

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FORESTALES ESCUELA DE CIENCIAS FORESTALES

DEPARTAMENTO DE MANEJO DE RECURSOS FORESTALES

PROPUESTA DE UN MÉTODO PARA MAXIMIZAR FINANCIERAMENTE EL RENDIMIENTO DE PLANTACIONES DE Pinus radiata D. Don DE UN CONJUNTO DE SITIOS, BAJO UNA ROTACIÓN COMÚN

Memoria para optar al Título Profesional de Ingeniero Forestal

ALEJANDRO ESTEBAN QUIROZ MONTECINOS

Profesor Guía: Sr. Jorge Gilchrist Moreno, Ingeniero Forestal

Santiago, Chile 2009

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FORESTALES ESCUELA DE CIENCIAS FORESTALES DEPARTAMENTO DE MANEJO DE RECURSOS FORESTALES

PROPUESTA DE UN MÉTODO PARA MAXIMIZAR FINANCIERAMENTE EL RENDIMIENTO DE PLANTACIONES DE Pinus radiata D. Don DE UN CONJUNTO DE SITIOS, BAJO UNA ROTACIÓN COMÚN

Memoria para optar al Título Profesional de Ingeniero Forestal

ALEJANDRO ESTEBAN QUIROZ MONTECINOS

Calificaciones:	Nota	Firma
Prof. Guía Sr. Jorge Gilchrist Moreno	6,5	
Prof. Consejero Sr. Juan Barrios Martínez	6,5	
Prof. Consejero Sr. Horacio Bown Intveen	5,5	

DEDICATORIA

Dedicada a Dios y a mis Padres,

Pilar Montecinos y Luis Aguilar.

AGRADECIMIENTOS

Agradezco a Dios, por estar siempre presente en cada momento, por brindarme salud, fortaleza y optimismo cuando fue necesario.

A mis amados padres por todo el esfuerzo que realizaron para poder darme estudios, por la confianza depositada en mis capacidades, por todo aquel sacrificio que significa querer que su hijo sea una mejor persona y acceda a mejores oportunidades en la vida.

A mis padrinos, siempre presentes en mi vida, siendo fuente de apoyo y amor incondicional.

Agradezco a mi querida Natalia por su apoyo, paciencia, compañía y amor, gracias a los cuales hoy he logrado terminar mi memoria y me preparo a dar un nuevo paso en mi vida.

A mis familiares y amigos, en especial a Maria José, Felipe, Francisco, Daniel, Jany, Luis, Cecita y Pablo, los que siempre me dieron palabras de aliento cuando las necesite y me animaron a perseverar.

A mi profesor guía, Jorge Gilchrist, por su disposición, tiempo y amistad. A mis profesores consejeros por su ayuda y observaciones para hacer de este trabajo uno mejor.

Agradezco a todas aquellas personas que de manera directa e indirecta son partícipes de este trabajo y de los logros alcanzados.

RESUMEN

Los planes de intervenciones forestales dan solución al cuestionamiento de dónde, cuándo y cuánto intervenir para lograr un objetivo establecido. Sin embargo, esto se vuelve realmente complejo cuando se combinan variables como: distintos sitios, edades, superficies y comportamiento del volumen entre otras.

La solución corriente, es optimizar sitio a sitio individualmente para obtener un resultado global a nivel patrimonial, sin embargo, existen pocas alternativas para este tipo de problema. Por consiguiente, el objetivo de este trabajo es: "Proponer un método para maximizar financieramente el rendimiento de plantaciones de *Pinus radiata* D. Don de un conjunto de sitios, bajo una rotación común", es decir, se propone un plan de intervenciones patrimonial bajo una sola rotación para el bosque regulado, para ello se utilizaron sistemas de información geográfico (SIG) y un modelo de programación lineal como herramientas de planificación forestal en el desarrollo de este estudio.

Para interpretar adecuadamente los resultados, se compararon tres escenarios, tomando una superficie patrimonial de cinco sitios y, cada uno de ellos con plantaciones de diferentes edades. El primer escenario, consideró para cada sitio individual un plan de intervenciones cuya duración del periodo de conversión del bosque, fue dado por la rotación determinada como aquella que se produce cuando el Crecimiento Medio es máximo. Por lo tanto el plan de intervenciones para la superficie total quedó determinado por la suma de los planes individuales de cada sitio. El segundo y tercer escenario, consideró el patrimonio total (los cinco sitios) como un solo plan de intervenciones bajo la menor y mayor de las rotaciones de los sitios involucrados, las cuales fueron de 25 y 30 años respectivamente.

El resultado obtenido de la comparación de los escenarios mencionados establece que bajo una rotación común de 25 años para el bosque regulado, se logran mejores resultados considerando diferencias en las secuencias de corta y volúmenes respecto a los otros dos escenarios.

Finalmente, se concluye que cada patrimonio posee un plan de intervenciones específico y diferente, que obtiene el mejor aprovechamiento del bosque, según el objetivo que se desee obtener y de las consideraciones que se contemplen en su planificación.

Por otro lado, se plantea la incertidumbre sobre rotaciones menores a las del caso estudiado abriendo la posibilidad de estudios futuros.

Palabras claves: Plan de intervenciones, programación lineal, SIG, optimización.

ABSTRACT

The plans for forest interventions are giving solutions to the questions of where, when and how to intervene to make the stated goal possible. However, this problem becomes really complex when someone whants to combine variables such as different locations, ages, areas and volume behavior among others.

The common solution is to optimize site to site individually to get a result at the global equity, however, there are few alternatives for this type of problem. Therefore, the objective of this study is: "To propose a method to maximize the financial performance of plantations of Pinus radiata D. of a set of sites under a common rotation", in other words, a plan of assets under a single rotation to the regulated forest, this will use geographical information systems (GIS) and a linear programming model as forest planning tools in the development of this study.

To properly interpret the results, three scenarios were compared, taking a surface property from five sites, each with plantations of different ages. The first scenario considered for each individual site a plan of interventions where the period of forest conversion was determined by the rotation as one that occurs when the average growth is maximum. According to this the plan for the total area was determined by the sum of the individual plans of each site. The second and third scenario considered the total property (five sites) as a single plan of interventions under the low and high of rotations of the sites involved, which were 25 and 30 years respectively.

The result of the comparison of the scenarios mentioned establish that under a common rotation of 25 years for the regulated forest, gives better results considering differences in the sequences of cutting and volumes about the other two scenarios.

Finally, is conclude that each property has a specific plan of interventions and different, you get the best use of the forest, according to the objective that is propose and the considerations included in your planning.

On the other hand, exist a uncertain about the the rotations with a low ages of the case studied by opening the possibility of future studies.

Key Words: interventions plan, linear programming, GIS, optimization.

ÍNDICE DE CONTENIDOS

1. INTRODUCCIÓN	1
2. MATERIAL Y MÉTODO.	6
2.1. Material	6
2.2. Método.	6
2.2.1. Primer objetivo específico "Desarrollar y asociar una cartografía de rodales de <i>Pinus radiata</i> D. Don. existentes a índices de sitio"	6
2.2.2. Segundo objetivo "Seleccionar, y evaluar un modelo de programación lineal para planificación forestal"	9
3. RESULTADOS Y DISCUSIÓN	17
3.1. Escenario 1 (Resultado total como suma de los resultados de los planes de intervenciones de sitios individuales)	21
3.2. Escenario 2 (Resultado total como plan de intervenciones conjunto de los sitios con rotación de 25 años del bosque regulado)	24
3.3. Escenario 3 (Resultado total como plan de intervenciones conjunto de los sitios con rotación de 30 años del bosque regulado)	27
4. CONCLUSIONES.	32
5. BIBLIOGRAFÍA	34
6. APÉNDICES	37

ÍNDICE DE CUADROS

1. Coeficientes de regresión por Series de suelo, Región del Maule	8
2. Características de los sitios de la zona de estudio según Tablas Auxiliares de INSIGNE 1.2	8
3. Modelos de planificación forestal.	10
4. Superficie de bosque por clase de edad para cada sitio de Pino radiata estudiado	15
5. Índices y características utilizadas en los modelos evaluados	16
6. Comparación de alternativas analizadas para la ordenación forestal patrimonial	19
7. Volúmenes anuales por sitio según planes de intervenciones por sitios individuales	21
8. Volúmenes por hectárea según clase de edad y sitio	39
9. Precios por hectárea según clase de edad y sitio	41
10. Plan de intervenciones sitio "A", modelo 1	43
11. Plan de intervenciones sitio "B", modelo 2	45
12. Plan de intervenciones sitio "C", modelo 3	47
13. Plan de intervenciones sitio "D", modelo 4.	50
14. Plan de intervenciones sitio "E", modelo 5.	53
15. Plan de intervenciones patrimonial con rotación de 25 años, modelo 6	55
16. Plan de intervenciones patrimonial con rotación de 30 años, modelo 7	61

ÍNDICE DE FIGURAS

1. Rodales de pino según índices de sitio (IS)	17
2. Porcentaje de participación de los sitios, Resultado total como suma de los resultados de los planes de intervenciones de sitios individuales	
3. Porcentaje de participación de los sitios, Resultado total como plan de intervenciones conjunto de los sitios con rotación de 25 años del bosque regulado	
4. Porcentaje de participación de los sitios, Resultado total como plan de intervenciones conjunto de los sitios con rotación de 30 años del bosque regulado	
5. Superficie intervenida del sitio "A", Escenario 1	22
6. Superficie intervenida del sitio "B", Escenario 1	22
7. Superficie intervenida del sitio "C", Escenario 1	23
8. Superficie intervenida del sitio "D", Escenario 1	23
9. Superficie intervenida del sitio "E", Escenario 1	24
10. Superficie intervenida del sitio "A", Escenario 2	25
11. Superficie intervenida del sitio "B", Escenario 2	25
12. Superficie intervenida del sitio "C", Escenario 2.	26
13. Superficie intervenida del sitio "D", Escenario 2	26
14. Superficie intervenida del sitio "E", Escenario 2.	27
15. Superficie intervenida del sitio "A", Escenario 3	28
16. Superficie intervenida del sitio "B", Escenario 3	28
17. Superficie intervenida del sitio "C", Escenario 3	29
18. Superficie intervenida del sitio "D", Escenario 3	29
19. Superficie intervenida del sitio "E", Escenario 3	30
20. Zona de estudio y rodales involucrados	37

1. INTRODUCCIÓN

En el manejo forestal tradicional, uno de los recursos a administrar es el bosque y el producto principal es la madera. Algunas de las interrogantes a resolver corresponden a la forma de lograr la ordenación del recurso definiendo dónde, cuándo y cuánto intervenir para lograr el óptimo (máximo), según el objetivo propuesto (volumen o dinero a obtener en la rotación) y restricciones consideradas. Sin embargo, proponer un plan de intervenciones, a nivel patrimonial, para *Pinus radiata* D. Don (Pino radiata) es especialmente complejo cuando se combinan, entre otros, variables como: distintos sitios, edades, superficies, cosechas, raleos, comportamiento del volumen y límites de edad de corta en esta especie forestal ampliamente distribuida y estudiada.

En Chile, las plantaciones de Pino radiata se aproximan a 1,5 millones de hectáreas (hás) representando el 68,2% de toda la superficie plantada en el país según INFOR (2008). Las plantaciones mencionadas se extienden en una gran zona a lo largo del país presentando importantes variaciones climáticas y edáficas causantes de la variabilidad de la productividad de sitio (Gerding y Schlatter, 1995).

Sitio en la terminología forestal, es el área en la cual un árbol o bosque se desarrolla, determinando el tipo y calidad de la vegetación que puede sostener (Avery y Burkhart, 2002). Por lo tanto, el crecimiento de cualquier especie es respuesta a la totalidad de condiciones edáficas, climáticas y bióticas existentes en el lugar (Prodan, 1997).

Los factores relevantes que determinan el crecimiento asociado a una localidad son climáticos, edáficos, topográficos y de competencia. Todos los factores intervienen por sí solos o en forma integral dando como resultado un crecimiento potencial específico (Corvalán y Hernández, 2002). Además, estos factores pueden o no ser relevantes para una zona particular de análisis, por lo que para efectos prácticos, es más conveniente modelar el comportamiento global o la gran tendencia que informarse en detalle sobre la distribución espacial de todos los factores de sitio para realizar inferencias locales (Corvalán et al, 1998).

Diversos estudios relacionan el crecimiento de los árboles a factores del medio, con el fin de ordenar el territorio según la productividad de sus sitios, como ejemplo se puede mencionar a Jackson y Gifford (1974); Moll (1978); Hunter y Gibson (1984) y Schlatter y Gerding (1995), entre otros. Sin embargo, la productividad relativa a una localidad o área, se engloba dentro del concepto de calidad de sitio, fundamental para evaluar la capacidad de producción de un terreno forestal (García et al, 1980).

Una medida de calidad de sitio permite comparar productividad de localidades diferentes y obtener predicciones del crecimiento y rendimiento volumétrico futuro (Fundación Chile, 2005). La medida cuantitativa utilizada en el Modelo Nacional de simulación para pino radiata es el índice de sitio, definido como la altura promedio de los cien árboles más gruesos de un rodal a la edad clave de 20 años (Fundación Chile, 2005).

Tomando en consideración los argumentos anteriores, el rendimiento del bosque depende de las características del sitio y su expresión en crecimiento. Por lo tanto, cada sitio tiene una rotación específica en la cual un plan de intervenciones correctamente determinado (cosechas y raleos) obtiene el máximo aprovechamiento del recurso.

La bibliografía establece que para obtener el mejor aprovechamiento del bosque se debe realizar un plan de ordenación que responda a las necesidades del manejador, cumpliendo en forma permanente las múltiples funciones del bosque, tratando de mejorar las capacidades para lograrlo (Madrigal, 1995). Sin embargo, tradicionalmente la ordenación de los bosques ha fundamentado que la empresa forestal controle una superficie considerable de bosques y que sus medios de producción sean amplios para no limitar las decisiones de ordenación. Además, se considera que la producción de madera debe ser un flujo continuo y permanente de beneficios económicos. Estos fundamentos originaron la idea de organizar el patrimonio con el objetivo de lograr un rendimiento máximo y sostenido (Mendoza, 1993).

La dinámica económica chilena ha llevado a las empresas del sector a desarrollar nuevas técnicas para mejorar la rentabilidad de sus inversiones a través del aumento de los rendimientos, la optimización de los sistemas productivos y la minimización de los costos (Pinto, 1995). En este contexto, los modelos de simulación parecen ser una herramienta adecuada para la proyección de crecimiento de rodales y de planificación forestal, ayudando a manejar información proveniente de otros sistemas o alimentando otras herramientas (Fundación Chile, 2005). Se debe considerar en su construcción tanto la variabilidad geográfica de ocupación de los rodales o sitios como los niveles de densidad, crecimiento, mortalidad natural e intervenciones silvícolas, dependiendo del objetivo para el cual haya sido construido (Corvalán y Hernández, 2006). En Chile se han construido algunos simuladores de crecimiento como RADIATA 1.0 (Morales et al, 1979), RADIATA PLUS V.4.01 (Fundación Chile, 1997) e INSIGNE 1.2 (Fundación Chile, 2005), entre otros.

Por otro lado, al igual que los simuladores de crecimiento, los modelos de optimización permiten encontrar buenas soluciones para problemas de programación de actividades (Pinto, 1995). Por consiguiente, cualquier problema que supone una optimización sujeto a restricciones es conocido como un problema de programación matemática. Este proceso se ha reformado en las últimas tres décadas, al desarrollar procedimientos de solución eficientes. Las técnicas particularmente efectivas que hoy existen, se basan en programación lineal, utilizando el algoritmo Simplex (Clutter et al, 1983). Algunos modelos que se pueden mencionar entre otros son el de Loucks (1964), Nautiyal y Pearse (1967), modelo I y II Johnson y Scheurman (1977), García (1991) y Gilchrist (2006).

Según Johnson (1989), los modelos de planificación en un sistema productivo forestal pueden ser divididos en dos categorías: modelos de crecimiento; y modelos de patrimonio. La diferencia entre ambas categorías es el nivel al cual actúan. Los modelos de crecimiento y rendimiento trabajan a nivel del árbol o del rodal individual, mientras los modelos de patrimonio lo hacen a nivel del bosque o patrimonio (agregación de rodales de diferentes especies, edades, productividades y regímenes de manejo). Estos modelos se requieren porque las estrategias óptimas de manejo a nivel del rodal individual son raramente óptimas a nivel del patrimonio forestal. En este caso, las herramientas de Programación Lineal (PL)

y Simulación son comúnmente utilizadas en la modelación de patrimonio siendo consideradas complementarias más que competitivas (García, 1984).

Según Buongiorno y Gilless (2003), los buenos modelos, hablando en forma general, deben ayudar a los encargados del recurso del bosque a razonar los problemas de una manera lógica, permitiendo tomar la mejor decisión con los datos disponibles de manera oportuna.

En Chile, existen autores que han desarrollado estudios y/o proyectos sobre el tema de planificación forestal mediante modelos de programación matemática tales como: Paredes y Brodie (1988); Guzman, (1995) y Weintraub (2005), entre otros.

Los antecedentes expuestos justifican los esfuerzos para proponer un plan de cosechas y raleos alternativo para un patrimonio establecido, utilizando las herramientas existentes e información disponible, buscando simplificar la labor de planificar actividades de cosechas y raleos de distintos sitios realizando un solo plan de intervenciones a nivel patrimonial.

El presente documento considera el caso complejo de un patrimonio forestal constituido por un conjunto de sitios de Pino radiata, para los cuales se quiere obtener el máximo valor monetario que ese patrimonio pueda entregar durante su Periodo de Conversión. Para esto se comparan tres escenarios.

El primer escenario, contempla realizar un plan de intervenciones a cada sitio en forma individual bajo su rotación específica. Para lograr lo anterior, en el conjunto de sitios patrimoniales se determina una rotación específica para cada uno de ellos. La rotación es determinada según el crecimiento medio del bosque para cada sitio. Esta rotación única y diferente determina la duración del Período de Conversión de cada sitio en forma individual. Este Período de Conversión tiene una longitud expresada en años, igual a la longitud de la rotación. Una vez establecidos los Periodos de Conversión, en cada caso se obtienen los planes de intervención de los sitios involucrados mediante la aplicación de un modelo de programación lineal denominado MELÍ. Por lo tanto, el plan de intervenciones para la superficie total (Superficie patrimonial), queda definido por la suma de los resultados obtenidos de la planificación de cosechas y raleos de cada sitio. Esto implica una mezcla de rotaciones para el periodo de Post Conversión (una rotación diferente por cada sitio analizado).

El segundo escenario, no trabaja los sitios individualmente sino que entrega una opción alternativa, proponiendo un plan de intervenciones para el conjunto de sitios, bajo un Período de Conversión de 25 años. Este constituye una sola rotación común para todos los sitios y, no individual como en el primer escenario. Por lo anterior, el plan de intervenciones (Cosechas y raleos), queda definido por el óptimo escogido por el modelo MELÍ.

El tercer escenario, no trabaja en los sitios individualmente sino que entrega una opción alternativa, proponiendo un plan de intervenciones para el conjunto de sitios, bajo un Período de Conversión de 30 años. Este constituye una sola rotación común para todos los sitios y, no individual como en la primera alternativa. Por lo anterior, el plan de intervenciones (Cosechas y raleos), queda definido en el óptimo escogido por el modelo MELÍ.

En resumen, los tres escenarios mencionados en este proyecto son los siguientes:

- 1) Utilización de rotaciones específicas a cada Sitio y, luego, para obtener el total patrimonial, suma de los óptimos individuales. La rotación se aplica al sitio y no a los rodales específicos.
- 2) Utilización de una sola rotación de 25 años al conjunto del patrimonio. La rotación se aplica al patrimonio y no a los rodales específicos.
- 3) Utilización de una sola rotación de 30 años al conjunto del patrimonio. La rotación se aplica al patrimonio y no a los rodales específicos.

Con la intención de dilucidar cualquier duda o diferencia en el manejo conceptual respecto a los tres escenarios mencionados anteriormente, se debe considerar que:

- Los sitios que conforman la superficie del patrimonio presentan todos los bosques por sobre la edad mínima de corta (10 años de edad). Por lo tanto, cada escenario no contempla sitios baldíos inicialmente.
- La edad de rotación establecida determina la duración del periodo de conversión. En consecuencia, al término de este período el bosque original queda totalmente regulado (Nautiyal y Pearse, 1967).
- El hecho de utilizar un modelo de programación lineal, es el modelo quien define dónde, cuándo y cuánto intervenir, por lo que no se puede hablar de rotación única durante el Periodo de Conversión del bosque (periodo existente mientras el bosque es regulado). Sin embargo, si se puede hablar de rotación única o común en el Periodo de Post Conversión (periodo existente desde que el bosque queda regulado), donde cada superficie cosechada cumple el tiempo de espera establecido para volver a ser intervenida. Por lo tanto, en este trabajo se habla de rotación única o común para el Periodo de Post Conversión, tal cual lo considera Nautiyal y Pearse (1967), donde la rotación que ha sido seleccionada para el bosque regulado se cumple, ya sea, para sitios individuales o para sitios conjuntos en nuestro caso particular.

El objetivo general del trabajo es "Proponer un método para maximizar financieramente el rendimiento de plantaciones de *Pinus radiata* D. Don de un conjunto de sitios, bajo una rotación común". Además, el trabajo contempla dos objetivos específicos. El primero de ellos es "Desarrollar y asociar una cartografía de rodales de *Pinus radiata* D. Don. existentes a índices de sitio" y el segundo "Seleccionar, y evaluar un modelo de programación lineal para planificación forestal".

Para alcanzar los objetivos mencionados con anterioridad, se debe considerar 2 etapas que corresponden a cada uno de los objetivos específicos planteados.

En la primera etapa, fue necesario considerar la falta de información de uso publico respecto a la productividad de los bosques de pino radiata, por lo tanto, la carencia de cartografía que asocie índices de sitio (IS) a una superficie existente. Para resolver este problema, la productividad fue expresada como consecuencia de las características propias

del sitio (factores ambientales). Esto permitió desarrollar una cartografía de rodales de pino radiata asociado a los IS entregados por las tablas de producción del simulador INSIGNE 1.2, de manera que, cada rodal de pino obtuvo una tabla de rendimiento volumétrico asignada según su IS. Para realizar la cartografía, se utilizaron coberturas digitales de rodales de pino radiata, series de suelos, y límites administrativos. Con esta información digital recopilada y antecedentes bibliográficos de la primera y segunda etapa del proyecto "Determinación de índices de sitio para plantaciones de *Pinus radiata* D. Don. Región del Maule" realizado por García (1980 y 1981) se obtuvieron los cálculos de altura e índices de sitio necesarios.

Previo a la selección y aplicación del modelo de planificación forestal utilizado, se definió la rotación para cada sitio, lo que se realizó mediante el incremento medio anual del volumen, asignado por las tablas de producción del simulador INSIGNE 1.2. En el caso de la alternativa de rotación común para el conjunto de sitios, la edad quedo determinada por dos valores: la menor y mayor de las rotaciones utilizadas en los sitios individuales, estableciendo un rango de acción del trabajo. No hay que olvidar que estas rotaciones son las que determinan la duración del periodo de conversión en el modelo utilizado, además de ser las que se reiteran infinitamente en el periodo de post conversión. Una vez establecidas las rotaciones, se obtuvo información de los precios de productos, costos de plantación y tasa de descuento, estableciendo las características del mercado en las cuales el modelo trabaja, esta información fue obtenida de bibliografía y estadísticas forestales.

Luego, en la segunda etapa, mediante una revisión bibliográfica se seleccionó el modelo de programación lineal utilizado. Una vez seleccionado el modelo, se evaluó recurriendo a la información de superficie, edad, volumen de los rodales asociados a cada sitio, rotaciones y características de mercado definidos en la etapa anterior.

Debido a que fue necesario comparar rotaciones del bosque regulado de diferente longitud, el último paso en esta etapa, fue considerar que la función objetivo del modelo escogido en términos financieros debe ser a perpetuidad, para ello se debió calcular el "Valor presente neto" (VPN) más el "Valor potencial del suelo" (VPS) para cada sitio y totalidad (sitios individuales y, sitios conjuntos), esta variación del modelo permitió la comparación de los proyectos en un horizonte de planificación igual.

Finalmente, la importancia de esta memoria y del tema, radica en ser una propuesta práctica y posible de realizar, simplifica la labor a un solo plan de intervenciones y permite un manejo forestal independiente de la cantidad de sitios que se tenga.

2. MATERIAL Y MÉTODO

2.1 Material

- El área de estudio considera la vertiente occidental y parte de la vertiente oriental de la Cordillera de la Costa en la Séptima Región de Chile, utilizando rodales de pequeños y medianos propietarios de 10 a 29 años de edad, pertenecientes a zona de crecimiento uno del simulador INSIGNE 1.2 entre los 34°45' y 35°50' de latitud sur (Ver Apéndice 1).
- Proyecto "Determinación de índices de sitio para plantaciones de *Pinus radiata* D. Don. Región del Maule", primera etapa, García et al. (1980).
- Proyecto "Determinación de índices de sitio para plantaciones de *Pinus radiata* D. Don. Región del Maule", segunda etapa, García et al. (1981).
- Software ARCVIEW 3.2, LINDO 6.1 y MICROSOFT EXCEL XP.
- Tablas auxiliares de Proyecto FONDEF D01/1021 de Arquitectura de copa y calidad de madera, noviembre 2005, Fundación Chile (2005).
- Tablas auxiliares de Proyecto FONDEF D01/1021 Manual práctico de manejo, noviembre 2005, Fundación Chile (2005).
- Coberturas digitales de rodales de pino radiata de la VII región, catastrados hasta el año 2002 por el Instituto Forestal (INFOR); series de suelo del "Estudio Agrológico VII región", realizado el año 1997 por el Centro de Información de Recursos Naturales (CIREN) y limites administrativos de la Séptima región descargados del Sistema Nacional de Información Ambiental (SINIA). El sistema de coordenadas geográficas utilizadas es el Provisorio Sudamericano de 1956, UTM zona 18 Sur.
- Modelo de programación lineal para planificación forestal.
- Precios forestales del boletín 124 publicados por INFOR, tabla de costos año 2008 publicada en diario oficial el día miércoles 8 de Agosto del año 2007 y, tasa de descuento promedio calculada de proyectos forestales entre los años 2004 y 2008.

2.2 Método

Para proponer un método que maximice financieramente el rendimiento de plantaciones de pino radiata de un conjunto de sitios, bajo una rotación común, hubo que considerar 2 etapas que corresponden a cada uno de los objetivos específicos planteados.

2.2.1 Primer objetivo específico "Desarrollar y asociar una cartografía de rodales de *Pinus radiata* D. Don. existentes a índices de sitio"

Para realizar la cartografía, se utilizaron coberturas digitales de rodales de pino radiata, series de suelos, y límites administrativos de la VII región. Con esta información digital y

antecedentes bibliográficos del estudio de "Calidad de sitios para plantaciones de *Pinus radiata* D. Don. en la cordillera de la costa de la región del Maule" elaborado por García (1981), correspondiente a la segunda etapa del proyecto "Determinación de índices de sitio para plantaciones de *Pinus radiata* D. Don. Región del Maule", se realizó el cálculo de altura. Este estudio establece relaciones entre la altura media de los árboles más altos y variables ambientales, incluyendo la edad como variable predictora. El modelo de regresión, validado para la misma zona en estudio, es el siguiente:

$$LnH = 3,795 - 9,811 \times (1/E) + 0,036 \times A - 0,004 \times D - 0,429 \times S + 0,039 \times M$$
 (R²= 0,885)

LnH= Logaritmo natural de la altura media de árboles dominantes y codominantes

E= Edad rodal

A= Humedad aprovechable horizonte 1

D= Distancia al mar del rodal

S= Sodio horizonte 3

M= % Materia orgánica horizonte 3

Las variables de edad y distancia al mar fueron obtenidas de la cobertura digital de los rodales de pino radiata. En el caso de la edad, ésta fue calculada utilizando el año de plantación (información incluida en esta cobertura) respecto al año 2008, sin embargo, la distancia al mar, se obtuvo utilizando la posición de cada rodal respecto al limite costero.

Por otro lado, las variables de humedad aprovechable, sodio y materia orgánica fueron obtenidas del Estudio Agrológico VII región, cuya información fue incluida en la cobertura correspondiente a las series de suelo con el fin de disponer de esta información.

Las coberturas digitales utilizadas fueron procesadas en el software ARCVIEW 3.2 mediante herramientas de geoprocesos. La base de datos lograda de la interacción de ellas permitió calcular la altura de todos los rodales involucrados (Revisar Apéndice 2).

Una vez que se obtuvo las alturas medias de todos los rodales de la zona de estudio, éstas se evaluaron junto con las edades de cada rodal en las ecuaciones de IS desarrolladas para cada serie de suelo por García (1980), primera etapa del proyecto "Determinación de índices de sitio para plantaciones de *Pinus radiata* D. Don. Región del Maule". La ecuación validada es la siguiente:

$$LnIS = LnH + b1 \times (E^{(-0,7)} - E_b^{(-0,7)})$$

LnIS= Logaritmo natural del Índice de sitio

LnH= Logaritmo natural de la altura media de los árboles dominantes y codominantes

b1= Coeficiente de regresión

E= Edad del rodal

E_b= Edad clave de 20 años

Los valores de los coeficientes de regresión para cada serie de suelo que se utilizaron se presentan a continuación:

Cuadro 1. Coeficientes de regresión por Series de suelo, Región del Maule.

Series de suelo	Coeficiente de regresión (b1)	\mathbb{R}^2
Todas las Series	8,449	0,82
Constitución	8,576	0,84
No Reconocidos	8,598	0,80
Recientes	7,776	0,61
Cauquenes	8,229	0,86
Cutemu	8,250	0,86
San Esteban	7,295	0,84

Fuente: García, 1980

El resultado de este procedimiento fue una cartografía que permitió vincular cada rodal de pino existente a un IS determinado por las tablas auxiliares del simulador INSIGNE 1.2, y por lo tanto, a una tabla de proyección de rodal. Esta vinculación agrupa la totalidad de rodales pertenecientes a la zona de estudio en cinco sitios, correspondientes a cinco IS diferentes (Revisar Apéndice 2). Las características de cada uno de ellos se especifican en el siguiente cuadro:

Cuadro 2. Características de los sitios según Tablas Auxiliares de INSIGNE 1.2

Sitio (IS)	A (26)	B (30)	C (27)	D (24)	E (21)
Tipo de esquema	Sin Manejo	Intensivo 1	Intensivo 2	Multipropósito	Pulpable
Poda 1 (años/cant./m)	-	5años/700/2m	5años/700/2m	7años/700/2m	-
Poda 2 (años/cant./m)	-	7años/400/4m	7años/400/4,5m	9años/400/4,5m	-
Poda 3 (años/cant./m)	-	8años/400/5,5m	-	-	-
Raleo Comercial (años/cant.)	-	10años/300	11años/400	12años/400	-

Fuente: Fundación Chile, 2005

Las características descritas con anterioridad, corresponden a manejos estándares empleados en el país para plantaciones de pino radiata pertenecientes a la zona de crecimiento número uno determinada en el simulador INSIGNE 1.2. Además, se debe

considerar que estas características se asumieron en la realización de este documento, las cuales se ven reflejadas en los volúmenes de cada sitio según su clase de edad (Ver Apéndice 3).

En el caso específico de la rotación, ésta fue seleccionada mediante un criterio biológico, y quedó determinada por el máximo valor alcanzado en el crecimiento medio anual para cada sitio, según los datos entregados por las tablas de producción del simulador. En el caso de la alternativa de rotación común para el conjunto de sitios, se consideró necesario utilizar dos valores: la rotación menor y mayor de los sitios individuales, estableciendo un rango de acción del trabajo.

Una vez establecidas las rotaciones, fue necesario obtener información de los precios de productos, costos de plantación y tasa de descuento, estableciendo las características del mercado en las cuales el modelo trabaja, esta información fue conseguida de bibliografía y estadísticas forestales.

Los precios de los productos fueron obtenidos del boletín número 124 de precios forestales publicados por INFOR (2008), los cuales establecen valores de \$11.295, \$24.000 y \$40.000 pesos para los metros cúbicos extraídos de trozas pulpables, aserrables y podadas respectivamente. Con estos valores, se elaboró una tabla de precios por hectárea para cada uno de los cinco sitios analizados (Ver Apéndice 4).

Por otro lado, el valor de los costos de plantación fue determinado por la tabla de costos año 2008, presentada en el diario oficial el día miércoles 8 de Agosto del año 2007 el cual establece un valor de \$261.438 pesos por hectáreas, este valor contempla: roce, tratamiento de desechos, preparación del suelo, desmalezado pre y post plantación, adquisición de plantas, plantación, fertilización, riego de establecimiento, control de lagomorfos, construcción de corta fuego y gastos generales para una plantación de 1250 árboles en la zona de estudio.

Finalmente, la tasa de descuento utilizada es del 10 porciento, la cual fue determinada mediante revisión de publicaciones de evaluaciones de proyectos del rubro forestal entre los años 2004 y 2008. El criterio utilizado fue establecer una tasa de descuento promedio representativa del mercado forestal.

2.2.2 Segundo objetivo "Seleccionar, y evaluar un modelo de programación lineal para planificación forestal"

Con la información cartográfica y de mercado obtenida, el paso siguiente fue seleccionar un modelo adecuado. Esta selección tomó en consideración la revisión y comparación de los modelos de Loucks (1964), Nautiyal y Pearse (1967), modelo I y II Johnson y Scheurman (1977), García (1991) y Gilchrist (2006).

El criterio de selección se basó en las características deseadas del modelo de planificación y la cantidad de información que se posee de él, considerando que, si es necesario una pequeña modificación, esta sea en la forma (debido a las características de sitios, clases de edad iniciales, coeficientes de las variables y/o función objetivo, entre otras) y no en la estructura (modificar restricciones, agregar restricciones no contempladas ya en el modelo,

etc). A continuación se muestra la comparación de los modelos respecto a las características deseadas.

Cuadro 3. Modelos de planificación forestal

Características deseadas	Loucks (1964)	Nautiyal y Pearse (1967)	Johnson y Scheurman (1977) modelo I	Johnson y Scheurman (1977) modelo II	García (1991)	Gilchrist (2006)
Regulación por volumen	✓	✓	✓	✓	✓	✓
Variables de				✓	√	√
cosechas y raleos				,	•	,
Incluye tantos						
tratamientos						
silvícolas como						
se desee para				\checkmark	\checkmark	✓
clases de edad						
iniciales y						
posteriores						
Cada clase de						
edad puede ser		1	_	√	1	_
utilizada más de		,	·	·	•	,
una vez						
Considera		√	√	✓	✓	√
reforestación		•	v	•	•	•
Control sobre						
flujo de volumen	\checkmark	✓	✓	✓	\checkmark	✓
año a año						
No considera						
bosque viejo en						
pie al final del		✓			\checkmark	✓
periodo de						
conversión						
Plantea métodos						
para manejar						_
edad mínima de						
corta						
Permite						
comparar						
proyectos de						✓
diferente						
longitud						

En el cuadro anterior, se denota con una "\sqrt{"}" cuando la característica deseada se cumple en el modelo respectivo.

Hay que considerar que todos estos modelos corresponden a estructuras generales que pueden ser modificadas para lograr prácticamente todas las características presentadas. Sin embargo, el criterio de selección consideró solo las estructuras generales.

El resultado obtenido de la comparación de los modelos respecto a las características deseadas determinó que el modelo desarrollado por el profesor Jorge Gilchrist Moreno (2006) fuera el seleccionado. Este modelo de planificación forestal denominado "Modelo Estratégico Lineal" (MELI) optimiza la función objetivo regulando el bosque existente y el plantado, manteniendo una política de corta de rendimiento sostenido (flujo de volumen constante año a año) y regulando las superficies disponibles para raleos en los sitios correspondientes. La formulación general de MELI es la siguiente:

Función objetivo: Maximiza la suma de los aportes que realiza cada hectárea ya sea como cosecha y/o raleo durante cada uno de los años del horizonte de planificación. Los aportes pueden ser expresados tanto en volumen como en valor monetario. La función es la siguiente:

$$MAX \sum_{i=1}^{m} \sum_{j=1}^{n+i-1} \sum_{k=1}^{p} C_{ijk} X_{ijk} + \sum_{i=1}^{m} \sum_{j=1}^{n+i-1} \sum_{k=1}^{p} C'_{ijk} R_{ijk}$$

Donde:

m = Número de años del periodo de conversión del bosque

n = Número de clases de edad de los rodales en el primer año de conversión del bosque

p = Número de sitios diferentes

 X_{ijk} = Superficie cosechada el i-ésimo año de conversión, de la j-ésima clase de edad del sitio k.

 $R_{ijk} = Superficie raleada el i-ésimo año de conversión, de la j-ésima clase de edad del sitio k.$

C_{ijk} y C'_{ijk} = Coeficiente de volumen o valor monetario por hectárea, para el i-ésimo año de conversión, con j-ésimos años de edad del sitio k.

Restricciones de "Bosque Nuevo": Conjunto de restricciones que establecen las superficies que se deben cubrir por clase de edad en el período de post conversión. Existen tantas restricciones como años tenga la rotación y la cantidad de sitios existentes. Se refieren a la combinación de superficies que tendrá el patrimonio durante el periodo de post conversión de forma de asegurar que las plantaciones queden reguladas. Su expresión es la siguiente:

$$\left| \sum_{j=1}^{m+i-j'-1} X_{(i-j')jk} - \sum_{j=1}^{j'-1} X_{(i-j'+j)jk} \le \frac{1}{m} \sum_{j=1}^{n} S_{1jk} \right| \forall i = 1, ..., m; \ \forall k = 1, 2, ..., p$$

Donde:

 S_{1jk} = Superficie de la clase de edad j del sitio k

j' =Índice auxiliar asociado a clases de edad con j' = 1, 2, ..., i-1

Restricciones de "Disponibilidad de bosque para cosechas de bosque nuevo": Grupo de restricciones que establece la disponibilidad de superficie a cosechar para cada clase de edad en bosque nuevo. Existen tantas restricciones como años tenga el periodo de conversión y sitios estén presentes. Su fórmula es la siguiente:

$$\sum_{j=1}^{m+i-j'-1} X_{(i-j')jk} - \sum_{j=1}^{j'-1} X_{(i-j'+j)jk} \ge 0 \quad \forall i = 1,...,m; \ \forall k = 1,2,...,p$$

Restricciones de "Bosque Viejo": Corresponde al conjunto de restricciones que establecen las superficies que deben cosecharse por clase de edad en las plantaciones existentes al iniciar el período de conversión. Existen tantas restricciones como rodales iniciales, para cada sitio. Su expresión es la siguiente:

$$\sum_{i=1}^{m} X_{i(i+j-1)k} = S_{1jk} \quad \forall j = 1, 2, ..., n; \ \forall k = 1, 2, ..., p$$

Restricciones de "Volumen Constante": Conjunto de restricciones que regulan el flujo de volumen año a año, esto permite tratar cosechas y raleos en forma simultanea, logrando que el volumen cosechado de un año cualquiera de rotación sea igual al del período siguiente, manteniéndolo constante. Existen tantas restricciones como años tenga el periodo de conversión menos uno. Su formulación es la siguiente:

$$\sum_{j=1}^{n+i-1} \sum_{k=1}^{p} V_{ijk} X_{ijk} + \sum_{j=1}^{n+i-1} \sum_{k=1}^{p} V'_{ijk} R_{ijk} - \sum_{j=1}^{n+i} \sum_{k=1}^{p} V_{(i+1)jk} X_{(i+1)jk} - \sum_{j=1}^{n+i} \sum_{k=1}^{p} V'_{(i+1)jk} R_{(i+1)jk} = 0$$

Donde:

V_{ijk} y V'_{ijk} = Coeficientes de volumen para variables de cosechas y raleos respectivamente, expresado en metros cúbicos por hectárea (m³/ha), para el i-ésimo año de conversión, con j-ésimos años de edad del sitio k.

Restricciones de "Disponibilidad de superficies para raleos de bosque nuevo": Grupo de restricciones que establecen para cada periodo y clase de edad, las superficies disponibles de bosque nuevo que pueden ser raleadas. Su fórmula es la siguiente:

$$\sum_{j=1}^{m+i-j'-1} X_{(i-j')jk} - \sum_{j=1}^{j'} X_{(i-j'+j)jk} - \sum_{j=1}^{j'} R_{(i-j'+j)jk} \ge 0 \quad \forall i = 1, 2, ..., m; \forall k = 1, 2, ..., p$$

Restricciones de "Disponibilidad de superficies para raleos de bosque viejo": Grupo de restricciones que establecen para cada periodo y clase de edad, las superficies disponibles de bosque viejo que pueden ser raleadas. Su formulación es la siguiente:

$$\left| \sum_{i=1}^{j} X_{i(i+j-1)k} + \sum_{i=1}^{j} R_{i(i+j-1)k} \le S_{1jk} \right| \forall j = 1, 2, ..., n; \ \forall k = 1, 2, ..., p$$

Una vez seleccionado el modelo de planificación forestal, éste fue evaluado. En el caso particular de este trabajo, en 7 ocasiones, una vez para cada sitio (A, B, C, D y E) y al patrimonio total con 25 y 30 años de rotación para el periodo de post conversión. Por lo tanto, fue necesario definir las variables, índices y coeficientes utilizados. A continuación se define la nomenclatura utilizada en los modelos de planificación forestal:

a) Variables

 X_{ijk} = Superficie cosechada en hectáreas el i-ésimo año de conversión, con j-ésimos años de edad del sitio k.

R_{ijk} = Superficie raleada en hectáreas el año i-ésimo de conversión, con j-ésimos años de edad del sitio k.

b) Índices

 $i = A\tilde{n}os de conversión (1, 2, ..., m).$

i = Clase de edad (1, 2, ..., n, n+1, n+2, ..., n+m).

k = Sitio (A, B, ..., etc.).

j' =Índice auxiliar asociado a clases de edad con j' = 1, 2, ..., i-1.

m = Máximo valor que alcanza "i" (años de conversión).

n = Máximo valor que alcanza "j" en el primer año de conversión.

c) Coeficientes

C_{ijk} y C'_{ijk} = Valor monetario en miles de pesos por hectárea, para el i-ésimo año de conversión, con j-ésimos años de edad del sitio k. Estos coeficientes pertenecientes a la función objetivo, están expresados como el VPN más el VPS para cada sitio en particular, para ésto se utilizaron tablas de precios por hectáreas para cosechas y raleos, las cuales fueron elaboradas con los volúmenes entregados por el simulador e información de precios por producto (Ver Apéndice 5). Esta variación del modelo permitió la comparación de los proyectos en un horizonte de planificación igual.

La expresión general es:

$$\begin{bmatrix} \text{Horizonte} & \text{Per.post-conversion} \\ \text{Perpetuidal} \\ [VPN]_{total} \end{bmatrix} = \begin{bmatrix} \text{Per.conversion} \\ [VPN] \end{bmatrix} + \begin{bmatrix} \frac{VPS}{(1+\beta)^i} \end{bmatrix}$$

Finalmente, utilizando la expresión general, los coeficientes de las variables de cosechas y raleos quedaron definidos de la siguiente manera:

Cosechas
$$C_{ijk} = \frac{P_{jk} - C}{(1+\beta)^{i}} + \left[\frac{P_{jk} - C}{(1+\beta)^{i}} \times \frac{1}{((1+\beta)^{m} - 1)} \right]$$
Raleos
$$C'_{ijk} = \frac{P'_{jk}}{(1+\beta)^{i}} + \left[\frac{P'_{jk}}{(1+\beta)^{i}} \times \frac{1}{((1+\beta)^{m} - 1)} \right]$$

Donde:

P_{ik} y P'_{ik} = Precio por hectárea de bosque cosechado o raleado a la edad "j" del sitio "k".

C = Costo de plantación por hectárea, cuyo valor para todos los sitios fue de \$261.438 pesos.

i = Años de intervención durante el periodo de conversión.

 β = Tasa de descuento de valor 10%.

m = Rotación para cada caso.

Para el caso de los coeficientes " V_{ijk} y V'_{ijk} " de las restricciones de "Volumen constante", éstas quedaron definidas tal cual establece el modelo general MELI.

Luego, en la formulación de cada modelo las superficies utilizadas fueron las entregadas por la cartografía generada en el objetivo número uno. Las superficies de cada sitio según su clase de edad, que dan cuenta de las existencias iniciales, se presentan en el cuadro siguiente:

Cuadro 4. Superficies de bosque por clase de edad para cada sitio de Pino radiata estudiado

Clases de	Su	Totales				
edad ''j''	A (IS 26)	B (IS 30)	C (IS 27)	D (IS 24)	E (IS 21)	por clase
10	8,5	1103,2	61,5	128,4	234,5	1536,1
11	6,7	894,2	55,4	-	97,9	1054,2
12	-	1870,9	25,3	-	428,7	2324,9
13	52,4	2242,5	484,6	41,7	529,2	3350,4
14	173,3	1627,7	996,6	24,7	212,8	3035,1
15	235,0	1914,4	1268,0	15,1	234,4	3666,9
16	620,7	2113,0	2275,5	19,2	246,4	5274,8
17	320,6	1138,1	2025,6	10,2	435,0	3929,5
18	711,5	608,0	2069,3	10,1	782,3	4181,2
19	376,6	273,5	1279,2	10,4	159,1	2098,8
20	635,3	34,7	1212,0	30,9	83,1	1996,0
21	721,9	7,3	602,6	8,4	131,3	1471,5
22	1066,0	-	544,2	4,5	58,3	1673,0
23	1519,7	-	465,6	242,1	196,4	2423,8
24	1034,6	-	260,9	684,7	46,4	2026,6
25	636,7	-	128,5	466,8	67,7	1299,7
26	279,0	-	227,2	524,8	51,3	1082,3
27	370,1	-	17,3	198,7	36,7	622,8
28	584,6	-	307,2	168,4	281,8	1342,0
29	22,5	-		163,7	15,8	202,0
Totales por sitios	9375,7	13827,5	14306,5	2752,8	4329,1	44591,6

Las superficies anteriores son las que establecen la disponibilidad de bosque existente en el periodo de conversión, las cuales posteriormente son cosechadas y/o raleadas según establezca el plan de intervenciones particular realizado.

Dadas las características de MELI, los modelos para cada sitio y patrimonio con rotación de 25 y 30 años, quedaron determinados por sus respectivas variables (cosechas y/o raleos) e índices de año de conversión "i", clases de edad "j" y sitio "k". Por lo tanto, cada modelo quedó definido según sus índices y características de la siguiente forma:

Cuadro 5. Índices y características utilizadas en los modelos aplicados

Escenario	Nº Modelo	''i''	''j''	''k''	Rotación	Edad mínima de corta	Variables
	1	1 a 26	10 a 54	A	26 años	10 años	Cosecha
	2	1 a 25	10 a 53	В	25 años	10 años	Cosecha y Raleo
1	3	1 a 28	10 a 56	С	28 años	10 años	Cosecha y Raleo
	4	1 a 29	10 a 57	D	29 años	10 años	Cosecha y Raleo
	5	1 a 30	10 a 58	Е	30 años	10 años	Cosecha
2	6	1 a 25	10 a 53	A, B, C, D, E	25 años	10 años	Cosecha y Raleo
3	7	1 a 30	10 a 58	A, B, C, D, E	30 años	10 años	Cosecha y Raleo

La formulación de los 7 modelos realizados, se evaluaron en el software LINDO 6.1 para WINDOW. En el caso de los sitios con raleos, estos se realizaron solo a la clase de edad ("j") diez, once y doce años para los sitios "B", "C" y "D" respectivamente. Sin embargo, si no se realiza la intervención el modelo no contempla ese delta de volumen ganado, lo cual se asume en los resultados.

Si volvemos al planteamiento inicial del problema, en los cuales se han utilizado los materiales y métodos mencionados anteriormente, se desea comparar tres escenarios, donde se considera una superficie patrimonial compuesta de cinco sitios y, cada uno de ellos con plantaciones de una o varias edades. En el primer caso, si para cada uno de los sitios se determina una rotación que ha sido seleccionada para regular el bosque (rotación que se cumple para el bosque regulado) como aquella que se produce cuando el Crecimiento Medio es máximo. De esta forma, tendremos varias rotaciones diferentes, una para cada sitio en nuestro caso. Si para cada una de estas rotaciones se realiza un plan de intervenciones, mediante la aplicación de un modelo de optimización financiero y, posteriormente se suman los óptimos que señalan estos planes de cosechas y raleos, se obtiene un gran total que corresponde a la suma de los planes de intervenciones individuales para la superficie total (modelos 1 al 5). El segundo caso, es considerar el patrimonio total (los cinco sitios) como un solo plan de intervenciones bajo la menor de las rotaciones de los sitios involucrados (modelo 6). Finalmente, el último caso en análisis, es considerar el patrimonio total como un solo plan de intervenciones, al igual que el segundo caso, con la diferencia que éste utiliza la rotación mayor de los sitios (modelo 7).

Por lo tanto, el resultado fue obtener óptimos de valor monetario en miles de pesos para cada sitio individual para su posterior suma y resultado global (Escenario 1) y para el total de sitios, modelos patrimoniales (Escenario 2 y Escenario 3). Además, se obtuvo la secuencia de corta de superficie y volumen para cada sitio y los valores totales de rendimiento volumétrico para cada alternativa, dando término al trabajo.

3. RESULTADOS Y DISCUSIÓN

El resultado alcanzado al "Desarrollar y asociar una cartografía de rodales de *Pinus radiata* D. Don. existentes a índices de sitio", es una representación cartográfica de todos los rodales de pequeños y medianos propietarios, con bosques de edades entre los 10 y 29 años, asociados a un índice de sitio establecido por el simulador de crecimiento utilizado y por consiguiente a una tabla de producción volumétrica. A continuación, la figura 1 muestra el resultado cartográfico logrado.

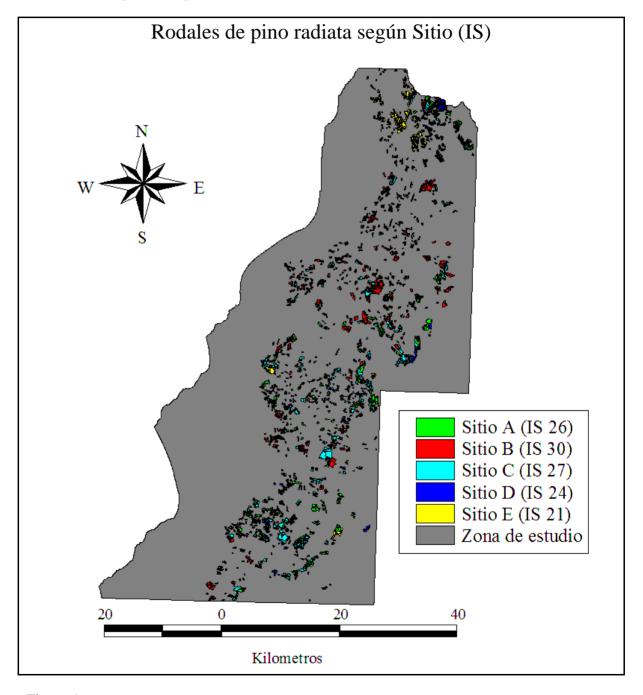


Figura 1

La información entregada por la cartografía desarrollada permitió complementar el trabajo para la planificación de intervenciones realizada, estableciendo las superficies disponibles para intervenir. Además, dio solución al problema de no disponer de información pública que asocie rodales de pino radiata a tablas de producción mediante el índice de sitio existente en un lugar determinado (Revisar Apéndice 6, resultados e información digital en detalle).

Los resultados de este estudio difieren de los obtenidos por García (1980) pese a utilizar el criterio ecológico desarrollado por él en la segunda etapa del proyecto "Determinación de índices de sitio para plantaciones de *Pinus radiata* D. Don. Región del Maule", donde establece cuatro clases de sitio, los cuales se determinaron mediante agrupación de índices de sitio estimados, sin embargo, estas clases no poseen relación alguna con tablas de producción que pudiesen ser utilizadas para la formulación del modelo de optimización. Por lo tanto, la necesidad de asociar a cada rodal un índice de sitio, el cual esté relacionado a una tabla de producción, hizo agrupar al total de rodales de este estudio, en los cinco índices de sitio determinados por el simulador de crecimiento utilizado para esta zona, lo que establece la diferencia entre los resultados de García y los obtenidos en el presente trabajo.

En la literatura técnica diversos autores han tratado la relación sitio-crecimiento demostrando que los factores que poseen incidencia en el desarrollo de una especie se presentan en diferente ponderación. Además, los resultados y factores incidentes suelen ser variados dependiendo de la localidad en estudio y de la escala de representación a la cual se trabaje (a nivel regional, comunal, entre otras). Ésto se debe a las características edáficas, climáticas y topográficas presentes, es decir, los factores correlacionados con el crecimiento de una especie de un lugar determinado no necesariamente lo son para la especie en otro lugar.

Una consideración importante de los resultados cartográficos obtenidos, es que, aunque los métodos utilizados para estimar las alturas dominantes y calcular un índice de sitio estén avalados y validados, éstos no dejan de ser sólo una aproximación a la realidad existente. Sin embargo, para el ejercicio de este trabajo se considera una buena representación.

Una vez disponible la información cartográfica, se seleccionó, y aplicó el modelo de programación lineal para planificación forestal, segundo objetivo específico de este trabajo.

Utilizando MELI (Modelo de programación lineal seleccionado) para cada sitio individualmente y patrimonio total con rotaciones comunes de 25 y 30 años para el bosque regulado, se obtuvieron los resultados para cada uno de los tres escenarios analizados. A continuación se presentan los resultados conseguidos a nivel patrimonial.

Cuadro 6. Comparación de los escenarios analizados.

Escenarios	Resultado total obtenido	Sitios	Volumen total por sitio en la regulación (m³)	Volumen total obtenido en la regulación (m³)	Dinero total obtenido en la regulación (miles de pesos)
	Como suma de	A	8.306.271,1		205 002 720 0
1	los resultados de los planes de	В	9.538.857,0	33.991.100,4	
1	intervenciones	С	11.370.424,2	33.991.100,4	295.982.720,0
	de sitios	D	1.949.337,2		
	individuales	Е	2.826.210,9		
	Como plan de	A	8.114.184,4		
	intervenciones conjunto de los	В	10.042.833,2		
2	sitios con rotación de 25	С	10.442.925,1	32.841.338,5	307.105.500,0
	años del bosque	D	1.719.789,9		
	regulado	Е	2.521.605,9		
	Como plan de	A	8.916.009,8		
3	intervenciones conjunto de los	В	11.683.838,2		
	sitios con	С	11.936.058,8	37.365.986,0	293.295.300,0
	rotación de 30 años del bosque	D	1.928.224,5		
	regulado	Е	2.877.547,2		

El plan de intervenciones patrimonial con rotación única de 25 años es la mejor opción de regulación para este análisis financiero, aún considerando que los rendimientos volumétricos de todos los sitios tuviesen una variación de un 5% en forma favorable y desfavorable.

Dados los resultados totales, los porcentajes de participación de cada sitio según los metros cúbicos aportados al patrimonio en cada alternativa nos permite apreciar la decisión que toma el modelo con respecto a cosechar y/o ralear más de un sitio que de otro, mostrando la intensidad de intervención realizada (Ver figuras 2, 3, 4).

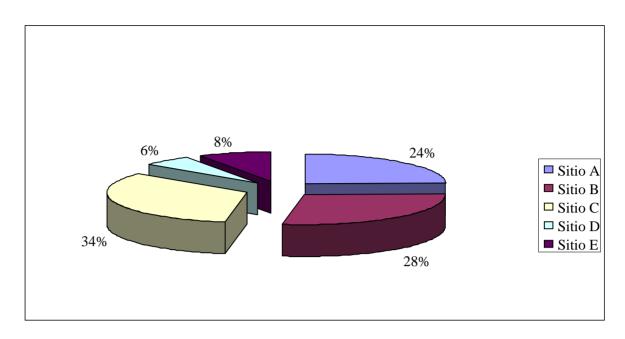


Figura 2. Porcentaje de participación de los sitios, Resultado total como suma de los resultados de los planes de intervenciones de sitios individuales (Escenario 1).

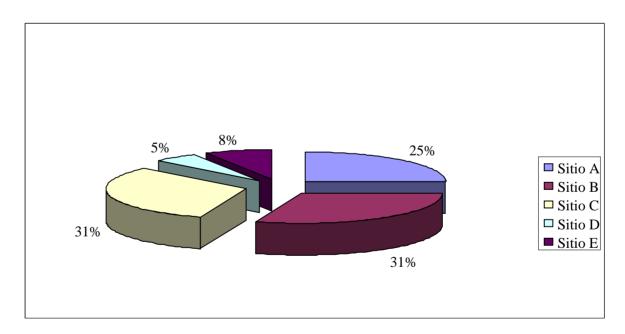


Figura 3. Porcentaje de participación de los sitios, Resultado total como plan de intervenciones conjunto de los sitios con rotación de 25 años del bosque regulado (Escenario 2).

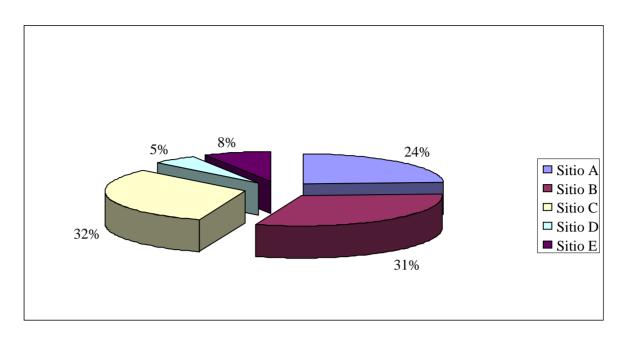


Figura 4. Porcentaje de participación de los sitios, Resultado total como plan de intervenciones conjunto de los sitios con rotación de 30 años del bosque regulado (Escenario 3).

Si observamos el patrimonio a nivel de resultados por sitios individuales, el plan de intervención de un sitio presenta una secuencia de corta y una cantidad de volumen por año que difiere en gran medida entre los escenarios patrimoniales analizados. Esta situación se explica con mayor claridad observando el comportamiento de las intervenciones que se realizan durante la conversión del bosque en cada una de los escenarios. A continuación se presentan los resultados obtenidos por sitios según el escenario al cual pertenezca.

3.1 Escenario 1 (Resultado total como suma de los resultados de los planes de intervenciones de sitios individuales)

Los planes de intervenciones de los sitios A (Ver Apéndice 5), B (Ver Apéndice 6), C (Ver Apéndice 7), D (Ver Apéndice 8) y E (Ver Apéndice 9) establecen y aseguran para cada sitio un flujo de volumen año a año similar y constante durante el periodo de conversión del bosque y rotaciones posteriores. Los volúmenes anuales por sitio considerando su respectiva rotación del bosque regulado se presentan en el siguiente cuadro.

Cuadro 7. Volúmenes anuales por sitio según planes de intervenciones de sitios individuales

Sitios	Volúmenes anuales constantes (m ³)	Rotación (años)
A	319472,0	26
В	381554,2	25
С	406098,4	28
D	67217,1	29
Е	94207,0	30

Por otro lado, las secuencias de superficies de corta determinadas por los planes de intervenciones para los sitios A, B, C, D y E se presentan en las figuras 5, 6, 7, 8 y 9, dando cuenta de las intervenciones realizadas durante los años de conversión para cada sitio.

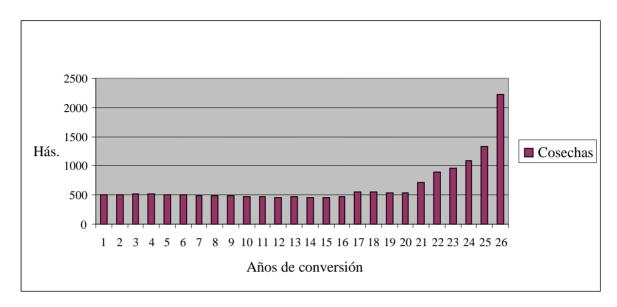


Figura 5. Superficie intervenida del sitio "A", Escenario 1

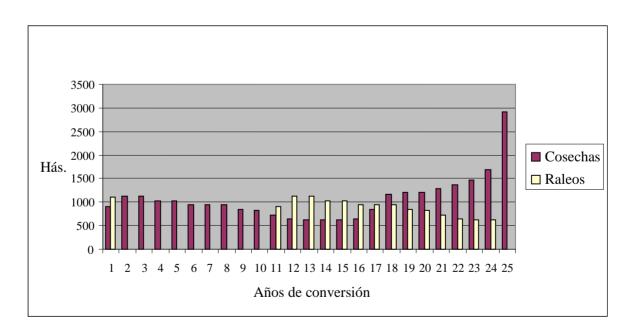


Figura 6. Superficie intervenida del sitio "B", Escenario 1

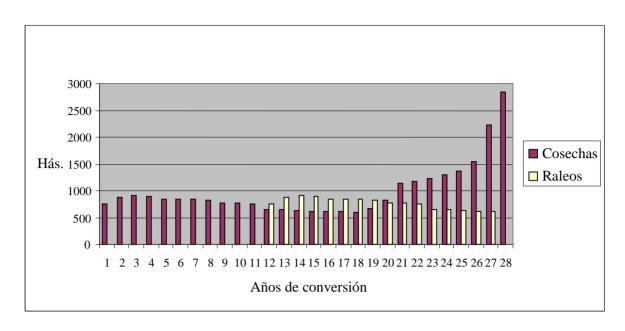


Figura 7. Superficie intervenida del sitio "C", Escenario 1

Figura 8. Superficie intervenida del sitio "D", Escenario 1

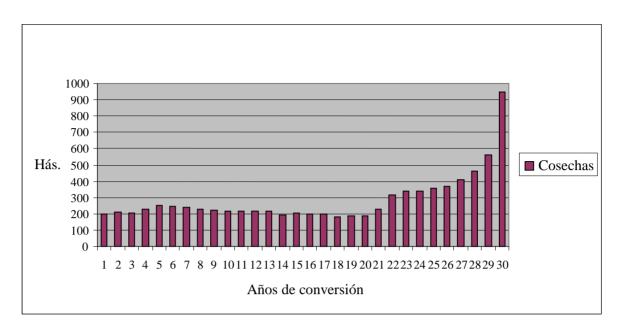


Figura 9. Superficie intervenida del sitio "E", Escenario 1

Dados los resultados de los planes de intervenciones de cada sitio para el primer escenario, pensando en la situación más favorable, todos los años se intervienen superficies del sitio A, B, C, D y E obteniéndose un volumen anual patrimonial de 1.268.548,7 m³ aproximadamente, sin embargo, no hay que olvidar que las rotaciones de cada sitio son distintas entre si al igual que los periodos de conversión.

3.2 Escenario 2 (Resultado total como plan de intervenciones conjunto de los sitios con rotación de 25 años del bosque regulado)

Las secuencias de superficie de corta de los sitios A, B, C, D y E en este escenario (Ver Apéndice 10), no entregan como resultado un flujo de volumen anual constante, sino que un aporte en volumen para ciertos años específicos dentro del periodo de conversión y para las rotaciones posteriores, es así como el primer año en el sitio A se cosechan 234.332,5 m³ y el cuarto año para el mismo sitio se cosechan 928.400,5 m³, por lo tanto, el volumen extraído depende única y exclusivamente de cuando y cuanto se intervenga (resultado del modelo al optimizar). Por otro lado, hay que considerar que los sitios B, C y D presentan intervenciones de cosechas y raleos en sus aportes en volumen situación que no se repite con los sitios A y E que sólo realizan cosechas. Las secuencias de superficie de corta para los sitios A, B, C, D y E se muestran en las figuras 10, 11, 12, 13 y 14 respectivamente.

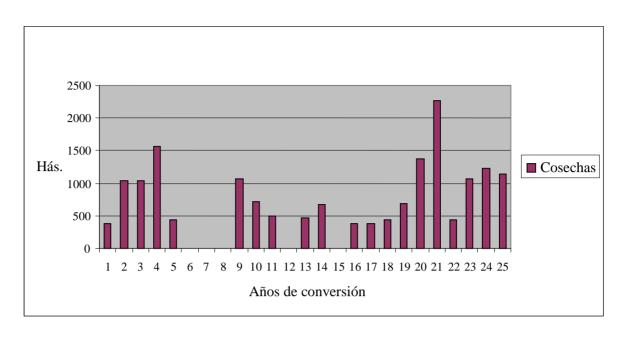


Figura 10. Superficie intervenida del sitio "A", Escenario 2

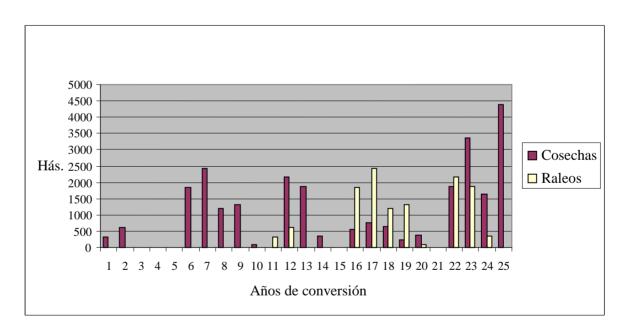


Figura 11. Superficie intervenida del sitio "B", Escenario 2

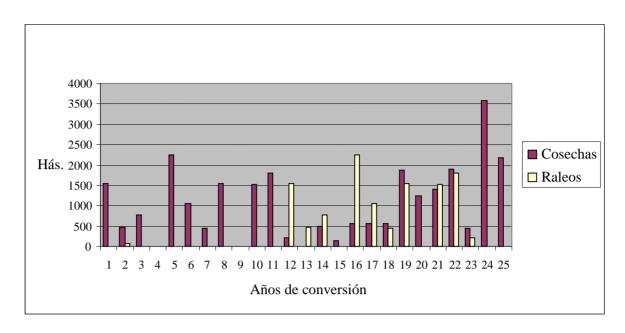


Figura 12. Superficie intervenida del sitio "C", Escenario 2

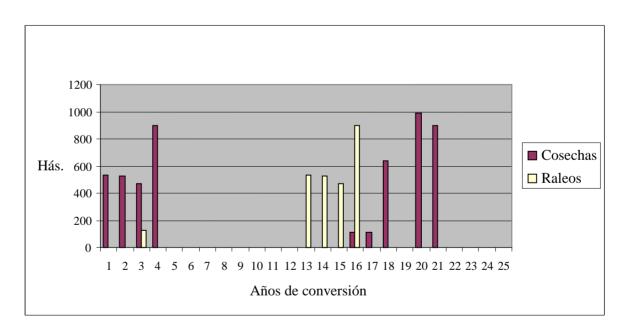


Figura 13. Superficie intervenida del sitio "D", Escenario 2

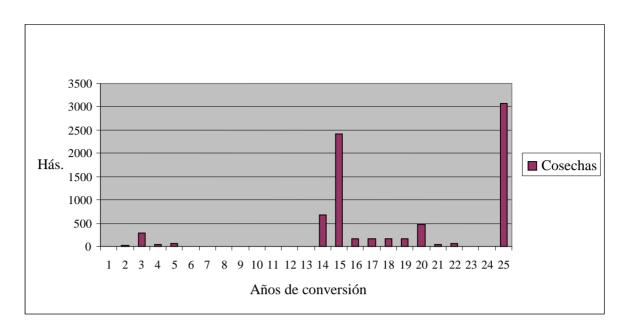


Figura 14. Superficie intervenida del sitio "E", Escenario 2

Dadas las secuencias de superficies de corta de los 5 sitios en este segundo escenario, el plan de intervenciones patrimonial con rotación de 25 años del bosque regulado toma año a año los aportes de los sitios intervenidos permitiendo un flujo de volumen anual constante del patrimonio el cual es de 1.313.653,5 m³ aproximadamente, considerando que las intervenciones realizadas no contemplan necesariamente todos los sitios cada año.

3.3 Escenario 3 (Resultado total como plan de intervenciones conjunto de los sitios con rotación de 30 años del bosque regulado)

En esta alternativa, las secuencias de superficie de corta de los sitios A, B, C, D y E (Ver Apéndice 11) no entregan como resultado un flujo de volumen anual constante, sino que un aporte en volumen para ciertos años específicos dentro del periodo de conversión y para las rotaciones posteriores, como en el caso del segundo escenario, por lo tanto, el volumen extraído también depende única y exclusivamente de cuando y cuanto se intervenga (resultado del modelo al optimizar). Además, hay que considerar que los sitios B, C y D son los únicos que presentan cosechas y raleos en sus aportes en volumen a diferencia de los sitios A y E que solo realizan cosechas. A continuación se muestran las secuencias de superficie de corta para los sitios A, B, C, D y E en las figuras 15, 16, 17, 18 y 19 respectivamente.

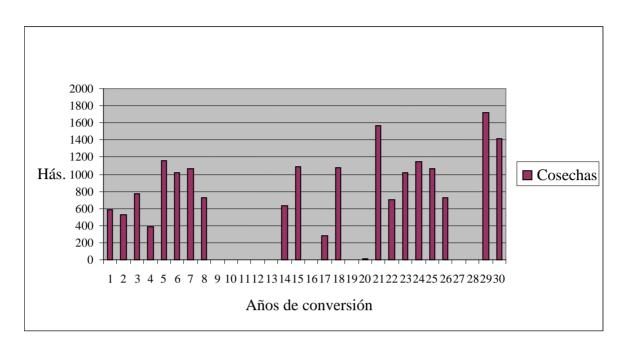


Figura 15. Superficie intervenida del sitio "A", Escenario 3

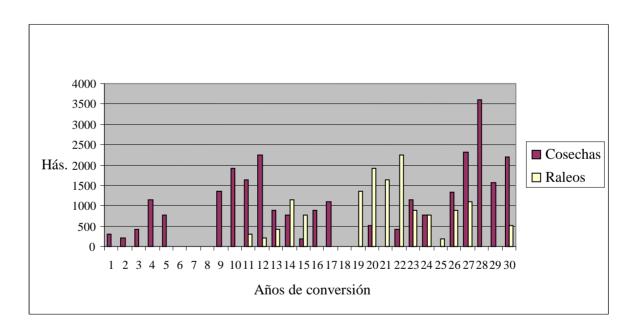


Figura 16. Superficie intervenida del sitio "B", Escenario 3

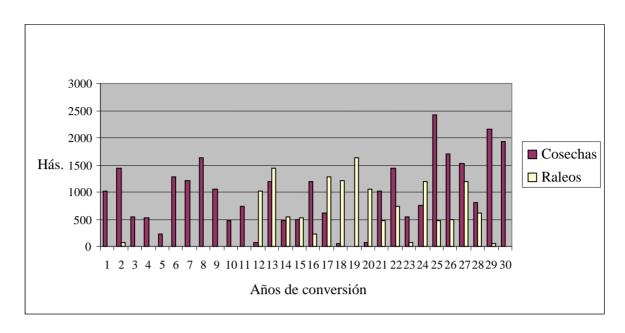


Figura 17. Superficie intervenida del sitio "C", Escenario 3

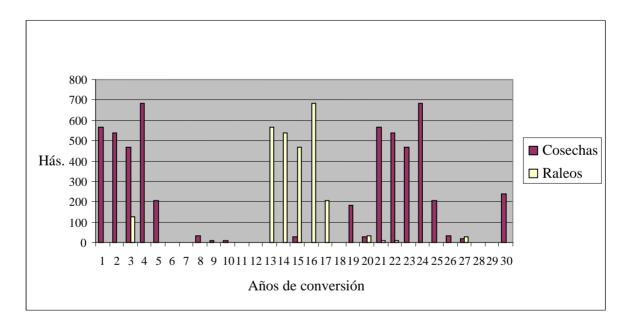


Figura 18. Superficie intervenida del sitio "D", Escenario 3

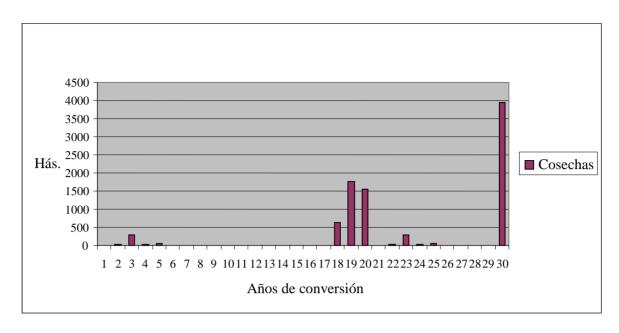


Figura 19. Superficie intervenida del sitio "E", Escenario 3

Dadas las secuencias de superficies de corta de los sitios en este escenario, el plan de intervenciones patrimonial con rotación de 30 años del bosque regulado, considera año a año los aportes de los sitios intervenidos permitiendo un flujo de volumen anual constante del patrimonio el cual es de 1.245.523,7 m³ aproximadamente, considerando que las intervenciones realizadas no contemplan necesariamente todos los sitios año a año al igual que el escenario anterior.

De los resultados expuestos por sitio en cada escenario, en ningún caso la superficie cosechada año a año es la misma cualquiera sea el sitio, ésto indica que no existe una regulación por superficie que establezca por año una cierta cantidad de hectáreas a cosechar. Además, que el flujo de volumen sea constante a nivel patrimonial no implica que éste lo sea a nivel de sitios individuales.

Podemos darnos cuenta que en un plan de intervenciones patrimonial de rotación única para el bosque regulado, en un objetivo financiero, se cosecha primero sitios de mejor calidad para luego volver a intervenir el bosque plantado en esos mismos sitios hacia el final del periodo de conversión del bosque, percibiendo un mayor volumen e ingresos en el total. Por otro lado, los sitios de menor calidad quedan postergados a edades más avanzadas.

No se debe olvidar, que este estudio consideró la menor y mayor de las rotaciones de los sitios individuales para el bosque regulado, en los escenarios 2 y 3 respectivamente, sin embargo, se piensa que existe una rotación patrimonial que mejora los resultados obtenidos, para este caso particular. Por lo tanto, se propone para un estudio futuro encontrar aquella rotación, además, de establecer distintas situaciones con diferentes tasas de descuento y superficies iniciales por clase de edad y sitio, para analizar el comportamiento de los planes de intervenciones y sus resultados.

La decisión de planificar las intervenciones ha realizar en un patrimonio forestal, insta determinar una rotación específica que permita obtener el máximo beneficio financiero o volumétrico para cada caso en particular, rechazando la idea de una rotación preestablecida.

Es necesario aclarar que al asociar todos los sitios en un solo plan de intervenciones (Escenarios 2 y 3) genera un periodo de conversión único y común para todos los sitios involucrados, cuya duración queda determinada por la rotación escogida según el caso. Por lo tanto, el resultado al término del periodo de conversión del patrimonio, es una secuencia de cosechas y raleos que se reiterará en el tiempo, donde la rotación escogida para determinar la duración del periodo de conversión se cumple para todos los sitios en el periodo de post conversión, permitiendo que la rotación sea única y común en el bosque regulado.

Es importante destacar que existen autores que han desarrollado estudios y/o proyectos forestales sobre planificación de intervenciones y/o políticas de manejo tales como: Paredes y Brodie (1988); Guzman (1995) y Weintraub (2005), entre otros. Sin embargo, aquellos estudios y/o proyectos no profundizan mayormente el análisis respecto a la selección de un periodo de conversión a nivel patrimonial y tampoco plantean la posibilidad de regular la estructura del bosque bajo una única rotación posterior al periodo de conversión del patrimonio como este trabajo.

4. CONCLUSIONES

Respecto al objetivo general:

1. Dados los resultados obtenidos, es posible proponer un método que permita maximizar financieramente el rendimiento de plantaciones de pino radiata y regular la estructura del bosque tomando en cuenta la totalidad de sitios en forma conjunta bajo una rotación para el periodo de post conversión.

Respecto a la cartografía realizada:

- 2. La representación cartográfica de los rodales de pino radiata con su respectivo índice de sitio relacionadas a tablas de producción, es una herramienta fundamental para la planificación estratégica en este trabajo, alimentando de información al modelo de programación lineal utilizado para llevar a cabo los planes de ordenación forestal a nivel patrimonial.
- 3. Por otro lado, la cartografía determina claramente, la distribución de los rodales de buena, media o mala calidad, lo que permite pensar que al tener información cartográfica precisa, ésta sirve para la toma de decisiones de incorporación de nuevos terrenos o venta de los existentes.

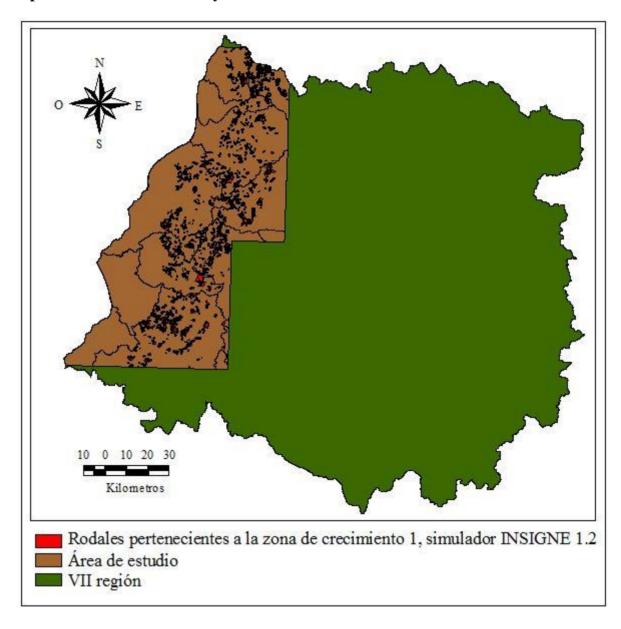
Respecto a los planes de intervenciones analizados:

- 4. Cada patrimonio posee un plan de intervenciones específico y diferente, según el objetivo que se desee obtener y de las consideraciones que se contemplen en su desarrollo para cumplir ese objetivo.
- 5. Tomando este trabajo como antecedente se puede comprobar que realizar una regulación del bosque por superficie no asegura la optimización de objetivos como maximización del volumen o maximización financiera.
- 6. Los planes de intervenciones patrimoniales establecen que los mejores sitios son los más intervenidos durante el periodo de conversión lo que se ve reflejado en las rotaciones del periodo de post conversión del bosque, lo que permite afirmar que económicamente se debiesen bonificar aquellos sitios de mejor calidad y desestimar los peores.
- 7. Uno de los resultados más importantes del análisis del trabajo, es que, este estudio en su caso particular, determina que las rotaciones a nivel de hectárea y sitio individual no son óptimas, es decir, a nivel patrimonial el incremento medio anual del volumen para cada sitio no sirve de parámetro para determinar la rotación que regule el bosque como un conjunto de sitios.
- 8. Por otro lado, optimizar por volumen, ya sea un sitio o patrimonio, la rotación tiende a ser más larga que si se optimiza financieramente debido al efecto de la tasa de descuento. Esto permite asegurar que las rotaciones patrimoniales sólo pueden

ser calculadas mediante la utilización de valor potencial del suelo y valor presente neto.

9. Dados los resultados del trabajo en forma global, debemos considerar que el método utilizado para maximizar el rendimiento de plantaciones de pino radiata de un conjunto de sitios, bajo una sola rotación a perpetuidad no evita la fragmentación de los sitios o rodales. Sin embargo, es una buena alternativa para planificar actividades de intervención del bosque, tanto para la gran empresa como para los pequeños y medianos propietarios forestales que posean más de un sitio como patrimonio.

5. BIBLIOGRAFÍA


- AVERY, T.E. y BURKHART, H.E. 2002. Forest Measurements. 5nd Ed. United States of America. McGraw-Hill Higher Education series in forest resources. 456 p.
- BUONGIORNO, J. y GILLESS, J.K. 2003. Decision Methods for Forest Resource Management. 1nd Ed. United States of America. Academic Press, Elsevier Science. 439 p.
- CLUTTER, J.; FORTSON, J.; PIENAAR, L.; BRISTER, G. AND BAIULY, R. 1983. Timber management: a quantitative approach. Wiley, New York. 333 p.
- CORVALÁN, P.; GOUET R. y REYES, C. 1998. Modelo geoestadístico para estimaciones espaciales y su aplicación al manejo sustentable de plantaciones de pino insigne. Actas Primer Congreso Latinoamericano IUFRO. El Manejo Sustentable de los Recursos Forestales, Desafíos del Siglo XXI. Valdivia, Chile.
- CORVALÁN, P. y HERNÁNDEZ, J. 2002. Apuntes Docentes: Cátedra de Dasometría. El Sitio. Universidad de Chile. Facultad de Ciencias Forestales. Santiago, Chile. 9 p.
- CORVALÁN, P. y HERNÁNDEZ, J. 2006. Apuntes Docentes: Cátedra de Dasometría. Productividad. Universidad de Chile. Facultad de Ciencias Forestales. Santiago, Chile. 7 p.
- FUNDACIÓN CHILE, 1997. Manual del usuario programa Radiata Plus Versión 4.01 Estudiantil. Proyecto Modelo Nacional de Simulación de Pino radiata. Santiago, Chile. 65 p.
- FUNDACIÓN CHILE, 2005. Manual Práctico de Manejo. Simulador de Árbol Individual para Pino Radiata (*Pinus Radiata* D. Don): Arquitectura de Copa y Calida de Madera. Santiago, Chile. 126 p.
- FUNDACIÓN CHILE, 2005. Tablas Auxiliares de Producción. Simulador de Árbol Individual para Pino Radiata (*Pinus Radiata* D. Don): Arquitectura de Copa y Calida de Madera. Santiago, Chile. 100 p.
- GARCÍA, J.; RIVERA, J.; VARGAS, V.; FERNÁNDEZ, R. 1980. Índices de sitio para Plantaciones de Pino Insigne (*Pinus Radiata* D. Don) Región del Maule. Facultad de Ciencias Agropecuarias y Forestales. Universidad de Concepción. Chillán, Chile.
- GARCÍA, J.; CARRASCO, P.; VARGAS, V.; RIVERA, J.; CORNEJO, R. 1981. Calidad de sitio para Plantaciones de *Pinus Radiata* D. Don en la Cordillera de la Costa de la región del Maule. Facultad de Ciencias Agropecuarias y Forestales. Universidad de Concepción Corporación Nacional Forestal. Chillán, Chile.
- GARCÍA, O. 1984 "FOLPI, A Forestry-Oriented Linear Programming Interpreter" Proceedings IUFRO Symposium on Forest Management Planing and Managerial Economics. University of Tokyo.

- GERDING, V. y SCHLATTER, J. 1995. Variables y Factores del Sitio de Importancia para la Productividad de *Pinus radiata* D. Don en Chile. Revista Bosque (Chile). Vol. 16(2). 39-56 p.
- GILCHRIST, J. 2006. Apuntes Docentes: Cátedra de Manejo de Recursos Forestales. Manejo Forestal. Universidad de Chile. Facultad de Ciencias Forestales. Santiago, Chile. 452 p.
- GUZMAN, S. 1995. Metodología para la definición de una política de manejo forestal en la empresa privada. Universidad Austral de Chile. Facultad de Ciencias Forestales. Valdivia, Chile. 57 p.
- HUNTER, I. y GIBSON, A. 1984. Predicting *Pinus radiata* site index from environmental variables. N.Z.J. of For. Sci. 14(1): 53-64.
- INSTITUTO FORESTAL, 2008. El Sector Forestal Chileno 2008. Estadísticas Forestales. Santiago, Chile. 10 p.
- JACKSON, D. y GIFFORD, H. 1974. Environmental variables influencing the increment of radiata pine. N.Z.J. of For Sci. 4(1): 3-26.
- JOHNSON, N. Y SCHEURMAN L. 1977. Techniques for Prescribing Optimal Timber Harvest and Investment Under Different Objetives. Discussion and Synthesis. Forest Science. Monografía 18. Sociedad of American Foresters. Washington, D.C.
- JOHNSON, S. 1989. Modelling regional forest industry development in New Zealand. Thesis Ph.D. School of forestry. University of Canterbury. 196 p.
- LOUCKS, P. 1964. The development of an optimal program for sustained yield management. Journal of Forestry 62: 485-490.
- MADRIGAL, A. 1995. Ordenación de Montes Arbolados. Colección técnica ICONA. Madrid, España.
- MENDOZA, A. 1993. Conceptos Básicos de Manejo Forestal. Uteha, Noriega editores, México. 161 p.
- MOLL, W. 1978. Método para la clasificación de sitios. En: Curso Corto de Postgrado sobre Reconocimiento de Suelos y Diagnóstico de la Fertilidad en Sitios Forestales, Valdivia, Chile.
- MORALES, R.; WEINTRAUB, A.; PETERS, R. Y GARCÍA, J. 1979. Modelos de simulación y manejo para plantaciones forestales. FO:DP/CHI/76/003. Documento de Trabajo Nº 30. Santiago de Chile.
- NAUTIYAL, C. y PEARSE, H. 1967. Optimizing the conversion to sustained yield A programming solution. Forest Science 13(2): 131-139.

- PAREDES, G. y J. D. BRODIE. 1988. Activity analysis in forest planning. Forest Science 34: 3-18.
- PINTO, P. 1995. Evaluación de diferentes modelos de optimización para la planificación de faenas silvícolas. Memoria de Ingeniero Forestal. Santiago, Universidad de Chile, Facultad de Forestales. 58 p.
- PRODAN, M. 1997. Mensura Forestal. Serie investigación y educación en desarrollo sostenible. Proyecto IICA/GTZ sobre Agricultura, Recursos Naturales y Desarrollo Sostenible. San José, Costa Rica. 586 p.
- WEINTRAUB, A. 2005. Harvest scheduling subject to maximum area restrictions: exploring exact approaches, Operations Research, vol. 53 (3):490-500.

6. APÉNDICES

Apéndice I. Zona de estudio y rodales involucrados.

Apéndice II. Información digital lograda.

- -Coberturas utilizadas en formato shape para software ARCVIEW 3.2, de coordenadas geográficas pertenecientes al Provisorio Sudamericano 1956, UTM zona 18 Sur.
- -Resultados cartográficos.
- -Bases de datos obtenidas.

Apéndice III. Volúmenes por hectáreas según clases de edad y sitio.

CLASE DE EDAD (año) VOL SITIO A (m3/ha) VOL SITIO B (m3/ha) VOL SITIO C (m3/ha) VOL SITIO D (m3/ha) Color Date Description VOL SITIO D (m3/ha) VOL SITIO D (m3/ha) VOL SITIO D (m3/ha) VOL SITIO D (m3/ha) Color Date Description Color Date Description Color Date Description Color Date Date Description Color Date Date Description
(año) (m3/ha) (m3/ha) (m3/ha) (m3/ha) (m3/ha) 10 85 74 91 63 55 11 114 103 82 84 75 12 145 132 110 74 97 13 178 165 138 95 120 14 212 200 169 119 144 15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348
10 85 74 91 63 55 11 114 103 82 84 75 12 145 132 110 74 97 13 178 165 138 95 120 14 212 200 169 119 144 15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 <t< td=""></t<>
11 114 103 82 84 75 12 145 132 110 74 97 13 178 165 138 95 120 14 212 200 169 119 144 15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
12 145 132 110 74 97 13 178 165 138 95 120 14 212 200 169 119 144 15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
13 178 165 138 95 120 14 212 200 169 119 144 15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
14 212 200 169 119 144 15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
15 247 235 201 144 169 16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
16 283 270 233 169 195 17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
17 319 305 267 194 220 18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
18 354 339 300 220 246 19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
19 388 372 333 245 272 20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
20 421 404 364 269 298 21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
21 453 434 394 292 323 22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
22 483 463 424 314 348 23 512 490 452 336 371 24 539 516 478 356 395
23 512 490 452 336 371 24 539 516 478 356 395
24 539 516 478 356 395
26 586 562 532 394 439
27 607 583 554 411 459
28 626 603 576 427 479
29 644 621 596 443 498
30 662 638 615 457 517
31 676 653 632 473 533
32 690 668 649 487 549
33 702 681 664 501 565
34 714 693 677 513 579
35 724 704 690 526 593
36 733 714 702 537 605
37 742 723 713 548 617
38 750 731 723 558 629
39 756 739 732 567 639
40 763 746 740 576 649
41 768 752 748 585 658
42 774 758 755 593 667
43 778 763 761 601 675
44 782 768 767 608 683
45 786 772 772 614 690
46 789 776 777 621 696
47 792 779 781 626 703
48 795 783 785 632 708
49 798 786 789 637 714
50 800 788 792 642 719
51 802 791 795 646 723

CLASE DE	VOL SITIO A	VOL SITIO B	VOL SITIO C	VOL SITIO D	VOL SITIO E
EDAD	SIN MANEJO	INT 1	INT 2	MULT	PULP
(año)	(m3/ha)	(m3/ha)	(m3/ha)	(m3/ha)	(m3/ha)
52	804	793	798	651	727
53	805	795	800	655	731
54	807	796	803	658	735
55	808	798	805	662	738
56	809	800	807	665	742
57	810	801	808	668	745
58	811	802	810	671	747
59	812	803	811	674	750
60	813	804	812	676	752

Nota: Los volúmenes para las clases de edad superiores a 30 años fueron obtenidas mediante extrapolación de la información entregada por las tablas de producción del simulador INSIGNE 1.2 utilizando el modelo de Chapman – Richards como función de crecimiento para cada sitio.

Apéndice IV. Precios por hectáreas según clase de edad y sitio.

CLASE DE	PRECIO SITIO A	PRECIO SITIO B	PRECIO SITIO C	PRECIO SITIO D	PRECIO SITIO E
EDAD	SIN MANEJO	INT 1	INT 2	MULT	PULP
(año)	(\$/ha)	(\$/ha)	(\$/ha)	(\$/ha)	(\$/ha)
10	894.263	1.502.548	1.426.771	880.692	613.799
11	1.325.764	2.120.938	1.376.180	1.287.065	941.545
12	1.832.790	3.066.548	1.984.603	1.201.508	1.333.832
13	2.421.562	3.968.512	2.912.720	1.650.030	1.776.274
14	3.079.083	4.872.681	3.742.326	2.180.908	2.265.479
15	3.790.710	5.888.965	4.498.865	2.932.275	2.788.305
16	4.507.890	7.007.555	5.520.980	3.613.210	3.329.010
17	5.412.840	7.978.850	6.336.980	4.324.275	3.960.075
18	6.434.940	9.074.850	7.278.160	4.906.865	4.569.960
19	7.091.415	10.141.670	8.199.570	5.512.980	5.023.140
20	7.910.250	11.032.965	9.096.980	6.338.865	5.695.140
21	8.681.070	11.846.145	10.015.570	7.004.275	6.252.795
22	9.381.300	12.700.735	10.734.160	7.562.390	6.732.795
23	10.177.530	13.441.440	11.426.865	8.074.865	7.245.270
24	10.793.070	14.333.670	12.292.275	8.532.750	7.905.975
25	11.395.890	14.962.375	12.962.390	9.042.865	8.422.680
26	12.026.940	15.632.965	13.663.570	9.567.095	8.928.090
27	12.595.875	16.122.850	14.199.570	10.117.685	9.358.680
28	13.101.285	16.601.440	14.768.980	10.537.455	9.818.925
29	13.541.760	17.016.030	15.246.160	10.835.340	10.185.990
30	13.997.760	17.516.735	15.738.865	11.250.865	10.809.975
31	14.309.831	18.114.448	16.135.825	11.576.671	10.961.182
32	14.629.032	18.507.905	16.545.299	11.923.150	11.301.065
33	14.914.084	18.868.392	16.923.083	12.251.109	11.620.288
34	15.168.123	19.198.248	17.271.103	12.561.288	11.919.806
35	15.394.129	19.499.724	17.591.260	12.854.425	12.200.588
36	15.594.890	19.774.974	17.885.414	13.131.253	12.463.595
37	15.772.985	20.026.041	18.155.368	13.392.498	12.709.773
38	15.930.785	20.254.851	18.402.852	13.638.869	12.940.047
39	16.070.446	20.463.216	18.629.519	13.871.062	13.155.311
40	16.193.926	20.652.826	18.836.937	14.089.759	13.356.427
41	16.302.991	20.825.257	19.026.590	14.295.620	13.544.225
42	16.399.229	20.981.975	19.199.872	14.489.288	13.719.497
43	16.484.066	21.124.335	19.358.090	14.671.387	13.882.999
44	16.558.776	21.253.589	19.502.466	14.842.519	14.035.454
45	16.624.497	21.370.891	19.634.137	15.003.264	14.177.546
46	16.682.245	21.477.305	19.754.160	15.154.182	14.309.926
47	16.732.925	21.573.804	19.863.516	15.295.811	14.433.209
48	16.777.341	21.661.284	19.963.109	15.428.665	14.547.980
49	16.816.211	21.740.564	20.053.777	15.553.240	14.654.787
50	16.850.170	21.812.392	20.136.290	15.670.007	14.754.151

CLASE DE	PRECIO SITIO A	PRECIO SITIO B	PRECIO SITIO C	PRECIO SITIO D	PRECIO SITIO E
EDAD	SIN MANEJO	INT 1	INT 2	MULT	PULP
(año)	(\$/ha)	(\$/ha)	(\$/ha)	(\$/ha)	(\$/ha)
51	16.879.783	21.877.453	20.211.357	15.779.416	14.846.562
52	16.905.554	21.936.370	20.279.632	15.881.897	14.932.481
53	16.927.927	21.989.712	20.341.711	15.977.857	15.012.341
54	16.947.298	22.037.999	20.398.143	16.067.685	15.086.551
55	16.964.019	22.081.701	20.449.432	16.151.749	15.155.492
56	16.978.401	22.121.248	20.496.035	16.230.399	15.219.523
57	16.990.720	22.157.030	20.538.374	16.303.965	15.278.981
58	17.001.222	22.189.401	20.576.833	16.372.759	15.334.181
59	17.010.124	22.218.683	20.611.761	16.437.077	15.385.417
60	17.017.619	22.245.167	20.643.478	16.497.199	15.432.966

Apéndice V. Plan de intervenciones sitio "A", modelo 1.

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
1	X128A	510,3	510,3	626	319472,0	319472,0
	X227A	41,3		607	25070,1	
2	X228A	370,1	508,2	626	231682,6	319472,0
2	X229A	74,3	308,2	644	47824,3	319472,0
	X230A	22,5		662	14895,0	
3	X327A	281,2	518,9	607	170672,8	210472.0
3	X328A	237,7	318,9	626	148799,2	319472,0
4	X427A	159,7	515.0	607	96912,9	210472.0
4	X428A	355,5	515,2	626	222559,1	319472,0
5	X528A	510,3	510,3	626	319472,0	319472,0
6	X628A	510,3	510,3	626	319472,0	319472,0
7	X729A	121,3	405.0	644	78105,1	210472.0
7	X730A	364,6	485,9	662	241366,9	319472,0
8	X830A	482,6	482,6	662	319472,0	319472,0
9	X930A	482,6	482,6	662	319472,0	319472,0
4.0	X1031A	58,7	1513	676	39681,0	210.152.0
10	X1032A	405,5	464,2	690	279791,0	319472,0
11	X1132A	463,0	463,0	690	319472,0	319472,0
	X1232A	400,2		690	276150,7	·
12	X1233A	61,7	461,9	702	43321,3	319472,0
13	X1332A	463,0	463,0	690	319472,0	319472,0
1.4	X1432A	327,3	460.7	690	225840,1	210472.0
14	X1433A	133,4	460,7	702	93631,9	319472,0
1.5	X1532A	412,9	160.1	690	284866,5	210472.0
15	X1533A	49,3	462,1	702	34605,5	319472,0
1.0	X1631A	208,6	167.2	676	141003,5	210472.0
16	X1632A	258,7	467,2	690	178468,5	319472,0
	X1736A	38,9		733	28527,2	
17	X1737A	321,7	545,3	742	238687,8	319472,0
	X1716A	184,7		283	52257,1	·
	X1834A	62,0		714	44232,3	
18	X1835A	298,7	545,6	724	216222,6	319472,0
	X1817A	185,0	•	319	59017,1	ŕ
	X1934A	360,6		714	257468,4	
19	X1917A	38,3	539,5	319	12203,5	319472,0
	X1918A	140,7	,	354	49800,1	,
	X2033A	74,1		702	52007,7	
20	X2034A	235,0	50.50	714	167790,0	319472,0
20	X2035A	51,5	536,8	724	37296,8	
	X2018A	176,2		354	62377,5	

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	X2130A	8,5		662	5627,0	
	X2131A	6,7		676	4529,2	
21	X2133A	52,4	708,4	702	36784,8	319472,0
21	X2134A	99,2	708,4	714	70839,5	319472,0
	X2118A	247,8		354	87735,9	
	X2119A	293,7		388	113955,6	
	X2217A	100,1		319	31936,6	
22	X2218A	515,2	886,3	354	182375,3	319472,0
	X2219A	271,0	1 '	388	105160,1	
	X2316A	40,5	961,0	283	11454,7	319472,0
23	X2317A	510,3		319	162798,0	
	X2318A	410,2		354	145219,3	
	X2415A	165,2	1093,2	247	40815,1	
24	X2416A	482,6		283	136571,9	319472,0
	X2417A	445,4		319	142085,1	
	X2513A	94,7		178	16851,4	
25	X2514A	463,0	1220.2	212	98156,6	210472.0
25	X2515A	464,2	1339,2	247	114655,9	319472,0
	X2516A	317,3		283	89808,0	
	X2610A	467,2		85	39715,0	
	X2611A	462,1		114	52684,6	
26	X2612A	460,7	2220,3	145	66799,1	319472,0
	X2613A	463,0		178	82414,5	
	X2614A	367,3		212	77858,8	

Apéndice VI. Plan de intervenciones sitio "B", modelo 2.

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	X118B	592,5		339	200846,0	
1	X119B	273,5	908,0	372	101742,0	319775,0
1	X120B	34,7	908,0	404	14018,8	319773,0
	X121B	7,3		434	3168,2	
2	X218B	1108,5	1124,0	339	375775,7	381554,3
2	X219B	15,5	1124,0	372	5778,6	301334,3
3	X318B	1093,0	1122,6	339	370536,8	381554,4
	X319B	29,6	1122,0	372	11017,6	301334,4
4	X418B	6,3	1026,2	339	2124,8	381554,4
	X419B	1020,0	1020,2	372	379429,6	301334,4
5	X519B	1025,7	1025,7	372	381554,4	381554,4
6	X619B	67,3	949,8	372	25045,0	381554,2
U	X620B	882,4	949,6	404	356509,3	361334,2
7	X720B	944,4	944,4	404	381554,2	381554,2
8	X820B	944,4	944,4	404	381554,2	381554,2
9	X921B	222,1	838,0	434	96376,9	381554,3
9	X922B	615,9	030,0	463	285177,3	361334,3
10	X1022B	824,1	824,1	463	381554,3	381554,3
11	X1122B	714,3	714,3	463	330708,1	330708,1
12	X1223B	385,0	626.0	490	188628,4	219600.2
12	X1224B	251,9	636,9	516	129980,9	318609,3
13	X1324B	617,6	617,6	516	318686,1	318686,1
14	X1424B	466,8	620,9	516	240890,9	324084,9
14	X1425B	154,1	020,9	540	83194,0	324004,9
15	X1524B	628,1	628,1	516	324116,0	324116,0
	X1625B	125,7		540	67901,1	
16	X1626B	427,4	639,4	562	240174,7	328366,9
	X1615B	86,3		235,0	20291,0	
17	X1726B	349,3	839,5	562,0	196320,9	328665,5
17	X1716B	490,2	639,3	270,0	132344,6	328003,3
10	X1816B	842,9	1174.2	270,0	227571,4	229665 5
18	X1817B	331,5	1174,3	305,0	101094,1	328665,5
19	X1916B	921,8	1202,9	270	248872,6	334626,2
19	X1917B	281,2	1202,9	305	85753,6	334020,2
20	X2016B	1015,3	1216,2	270	274132,1	225405.2
20	X2017B	200,9	1210,2	305	61273,1	335405,2
	X2115B	260,8		235	61285,1	
21	X2116B	1025,7	1297,4	270	276934,7	341555,1
	X2117B	10,9		305	3335,4	

Secuencia de cosechas

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
22	X2215B	680,3	1369,3	235	159864,0	345890,2
22	X2216B	689,0	1309,3	270	186026,3	343690,2
	X2314B	268,5		200	53698,8	
23	X2315B	944,4	1477,1	235	221943,7	346968,2
	X2316B	264,2		270	71325,6	
	X2413B	291,7		165	48131,3	
24	X2414B	824,1	1685,3	200	164818,3	346783,5
	X2415B	569,5		235	133833,9	
	X2510B	628,1		74	46481,7	
	X2511B	620,9		103	63953,3	
25	X2512B	617,6	2926,1	132	81524,3	381554,2
	X2513B	636,9		165	105081,4	
	X2514B	422,6		200	84513,5	

AÑOS DE	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
1	R110B	1103,2	1103,2	56,0	61779,2	61779,2
11	R1110B	908,0	908,0	56,0	50846,1	50846,1
12	R1210B	1124,0	1124,0	56,0	62945,0	62945,0
13	R1310B	1122,6	1122,6	56,0	62868,2	62868,2
14	R1410B	1026,2	1026,2	56,0	57469,4	57469,4
15	R1510B	1025,7	1025,7	56,0	57438,3	57438,3
16	R1610B	949,8	949,8	56,0	53187,3	53187,3
17	R1710B	944,4	944,4	56,0	52888,7	52888,7
18	R1810B	944,4	944,4	56,0	52888,7	52888,7
19	R1910B	838,0	838,0	56,0	46928,0	46928,0
20	R2010B	824,1	824,1	56,0	46149,1	46149,1
21	R2110B	714,3	714,3	56,0	39999,3	39999,3
22	R2210B	636,9	636,9	56,0	35664,0	35664,0
23	R2310B	617,6	617,6	56,0	34586,1	34586,1
24	R2410B	620,9	620,9	56,0	34770,7	34770,7

Apéndice VII. Plan de intervenciones sitio "C", modelo 3.

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	X124C	206,5		478	98696,6	
1	X126C	227,2	758,2	532	120870,4	406098,4
1	X127C	17,3	730,2	554	9584,2	400098,4
	X128C	307,2		576	176947,2	
	X221C	222,7		394	87751,0	
2	X224C	465,6	871,2	478	222556,8	406098,4
2	X225C	54,4	6/1,2	504	27428,6	400036,4
	X226C	128,5		532	68362,0	
	X321C	220,1		394	86736,5	
3	X322C	139,7	904,0	424	59234,2	406098,4
	X324C	544,2		478	260127,6	
	X421C	74,2		394	29236,8	
4	X422C	209,5	886,3	424	88818,8	406098,4
	X424C	602,6		478	288042,8	
5	X524C	849,6	849,6	478	406098,4	406098,4
6	X624C	849,6	849,6	478	406098,4	406098,4
7	X724C	849,6	849,6	478	406098,4	406098,4
0	X824C	446,6	020.0	478	213482,8	40,000,4
8	X825C	382,2	828,8	504	192615,6	406098,4
9	X926C	763,3	763,3	532	406098,4	406098,4
10	X1026C	763,3	763,3	532	406098,4	406098,4
1.1	X1126C	598,8	756.0	532	318569,4	40,000 4
11	X1127C	158,0	756,8	554	87529,1	406098,4
12	X1228C	657,6	657,6	576	378804,0	378804,0
13	X1328C	650,6	650,6	576	374733,7	374733,7
14	X1429C	626,8	626,8	596	373552,7	373552,7
	X1529C	215,8		596	128598,3	
15	X1530C	399,3	615,1	615	245593,9	374192,2
16	X1630C	610,6	610,6	615	375513,6	375513,6
	X1730C	485,7	·	615	298705,5	·
17	X1731C	121,5	607,2	632	76855,5	375561,0
	X1830C	272,8		615	167763,4	
18	X1832C	320,1	592,9	649	207631,0	375394,4
	X1932C	510,9		649	331383,9	
19	X1918C	149,0	659,9	300	44687,9	376071,8
	X2029C	61,5		596	36654,0	
	X2030C	55,4		615	34071,0	
20	X2031C	25,3	817,8	632	15999,5	378549,1
20	X2032C	211,8	,0	649	137388,4	2.32.2,2
	X2019C	463,8		333	154436,2	

Secuencia de cosechas

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	X2118C	118,5		300	35552,6	
21	X2119C	871,2	1135,2	333	290123,0	378618,1
	X2120C	145,4		364	52942,5	
22	X2218C	390,9	1176,4	300	117269,0	378853,3
22	X2219C	785,5	1170,4	333	261584,3	370033,3
22	X2318C	724,9	1220.2	300	217459,4	292422.2
23	X2319C	495,4	1220,3	333	164963,8	382423,2
	X2417C	323,1		267	86274,4	
24	X2418C	849,6	1297,4	300	254873,5	382677,5
	X2419C	124,7	, , , , , , , , , , , , , , , , , , ,	333	41529,6	
	X2516C	18,5	1373,7	233	4311,8	
25	X2517C	828,8		267	221287,1	383534,8
	X2518C	526,5		300	157935,9	
	X2615C	35,9		201	7224,1	
26	X2616C	763,3	1544,1	233	177858,9	383954,5
	X2617C	744,8		267	198871,5	
	X2710C	607,2		91	55258,1	
27	X2714C	650,6	2232,2	169	109947,9	384117,1
21	X2715C	253,5	2232,2	201	50948,7	304117,1
	X2716C	720,9		233	167962,4	
	X2810C	592,9		91	53953,4	
	X2812C	610,6		110	67165,0	
28	X2813C	615,1	2849,5	138	84885,0	406098,4
	X2814C	626,8		169	105923,5	
	X2816C	404,2		233	94171,5	

AÑOS DE ROTACION	VARIABLE (VAR)	RALEO (Hás)	RALEO ANUAL (Hás)	VOL POR Há (m³/Ha)	VOL POR VAR (m ³)	VOL ANUAL POR SITIO (m ³)
12	R1211C	758,2	758,2	36	27294,4	27294,4
13	R1311C	871,2	871,2	36	31364,6	31364,6
14	R1411C	904,0	904,0	36	32545,7	32545,7
15	R1511C	886,3	886,3	36	31906,2	31906,2
16	R1611C	849,6	849,6	36	30584,8	30584,8
17	R1711C	849,6	849,6	36	30584,8	30584,8
18	R1811C	849,6	849,6	36	30584,8	30584,8
19	R1911C	828,8	828,8	36	29836,5	29836,5
20	R2011C	763,3	763,3	36	27480,3	27480,3
21	R2111C	763,3	763,3	36	27480,3	27480,3
22	R2211C	756,8	756,8	36	27245,1	27245,1

AÑOS DE	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
23	R2311C	657,6	657,6	36	23675,2	23675,2
24	R2411C	650,6	650,6	36	23420,9	23420,9
25	R2511C	626,8	626,8	36	22563,6	22563,6
26	R2611C	615,1	615,1	36	22143,9	22143,9
27	R2711C	610,6	610,6	36	21981,3	21981,3

Apéndice VIII. Plan de intervenciones sitio "D", modelo 4.

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL	
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)	
1	X128D	157,4	157,4	427	67217,1	67217,1	
2	X230D	147,1	147,1	457	67217,2	67217,2	
3	X328D	145,7	156,6	427	62198,0	67217,1	
3	X330D	11,0	130,0	457	5019,1	0/21/,1	
4	X430D	147,1	147,1	457	67217,2	67217,2	
5	X530D	147,1	147,1	457	67217,2	67217,2	
6	X630D	128,4	145,0	457	58692,9	67217,1	
· ·	X634D	16,6	143,0	513	8524,3	07217,1	
7	X732D	84,9	136,5	487	41357,3	67217,2	
/	X733D	51,6	130,3	501	25859,9	0/21/,2	
8	X833D	134,2	134,2	501	67217,2	67217,2	
9	X933D	120,9	122.0	501	60566,0	67217.2	
9	X934D	13,0	133,9	513	6651,1	67217,2	
10	X1034D	131,0	131,0	513	67217,2	67217,2	
1.1	X1134D	42,4	120.0	513	21743,8	(7217.2	
11	X1135D	86,5	128,8	526	45473,4	67217,2	
12	X1235D	127,8	127,8	526	67217,2	67217,2	
13	X1336D	115,5	115,5	537	62009,9	62009,9	
14	X1437D	113,8	113,8	548	62323,8	62323,8	
15	X1538D	111,2	111,2	558	62027,4	62027,4	
16	X1639D	110,0	110,0	567	62408,3	62408,3	
1.5	X1739D	44,9		567	25494,5	62204.5	
17	X1740D	64,0	109,0	576	36887,2	62381,7	
	X1838D	1,7		558	972,2		
18	X1839D	4,5	108,5	567	2553,3	62478,2	
	X1840D	102,3		576	58952,7		
	X1932D	16,0		487	7799,1		
	X1933D	15,1		501	7562,3		
	X1934D	19,2		513	9859,1		
19	X1935D	10,2	118,6	526	5360,2	62712,8	
19	X1936D	10,1	110,0	537	5422,6	02/12,8	
	X1937D	10,4		548	5695,6		
	X1938D	30,9		558	17236,5		
	X1939D	6,7		567	3777,3		
20	X2042D	94,9	121,5	593	56275,7	62789,7	
20	X2019D	26,6	121,3	245	6514,0	02/09,/	
	X2130D	44,5		457	20336,3		
21	X2133D	41,7	158,5	501	20891,7	62700.0	
Δ1	X2134D	8,7	138,3	513	4463,4	62799,9	
	X2120D	63,6		269	17108,6		

Secuencia de cosechas

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	X2231D	83,9		473	39684,9	
22	X2220D	13,3	164,4	269	3577,5	62893,2
	X2221D	67,2		292	19630,8	
23	X2320D	88,8	222,6	269	23900,5	62965,5
23	X2321D	133,8	222,0	292	39065,0	02903,3
	X2419D	14,8		245	3638,2	
24	X2420D	147,1	229,7	269	39565,5	63000,1
	X2421D	67,8		292	19796,5	
25	X2519D	113,6	245,8	245	27834,9	63405,7
25	X2520D	132,2	245,8	269	35570,9	03403,7
	X2618D	98,0	265,9	220	21553,4	
26	X2619D	136,5		245	33452,1	63461,7
	X2620D	31,4		269	8456,2	
	X2717D	130,1	300,1	194	25231,5	
27	X2718D	133,9		220	29448,2	63547,7
	X2719D	36,2		245	8868,0	
	X2811D	109,0		84	9153,6	
	X2815D	53,0		144	7630,1	
28	X2816D	127,8	419,6	169	21596,4	63587,5
	X2817D	128,8		194	24994,3	
	X2818D	1,0		220	213,1	
	X2910D	118,6		63	7469,1	
	X2911D	108,5		84	9114,9	
20	X2913D	110,0	624.6	95	10448,9	67217.2
29	X2914D	111,2	624,6	119	13232,4	67217,2
	X2915D	113,8		144	16387,5	
	X2916D	62,5		169	10564,4	

AÑOS DE	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	$VAR (m^3)$	POR SITIO (m ³)
13	R1312D	157,4	157,4	33	5194,7676	5194,8
14	R1412D	147,1	147,1	33	4853,7555	4853,8
15	R1512D	156,6	156,6	33	5169,3048	5169,3
16	R1612D	147,1	147,1	33	4853,7555	4853,8
17	R1712D	147,1	147,1	33	4853,7555	4853,8
18	R1812D	145,0	145,0	33	4786,5609	4786,6
19	R1912D	136,5	136,5	33	4505,7903	4505,8
20	R2012D	134,2	134,2	33	4427,478	4427,5
21	R2112D	133,9	133,9	33	4417,2282	4417,2

AÑOS DE	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
22	R2212D	131,0	131,0	33	4323,9108	4323,9
23	R2312D	128,8	128,8	33	4251,6144	4251,6
24	R2412D	127,8	127,8	33	4217,0469	4217,0
25	R2512D	115,5	115,5	33	3811,4307	3811,4
26	R2612D	113,8	113,8	33	3755,4594	3755,5
27	R2712D	111,2	111,2	33	3669,4977	3669,5
28	R2812D	110,0	110,0	33	3629,6172	3629,6

Apéndice IX. Plan de intervenciones sitio "E", modelo 5.

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
1	X128E	196,7	196,7	479	94207,0	94207,0
	X225E	36,4		417	15192,1	
	X226E	67,7		439	29720,3	
2	X227E	51,3	207,9	459	23546,7	94207,0
	X228E	36,7		479	17579,3	
	X230E	15,8		517	8168,6	
	X325E	109,9		417	45821,1	
3	X326E	10,0	205,0	439	4376,0	94207,0
	X330E	85,1		517	44010,0	
	X424E	80,8		395	31914,9	
4	X425E	58,3	225,6	417	24311,1	94207,0
	X426E	86,5		439	37981,1	
	X522E	115,9		348	40322,8	
5	X524E	83,1	249,5	395	32824,5	94207,0
	X525E	50,5		417	21059,7	
6	X623E	84,5	243,6	371	31362,5	94207,0
U	X624E	159,1	243,0	395	62844,5	94207,0
7	X724E	238,5	238,5	395	94207,0	94207,0
8	X825E	225,9	225,9	417	94207,0	94207,0
9	X925E	102,2	219,7	417	42633,4	94207,0
9	X926E	117,5	219,7	439	51573,6	74207,0
10	X1026E	214,6	214,6	439	94207,0	94207,0
11	X1126E	214,6	214,6	439	94207,0	94207,0
12	X1226E	214,6	214,6	439	94207,0	94207,0
12	X1326E	212,8	214.4	439	93419,2	04207.0
13	X1328E	1,6	214,4	479	787,8	94207,0
	X1426E	53,8		439	23627,9	
14	X1428E	19,8	191,8	479	9486,8	94207,0
	X1430E	118,2		517	61092,3	
	X1526E	78,2		439	34327,4	
15	X1527E	96,5	204,8	459	44286,6	94207,0
	X1530E	30,2		517	15593,1	
16	X1628E	196,7	196,7	479	94207,0	94207,0
17	X1728E	196,7	196,7	479	94207,0	94207,0
18	X1830E	182,2	182,2	517	94207,0	94207,0
10	X1928E	30,6	1045	479	14676,3	0.4207.0
19	X1930E	153,8	184,5	517	79530,7	94207,0
20	X2029E 87.5	105.4	498	43592,7	0.4207.0	
20	X2030E	97,9	185,4	517	50614,3	94207,0

AÑOS DE	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACION	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
21	X2130E	116,3	230,6	517	60140,0	94207,0
21	X2120E	114,3	230,0	298	34067,0	74207,0
	X2218E	22,9		246	5642,5	
22	X2220E	207,9	313,2	298	61963,7	94207,0
	X2221E	82,4		323	26600,8	
	X2318E	130,2		246	32035,0	
23	X2319E	4,0	339,2	272	1089,0	94207,0
	X2320E	205,0		298	61083,0	
24	X2418E	142,3	341,0	246	35002,3	04207.0
24	X2420E	198,7	341,0	298	59204,7	94207,0
25	X2518E	238,5	257.7	246	58670,7	04207.0
25	X2520E	119,2	357,7	298	35536,3	94207,0
	X2617E	38,3		220	8429,6	
26	X2618E	225,9	365,6	246	55575,4	94207,0
	X2620E	101,3		298	30202,1	
	X2716E	12,2		195	2371,3	94207,0
27	X2717E	214,6	408,2	220	47210,8	
	X2718E	181,4		246	44624,9	
	X2815E	46,3		169	7825,6	
28	X2816E	214,6	463,3	195	41845,9	94207,0
	X2817E	202,4		220	44535,5	
	X2914E	201,4		144	29006,6	
29	X2915E	191,8	561,4	169	32413,3	94207,0
	X2916E	168,1		195	32787,2	
	X3010E	185,4		55	10199,0	
	X3011E	184,5		75	13835,3	
20	X3012E	182,2	049.0	97	17675,2	04207.0
30	X3013E	196,7	948,9	120	23600,9	94207,0
	X3014E	196,7		144	28321,1	
	X3015E	3,4		169	575,5	

Apéndice X. Plan de intervenciones patrimonial con rotación de 25 años, modelo 6.

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	A	X128A	374,3	374,3	626	234332,5	234332,5
		X119B	273,5		372	101742,0	
	В	X120B	34,7	315,5	404	14018,8	118929,0
		X121B	7,3		434	3168,2	
		X121C	602,6		394	237424,4	
		X124C	260,9		478	124710,2	
1	C	X125C	128,5	1543,7	504	64764,0	734300,4
		X126C	227,2	1343,7	532	120870,4	/34300,4
		X127C	17,3		554	9584,2	
		X128C	307,2		576	176947,2	
		X127D	198,7		411	81665,7	
	D	X128D	168,4	530,8	427	71906,8	226091,6
		X129D	163,7		443	72519,1	
		X226A	149,3		586	87502,8	
		X227A	279,0	1031,2	607	169353,0	
	Α	X228A	370,1		626	231682,6	638845,3
		X229A	210,3		644	135411,9	
2 <u> </u>		X230A	22,5		662	14895,0	
	В	X219B	608,0	608,0	372	226176,0	226176,0
	С	X224C	465,6	465,6	478	222556,8	222556,8
	D	X227D	524,8	524,8	411	215692,8	215692,8
	Е	X230E	15,8	15,8	517	8168,6	8168,6
		X326A	550,5	1027.0	586	322600,4	610420.0
	A	X327A	487,4	1037,9	607	295838,4	618438,8
	-	X321C	236,8	5 04.0	394	93304,5	2524224
3	С	X324C	544,2	781,0	478	260127,6	353432,1
	D	X327D	466,8	466,8	411	191854,8	191854,8
	Е	X330E	281,8	281,8	517	145690,6	145690,6
		X426A	1082,9	1567.0	586	634559,5	020400.5
	A	X427A	484,1	1567,0	607	293841,1	928400,5
4	Г.	X426D	215,4	000.1	394	84867,6	266270.2
	D	X427D	684,7	900,1	411	281411,7	366279,3
	Е	X430E	36,7	36,7	517	18973,9	18973,9
	A	X527A	436,8	436,8	607	265158,5	265158,5
_		X522C	1044,0	2256.0	424	442636,9	1021072.0
5	С	X524C	1212,0	2256,0	478	579336,0	1021972,9
	Е	X530E	51,3	51,3	517	26522,1	26522,1
	Б	X620B	714,0		404	288452,4	
6	В	X622B	1138,1	1852,1	463	526940,3	815392,7
	С	X624C	1042,4	1042,4	478	498261,0	498261,0

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	$VAR (m^3)$	POR SITIO (m ³)
	В	X720B	314,6	2427,6	404	127101,8	1105420,8
7	Б	X722B	2113,0	2427,0	463	978319,0	1103420,6
	C	X724C	435,6	435,6	478	208232,8	208232,8
	В	X822B	1200,4	1200,4	463	555789,4	555789,4
8	С	X824C	963,7	1553,4	478	460649,5	757864,2
		X825C	589,7	1555,4	504	297214,7	737804,2
9	A	X930A	1066,0	1066,0	662	705692,0	705692,0
9	В	X922B	1313,1	1313,1	463	607961,6	607961,6
	A	X1030A	721,9	721,9	662	477897,8	477897,8
10	В	X1022B	79,7	79,7	463	36915,8	36915,8
10	C	X1025C	464,1	1526.0	504	233910,0	798839,8
	С	X1026C	1061,9	1526,0	532	564929,7	198839,8
11	A	X1130A	502,0	502,0	662	332324,5	332324,5
11	С	X1126C	1811,4	1811,4	532	963661,1	963661,1
12	В	X1224B	2162,8	2162,8	516	1115988,3	1115988,3
	С	X1226C	203,1	203,1	532	108043,9	108043,9
		X1330A	335,4	469.7	662	222014,6	212001 1
13	A	X1332A	133,3	468,7	690	91976,4	313991,1
	В	X1324B	1870,9	1870,9	516	965384,4	965384,4
		X1430A	320,6	670,2	662	212237,2	448594,5
	A	X1431A	348,0		676	235253,3	
		X1432A	1,6		690	1104,0	
	В	X1424B	338,1	338,1	516	174459,6	174459,6
14	С	X1428C	492,6	492,6	576	283743,4	283743,4
		X1430E	435,0		517	224895,0	
	Б	X1433E	83,1	(71.0	565	46951,5	261421.2
	Е	X1434E	131,3	671,8	579	76022,7	361421,2
		X1436E	22,4		605	13552,0	
	С	X1528C	151,7	151,7	576	87366,4	87366,4
		X1526E	414,7		439	182053,3	
		X1527E	356,0		459	163404,0	
15	E	X1528E	212,8	2405,7	479	101931,2	
		X1529E	234,4		498	116731,2	1210882,7
		X1530E	246,4		517	127388,8	
		X1532E	782,3		549	429482,7	
		X1533E	159,1		565	89891,5	

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	A	X1634A	375,0	375,0	714	267750,0	267750,0
	В	X1626B	553,1	553,1	562	310842,2	310842,2
	С	X1630C	572,3	572,3	615	351964,5	351964,5
		X1631D	8,9		473	4209,7	
		X1632D	10,2		487	4967,4	
		X1633D	10,1		501	5060,1	
16	D	X1634D	10,4	110.1	513	5335,2	57701.2
10	D	X1635D	30,9	110,1	526	16253,4	57701,2
		X1636D	8,4		537	4510,8	
		X1637D	4,5		548	2466,0	
		X1638D	26,7		558	14898,6	
	Е	X1638E	59,1		629	37173,9	
		X1639E	46,4	173,2	639	29649,6	110760,8
		X1640E	67,7		649	43937,3	
	Δ.	X1732A	346,9	275.0	690	239345,4	250425.0
	A	X1734A	28,1	375,0	714	20079,6	259425,0
		X1716B	217,3		270	58665,5	
	В	X1726B	550,1	770,4	562	309156,2	369570,7
		X1727B	3,0		583	1749,0	
	С	X1730C	572,3	572,3	615	351964,5	351964,5
17		X1726D	18,3	,-	394	7210,2	49129,6
		X1729D	41,7		443	18473,1	
	D	X1730D	24,7	110,1	457	11287,9	
		X1731D	15,1		473	7142,3	
		X1732D	10,3		487	5016,1	
	Г	X1738E	58,3	172.0	629	36670,7	110001.0
	Е	X1739E	114,9	173,2	639	73421,1	110091,8
		X1817A	68,7		319	21927,6	
	A	X1832A	101,2	443,7	690	69812,4	283963,5
		X1833A	273,8		702	192223,5	
	ъ	X1817B	98,2	651.2	305	29957,3	252414.6
10	В	X1827B	553,1	651,3	583	322457,3	352414,6
18		X1830C	299,7	570.2	615	184301,8	256500.1
	С	X1831C	272,6	572,3	632	172297,3	356599,1
_	Б	X1817D	530,8	(40.0	194	102975,2	148226,3
	D	X1827D	110,1	640,9	411	45251,1	
	Е	X1830E	173,2	173,2	517	89544,4	89544,4

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
		X1918A	305,6		354	108180,5	
		X1928A	8,5		626	5321,0	
	Α	X1929A	6,7	680,3	644	4314,8	366759,2
	A	X1931A	52,4	080,3	676	35422,4	300739,2
		X1932A	173,3		690	119577,0	
		X1933A	133,8		702	93943,5	
19	В	X1917B	229,4	229,4	305	69960,7	69960,7
19		X1918C	1543,7		300	463110,0	
		X1928C	61,5		576	35424,0	
	C	X1929C	55,4	1870,8	596	33018,4	663982,8
		X1930C	25,3		615	15559,5	
		X1931C	184,9		632	116870,9	
	Г	X1928E	159,2	173,2	479	76256,8	02404.0
	Е	X1930E	14,0	1/3,2	517	7238,0	83494,8
		X2017A	337,2	1260.4	319	107572,9	472612.0
	A	X2018A	1031,2	1368,4	354	365040,9	472613,8
	В	X2018B	378,6	378,6	339	128352,4	128352,4
		X2017C	781,0	1246.6	267	208530,6	240210.6
	C	X2018C	465,6	1246,6	300	139680,0	348210,6
20	Б.	X2017D	466,8	991,6	194	90559,2	206015.2
	D	X2018D	524,8		220	115456,0	206015,2
		X2029E	75,3		498	37499,4	
	Б	X2030E	97,9	470.0	517	50614,3	153996,5
	E	X2017E	281,8	470,8	220	61996,0	
		X2018E	15,8		246	3886,8	
		X2117A	1567,0	2267.6	319	499858,0	747905 7
	A	X2118A	700,7	2267,6	354	248037,7	747895,7
21	С	X2116C	1408,3	1408,3	233	328128,3	328128,3
	D	X2117D	900,1	900,1	194	174619,4	174619,4
	Е	X2117E	36,7	36,7	220	8074,0	8074,0
	A	X2217A	436,8	436,8	319	139350,2	139350,2
	D	X2215B	31,6	1002.7	235	7421,1	507405.7
22	В	X2216B	1852,1	1883,7	270	500064,6	507485,7
22	-	X2216C	1042,4	1000 1	233	242876,2	4602066
	С	X2217C	847,7	1890,1	267	226330,4	469206,6
	Е	X2217E	51,3	51,3	220	11286,0	11286,0
	A	X2314A	1066,0	1066,0	212	225992,0	225992,0
22	ъ	X2315B	966,6	2262.6	235	227149,4	
23	В	X2316B	2396,0	3362,6	270	646927,8	874077,2
	С	X2316C	435,6	435,6	233	101502,6	101502,6

Secuencia de cosechas

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	$VAR (m^3)$	POR SITIO (m ³)
	A	X2413A	502,0	1223,9	178	89356,1	242398,9
	A	X2414A	721,9	1223,9	212	153042,8	242396,9
		X2414B	79,7		200	15946,4	
24	В	X2415B	1313,1	1626,6	235	308576,6	387653,2
24		X2416B	233,8		270	63130,2	
		X2410C	492,6		91	44827,5	
	C	X2414C	1526,0	3572,0	169	257895,0	664668,0
		X2416C	1553,4		233	361945,5	
	A	X2511A	670,2	1138,9	114	76403,7	144260.7
		X2512A	468,7	1138,9	145	67957,0	144360,7
		X2511B	338,1		103	34824,3	638639,8
	В	X2512B	1870,9	4371,8	132	246958,8	
25		X2513B	2162,8		165	356856,7	
23		X2510C	151,7		91	13802,7	
	C	X2513C	203,1	2166,2	138	28026,4	347954,5
		X2514C	1811,4		169	306125,4	
	Б	X2510E	2405,7	2077.5	55	132313,5	102700 5
	Е	X2511E	671,8	3077,5	75	50385,0	182698,5

AÑOS DE	SITIO	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
2	C	R211C	61,5	61,5	36	2214,0	2214,0
3	D	R312D	128,4	128,4	33	4237,2	4237,2
11	В	R1110B	315,5	315,5	56	17668,0	17668,0
12	В	R1210B	608,0	2151.7	56	34048,0	90621.2
12	С	R1211C	1543,7	2151,7	36	55573,2	89621,2
12	С	R1311C	465,6	006.4	36	16761,6	34278,0
13	D	R1312D	530,8	996,4	33	17516,4	
1.4	С	R1411C	781,0	1205.0	36	28116,5	45 424 0
14	D	R1412D	524,8	1305,8	33	17318,4	45434,9
15	D	R1512D	466,8	466,8	33	15404,4	15404,4
	В	R1610B	1852,1		56	103717,1	
16	С	R1611C	2256,0	5008,1	36	81214,4	214634,8
	D	R1612D	900,1		33	29703,3	·
17	В	R1710B	2427,6	2470.0	56	135946,0	152452.0
	С	R1711C	1042,4	3470,0	36	37525,9	173472,0
10	В	R1810B	1200,4	1.52.5.0	56	67222,9	02007.7
18	С	R1811C	435,6	1636,0	36	15682,8	82905,7

AÑOS DE	SITIO	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
19	В	R1910B	1313,1	2966.5	56	73533,2	120456 1
19	С	R1911C	1553,4	2866,5	36	55922,9	129456,1
20	В	R2010B	79,7	79,7	56	4465,0	4465,0
21	С	R2111C	1526,0	1526,0	36	54936,2	54936,2
22	В	R2210B	2162,8	3974,2	56	121115,0	186325,2
	С	R2211C	1811,4		36	65210,1	
23	В	R2310B	1870,9	2074,0	56	104770,4	112081,6
	С	R2311C	203,1		36	7311,2	
24	В	R2410B	338,1	338,1	56	18933,6	18933,6

Apéndice XI. Plan de intervenciones patrimonial con rotación de 30 años, modelo 7.

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m³/Ha)	VAR (m ³)	POR SITIO (m ³)
	A	X128A	584,6	584,6	626	365959,6	365959,6
		X119B	260,6		372	96942,0	
	В	X120B	34,7	302,6	404	14018,8	114129,0
		X121B	7,3		434	3168,2	
		X121C	78,1		394	30765,7	
		X124C	260,9		478	124710,2	
1	С	X125C	128,5	1019,2	504	64764,0	527641,7
1	C	X126C	227,2	1019,2	532	120870,4	32/041,/
		X127C	17,3		554	9584,2	
		X128C	307,2		576	176947,2	
		X123D	34,8		336	11701,8	
	Ъ	X127D	198,7	5656	411	81665,7	227702.4
	D	X128D	168,4	565,6	427	71906,8	237793,4
		X129D	163,7		443	72519,1	
		X227A	139,0		607	84398,3	
	A	X228A	370,1	531,6	626	231682,6	330975,9
		X230A	22,5		662	14895,0	ĺ
	D	X219B	188,4	201,3	372	70080,9	75202.0
	В	X220B	12,9		404	5212,9	75293,8
2	С	X221C	980,9	1446,5	394	386472,3	600020.1
		X224C	465,6		478	222556,8	609029,1
	D	X222D	8,4	537,7	314	2637,6	219842,4
		X223D	4,5		336	1512,0	
		X227D	524,8		411	215692,8	
	Е	X230E	15,8	15,8	517	8168,6	8168,6
		X327A	636,7		607	386476,9	474090,9
	A	X328A	140,0	776,7	626	87614,0	
2	В	X320B	419,6	419,6	404	169522,6	169522,6
3	С	X324C	544,2	544,2	478	260127,6	260127,6
	D	X327D	466,8	466,8	411	191854,8	191854,8
	Е	X330E	281,8	281,8	517	145690,6	145690,6
	A	X427A	386,5	386,5	607	234627,8	234627,8
	В	X420B	1138,1	1138,1	404	459792,4	459792,4
4	С	X424C	524,5	524,5	478	250717,9	250717,9
	D	X427D	684,7	684,7	411	281411,7	281411,7
	Е	X430E	36,7	36,7	517	18973,9	18973,9
		X527A	506,8		607	307636,6	
	A	X528A	648,1	1154,9	626	405687,6	713324,2
_	В	X520B	767,4	767,4	404	310019,6	310019,6
5	С	X524C	231,1	231,1	478	110468,6	110468,6
	D	X527D	207,3	207,3	411	85189,3	85189,3
	Е	X530E	51,3	51,3	517	26522,1	26522,1

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	
	A	X628A	1012,9	1012,9	626	634066,0	634066,0
6	С	X624C	1279,2	1279,2	478	611457,6	611457,6
7	A	X728A	1066,0	1066,0	626	667316,0	667316,0
	С	X724C	1209,6	1209,6	478	578207,9	578207,9
	A	X828A	721,9	721,9	626	451909,4	451909,4
0	С	X824C	1549,0	1620.2	478	740430,1	7900145
8	C	X825C	80,3	1629,3	504	40484,4	780914,5
	D	X827D	30,9	30,9	411	12699,9	12699,9
	В	X924B	1345,6	1345,6	516	694342,5	694342,5
9	C	X924C	276,8	1056.1	478	132301,1	546006.0
9	С	X926C	779,3	1056,1	532	414605,8	546906,9
	D	X927D	10,4	10,4	411	4274,4	4274,4
	В	X1024B	1914,4	1914,4	516	987830,4	987830,4
10	С	X1026C	476,6	476,6	532	253542,2	253542,2
	D	X1027D	10,1	10,1	411	4151,1	4151,1
11	В	X1124B	1627,7	1627,7	516	839893,2	839893,2
11	С	X1126C	730,6	730,6	532	388685,1	388685,1
12	В	X1224B	2242,5	2242,5	516	1157130,0	1157130,0
12	С	X1227C	73,0	73,0	554	40430,7	40430,7
13	В	X1324B	897,1	897,1	516	462891,8	462891,8
13	C	X1328C	1195,1	1195,1	576	688394,3	688394,3
	A	X1433A	635,3	635,3	702	445980,6	445980,6
14	В	X1425B	781,5	781,5	540	422034,7	422034,7
	C	X1428C	479,9	479,9	576	276439,5	276439,5
		X1532A	711,5	1000 1	690	490935,0	755200 2
	A	X1533A	376,6	1088,1	702	264373,2	755308,2
15	В	X1526B	192,3	192,3	562	108059,7	108059,7
13	С	X1529C	488,8	488,8	596	291296,9	291296,9
	D	X1530D	19,2	29,4	457	8774,4	13603,2
	<u> </u>	X1531D	10,2	49, 4	473	4828,8	13003,2
	В	X1626B	894,2	894,2	562	502540,4	502540,4
16	С	X1629C	885,9	1185,2	596	527988,4	712068,4
		X1630C	299,3	1105,2	615	184080,1	/12000,4
	A	X1733A	286,5	286,5	702	201150,9	201150,9
	В	X1726B	1103,2	1103,2	562	619998,4	619998,4
17		X1728C	25,3		576	14572,8	
	C	X1729C	484,6	620,6	596	288821,6	371483,2
		X1730C	110,7		615	68088,8	

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
		X1830A	52,4		662	34688,8	
		X1831A	173,3		676	117155,3	
	A	X1832A	235,0	1115,5	690	162095,1	774153,7
		X1833A	620,7		702	435906,9	
		X1834A	34,1		714	24307,6	
	С	X1828C	55,4	55,4	576	31910,4	31910,4
18		X1836E	36,0		605	21774,5	
		X1837E	83,1		617	51305,3	
		X1838E	131,3		629	82546,1	
	Е	X1839E	58,3	619,2	639	37269,4	396113,0
		X1840E	196,4		649	127499,9	
		X1841E	46,4		658	30552,6	
		X1842E	67,7		667	45165,1	
		X1928D	101,5		427	43338,3	
	D	X1931D	41,7	183,0	473	19741,1	82682,0
	D	X1932D	24,7		487	12040,2	
19		X1933D	15,1		501	7562,3	
19		X1930E	428,7	1769,1	517	221637,9	
	Е	X1935E	435,0		593	257764,2	1028996,9
		X1936E	782,3		605	473574,9	
		X1937E	123,1		617	76019,9	
	Α	X2029A	8,5	15.0	644	5474,0	9909,4
	A	X2030A	6,7	15,2	662	4435,4	
	В	X2018B	201,3	503,9	339	68238,2	180804,2
	Б	X2019B	302,6	303,9	372	112566,0	100004,2
	C	X2029C	61,5	61,5	596	36654,0	36654,0
20	D	X2029D	26,9	26,9	443	11919,0	11919,0
20		X2029E	234,5		498	116781,0	
		X2030E	97,9		517	50614,3	
	Е	X2032E	529,2	1555,2	549	290652,4	859893,1
	L	X2033E	212,8	1333,2	565	120130,5	037073,1
		X2034E	234,4		579	135707,7	
		X2035E	246,4		593	146007,1	
		X2118A	455,8		354	161341,7	
	A	X2119A	531,6	1572,0	388	206276,9	613735,2
21		X2120A	584,6		421	246116,6	
	С	X2120C	1019,2	1019,2	364	370983,7	370983,7
	D	X2120D	565,6	565,6	269	152153,6	152153,6

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
	Α	X2218A	386,5	707.4	354	136834,0	261220.7
	A	X2219A	320,9	707,4	388	124505,7	261339,7
22	В	X2219B	419,6	419,6	372	156095,1	156095,1
22	С	X2220C	1446,5	1446,5	364	526523,8	526523,8
	D	X2220D	537,7	537,7	269	144641,3	144641,3
	Е	X2220E	15,8	15,8	298	4708,4	4708,4
	A	X2318A	1021,6	1021,6	354	361652,8	361652,8
	В	X2319B	1138,1	1138,1	372	423373,2	423373,2
23	C	X2320C	544,2	544,2	364	198088,8	198088,8
	D	X2320D	466,8	466,8	269	125569,2	125569,2
	Е	X2320E	281,8	281,8	298	83976,4	83976,4
	A	X2418A	1012,9	1146,1	354	358561,3	410266,5
	A	X2419A	133,3	1140,1	388	51705,2	410200,3
	В	X2419B	767,4	767,4	372	285463,6	285463,6
24	С	X2419C	231,1	755 6	333	76958,2	267881,5
	C	X2420C	524,5	755,6	364	190923,3	207001,3
	D	X2420D	684,7	684,7	269	184184,3	184184,3
	Е	X2420E	36,7	36,7	298	10936,6	10936,6
	A	X2518A	1066,0	1066,0	354	377364,0	377364,0
	С	X2518C	1143,7	2422,9	300	343097,4	769071,0
25		X2519C	1279,2		333	425973,6	·
	D	X2520D	207,3	207,3	269	55756,5	55756,5
	Е	X2520E	51,3	51,3	298	15287,4	15287,4
	A	X2618A	721,9	721,9	354	255552,6	255552,6
	В	X2617B	1327,0	1327,0	305	404728,0	404728,0
26	С	X2618C	1629,3	1695,3	300	488802,9	510774,9
		X2619C	66,0	1093,3	333	21972,0	310774,9
	D	X2618D	30,9	30,9	220	6798,0	6798,0
		X2716B	376,2		270	101563,8	
	В	X2717B	1914,4	2309,2	305	583892,0	691777,5
		X2718B	18,6		339	6321,7	
27	C	X2717C	476,6	1532.7	267	127247,7	444082.2
	С	X2718C	1056,1	1532,7	300	316834,5	444082,2
	D	X2717D	10,1	20,5	194	1959,4	4247,4
		X2718D	10,4	20,3	220	2288,0	4247,4
		X2815B	101,7		235	23910,2	
	В	X2816B	2242,5	3595,8	270	605475,0	1011104,3
28		X2817B	1251,5		305	381719,1	
	С	X2816C	73,0	803,6	233	17004,2	212077 4
		X2817C	730,6	003,0	267	195073,2	212077,4

Secuencia de cosechas

AÑOS DE	SITIO	VARIABLE	COSECHA	COSECHA	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
	A	X2914A	1088,1	1723,4	212	230677,2	387596,3
	Λ	X2915A	635,3	1723,4	247	156919,1	367370,3
	В	X2915B	781,5	1576,9	235	183663,3	398402,8
29	Б	X2916B	795,3	1370,9	270	214739,6	370402,8
		X2914C	488,8		169	82599,3	
	C	X2915C	479,9	2163,8	201	96465,9	457530,2
		X2916C	1195,1		233	278465,1	
		X3010A	15,2		85	1292,0	
	A	X3012A	1115,5	1417,2	145	161741,7	214037,8
		X3013A	286,5		178	51004,1	
	В	X3013B	1103,2	2189,7	165	182028,0	406053,1
		X3014B	894,2		200	178840,0	
		X3015B	192,3		235	45185,1	
		X3010C	61,5		91	5596,5	
30	С	X3012C	55,4	1922,7	110	6094,0	297634,6
30		X3013C	620,6	1922,7	138	85644,7	
		X3014C	1185,2		169	200299,5	
		X3010D	26,9		63	1695,0	
	D	X3011D	183,0	239,3	84	15371,6	21300,2
		X3015D	29,4		144	4233,6	
		X3010E	1555,2		55	85536,0	278280,3
	E	X3011E	1769,1	3943,5	75	132684,8	
		X3012E	619,2		97	60059,4	

AÑOS DE	SITIO	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
2	C	R211C	61,5	61,5	36	2214	2214,0
3	D	R312D	128,4	128,4	33	4237,2	4237,2
11	В	R1110B	302,6	302,6	56	16945,4	16945,4
12	В	R1210B	201,3	1220,5	56	11272,4	47062 1
12	С	R1211C	1019,2	1220,3	36	36690,7	47963,1
	В	R1310B	419,6	2431,7	56	23498,2	94237,7
13	С	R1311C	1446,5		36	52073,8	
	D	R1312D	565,6		33	18665,7	
	В	R1410B	1138,1		56	63733,6	
14	С	R1411C	544,2	2220,0	36	19591,2	101068,9
	D	R1412D	537,7		33	17744,1	
	В	R1510B	767,4		56	42973,0	
15	С	R1511C	524,5	1758,7	36	18882,5	77259,9
	D	R1512D	466,8		33	15404,4	

AÑOS DE	SITIO	VARIABLE	RALEO	RALEO	VOL POR	VOL POR	VOL ANUAL
ROTACIÓN	(k)	(VAR)	(Hás)	ANUAL (Hás)	Há (m3/Ha)	VAR (m3)	POR SITIO (m3)
16	C	R1611C	231,1	915,8	36	8319,8	30914,9
10	D	R1612D	684,7	913,6	33	22595,1	30914,9
17	C	R1711C	1279,2	1486,5	36	46051,2	52891,2
17	D	R1712D	207,3	1400,5	33	6840,0	32091,2
18	C	R1811C	1209,6	1209,6	36	43547,0	43547,0
19	В	R1910B	1345,6	2975,0	56	75355,0	134011,3
19	C	R1911C	1629,3	2973,0	36	58656,3	154011,5
	В	R2010B	1914,4		56	107206,4	
20	C	R2011C	1056,1	3001,4	36	38020,1	146246,2
	D	R2012D	30,9		33	1019,7	
	В	R2110B	1627,7		56	91151,2	
21	С	R2111C	476,6	2114,7	36	17157,0	108651,4
	D	R2112D	10,4		33	343,2	
	В	R2210B	2242,5	2983,2	56	125580,0	
22	С	R2211C	730,6		36	26302,0	152215,3
	D	R2212D	10,1		33	333,3	
23	В	R2310B	897,1	970,1	56	50236,3	50963.6
23	С	R2311C	73,0	970,1	36	2627,3	52863,6
24	В	R2410B	781,5	10767	56	43766,6	9,7701.2
24	С	R2411C	1195,1	1976,7	36	43024,6	86791,2
25	В	R2510B	192,3	(72.2	56	10767,5	20045.0
25	С	R2511C	479,9	672,2	36	17277,5	28045,0
26	В	R2610B	894,2	1202.0	56	50075,2	(7,670.2
26	С	R2611C	488,8	1383,0	36	17595,1	67670,3
	В	R2710B	1103,2		56	61779,2	
27	С	R2711C	1185,2	2317,8	36	42667,3	105416,7
	D	R2712D	29,4	ŕ	33	970,2	
28	C	R2811C	620,6	620,6	36	22342,1	22342,1
29	С	R2911C	55,4	55,4	36	1994,4	1994,4
30	В	R3010B	503,9	503,9	56	28217,8	28217,8

Apéndice XII. Glosario

Algunos conceptos importantes en la Planificación Forestal

- 1. Bosque Normal: Concepto teórico. Implica que se encuentran áreas iguales para todas las clases de edad de la rotación. Además, cada área cubierta con determinada clases de edad tiene la misma capacidad productiva (Sitio) (Whyte, 1994).
- 2. Bosque Regulado: Bosque que presenta todas las clases de edad, de manera que se obtiene un rendimiento periódico, aproximadamente, igual de productos del tamaño y calidad deseados a perpetuidad (Whyte, 1994).
- 3. Corta Permisible o Posibilidad de Corta: Es aquel rendimiento periódico (nivel de corta) que se encuentra dentro de la capacidad del bosque, manteniendo la calidad del recurso a largo plazo (Whyte, 1994).
- 4. Patrimonio: Agregación de rodales de distinta, estructura, composición, productividad y regímenes silviculturales (Johnson, 1989).
- 5. Periodo de conversión: Tiempo que transcurre mientras el bosque es regulado (Gilchrist, 2006).
- 6. Periodo de post conversión: Tiempo que transcurre desde que el bosque queda regulado (Gilchrist, 2006).
- 7. Régimen Silvicultural: Secuencia de actividades culturales programadas que se realizan durante la vida de un rodal, con el fin de lograr un objetivo predefinido (Ej. Podas, Raleos, Control de malezas, etc) (Bown, 1998).
- 8. Regulación por Área: Transformación del bosque no regulado, donde se cosecha y regenera una superficie equivalente todos los años, logrando la regulación al término de la primera rotación (Davis y Johnson, 1987).
- 9. Regulación por Volumen: Transformación del bosque no regulado, donde se cosecha la misma cantidad de volumen todos los años, regenerando la superficie intervenida. Permite un flujo de madera relativamente constante (Davis y Johnson, 1987).
- 10. Rendimiento Sostenido: Corresponde a la mantención de la capacidad productiva de un recurso natural renovable. Provee de un flujo continuo y permanente de bienes del bosque, para satisfacer las necesidades de la sociedad, sin destruir el recurso (Whyte, 1994).
- 11. Rodal: Porción de bosque definida sobre la base de criterios asociados a uno o mas objetivos de manejo forestal (Corvalán y Hernández, 2006).
- 12. Rotación: Periodo de tiempo que transcurre entre la iniciación de las actividades forestales (regeneración del bosque) hasta la cosecha del recurso (Matthews, 1935).