaciones calendarizadas, en el caso de los fungicidas si bien había preocupación y rotación de productos, no se respetaba la dosis de la etiqueta de los productos, b) en el control de malezas (manejo y tipo de productos utilizados), c) en el control de nemátodos (manejo y tipo de productos utilizados) y d) en el manejo de la fruta antes, durante y después de la cosecha.

Los demás componentes de manejo de los sistemas integrados, como lo son el manejo del suelo y del follaje, riego, cosecha y post cosecha, fueron analizados si se encontraban en concordancia con las Directrices Generales de la producción integrada, para ser modificados cuando correspondiera.

La nutrición de las plantas fue imposible separarla en cada uno de los sistemas de producción debido a que se manejaba mediante el sistema de riego, por lo que para la variedad Thompson Seedless, se realizó en base al manejo tradicional del productor, y para la variedad Flame Seedless, se estableció en base al balance de nitrógeno.

Establecimiento de la línea base agronómica

En cada Sitio se estableció una Línea base agronómica, esta evaluación permitió describir y caracterizar las condiciones iniciales de cada parronal y definir el tipo de manejo usado y que corresponde al sistema de manejo convencional de cada empresa. La línea base no sólo se enfocó a caracterizar los componentes vitícolas de rendimiento y calidad, sino que, además, se realizó una caracterización de los componentes bióticos y abióticos de los sitios en estudio. El establecimiento de la Línea Base Agronómica quedó definido por los siguientes aspectos:

Características del suelo

Propiedades físicas y morfológicas del perfil: Se realizó una calicata en cada sistema de producción (SIP y SMC) en ambos predios en estudio, según las pautas indicadas por el manual de reconocimiento de suelos elaborado por el USDA en el Soil Survey Manual; Handbook nº 18 (Soil Survey División Staff, 1993). Color de los horizontes y notación según Munsell Soil Color Chart.

Propiedades químicas del suelo: Se realizó análisis a cada uno de los sitios mediante una muestra compuesta, a dos profundidades: 0 a 20 cm. y de 20 a 40 cm. Se midió el pH usando un medidor de pH, contenido de materia orgánica expresado en porcentaje por el método de Walkley-Black; conductividad eléctrica expresada en ds · m⁻¹ del extracto de saturación; P-Olsen, nitrógeno disponible y potasio disponible en mg ·kg ⁻¹. La determinación se realizó a inicio de temporada después de la poda en ambos sitios.

Nematodos: Se realizó análisis a una muestra compuesta obtenida a una profundidad de 0 a 40. Se contabilizó el número de individuos en 250 ml de suelo, por el Método de Cobb + Embudo de Baermann.

Características de agua de riego

Se realizó análisis químico en una muestra de agua de 1 L, donde se determinó conductividad eléctrica, carbonatos, bicarbonatos, cloruros, sulfatos, potasio, calcio, magnesio y sodio (Cuadro 11).

Caracterización de las plantas

Se realizó una inspección visual inicial de los parronales y se caracterizó según vigor distribución y calidad de los cargadores, estado sanitario y sistema de conducción.

Antecedentes del parronal

Historial productivo del huerto (últimas tres temporadas). Se realizó una recopilación de información respecto de los planes de manejo que se siguieron históricamente, en esta recopilación se describen los puntos siguientes:

- Poda
- Raleo y arreglo de racimos
- Reguladores de crecimiento
- Antecedentes productivos y calidad de la fruta (rendimiento, calidad de post cosecha, problemas fitosanitarios principales)
- Productos fitosanitarios y criterio de aplicación. Descripción de métodos de aplicación usados. Manejo de la preparación sobrante y envases vacíos.
- Aplicación de fertilizantes
- Plagas y enfermedades. Se realizó una descripción de los principales problemas fitosanitarios en cada uno de los parronales.

Preparación técnica, actitud de los productores respecto a la seguridad del medio ambiente

Se realizó una caracterización del nivel de preparación técnica de los productores respecto de los aspectos relacionados con los objetivos de la producción integrada.

Puntos críticos para la implementación de la producción integrada

De acuerdo a los resultados de la Línea Base se establecieron cuáles son los puntos críticos para el establecimiento de un sistema de PI para cada uno de los sitios en estudio, siguiendo las directrices de Producción Integrada de fruta, Guidelines for Integrated Producction of Grapes, Technical Guideline III, OILB/SROP (Malavolta y Boller, 1999). Y las Directrices Generales para la Producción Integrada de Fruta en Chile, Universidad de Chile. (Cooper y Sazo, 2003).

Evaluaciones durante la temporada

En cada sistema se eligió 15 plantas homogéneas en cuanto a vigor y estado fitosanitario, para realizar las evaluaciones durante la temporada y comparar posteriormente los sistemas. Las evaluaciones se detallan a continuación:

Estados fenológicos

Se registró las fechas de ocurrencia de los distintos estados, en cada uno de los sectores en estudio, de acuerdo a la escala reducida de Eichhorn y Lorenz, (1977).

Crecimiento vegetativo

Se evaluó cada 15 días en cuatro brotes, 1 por cada exposición cardinal. El resultado se expresó en centímetros.

Número de racimos por planta, numero de flores y bayas por racimo

En 2 racimos tomados al azar por planta se contó el número de flores totales por racimo en plena flor. Esto se evaluó antes y después del raleo. En un total de 5 racimos por planta se contó el número de bayas por racimo antes de la primera aplicación de ácido giberélico y después de la práctica de arreglo de racimos, en un total de 15 plantas.

Estado fitosanitario

Se realizó una evaluación del estado fitosanitario inicial a las plantas, y durante la temporada utilizando los siguientes niveles:

	Nivel	Incidencia	
1 Escaso		Muy difícil de encontrar	
2	Leve	Presenta ligera dificultad para encontrarlo	
3	Moderado	Frecuente	
4	Alto	Muy frecuente	

Trips (*Flankliniella occidentalis*): En una muestra de 5 racimos por planta se realizó un monitoreo de la plaga, para ello se sacudieron los racimos sobre una cartulina blanca y se contó el número de individuos por racimo. También se monitorearon las malezas del sector, ya que la densidad de Trips en malezas refleja la abundancia del Trips en la temporada (Espinoza *et al.*, 2003). Esto se evaluó cada 15 días, desde pre flor a baya de 8 mm.

Chanchitos blancos (<u>Pseudococcus</u> <u>sp</u>.): Se revisaron hojas basales para determinar migración de ninfas, se utilizó cinta doble adhesiva en la base de los brotes y se contabilizó el número de individuos. La remoción de cintas y conteo se realizó cada 15 días desde brotación a post cosecha.

Burrito de la vid (*Naupactus xanthographus*): Se determinó la presencia a través de un plástico de 1 m por 1.5 m a modo de alfombra y se procedió a sacudir las plantas para contar el número de individuos. Se evaluó cada 15 días. Desde brotación a post cosecha.

Botritis (<u>Botrytis cinerea</u>): Se monitoreó visualmente la sintomatología, dando seguimiento a los estados fenológicos más susceptibles de la planta. Desde brotación a cosecha se evaluó cada 15 días y se realizó una evaluación en cosecha y post cosecha.

Oidio (*Oidium tuckeri*): Se monitoreó visualmente la sintomatología, dando seguimiento a los estados fenológicos de susceptibilidad de la planta. Desde brotación a cosecha, se evaluó cada 15 días.

Malezas

Se realizó una descripción de las malezas presentes según presencia, intensidad y lugar de ubicación. La distribución se evaluó por medio de apreciación visual indicando porcentaje de cobertura entre y sobre la hilera.

Estado nutricional

Se evaluó a través de análisis foliar, se tomó una muestra de 100 hojas por sistema, colectando la hoja opuesta al racimo, en el primer racimo basal del brote en plena flor.

Producción y calidad de la fruta

En ambos parronales en estudio, se realizó la cosecha individual de las 15 plantas seleccionadas por sistema de manejo y se evalúo rendimiento y calidad de la fruta en cada planta. Asimismo se realizó la cosecha de toda la superficie de cada cuartel. La fruta fue cosechada en tres oportunidades de acuerdo al estado de madurez de cada variedad utilizando como indicador el contenido de azúcar expresado en ° Brix. En todas las oportunidades de cosecha se comenzó temprano en la mañana. Las cajas fueron protegidas en los SIP, con empol en el Sitio 1 y con esponja en el Sito 2.

Evaluaciones a cosecha

En la variedad Thompson Seedless, la fruta de la primera y segunda cosecha se procesó en el packing de Sociedad Agrícola El Fuerte. Para la variedad Flame Seedless, en el packing de Exportadora Desierto de Oro. Se evaluó individualmente cada racimo, considerando:

Rendimiento y tamaño de la fruta

Se comparó el rendimiento de las plantas y tamaño de la fruta que se evaluó en 3 niveles:

Sitio	Variedad	Categorías de tamaño			
		Е	G	M	
1	Thompson Seedless	> 19 mm	17.5 – 19 mm	16 -17.5 mm	
2	Flame Seedless	> 19 mm	18 – 19 mm	17 - 18 mm	

Calidad de la fruta

Para la estimación de la calidad de la fruta se consideró los siguientes parámetros, medidos en 5 racimos por planta y por oportunidad de cosecha:

Madurez: Expresada en grados Brix (en todos los casos).

Peso de racimos: Expresado en gramos.

Tamaño y peso de bayas: Expresados en milímetros y gramos respectivamente (5 bayas al azar por racimo).

Incidencia de defectos: palo negro, botritis, daño de sol, bayas blandas. Expresados en porcentaje de racimos afectados y en incidencia, según la escala que se presenta en el Cuadro 2. Los racimos débiles se expresaron en porcentaje.

Cuadro 2. Escala para la clasificación de defectos.

Categoría	Palo negro	Botritis	Oidio	Bayas blandas
1= incipiente	1-4 bayas	1-4 bayas	< 5% (racimo)	1 – 4 bayas
2= moderado	5 – 14 bayas	5 – 14 bayas	5 – 10 %	5 – 14 bayas
3= severo	>15 bayas	>15 bayas	>10%	>15 bayas

Aptitud de almacenamiento

Para cada uno de los sitios en estudio se seleccionó una muestra de 10 cajas de uva de 8,2 kilos y se almacenó por un período de 20 días en el Frigorífico de Agrícola Ruiz Tagle, en la localidad de Cerrillos. A salida de frío, se evaluó la fruta en dos oportunidades, día 0 y día 5, durante la última evaluación la fruta se mantuvo a temperatura ambiente. Estas evaluaciones consideraron los siguientes aspectos:

Pudrición: Se contó el número de bayas afectadas por sistema y se determinó el porcentaje de bayas afectadas.

Deshidratación: Se determinó el grado de deshidratación del escobajo en 4 niveles:

Nivel Descripción	
1	Sin deshidratación
2 Deshidratación leve	
3	Deshidratación moderada
4	Deshidratación severa

Desgrane: se determinó el porcentaje de bayas desgranadas por sistema.

Diseño experimental y análisis estadístico

No se realizó análisis estadístico. Sólo se emplearon comparaciones de los datos obtenidos en cada uno de los sitios en estudio y sistemas de producción.

RESULTADOS Y DISCUSIÓN

Línea base agronómica

La caracterización de los aspectos que se presentan a continuación permitió establecer la Línea Base Agronómica y Productiva y la definición de los puntos críticos para la implementación de la producción integrada.

Características del suelo

a) Propiedades físicas y morfológicas del perfil:

Sitio 1. Var. Thompson Seedless: Pertenece a la serie Los Loros. Las características del perfil se describen en los Cuadros 3 y 4. La serie Los Loros presenta suelos sedimentarios, profundos y estratificados. De textura superficial franco arenosa y color pardo muy oscuro; de textura arenosa en profundidad. Desde los 85 cm hacia abajo existen moteados abundantes, sales en filamentos gruesos, comunes y sales cristalizadas abundantes. Suelo de topografía plana, de permeabilidad y drenaje interno rápido a muy rápido.

Cuadro 3. Propiedades del perfil de suelo en el Sitio 1 en SMC.

Horizonto	Profundidad	Colon	Class	Esterrotues	Porosidad	Daíasa
Horizonte	Profundidad	Color	Clase	Estructura	Porosidad	Raíces
	(cm.)		textural			
1	0 - 36	5YR 2/1	Franco	Bloques	Finos escasos	Muy finas,
			arenosa	angulares/		finas, medias
				subangulares		gruesas
						abundantes
2	36 - 100	2,5 YR	Arenosa	Grado de no	Medios	Finas, medias,
		3/2		estructura	abundantes	gruesas
						comunes

Cuadro 4. Propiedades del perfil de suelo en el Sitio 1, en SIP.

Horizonte	Profundidad	Color	Clase	Estructura	Porosidad	Raíces
	(cm.)		textural			
1	0 - 28	5YR 2/2	Franco	Bloques	Muy finos,	Muy finas,
			arcillosa	angulares/	finos	finas,
				subangulares	comunes	medias
				finos medios		comunes
2	28 - 49	5 YR 2/2	Franco	Granular	Finos	Medias,
			arenosa –	media	abundantes	gruesas
			arenosa			comunes
3	49 - 76	10 YR	Arenosa	Grado de no	Finos	Medias
		2/2		estructura	medios	gruesas
					abundantes	abundantes
4	76 - 100	10 YR	Arenosa	Grado de no	Finos	Gruesas
		4/3		estructura	medios	escasas
					abundantes	

El suelo presenta diferencias dentro del cuartel, es más compactado en el sentido de la pendiente, pero es en términos generales bien estructurado, presenta agregados, una matriz arenosa en profundidad (50 cm.), lo que facilita el drenaje. Por efectos de la salinidad, el suelo es muy disgregado en superficie, en menor grado en profundidad.

Sitio 2. Var. Flame Seedless: Pertenece a la serie Nantoco. Las características del perfil se describen en los Cuadros 5 y 6.

La serie Nantoco presenta suelos sedimentarios, muy profundos, estratificados. De textura superficial franco arcillo limosa y color pardo oscuro; de textura de arcilla densa de color gris rojizo oscuro en profundidad. Entre los 69 y 102 cm de profundidad, presenta manchas y bandas de materia orgánica y carbonatos de calcio, comunes. Desde los 102 a los 107 cm de profundidad, presenta una estrata de arcilla densa, de color rojo. Suelo de topografía plana, de permeabilidad moderadamente lenta y drenaje interno lento. Se clasifica en clase II de Capacidad de Uso. Suelo muy compactado, franco arcilloso, falto de estructura, disgregado por efecto de la salinidad.

Cuadro 5. Propiedades del perfil de suelo en el Sitio 2, en SMC.

Horizonte	Profundidad	Color	Clase	Estructura	Poros	Raíces
	(cm.)		textural			
1	0 - 30	7,5 YR	Franco	Bloques	Finos	Muy finas,
		3/2	arenosa muy	angulares,	escasos	finas, medias,
			fina	subangulares,		gruesas
				finos medios		abundantes
2	30 - 54	7,5 YR	Franco	Bloques	Finos	Finas, medias
		3/2	arcillosa	subangulares	abundantes	comunes
				finos medios		
3	54 - 100	10 YR	Arcillo	Bloques	Finos,	Finas, medias
		3/3	limosa	subangulares	medios	comunes,
				medios	comunes	gruesas
-				gruesos		escasas

Cuadro 6. Propiedades del perfil de suelo en el Sitio 2, en SIP.

Horizonte	Profundidad (cm.)	Color	Clase textural	Estructura	Poros	Raíces
1	0-23	7,5 YR 3/2	Franco arcillosa	Bloques angulares medios, subangulares medios gruesos	Finos medios comunes	Finas, medias, abundantes
2	23 – 59	10 YR 3/4	Arcillo limosa	Bloques subangulares medios	Finos medios escasos	Finas, medias escasas
3	59 – 100	10 YR 4/3	Arenosa	Grado de no estructura	Finos abundantes	Medias, gruesas escasas

El suelo presenta diferencias en el perfil. En superficie en ambos sitios presenta una alta dispersión, lo que hace presumir elevados contenidos de sodio.

b) Propiedades químicas del suelo:

En el Cuadro 7 y 8 se presenta el contenido de nutrientes y otras propiedades del suelo de los sitios 1 y 2 respectivamente. La determinación se realizó a inicio de temporada después de la poda en ambos sitios.

Sitio 1. Variedad Thompson Seedless: El suelo superficial (0-20 cm) es de reacción moderadamente alcalina, con bajo contenido de materia orgánica y ligeramente salino, tiene una baja disponibilidad de nitrógeno y fósforo y muy alta de potasio. El suelo

subsuperficial (20-40 cm) presentó reacción moderadamente alcalina, bajo contenido de materia orgánica y salino, con una disponibilidad baja de nitrógeno y fósforo y alta de potasio.

Cuadro 7. Contenido de nutrientes y otras propiedades químicas del suelo, en el Sitio 1.

Profundidad	рН	MO	CE	N	P	K
(cm.)		%	(dS/m)	mg · kg ⁻¹	mg · kg ⁻¹	mg · kg ⁻¹
0 - 20	8,2	2,04	2,04	12	5	338
20 - 40	8,4	1,07	1,45	6	5	266

Sitio 2. Var. Flame Seedless: Presenta un suelo superficial de reacción moderadamente alcalina con bajo contenido de materia orgánica y ligeramente salino. Disponibilidad baja de nitrógeno y fósforo y muy alta de potasio. El suelo subsuperficial es de reacción moderadamente alcalina, bajo contenido de materia orgánica y no salino, disponibilidad baja de nitrógeno y fósforo y alta de potasio.

Cuadro 8. Contenido de nutrientes y otras propiedades químicas del suelo, en el Sitio 2.

Profundidad	pН	MO	CE	Ń	P	K
(cm.)		(%)	(dS/m)	mg ⋅ kg ⁻¹	mg · kg ⁻¹	mg · kg ⁻¹
0 - 20	8,1	1,69	2,86	5	5	386
20 - 40	8,2	1,02	1,89	6	3	268

c) Nemátodos:

En el Cuadro 9 y 10 se presentan los resultados desprendidos del análisis nematológico de suelo, para los Sitios 1 y 2 respectivamente.

Cuadro 9. Número de ejemplares de nematodos en 250 cc de suelo, Sitio 1.

Especie	Número de ejemplares en/250 cc de suelo
Xiphinema index	40
Criconemella sp.	10
Tylenchulus semipenetrans	4400
Nemátodos de vida libre	360

Cuadro 10. Número de ejemplares de nematodos en 250 cc de suelo. Sitio 2.

Especie	Número de ejemplares en/250 cc de suelo
Xiphinema index	35
Pratylenchus sp.	30
Tylenchulus semipenetrans	4360
Nemátodos de vida libre	200
Helicotylenchus sp.	20

Como se observa en los Cuadros 9 y 10, ambos sitios se encuentran con poblaciones altas de <u>Tylenchulus semipenetrans</u>, nematodo que en vides causa mayor susceptibilidad al estrés, presentando síntomas de marchitez y pérdida gradual del rendimiento (Magunacelaya, 1999).

En ambos casos se presentaban sectores más afectados en primavera, que evidenciaban daño por este nematodo (brotes cortos y en menor cantidad respecto de plantas sanas). Estos sectores estaban cercanos a hileras de cítricos que se encontraban colindando con el parronal (limoneros en el Sitio 1 y naranjos en el Sitio 2).

El resto de las poblaciones se mantienen en niveles bajos, y no causan problemas significativos al parronal.

Características del agua de riego

En el Cuadro 11 se detallan las características del agua de riego para los Sitios 1 y 2.

Cuadro 11. Propiedades químicas del agua de riego, Sitios 1 y 2.

Sitio	Ca++	Mg ++	Na+	K+	CO3=	HCO3-	Cl-	SO4=	CE
	$meq \cdot L^{-1}$	$meq \cdot L^{-1}$	meq·L ⁻¹	$\text{meq} \cdot \text{L}^{-1}$	mmho 'cm ⁻¹ .				
1	7,2	3,4	4,5	0,08	0,00	3,5	2,2	7,6	1,22
2	7,0	2,9	3,4	0,08	0,00	2,9	2,7	7,8	1,10

Los resultados muestran que las aguas son ligeramente salinas dado los niveles de conductividad eléctrica que manifiestan (> 1 mmho \cdot cm $^{-1}$). En cuanto al nivel de cloruros, este estaría dentro de la clase sin problemas (< 4 meq \cdot L $^{-1}$). Un problema son los altos niveles de sodio y de bicarbonato que se presentan altos en ambos sitios (Román, 2005).

Caracterización de la plantas

Sitio 1. Var. Thompson Seedless: Después de poda, los cargadores presentan un diámetro promedio de 1.5 cm., homogéneos, con 10 a 12 yemas.

Las plantas tienen un buen estado fitosanitario, no hay presión fuerte de plagas. En los cortes gruesos de poda, se observa daño de taladrador de la vid, con un nivel de daño de 1. No se observó estados invernantes de ellos ni presencia de enemigos naturales.

Sitio 2. Var. Flame Seedless: Después de la poda, los cargadores se presentan homogéneos y presentan 4 a 5 yemas, y un diámetro promedio de 1 cm. Las plantas se presentan homogéneas en cuanto a vigor, salvo en el sector norte, donde se aprecian ligeramente más débiles.

Respecto a la presencia de estados invernantes se observaron de chanchitos blancos de temporadas anteriores bajo el ritidomo en algunas plantas. No se observó presencia de enemigos naturales.

Antecedentes de los parronales

A continuación se presentan los antecedentes de manejo realizados por los productores en los dos sitios en estudio.

Sitio 1. Variedad Thompson Seedless

Poda: Se realiza poda tradicional durante el mes de mayo, con un largo promedio de 10 yemas por cargador y 24 cargadores promedio por planta. En el caso de tener cargadores demasiado débiles se dejan apitonados. El sarmiento es picado e incorporado al suelo en la entre hilera.

Raleo y arreglo de racimos: Esta labor se realiza después que la baya alcanza entre 4 a 8 milímetros de diámetro. Se realiza el ajuste de carga en base al vigor de la planta y el arreglo dependiendo de las características del racimo. El rango total de bayas por racimo es de 150 a 180 unidades.

Reguladores de crecimiento: En el Cuadro 12 se resume el programa de aplicaciones de ácido giberélico.

Cuadro 12. Tratamientos con Ácido Giberélico en el Sitio 1.

Estado fenológico	Objetivo	N° de	Dosis	Mojamiento
		aplicaciones	(ppm)	(Lt/ha)
Elongación de escobajo	Elongación	3	10	1.500
Inicio de floración a 50 % de flor	Raleo de flores	2	10	1.500
85 % de flor	Raleo de flores	1	15	1.500
Baya 7 – 8 mm	Crecimiento	2	30	1.500
Baya 7 – 8 mm a Baya 13 mm	Crecimiento	2	40	2.000
(50% de pinta)				

Como se aprecia en el Cuadro 12, las aplicaciones de ácido giberélico se realizan en cantidad y dosis elevadas, lo que constituye un punto crítico para la implementación de un sistema de producción integrada.

Producción: En el Cuadro 13 se presentan los rendimientos de las últimas temporadas.

Cuadro 13. Producción en las últimas temporadas en el Sitio 1.

Temporada	Producción (kg·ha-1)	Exportación (%)	Cajas exportadas/ha	Causal de descarte
1999 – 2000	12.994	85	1584.6	Tamaño de bayas < 16 mm
2000 – 2001	16.793	85	2047.9	Tamaño de bayas < 16 mm
2001 – 2002	14.808	85	1805.8	Tamaño de bayas < 16 mm

Manejo fitosanitario: El calendario de aplicaciones se resume en el Cuadro 14.

Cuadro 14. Programa de aplicación de productos fitosanitarios en Thompson Seedless.

Se utiliza azufre como fungicida, junto a otros productos que se rotan como estrategia anti resistencia. En cuanto a las aplicaciones fitosanitarias, la selección y calibración de los equipos es generalmente adecuada, así como la protección para los operarios (elementos de protección personal), el manejo y almacenamiento de los productos. Condiciones adecuadas en bodegas (construcción, señalización, ventilación, estado de mantención) como el manejo de los productos (inventario, estado y almacenamiento de los productos).

No hay cantidades importantes de sobrante de las aplicaciones, ya que las calibraciones de maquinaria permiten que se calcule el gasto necesario para cada aplicación, en caso de

sobrar, se aplica en las orillas del cuartel o en zonas no tratadas. Para el manejo de envases vacíos, se realiza triple lavado a estos, y se depositan en una bodega para su almacenamiento y posterior eliminación. Los operarios encargados de la dosificación y aplicaciones están dotados de los elementos de protección personal adecuados. No hay evidencia de que se sigan las instrucciones de la etiqueta respecto al uso de estos implementos y cálculo de las dosis.

Aplicación de fertilizantes: Los fertilizantes son aplicados a través del riego por goteo. La fertilización nitrogenada se basa principalmente en aplicaciones de urea. La aplicación de fertilizantes se resume en el Cuadro 15.

Cuadro 15. Aplicación de fertilizantes estándar de la temporada 2002 – 2003, Sitio 1, SMC.

Temporada Unidades de N·ha - Unidades de P2O5 · ha - Unidades de K2O · ha -

2001 - 2002 234,27 - 665,55

Como se aprecia en el Cuadro 15, las altas dosis de nitrógeno y potasio aportadas por hectárea, constituyen un punto crítico para la implementación de un sistema de producción integrada, de acuerdo a lo establecido en las Directrices Generales.

Plagas y enfermedades: No se promueven o protegen las poblaciones de enemigos naturales de plagas y enfermedades, lo cual constituye un punto crítico para el establecimiento de un sistema de producción integrada.

Se realizan monitoreos, sin embargo no existe registro de dichas evaluaciones, sin embargo, por el historial de las aplicaciones, se desprende que mayor incidencia tiene el Oidio, muy poca incidencia de Chanchitos blancos. El ataque de Trips es ocasional, se manifiesta mayormente en años lluviosos donde hay mayor presencia de especies silvestres con flores.

Preparación técnica: Existe muy poco conocimiento de los que es la producción integrada de fruta y las ventajas que presenta el sistema versus el manejo convencional.

Sitio 2. Variedad Flame Seedless

Poda: Se realiza una poda tradicional durante el mes de mayo. Las plantan quedan con un largo promedio de 4 a 5 yemas por cargador y de 10 a 12 cargadores promedio por planta, el vigor de los cargadores es bastante homogéneo, entre 1 a 1,5 cm, razón por la cual no se dejan pitones.

Raleo y arreglo de racimos: Se realiza después que la baya alcanza entre 4 a 6 milímetros de diámetro. Se realiza el ajuste de carga en base a la calidad de la planta y el arreglo

dependiendo de las características del racimo. El rango total de bayas por racimo es de 120 a 130 unidades.

Reguladores de crecimiento: En el Cuadro 16. Se indica el programa de aplicaciones de ácido giberélico.

Cuadro 16. Tratamientos con Ácido Giberélico, Sitio 2.

Estado fenológico	Objetivo	Nº de	Dosis	Mojamiento
		aplicaciones	(ppm)	Lt · ha ⁻¹
50 % de flor	Raleo de flores	1	12	1.500
Baya 4 – 5 mm	Crecimiento	3	40	1.500
Baya 6 – 8 mm a Baya 13 mm (50% de pinta)	Crecimiento	2	35	2.000

Como se aprecia en el Cuadro 16, las aplicaciones de ácido giberélico para la variedad se realizan en cantidad y dosis elevadas, lo que representa un punto crítico para la implementación de un sistema de producción integrada.

Producción: En el Cuadro 17. Se presentan los rendimientos de las últimas temporadas.

Cuadro 17. Producción en las últimas temporadas

Temporada	Producción	Exportación	Cajas	Descarte
	$(kg \cdot ha^{-1})$	(%)	exportadas/ha	
1.999 - 2.000	6.400	100	780.5	-
2.000 - 2.001	7.812	100	952.7	-
2.001 - 2.002	14.235	100	1735.9	-

Manejo fitosanitario: En el Cuadro 18. Se resume el calendario de aplicaciones de productos fitosanitarios.

Cuadro 18. Programa de aplicación de productos fitosanitarios en Flame Seedless.

Estado	Objetivo	Producto	Ingrediente	Dosis por 100 Lt /	Nº de
fenológico		comercial	Activo	Mojamiento en L · ha ⁻¹	Aplic.
Receso	Brotación	Dormex	Cianamida	5 lt. / 300	1
invernal			hidrogenada		
Brote de	Oidio	Acoidal Flo	Azufre	250 cc. / 1.400	2
10 a 60	Oidio	Acoidal WG	Azufre	200 gr. / 1.200	1
cm.	Trips	Metomil 90%	Metomil	70 gr / 1.400	1
20 a 40 %	Oidio –	Stroby SC	Estrobirulinas	12 cc / 1.400	1
de flor	botritis				
	Trips	Metomil 90%	Metomil	70 gr / 1.400	2
	Oidio	Azufre	Azufre	350 gr /2000	1
Baya 6 – 8	Ch. Blanco	Dimetoato	Dimetoato	7cc/100	1
a 17 mm	Oidio	Azufre	Azufre	350 gr /2000	5

El sobrante de las aplicaciones es muy poco y se aplica en las riendas. Para el manejo de envases vacíos, se realiza triple lavado a estos, pero no se dispone de una bodega para su depósito y posterior eliminación. Los operarios encargados de la dosificación y aplicaciones están dotados de los elementos de protección personal adecuados, sin embargo no hay evidencia de que se siguen las instrucciones de la etiqueta respecto al uso de estos implementos.

Aplicación de fertilizantes: Los fertilizantes son aplicados a través del riego por goteo, no se considera balance de nitrógeno. Se realizan análisis foliares todas las temporadas, sin embargo, esta información no siempre es utilizada para realizar aportes de corrección.

Cuadro 19. Aplicación de fertilizantes estándar de la temporada 2002 – 2003, en el Sitio 2.

Temporada	Unidades de N · ha⁻¹	Unidades de P2O5 · ha ⁻¹	Unidades de K2O · ha ⁻¹
2001 - 2002	97	80	119

Plagas y enfermedades: No se promueven o protegen las poblaciones de enemigos naturales de plagas y enfermedades y no hay evidencia de su presencia en el Sitio 2, lo que se determinó mediante la inspección realizada al momento de caracterizar las plantas.

No existe registro de evaluaciones de plagas y enfermedades aun cuando estas las realiza el productor, sin embargo, por el historial de las aplicaciones, se desprende que mayor incidencia tienen los Chanchitos blancos. El ataque de Trips es ocasional, se manifiesta mayormente en años lluviosos donde hay mayor presencia de especies silvestres con flores.

En cuanto a la preparación técnica, existe muy poco conocimiento de los que es la producción integrada de fruta y las ventajas que presenta el sistema versus el manejo convencional.

Puntos críticos para la implementación de la producción integrada

Una vez establecidas las condiciones iniciales de manejo de los sitios a través de la Línea Base Agronómica y Productiva, se pudo determinar que existe una gran cantidad de puntos críticos para la implementación del sistema de Producción Integrada, los que se presentan a continuación.

Sitio 1 Var. Thompson Seedless

- Excesivo uso de ácido giberélico tanto para elongación, raleo y arreglo de racimos, práctica en la que se contemplan muchas aplicaciones y en altas dosis.
- Manejo fitosanitario: aplicación calendarizada y excesiva de productos químicos y utilización no adecuada de ellos. No se respetan las dosis indicadas en las etiquetas de los productos. Además se utilizan productos no aceptados en la producción integrada.
- Aplicación de fertilizantes excesiva, especialmente de unidades de nitrógeno y potasio. No se realizan análisis de suelo (N, P, K) para estimar la necesidad de nutrientes, se realizan análisis foliares, sin embargo estos no son utilizados para corregir los niveles de nutrientes.
- En cuanto a la cosecha, esta se realiza muchas veces un poco anticipada, teniendo descartes o problemas en packing por el bajo contenido de grados brix. Las cajas de cosecha se protegen inadecuadamente (papel de diario), lo que ocasiona contaminación por parte de las tintas y a su vez daños a la fruta por golpes. La cosecha contempla limpieza bajo el parrón, lo trae problemas cuando no hay supervisión suficiente debido a que una limpieza deficiente obliga a traer al personal de cosecha a packing y la fruta sufre un deterioro importante al ser manipulada por segunda vez.

Sitio 2. Var. Flame Seedless

- Alto uso de ácido giberélico tanto para raleo y arreglo de racimos, práctica en la que se contemplan muchas aplicaciones y en altas dosis.
- Manejo fitosanitario, aplicación calendarizada y excesiva de productos químicos y utilización no adecuada de ellos, no se respetan las dosis indicadas en las etiquetas de los productos. Además se utilizan productos no aceptados en la producción integrada y altamente contaminantes (carbamatos y organofosforados), que ofrecen peligro a los operarios debido a que no se toman las precauciones indicadas (correcto uso de los elementos de protección personal).

- Aplicación de fertilizantes en altas dosis, especialmente de potasio, que no concuerdan con las necesidades de la planta debido a que no se realizan análisis de suelo para estimar dichas cantidades.
- El control de malezas se realiza con productos no permitidos en la PI.
- En cuanto a la cosecha, esta se realiza muchas veces un poco anticipada, teniendo descartes o problemas en packing por bajo color. Las cajas de cosecha no se protegen, lo que ocasiona daños y contaminación por tierra en la fruta.

Establecimiento del sistema de producción integrada

El manejo realizado en los SIP durante la temporada 2002 – 2003, fue el siguiente:

Poda: No se realizó modificaciones respecto al manejo, ya que como se describió la Línea Base, esta práctica tiene como objetivo la renovación de la madera frutal. Aun así podría haberse modificado si hubiera sido necesario.

Raleo y arreglo de racimos: No se realizaron modificaciones de esta práctica, debido a que dicha labor se realiza manual y con apoyo de agroquímicos como ácido giberélico. Si aplicó un manejo con dosis totales menores que es compatible con lo establecido en las Directrices Generales para la Producción Integrada de Fruta en Chile.

Reguladores de crecimiento: En los Cuadros 20 y 21. Se indica el programa de aplicaciones de ácido giberélico para los SIP de ambas variedades.

Cuadro 20. Tratamientos con ácido giberélico en el Sitio 1. Var. Thompson Seedless. SIP

Estado fenológico	Objetivo	Nº de	Dosis	Mojamiento
		aplicaciones	(ppm)	(Lt/ha)
Inicio de floración a 50 %	Raleo de flores	2	10	1.500
de flor				
Baya 7 – 8 mm	Crecimiento	2	30	1.500
Baya 7 – 8 mm a Baya 13	Crecimiento	1	35	2.000
mm (50% de pinta)				

Cuadro 21. Tratamientos con ácido giberélico, var. Flame Seedless. SIP.

Estado fenológico	Objetivo	N° de	Dosis	Mojamiento
		aplicaciones	(ppm)	(Lt/ha)
60 % de flor	Raleo de flores	1	10	1.500
Baya $4-5 \text{ mm}$	Crecimiento	1	30	1.500
Baya 6 – 8 mm	Crecimiento	1	35	2.000

Se realizó aplicaciones con el objetivo de raleo de flores y crecimiento de bayas, como esta indicado por Malavolta y Boller (1999) y Cooper y Sazo (2003), en las Directrices de PI. Para la variedad Thompson Seedless significó la eliminación de la aplicación de elongación, una de raleo y la disminución en la dosis de la última aplicación de crecimiento. Para Flame Seedless, significó la reducción en la dosis de la primera aplicación de crecimiento.

Manejo fitosanitario

En el SIP, var. Thompson Seedless se realizó menor número de aplicaciones y en las dosis correctas (Cuadros 22 y 23), en el SMC sin embargo, de realizó mayor número de aplicaciones que resultaron ineficientes debido a que en ocasiones estaban en dosis inferiores a las indicadas. En otros casos, se dosificó excesivamente en el SMC.

En la variedad Flame Seedless, Como se aprecia en el resumen de tratamientos, el número de aplicaciones fue mayor en el SMC (Cuadros 24 y 25), donde todos los tratamientos se basaron en aplicaciones calendarizadas, salvo la aplicación de Trips, la cual no estaba contemplada y surgió por efecto del monitoreo de esta plaga. En el SIP sin embargo, las aplicaciones de productos fitosanitarios se basaron en los monitoreos de los niveles de plagas y enfermedades. Para el caso de las enfermedades se realizó aplicaciones preventivas a inicio de temporada y posterior a la lluvia que afectó a ambos sitios en el mes de octubre de 2002. Se utilizó productos permitidos por la producción integrada, que son aquellos autorizados por las Directrices y cuya nómina está contenida en los Suplementos Normativos específicos para uva de mesa (Cooper y Sazo, 2003).

Para el control de enfermedades fungosas, en el SIP se adecuó las dosis a lo recomendado en la etiqueta de los productos, ya que pasar períodos sin protección puede facilitar la entrada de oídio a la planta en los períodos susceptibles.

En los Cuadros 22 y 24 se presenta el programa de manejo implementado para los SIP y la comparación con los SMC, para las variedades Thompson y Flame Seedless respectivamente

Cuadro 22. Programa de aplicación de productos fitosanitarios realizado durante la

temporada 2002 – 2003. Var. Thompson Seedless.

	Estada	SMC			SIP		
Fecha	Estado				D 1		
	fenológico	Producto	Dosis/	Observaciones	Producto	Dosis	Observaciones
-			100L				
02/08	Brote de	Quadris	12 cc	Oidio			
	30 cm						
06/08	Brote de	Quadris	12 cc	Oidio	Quadris	50 cc	Oidio
	30 cm						
22/08	Inicio de	Systhane	12 cc	Oidio	Systhane	12 cc	Oidio
	flor						
29/08	Floración	Quadris	12 cc	Oidio	Quadris	50 cc	Oidio
10/09	Bayas de	Systhane	15 cc	Oidio	Systhane	10cc	Oidio
	4 mm						
16/09	Bayas de	Quadris	69 cc	Oidio	Quadris	50 cc	Oidio
	5-6 mm						
21/09	Bayas de	Quadris	69 cc	Oidio			
	5-6 mm						
28/09	Bayas de	Systhane	5 cc	Oidio	Systhane	10 cc	Oidio
	8 mm						
03/10	Bayas de	Noble	30 gr	Oidio			
	8 - 10						
	mm						
07/10	Bayas de	Noble	30 gr	Oidio			
	8 - 10		-				
	mm						
11/10	Bayas de	Azufre	375	Oidio	Azufre	300	Oidio
	10 - 13						
	mm						

Cuadro 23. Resumen de productos utilizados y numero de aplicaciones, durante la temporada 2002 – 2003. Var. Thompson Seedless.

Tipo de		SMC	SIP		
producto	Producto	Nº de aplicaciones/	Producto	Nº de aplicaciones/	
	comercial	temporada	comercial	temporada	
Fungicida	Systhane	3	Systhane	3	
	Quadris	5	Quadris	3	
	Noble	2	Noble	0	
	Azufre	1	Azufre	1	
N° Total		10		7	
aplicaciones					

Cuadro 24. Programa de aplicación de productos fitosanitarios realizado durante la

temporada 2002 – 2003. Var. Flame Seedless.

<u>temp</u>	01ddd 2002	2003. Vai	· I Iuiiic	becaress.			
Fecha	Estado		SMO	C		SIF)
	fenológico	Producto	Dosis/ 100L	Observaciones	Producto	Dosis	Observaciones
06/09	Brote de 10 cm	Acoidal Flo	250 cc	Oidio			
13/09	Brote de 30 cm	Acoidal WG	200 gr.	Oidio	Acoidal WG	200 gr.	Oidio
27-09	Brote de 60 cm	Acoidal Flo	250 cc	Oidio	Acoidal Flo	200 cc	Oidio
30/09	Inicio de Floración	Metomil 90%	70 gr.	Trips			
05/10	20% Flor	Stroby SC Metomil 90%	14 cc 70 gr.	Oidio – Botritis Trips	Stroby SC Success 48 EC	14 cc 7 cc	Oidio – Botritis Trips
10/10	40% Flor	Metomil 90% Azufre	70 gr. 350 gr.	Trips Oidio			
17/10	60% Flor				Success 48 EC	7 cc	Trips
22/10	Baya 6 – 8 mm	Azufre Dimetoato 40 EC	350 gr. 100 cc	Odio Chanchito blanco	Azufre	300 cc	Odio
25/10	Baya de 12 - 14 mm	Azufre	350 cc	Oidio			
02/11	Cierre de racimo	Azufre	350 cc	Oidio	Azufre	300 cc	Oidio
21 y 28/11	Pinta	Azufre	350 cc	Oidio			
16/12	Precosecha	Azufre	350 cc	Oidio	Azufre	350 cc	Oidio

Cuadro 25. Resumen de productos utilizados y numero de aplicaciones, durante la

temporada 2002 – 2003. Var. Flame Seedless.

Tipo de		SMC	SIP		
producto	Producto	Nº de aplicaciones/	Producto	Nº de aplicaciones/	
	comercial	temporada	comercial	temporada	
Fungicida	Acoidal WG	1	Acoidal WG	1	
Fungicida	Acoidal Flo	2	Acoidal Flo	1	
Fungicida	Stroby SC	1	Stroby SC	1	
Insecticida	Metomil 90%	3	Success 48 EC	2	
Fungicida	Azufre	6	Azufre	3	
Insecticida	Dimetoato	1			
Nº Total de					
aplicaciones		14		8	

El control de nemátodos en los SMC, para la ambas variedades, se basó en una aplicación vía riego de Enzone (tetratiocarbonato de sodio), en una concentración de 0,3%, en los SIP consistió en la aplicación de QL Agri (producto de origen natural a base de extracto de quillay) en una concentración de 5.000 ppm, en el momento del desarrollo de las raíces, tratamiento que se complementó además, con restos de crustáceos (langostinos) en hoyo y posteriormente tapados, con el objetivo de promover el desarrollo de poblaciones de nemátodos saprofitos que desplacen a las poblaciones dañinas para la vid.

Aplicación de fertilizantes

La variedad Thompson Seedless, se fertilizó de manera tradicional, con las mismas cantidades de nitrógeno aplicadas al SMC.

La variedad Flame Seedless, se fertilizó en base al balance de nitrógeno, lo cuál significó una reducción en el nivel de nitrógeno aplicado, en 25.6 unidades por hectárea. En el Cuadro 26 se presenta la comparación del programa de fertilización para ambos sitios.

Cuadro 26. Aplicación de fertilizantes durante la temporada 2002 – 2003.

-	Sitio	Unidades de N · ha ⁻¹	Unidades de P2O5 · ha ⁻¹	Unidades de K2O · ha ⁻¹
-	1	234,27	-	665,55
	2	71.4	80	119

Como se observa en el Cuadro 26, la fertilización en la variedad Thompson Seedless implicó un uso excesivo de unidades de nitrógeno y potasio. Se puede deducir, una escasa retención por el suelo en el Sitio 1, dadas las características texturales del perfil. Esta característica hace que los nitratos sean susceptibles a ser transportados a través del agua de drenaje del suelo, y lixiviados fuera de la zona de aprovechamiento de raíces. Este transporte no deseado, puede contaminar napas freáticas u otras fuentes de agua.

Este fenómeno adquiere aún más importancia en suelos de texturas gruesas y uso de riegos frecuentes, como es el caso del manejo de riego en el Sitio 1. Asimismo los factores de escasa exploración radical característica del sistema de riego se ven involucradas en éste proceso. Al realizar una fertilización excedida de N, como es este caso, parte de éste nutriente no es aprovechado por las plantas, quedando expuesto a ser transportado.

La estrategia de fertilización nitrogenada en Flame Seedless, consideró además la aplicación en los momentos en que es requerida por la planta. Las experiencias con N₁₅ indican que todo el crecimiento primaveral hasta pre flor se hace a expensas de reservas movilizadas desde sitios de reserva en la parte aérea y raíces. Siendo la aplicación invernal y de inicio de primavera de baja eficiencia (Ruiz *et al.*, 2000).

Por esta razón la fertilización se realizó inmediatamente antes de floración, coincidiendo con el peak de crecimiento de raíces.

Comparación de ambos sistemas de manejo

En los Cuadro 27 y 28 se resumen las diferencias entre SMC y SIP, para los Sitios 1 y 2.

Cuadro 27. Comparación entre los sistemas de producción, variedad Thompson Seedless.

	paración entre los sistemas de produce	•
Labor	SMC	SIP
Reguladores de Crecimiento	aplicaciones y elevadas dosis de ácido giberélico.	respecto a momento y dosis de aplicación, eliminando las aplicaciones de elongación y disminuyendo el número de aplicaciones de raleo de flores de 3 a 2 y disminuyendo la dosis de aplicación de crecimiento de 40 a 35 ppm.
Productos fitosanitarios	aplicados, se utilizaban productos recomendados por sus asesores, con	
Nemátodos		Luego de realizar análisis de suelo, se aplicó extracto de quillay (QL Agri), en conjunto con quitina natural.
Cuaderno de	Se lleva registro de las actividades	<u> </u>
campo	realizadas, sin embargo no se lleva	Cuaderno de Campo, con lo cual se
	•	respalda cada una de las acciones
		realizadas, tales como aplicación de
	los niveles de plagas.	pesticidas y fertilización.

Cuadro 28. Comparación entre los sistemas de producción, variedad Flame Seedless.

Labor	SMC	SIP
Reguladores de Crecimiento	Utilización de un alto número de	Las aplicaciones se ajustaron a lo establecido en las Directrices, reduciéndose el número de aplicaciones de crecimiento de 5 a 2, como lo indicaba la etiqueta del producto y disminuyendo la dosis.
Productos fitosanitarios	aplicados, se utilizaban aquellos recomendados por sus asesores, con registro en el país de origen	aplicación de los productos se basó en los monitoreos de niveles de plagas.
Nemátodos	Suelo tratado con nematicidas	Luego de realizar análisis de suelo, se aplicó extracto de quillay (QL Agri), en conjunto con quitina natural.
Cuaderno de campo	No existen registros.	Se utilizó registro con formato de Cuaderno de Campo, con lo cual se respalda cada una de las acciones realizadas, tales como aplicación de pesticidas y fertilización.

Evaluaciones durante la temporada 2002-2003

Estados fenológicos

En los Cuadros 29 y 30 se resumen los principales estados fenológicos de la variedad Thompson Seedless.

Cuadro 29. Estados fenológicos de la temporada 2002-2003, en el Sitio 1.

Estado fenológico	Fecha
Brote 0 – 30 cm	27 de Julio
Brote $40 - 70$ cm	20 de Agosto
Inicio de floración	25 de Agosto
Plena flor	29 de Agosto
Baya de 4 – 5 mm	09 de Septiembre
Baya de 8 – 9 cm	24 de Septiembre
Cierre de racimo	07 de Octubre
Pinta	28 de Octubre
Precosecha	11 de Noviembre
Cosecha	21 de Noviembre

Cuadro 30. Estados fenológicos de la temporada 2002-2003, en el Sitio 2.

Estado fenológico	Fecha
Brote 0 – 30 cm	13 de Septiembre
Brote $40 - 70$ cm	27 de Septiembre
Inicio de floración	02 de Octubre
Plena flor	06 de Octubre
Baya de 4 – 5 mm	15 de Octubre
Baya de $8 - 9$ cm	22 de Octubre
Cierre de racimo	30 de Octubre
Pinta	17 de Noviembre
Precosecha	05 de Diciembre
Cosecha	17 de Diciembre

Como se aprecia en el Cuadro 29, el ciclo vegetativo en la variedad Thompson Seedless se inició en el mes de julio, dando lugar a la floración en el mes de agosto y terminando con la cosecha en el mes de noviembre, para ambos sistemas de producción.

Según lo observado en el Cuadro 30, el ciclo vegetativo en Flame Seedless, se inició en Septiembre, dando lugar a la floración durante el mes de octubre, y terminando la cosecha en el mes de enero, para ambos sistemas de producción.

Crecimiento vegetativo

Cuadro 31. Crecimiento promedio de brotes durante la temporada 2002-2003, Sitios 1 y 2.

		1					
Sitio	Sistema de	Fecha de medición					
	Producción	30/07	23/08	13/09	03/10	17/10	05/11
	_			CI	m.		
1	SMC	21.4	67.3	123.4	153.2	168.3	215.9
	SIP	17.1	65.4	147.3	153.1	160.8	218.6
Sitio	Sistema de		Fecha de medición				
	Producción	02/10	17/10	06/11	28/11	05/12	**
	_			CI	m.		
2	SMC	76	118.1	156.8	172.5	219.2	**
	SIP	78.8	110.3	162.3	178.3	222.2	**

Como se puede observar en el Cuadro 31, no se aprecian diferencias significativas entre el desarrollo vegetativo de ambos sistemas de producción.

Número de bayas por racimo

Cuadro 32. Número de bayas por tipo de racimos para ambos sitios y sistemas de producción.

P					
Sitio	Sistema de	Nº de flores	Numero de bayas cuajadas		
	manejo	promedio	Previo al arreglo de racimo	Después del arreglo de	
				racimos	
1	SMC	689	413	170	
	SIP	739	428	168	
2	SMC	526	302	122	
	SIP	592	346	118	

En el Cuadro 32 se puede observar que después del arreglo manual de racimos, se logró el número de bayas deseadas para ambos sistemas de manejo, por lo cual, una disminución en la dosis y número de aplicaciones en los momentos definidos por las Directrices, no va en desmedro del resultado final esperado.

Número de racimos por planta

En el Cuadro 33 se observa que no existen diferencias apreciables en el número de racimos finales por planta entre los distintos sistemas de producción.

Cuadro 33. Número de racimos por planta en cada uno de los sistemas de producción.

Sitio 1.

Sistema de	Número de racimos finales por planta				
producción	Sitio 1	Sitio 2			
SMC	42	15			
SIP	38	14			

Estado fitosanitario

Trips de California (*Frankliniella occidentalis*): Se presentaron focos aislados en plena floración en el SIP de la variedad Thompson Seedless, cuyo monitoreo se observa en el Cuadro 34. En el Sitio 1 no hubo incidencia de esta plaga.

Cuadro 34. Monitoreo de Trips por sistema de producción. Sitio 2.

	T T T T T T T T T T T T T T T T T T T	1 1/			
Fecha	Sistema de producción				
	SMC	SIP			
	Nº de individuos en 90 racimos por sistema				
02 de Octubre	17	32			
08 de Octubre	0	1			
12 de Octubre	0	0			

Chanchitos blancos (<u>Pseudococcus</u> sp.): En el Sitio 1 no hubo incidencia de la plaga. En el Sitio 2, se obtuvo solo dos capturas de ninfas sobre cinta doble adhesiva a inicio de brotación en el SIP. Posterior a este evento, no hubo movimiento de ninfas en ninguno de los sistemas de producción.

No se encontró presencia de Burrito de la vid ni enemigos naturales en ninguno de los 2 sitios, para ninguno de los dos sistemas de manejo.

Botrytis (<u>Botrytis</u> <u>cinerea</u>): No se observaron brotes o racimos afectados durante la temporada en ninguno de los sitios y sistemas de producción. Al momento de la cosecha se observó en casos aislados que no llegaron a afectar significativamente la calidad de la fruta al momento de la cosecha, ni durante el período de guarda.

Oidio (*Oidium tuckeri*): En el Sitio 1 se observaron sectores afectados en el SIP, donde hubo racimos con daño en las bayas al momento de la cosecha, con un nivel de incidencia de 2 (escaso). En el Sitio 2 no hubo incidencia, en ninguno de los sistemas de producción.

Los parronales presentaban un buen estado fitosanitario, con muy baja presión de plagas y enfermedades. La presencia de Trips se puede atribuir a la mayor presencia de flores silvestres del entorno debido a las lluvias ocurridas durante la temporada.

Malezas

Se observó nula presencia de malezas en el Sitio 1, en ninguno de los sistemas de producción, probablemente debido a que el exceso de vigor de las plantas (porcentaje de sombreamiento cercano al 100%), limitaba el crecimiento de especies malherbológicas. En el Sitio 2, el control de malezas en el SMC se basó en aplicaciones de herbicidas (sobre y entre hilera), no selectivos de post emergencia (paraquat), de toxicidad moderadamente peligrosa (Grupo II) y el control con medios mecánicos (azadón), sin embargo, la aparición de malezas era recurrente. En el SIP, se utilizó la combinación de control químico con cultural, reemplazándose el tipo de producto, por herbicidas sistémicos (glifosato), de baja toxicidad, ubicado en el Grupo IV (productos que normalmente no ofrecen peligro). En el Cuadro 35 se presenta la descripción de malezas para el Sitio 2, ya que la presencia de éstas, no varió en ninguno de los 2 sistemas de producción.

Cuadro 35. Descripción de malezas Sitio 2, para ambos sistemas de producción.

Especie	% en la Sobre	% en la Entre
r	hilera	hilera
Correhuela (<i>Convolvulus arvensis</i> L.)		20
Malva (<i>Malva ssp</i>)	5	
Maicillo (Sorghum halepense)		10

Estado nutricional de los parronales

En el Cuadro 36 se presentan los resultados de análisis de pecíolos realizados en ambos sitios.

Cuadro 36. Estado nutricional de las plantas, evaluadas en pecíolos durante la época de floración.

		Concentración del elemento									
Citio	Muastro	N	D	V	Co	Ma	Cu	Mn	7	D	NO3-
Sitio	Muestra	N	P	K	Ca	Mg	Cu	Mn Zn	В	N	
			(% pes	o seco)				(pp	om)		
1	Pecíolo		0,50	0,85	2,43	0,56	30,5	239	138	104	70
1	Lámina	2,87	0,41	0,65	2,77	0,37	54	319	109	240	
2	Pecíolo		0,29	1,63	2,51	0,52	26,4	109	194	76	273
	Lámina	2,97	0,26	0,85	3,11	0,40	60	209	521	88	

El nitrógeno y fósforo se encuentran en niveles normales dentro de los estándares nutricionales en uva de mesa, el potasio se encontró en niveles bajos, en ambos sitios, lo que llama la atención si se consideran altos niveles de disponibilidad en el suelo (Cuadros 7 y 8). Esto puede estar provocado por los niveles poblacionales de nematodos (Cuadros 9 y 10), que provocan lesiones en las raíces limitando su absorción. En ambos sitios el boro se encuentra en niveles muy altos (Román, 2005).

Producción y calidad de la fruta

Evaluaciones a cosecha

Cosecha: En el Cuadro 37 se presentan las fechas de cosecha para cada sistema de producción.

Cuadro 37. Fechas de cosecha para ambos Sitios y sistemas de producción.

edudio 57. I cenas de coscena para ambos bitros y sistemas de producción.								
Sitio	Sistema	de 1ª Cosecha	2ª Cosecha	3ª Cosecha	4ª Cosecha	5ª Cosecha		
	Producció	ón						
1	SMC	21/11/02	23/11/02	28/11/02	**	**		
1	SIP	23/11/02	28/11/02	30/11/02	**	**		
	SMC	17 /12/02	21/12/02	27/12/02	02/01/03	04/01/03		
2	SIP	22 /12/02	27/12/02	02/01/03	**	**		

Las diferencias de fechas de cosecha entre los sistemas de producción se deben a la medición de grados brix en la Thompson Seedless y a la presencia de racimos con falta de color de cubrimiento en Flame Seedless.

Rendimiento y tamaño de bayas: En el Cuadro 38 se presenta el rendimiento promedio en kilos por planta por oportunidad de cosecha y total por planta.

Cuadro 38. Rendimiento promedio por planta.

				Rendim	iento					
Sitio	Sistema de		$(kg \cdot planta^{-1})$							
Sitio	Producción	1ª	2ª	3ª	4 ^a	5ª	Total			
		Cosecha	Cosecha	Cosecha	Cosecha	Cosecha				
1	SMC	9.20	19.30	9.90	**	**	38.40			
1	SIP	10.80	17.90	8.40	**	**	37.10			
	SMC	3.40	2.12	3.11	1.32	1.70	11.65			
2	SIP	**	4.88	4.68	1.78	**	11.34			

En ambos sitios la primera cosecha fue mayor en los SIP, debido a que había más fruta en condiciones de madurez de cosecha. No hubo diferencias importantes en los rendimientos totales por planta en ambos sistemas de manejo de cada sitio.

Cuadro 39. Tamaño de las bayas, expresadas en porcentajes.

	Ciatama da		Categorías	
Sitio	Sistema de - Producción -	Е	G	M
	Producción -		%	
1	SMC	47,0	42,0	11,0
	SIP	32,4	49,3	18,4
2	SMC	50.22	42.55	7.23
	SIP	53.86	37.49	8.65

Como se observa en el Cuadro 39, no se presentan diferencias apreciables entre los sistemas de producción, manteniéndose un porcentaje similar de las distintas categorías de tamaño.

Calidad de la fruta

a) Madurez, peso de racimos y tamaño y peso de bayas

En general la calidad de la fruta se presentó homogénea en ambos sitios y sistemas de producción. En el Cuadro 40 se muestran los parámetros de calidad de la fruta, en promedio de la primera y segunda cosecha.

Cuadro 40. Calidad de la fruta.

	Sistema de	Sólidos	Peso de	Tamaño de baya			
Sitio	Producción	solubles	racimo	Peso	Diámetro	Largo	
	Producción	(%)	(g)	(g)	(mm)	(mm)	
1	SMC	17.6	850	6.07	17.95	25.57	
	SIP	17.8	818	5.84	17.90	24.72	
2	SMC	18.2	705	5.89	18.3	17.5	
	SIP	17.6	662.5	5.61	18.5	17.8	

No se observan diferencias importantes entre ambos sistemas de producción. El peso de los racimos en los SIP fue levemente inferior con un 3,7% en Thompson Seedless y un 6 % en Flame Seedless. En cuanto al tamaño de bayas ambos sistemas de producción se presentaron muy similares.

b) Incidencia de defectos

En el Cuadro 41 se detallan las enfermedades y desórdenes fisiológicos expresados en porcentaje de racimos afectados para ambos sitios y sistemas de manejo.

Cuadro 41. Evaluación de enfermedades y desórdenes fisiológicos, para ambos sitios y sistemas de producción.

					Ι	Defectos %		
Sitio	Sistema de Producción	Racimo débil	Palo negro	Oidio	Botritis	Bayas Blandas	% Total racimos defectuosos	% Total racimos sanos
1	SMC	12.16	0	4.56	0.36	0.24	17.32	82.68
	SIP	10.13	0	1.2	0.40	0.22	11.73	88.05
2	SMC	0	0.2	0	2.6	0	2.8	97.2
	SIP	0	0	0	1.9	0	1.9	98.1

Los desórdenes fisiológicos no fueron relevantes, salvo en Thompson Seedless, donde hubo problemas de racimos débiles (traslúcidos, con poca firmeza de piel y de bajo contenido de azucar), lo que puede obedecer a la alta fertilización nitrogenada en base a urea. Los excesos de nitrógeno normalmente conducen a un exceso de vigor, lo que tiende a agravar problemas por falta o dilución de otros nutrientes o a originar desórdenes fisiológicos asociados con la calidad de la fruta. Esto es más grave cuando se trabaja con una alta proporción de nitrógeno amoniacal (urea), dado que se afecta más la entrada de cationes calcio, magnesio y potasio. Hay una gran presión de amonio sobre la planta dado que se realizan aplicaciones más seguidas de nitrógeno (Román, 2005).

No se observó racimos con palo negro en ninguno de los 2 sitios. Sin embargo si se observó presencia aislada de bayas blandas en Thompson Seedless en ambos sistemas de manejo, con un nivel de daño incipiente. Existe una asociación entre la acumulación de nitrógeno, de arginina y de putrescina (poliamina presente normalmente en los tejidos vegetales en muy baja concentración que se genera por la descarboxilación de arginina) y el trastorno denominado "baya blanda". La relación con el desorden estaría centrada en las acumulaciones de putrescina en raquis y bayas. Con fertilizaciones elevadas de nitrógeno, se encuentra mayor cantidad de arginina como sustrato para la formación de putrescina. La baya blanda sería un trastorno vinculado a anomalías del metabolismo nitrogenado y que sería un caso atenuado del síndrome de palo negro (Moyano *et al*, 2004).

Respecto a las enfermedades, el Sitio 1 se vio afectado por Oídio, en un porcentaje un poco mayor para el SMC, con nivel de daño moderado, en el cual el daño se evidenció en bayas, no llegando a afectar el raquis, el nivel de daño fue incipiente. Esto puede deberse a que las aplicaciones realizadas en el SIP, fueron más efectivas, respecto a la oportunidad de aplicación y dosis. Con el manejo realizado, se previno bien la enfermedad. No se presentó problemas significativos de botritis, las bayas afectadas fueron eliminadas en la cosecha,

aun así, se detectó presencia de botritis en packing, en bajo porcentaje con un nivel incipiente de daño.

Aptitud de almacenamiento

El período de almacenamiento de la fruta fue el siguiente:

Sitio	Sistema de producción	Fecha de almacenamiento	Fecha de salida de frío
1	SIP y SMC	22/11/02	23/12/02
2	SIP y SMC	23/12/02	22/01/03

Pudrición, deshidratación y desgrane

En el Cuadro 43 se presentan los resultados de las evaluaciones de post cosecha de las variedades Thompson y Flame seedless, para ambos sistemas de producción.

Cuadro 43. Pudrición, deshidratación y desgrane en ambos sistemas de producción

		Pudı	rición		tación del bajo	Desgrane		
Sitio	Sistema Productivo	(N° de baya	as afectadas)	2=deshidra 3⋅= deshi	roblemas atación leve adratación vera	(% de bayas desgranadas)		
	-	Día 0	Día 5	Día 0	Día 5	Día 0	Día 5	
1	SMC	7	7	1	2	0.89	1.29	
1	SIP	10	11	1	2	0.49	1.16	
2	SMC	0	0	1	1	2.23	2.36	
	SIP	2	2	1	2	1.93	2.17	

Sitio 1. Var. Thompson Seedless: Como se observa en el Cuadro 43, la pudrición fue de un 0.38% en el SMC y cercano al 0.55% en el SIP. En los niveles de pudrición total registrados en esta variedad luego de 30 días de almacenamiento, no se obtuvieron diferencias importantes entre sistemas de producción, la pudrición asociada al inóculo de botritis fue bastante baja, la pudrición natural pudo estar asociada a lluvia que afectó a esta fruta aproximadamente 10 días antes de la cosecha (registrada en la parte alta del Valle de Copiapó, donde estaba ubicado el Sitio 1), observándose esporulación de *Penicillum*. La condición del escobajo fue bastante uniforme luego de 30 días de almacenamiento para ambos sistemas de producción, pasando de una condición sin problemas al día de salida de frío, a una deshidratación leve al día 5. El desgrane en ambos sistemas de producción es despreciable.

Sitio 2. Var. Flame Seedless: La pudrición encontrada en el SIP fue de 0,001%, considerado un nivel de daño muy bajo y ausencia en el SMC, a diferencia del Sitio 1, la fecha de cosecha más tardía de esta variedad permitió que la lluvia que afectó al Valle de Copiapó, no fuera en detrimento de la calidad de la fruta al momento de la cosecha. La condición del escobajo varió normalmente desde una condición sin problemas a una deshidratación leve en el SIP, en el SMC no hubo variaciones El desgrane en ambos sistemas de producción es despreciable.

CONCLUSIONES

De los resultados obtenidos en este trabajo, se puede concluir lo siguiente:

Las condiciones agroclimáticas del sector medio del Valle de Copiapó donde se desarrolló la memoria permiten la implementación del sistema de producción integrada.

Existe una cantidad alta de puntos críticos que dificultan la implementación del sistema integrado, entre los principales se cuentan uso excesivo de reguladores de crecimiento, manejo fitosanitario calendarizado, excesiva aplicación de fertilizantes. Éstos pueden, sin embargo, ser mejorados con tecnología y capacitación del personal.

El sistema de producción integrada permite reducir el número de aplicaciones y realizarla con productos de menor impacto ambiental negativo que el sistema convencional. El control de plagas en el sistema de producción integrada, logra ser igualmente efectivo que en el sistema de manejo convencional, con menor numero de aplicaciones.

El sistema de producción integrada permite crear conciencia en los productores y trabajadores con respecto al cuidado del medio ambiente, y el despilfarro que producen las prácticas inadecuadas, como son la calendarización de las aplicaciones y las altas tasas de fertilización, especialmente nitrogenadas.

El rendimiento y calidad de la fruta, es similar en ambos sistemas de producción, para las dos variedades estudiadas.

LITERATURA CITADA

Asociación de Exportadores de Chile. 1997. Uva de mesa – Procedimientos de evaluación. Santiago. Chile. 22 p.

CIREN-CORFO. 1999. Catastro frutícola, III Región. Santiago, Chile. 62 p.

Cooper, T. y Fresno, A. 2001. Producción integrada de frutas. Agroeconómico 57. (Julio). 9-16.

Cooper, T y Sazo, L. 2003. Directrices Generales para la Producción Integrada de fruta en Chile. Directriz Técnica. Universidad de Chile. Santiago, Chile. 17 p.

Cross, J. V. y Dickler, E. 1994. Directrices para la producción integrada de fruta de pepita en Europa. 2ª Edición. Directriz Técnica de la OILB III. Bulletin OILB/SROP 17(9): 33-40.

Eichhorn, Von K. and Lorens, D. 1977. Phänologische entwicklungsstadien der rebe. Nachrichtenbl. Deut. Pflanzenschutzd, (Braunschweig) 29. 119-120.

El Titi, A y Boller, E. 1995. Producción integrada, principios y directrices técnicas. Directriz técnica de la OILB. Bulletin OILB/SROP 18(1,1): 1-16.

Espinoza, H. 1999. Frutas de Chile. Pasado, presente y futuro. Ediciones HECO. Santiago, Chile. 391 p.

Espinoza, F., Ripa, R y Rodriguez, F. 2003. Monitoreo y control del trips californiano. Tierra Adentro 48: 35-37.

Lobato, A. y Valenzuela, J. 2001. Uva de Mesa: 921-938. *In:* SOQUIMICH. Agenda del salitre. Santiago, Chile. 1515p.

Lobato, A y Valenzuela, J. 2000. Zona Central: 31-38. *In*: INIA. Uva de mesa en Chile. Santiago, Chile. 338 p.

Magunacelaya, J. 1999. Nematología agrícola en Chile. Universidad de Chile, Santiago. 288 p.

Malavolta, C. and Boller, E. 1999. Guidelines for integrated production of grapes. Technical Guideline III. Bulletin OILB/SROP. 22 (8): 47 – 53.

Moyano, S. Navia, T. y Ruiz, R. 2004. Acumulación de compuestos nitrogenados en relación al problema de baya blanda en uva de mesa. Agricultura Técnica 64 (4):426-430.

OILB/SROP 1999. Bulletin. Producción integrada. principios y directrices técnicas. 18(1,1).

Quiroz, C. E. 2001. Producción integrada de frutas y hortalizas. Tierra Adentro. 38:14-17.

Román, S. 2005. Libro Azul: Manual básico de fertirriego. 2ª ed. SOQUIMICH. Santiago, Chile. 177 p.

Ruiz, R. et. al. 2000. Las reservas nutricionales y la fertilización en la revitalización de parrones decaídos. Tierra Adentro. 32:18-20.

Yuri, J. 2001. Producción integrada de frutas. Fruticultura 22: (1):6-16.