
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

A DOMAIN SPECIFIC LANGUAGE TO SUPPORT THE DEFINITION OF
TRANSFORMATION RULES FOR SOFTWARE PROCESS TAILORING

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN CIENCIAS, MENCIÓN COMPUTACIÓN

LUIS GREGORIO SILVESTRE QUIROGA

PROFESORES GUÍA:
MARÍA CECILIA BASTARRICA PIÑEYRO
SERGIO FABIÁN OCHOA DELORENZI

MIEMBROS DE LA COMISIÓN:
YADRAN ETEROVIC SOLANO
BEATRIZ MARÍN CAMPUSANO

BERNHARD RUMPE

Este trabajo ha sido financiada por la beca CONICYT-PFCHA/Doctorado Nacional para
Extranjeros/2013-63130130, y apoyada parcialmente por los proyectos FONDEF D09I-1171
(ADAPTE) y FONDEF IDeA IT13I20010 (GEMS), y el Programa de Becas de NIC Chile.

SANTIAGO DE CHILE
2018



Resumen

La adaptación de procesos de software es la actividad de adaptar el proceso de software
de una organización a las necesidades de proyectos particulares. La ingeniería basada en
modelos (MDE) se ha aplicado con este fin, utilizando modelos para formalizar el proceso
de software y el contexto del proyecto, y transformaciones del modelo para adaptar estos
procesos. A pesar de que la adaptación basada en MDE ha demostrado ser técnicamente
factible, su uso en la práctica requiere conocimiento sobre cómo adaptar procesos y construir
modelos y transformaciones.

Existen algunas propuestas para la generación automática de transformaciones como una
forma de reducir la complejidad de adaptar los procesos de software. Estas propuestas gen-
eralmente generan transformación solo parcialmente, y luego deben completarse manual-
mente. Estos enfoques no son adecuados para la adaptación de procesos de software porque
no superan por completo las dificultades técnicas de adopción.

Para enfrentar estos desafíos esta tesis propone un enfoque automático de generación de
transformaciones, que aborda tanto la formalidad requerida por MDE, como la usabilidad que
necesitan los ingenieros de proceso a cargo de las adaptaciones. Para ello, especificamos las
reglas de adaptación utilizando un lenguaje específico de dominio (DSL). Además, definimos
una transformación de orden superior (HOT) que toma las reglas de adaptación especifi-
cadas como entrada y genera automáticamente la transformación de adaptación de procesos
requerida. Tanto el DSL como el HOT son genéricos y, por lo tanto, pueden reutilizarse en
cualquier organización. Con el fin de mejorar la usabilidad, desarrollamos un conjunto de
herramientas integradas (ATAGeTT) que incorpora ambas contribuciones.

ATAGETT se aplicó en un estudio de caso exploratorio en dos pequeñas empresas de soft-
ware, para evaluar su capacidad y corrección de adaptar el proceso de estas compañías. Los
resultados obtenidos muestran queusuarios pudieron especificar todas las reglas de adaptación
requeridas.

Luego, se llevó cabo un caso de estudio en otra empresa para validar la usabilidad de
ATAGeTT y la expresividad del lenguaje de decisión propuesto. Los usuarios pudieron
especificar todas las reglas de ajuste de una manera simple, y de ejecutar la adaptación de
procesos de manera automática. Los resultados muestran que ATAGeTT es fácil de aprender,
usable y útil para sus potenciales usuarios. Aunque los resultados aún no son suficientes,
son altamente positivos y consistentes; por lo tanto, esperamos que esta propuesta pueda
ayudar a mejorar esta actividad, particularmente en organizaciones pequeñas y medianas,
que generalmente están más limitadas para realizar adaptacion de procesos de software.

i



ii



Abstract

Software processes tailoring is the activity of adapting the organizational software process
to the needs of particular projects. Model-driven engineering (MDE) has been applied with
this purpose, using models for formalizing the software process and the project context, and
model transformations for tailoring these processes. Even though the MDE-based tailoring
strategy has proved to be technically feasible, its usage in practice requires knowledge about
how to adapt the software process and how to build models and transformations.

There are some proposals for automatically generating transformations as a way to reduce
the complexity of tailoring the organizational software processes. These proposals usually
generate transformation only partially, and then they need to be completed manually. These
approaches are not suitable in software process tailoring because they do not completely
overcome the technical adoption difficulties.

Trying to deal with these challenges, we propose a complete automatic transformation
generation approach that addresses both, the formality required by MDE and the usability
needed by the software process engineers. To that end, we specified tailoring rules using a
domain-specific language (DSL). Moreover, we define a a higher-order transformation (HOT)
that takes the specified tailoring rules as input and automatically generates the required
process tailoring transformation. Both, the DSL and the HOT are generic, and therefore
they can be reused across organizations. In order to improve the usability, we developed
an integrated tool called A Tool-set for Automatically Generating Tailoring Transformations
(ATAGeTT) that incorporates both contributions.

ATAGeTT has been applied in an exploratory case study in two small software companies
for evaluating its capability and correctness of tailoring the organizational software process
of these companies. The obtained results show the software process engineers were able to
specify all tailoring rules that were required in both companies using ATAGeTT.

Then, we conducted an explanatory case study in other software company for validat-
ing usability of the ATAGeTT and expressiveness of the proposed decision language. The
software process engineers were able to specify all tailoring rules in simple manner, and the
project manager participating in this study was able to execute software process tailoring
in automatic way. The obtained results show the ATAGeTT is easy to learn, usable and
useful for potential users. Although the results are still not enough the make strong con-
clusions, they are highly positive and consistent; therefore, we expect this proposal can help
improve this activity in many software companies, particularly in small and medium-sized
organizations that are usually more limited to perform software process tailoring.

iii



iv



Dedicated to my parents and brother.

Dedicated to memory of my grandfather Gregorio Silvestre, grandmother Flora Conde and
great-grandmother Nicolasa Rojas.

v



Acknowledgments

Throughout my PhD studies, the Computer Science Department of University of Chile has
showed me what it means to be a researcher and many people have helped me in different
ways in the writing of this thesis. Without their support and contributions, this thesis would
not exist.

First of all, I would like to thank to my parents Jorge Silvestre and Seferina Quiroga for
all that they give me in my life, my brother Diego Silvestre for pushing me to follow my
dreams and Mariela Pardo for her patience, ears and encouragement. And also my gratitude
to my grandfather Marcos Quiroga, grandmother Marcelina Rojas, uncles, aunts, cousins for
their support from Bolivia.

My special thanks to my supervisors Sergio F. Ochoa and Maria Cecilia Bastarrica for
supporting and encouraging me throughout the long process of this thesis work and for their
guidance and positive attitude in guiding me. I do not have words for expressing my gratitude
for your human values, conversations about life, talks about all the research lines and patience
with my special way of "to do science". I would like also to express my profound appreciation
to Jocelyn Simmonds, Daniel Perovich and others research group members who given their
direct or indirect supports in this long research journey.

It is impossible for me to write an acknowledgment letter without giving thank to thank
Angelica Aguirre, Sandra Gaez and Francia Ormeño, who have been of great help in the
department all these years. Of course, I want to thank all my classmates of my PhD. program.
Thanks guys for every moment shared together, especially for my three closest colleagues of
work: Alcides Quispe, Maira Marques and Fabian Rojas. Thank you for pushing me the
many times I needed a bit of encouragement to continue.

Finally, I also recognize, with gratitude, the support from the PhD. Scholarship Program
of Conicyt-Chile (Comisión Nacional de Investigación Científica y Tecnológica) (CONICYT-
PCHA/2013-63130130), the NIC Chile, the University of Chile, the two Chilean government
projects FONDEF D09I-1171 (ADAPTE project) and FONDEF IDeA IT13I20010 (GEMS
project) for funding me several travels to conferences and helping me with additional schol-
arships in the last part of my stay in the PhD. program.

vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Question and Hypotheses . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 General research question . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Basic Concepts 13
2.1 Software Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Software process modeling . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Software process lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Model-driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Technical spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Models and metamodels . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Higher-order transformations . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Domain-specific languages and MDE . . . . . . . . . . . . . . . . . . 24

3 Supporting the Development of Tailoring Transformations 28
3.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 The Hurtado Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Organizational software process model . . . . . . . . . . . . . . . . . 31
3.2.2 Context model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Software Context Modeling Tool . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Organizational context model definition . . . . . . . . . . . . . . . . . 36
3.3.2 Project context model configuration . . . . . . . . . . . . . . . . . . . 37

3.4 Transformations between Software Process and Software Process Model . . . 40
3.4.1 Projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Projectors implementation . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Tailoring Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



3.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Tailoring Rules Specification 57
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 An Overview of Domain-specific Languages . . . . . . . . . . . . . . . . . . . 58
4.3 Decision Language for Defining Tailoring Rules . . . . . . . . . . . . . . . . 59

4.3.1 Conceptualizing the process tailoring rules . . . . . . . . . . . . . . . 60
4.3.2 Developing the decision language . . . . . . . . . . . . . . . . . . . . 61

4.4 Using the Decision Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Identifying the domain concepts . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Defining a VDM using the DL . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Graphical Environment for Defining Tailoring Rules . . . . . . . . . . . . . . 75
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Tailoring Transformation Generation 80
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 An Overview of Higher-Order Transformation . . . . . . . . . . . . . . . . . 81
5.3 Higher-Order Transformation for Generating Transformation Models . . . . . 82

5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Benefits and drawbacks of the HOT . . . . . . . . . . . . . . . . . . . 88

5.4 ATL Extractor for Generating Transformation Code . . . . . . . . . . . . . . 89
5.5 Using the Tailoring Transformation Generation . . . . . . . . . . . . . . . . 91

5.5.1 Generating a transformation model using the HOT . . . . . . . . . . 91
5.5.2 Generating a tailoring transformation using the ATL code extractor . 92

5.6 Graphical Environment for Generating Tailoring Transformations . . . . . . 95
5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 A Tool-set for Automatically Generating Tailoring Transformations - ATAGeTT100
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 An Overview of Megamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Integrated Tool-set for Automatically Generating Tailoring Transformations

and Executing Software Process Tailoring . . . . . . . . . . . . . . . . . . . . 101
6.3.1 User interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Megamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Building Adapted Software Process with ATAGeTT . . . . . . . . . . . . . . 104
6.4.1 The process engineer user interface . . . . . . . . . . . . . . . . . . . 105
6.4.2 The project manager user interface . . . . . . . . . . . . . . . . . . . 109

7 Exploratory Case Study 113
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Case Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Description of approaches . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.2 Evaluation strategy for comparing the approaches . . . . . . . . . . . 115
7.2.3 Description of characteristics . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.4 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



7.2.5 Description of the cases . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 Case Study Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.1 Rhiscom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.2 Mobius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Case Study Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.1 Review of the organizational software processes . . . . . . . . . . . . 124
7.4.2 Identification of tailoring decisions . . . . . . . . . . . . . . . . . . . 125
7.4.3 Defining the project contexts . . . . . . . . . . . . . . . . . . . . . . 128
7.4.4 Applying both tailoring strategies . . . . . . . . . . . . . . . . . . . . 129

7.5 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.7 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 ATAGeTT Validation 141
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Case Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Brief description of ATAGeTT . . . . . . . . . . . . . . . . . . . . . . 142
8.2.2 Description of characteristics to be evaluated . . . . . . . . . . . . . . 142
8.2.3 Research questions definition . . . . . . . . . . . . . . . . . . . . . . . 143
8.2.4 Description of the case study . . . . . . . . . . . . . . . . . . . . . . 144
8.2.5 Units of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3 Case Study Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.4 Case Study Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4.1 Review of the organizational software process . . . . . . . . . . . . . 147
8.4.2 Review of the organizational context . . . . . . . . . . . . . . . . . . 147
8.4.3 Review of the tailoring decisions . . . . . . . . . . . . . . . . . . . . . 149
8.4.4 Apply ATAGeTT for software process tailoring . . . . . . . . . . . . 150

8.5 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.5.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.5.2 Description of evaluation artifacts . . . . . . . . . . . . . . . . . . . . 159
8.5.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.7.1 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.7.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.7.3 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.7.4 External validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9 Conclusions, Contributions, Limitations and Future Work 177
9.1 Summary of the Thesis Work . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.4 Scope of the Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 182

ix



ANNEXES 196

A Listings of the Higher-order Transformation 197
A.1 HOT code for generating the header . . . . . . . . . . . . . . . . . . . . . . 197
A.2 HOT code for generating the matched rules . . . . . . . . . . . . . . . . . . 198
A.3 HOT code for generating the helpers . . . . . . . . . . . . . . . . . . . . . . 199
A.4 Tailoring transformation generated by the HOT and the ATL extractor . . . 200

B Evaluation Forms for validating ATAGeTT 203
B.1 Evaluation of organizational context definition . . . . . . . . . . . . . . . . . 203

B.1.1 Usability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.1.2 Operability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.1.3 Software Quality Factors Evaluation . . . . . . . . . . . . . . . . . . 206
B.1.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B.2 Evaluation of tailoring rules definition . . . . . . . . . . . . . . . . . . . . . . 207
B.2.1 Usability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
B.2.2 Expressiveness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 210
B.2.3 Software Quality Factors Evaluation . . . . . . . . . . . . . . . . . . 211
B.2.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.3 Evaluation of project context definition . . . . . . . . . . . . . . . . . . . . . 212
B.3.1 Usability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
B.3.2 Operability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 214
B.3.3 Software Quality Factors Evaluation . . . . . . . . . . . . . . . . . . 215
B.3.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

x



List of Tables

2.1 Software process lines as product lines. . . . . . . . . . . . . . . . . . . . . 17

3.1 Decisions for Rhiscom’s variable process elements. . . . . . . . . . . . . . . . 29
3.2 Matching between UMA and eSPEM elements of ManagedContent. . . . . . 44
3.3 Matching between UMA and eSPEM elements of Core. . . . . . . . . . . . . 45
3.4 Matching between UMA and eSPEM elements of MethodPlugin. . . . . . . . 45
3.5 Matching between UMA and eSPEM elements of MethodContent. . . . . . . 45
3.6 Matching between UMA and eSPEM elements of ProcessStructure. . . . . . 46

4.1 Domain concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Semantic: Transformation Rules Language. . . . . . . . . . . . . . . . . . . . 65
4.2 Semantic: Transformation Rules Language. . . . . . . . . . . . . . . . . . . . 66
4.2 Semantic: Transformation Rules Language. . . . . . . . . . . . . . . . . . . . 67
4.2 Semantic: Transformation Rules Language. . . . . . . . . . . . . . . . . . . . 68
4.3 Concrete Syntax: Transformation Rules Language. . . . . . . . . . . . . . . 69

5.1 Summary of HOTs (adapted and updated from Tisi et al. [156]). . . . . . . . 97

7.1 Characteristics of the software companies. . . . . . . . . . . . . . . . . . . . 118
7.2 Rhiscom’s organizational context . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Rhiscom’s predefined contexts . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Mobius’ organizational context . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.5 Mobius’ predefined contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Summary of sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.7 Rhiscom’s organizational software process reviewed. . . . . . . . . . . . . . . 125
7.8 Tailoring decisions for variable elements of Rhiscom’s software process. . . . 126
7.9 Decisions for Mobius’ variable process elements. . . . . . . . . . . . . . . . . 127
7.10 Rhiscom’s experimental project contexts. . . . . . . . . . . . . . . . . . . . . 129
7.11 Mobius’ experimental project contexts. . . . . . . . . . . . . . . . . . . . . . 130
7.12 Size of software processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.13 The weights of Rhiscom’s context attributes. . . . . . . . . . . . . . . . . . . 131
7.14 Similarities between predefined and experimental contexts in Rhiscom. . . . 131
7.15 Mobius’s organizational context model. . . . . . . . . . . . . . . . . . . . . . 135
7.16 Similarities between predefined and experimental contexts in Mobius. . . . . 135
7.17 Comparison of the whole Mobius’s process tasks in both strategies. . . . . . 137
7.18 Comparison of the whole Rhiscom process tasks in both strategies. . . . . . . 138

xi



8.1 Validation factors of ATAGeTT. . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Validation factors of DL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3 Characteristics of Ki teknology. . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Number of employees of Ki teknology. . . . . . . . . . . . . . . . . . . . . . . 145
8.5 Status of artifacts in Ki teknology. . . . . . . . . . . . . . . . . . . . . . . . 146
8.6 Summary of work sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7 Summary of revisions of Ki teknology’s organizational software process. . . . 147
8.8 Organizational context of Ki teknology . . . . . . . . . . . . . . . . . . . . . 149
8.9 Tailoring Decisions of Ki teknology . . . . . . . . . . . . . . . . . . . . . . . 149
8.10 Characteristics of data gathering. . . . . . . . . . . . . . . . . . . . . . . . . 158
8.11 Activity timing for adapting the Ki agile software process to a concrete project

context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.12 Evaluation of timing for each activity that is used for the adapting Ki agile

software process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xii



List of Figures

1.1 MDE-based strategy for tailoring software process [65]. . . . . . . . . . . . . 4
1.2 Phases of the research methodology. . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Detailed structure of the research methodology. . . . . . . . . . . . . . . . . 7
1.4 Contributions of this Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Example of software process breakdown using EPF. . . . . . . . . . . . . . . 15
2.2 Example of activity diagram of the Architecture validation activity using EPF. 16
2.3 Partial view of tasks and work products related to the developer role, as part

of the activity diagram shown in Fig. 2.2 using EPF. . . . . . . . . . . . . . 17
2.4 Technical spaces (adapted from Kurtev [91]). . . . . . . . . . . . . . . . . . . 19
2.5 Three-level architecture in MDE (adapted from Bezivin [11]). . . . . . . . . . 20
2.6 Model transformations approach using transformation models (adapted from

Jouault et al. [76]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Higher-order transformation architecture for transformation modification [156]. 24
2.8 Modelware vs. Grammarware (adapted from Brambilla et al. [18]). . . . . . . 26

3.1 Rhiscom’s Software Process in EPF (partial view). . . . . . . . . . . . . . . . 30
3.2 MDE-based Strategy for tailoring software processes (adapted from Hurtado

et al. [65]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Part of experimental SPEM (eSPEM) highlighting where variability is speci-

fied [65]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Rhiscom’s eSPEM software process model. . . . . . . . . . . . . . . . . . . . 33
3.5 Software Process Context Metamodel (SPCM) [65]). . . . . . . . . . . . . . . 34
3.6 Rhiscom’s context model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Defining the organizational context model. . . . . . . . . . . . . . . . . . . . 36
3.8 Rhiscom’s organizational context model. . . . . . . . . . . . . . . . . . . . . 38
3.9 Defining the project context model. . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Rhiscom’s project context model. . . . . . . . . . . . . . . . . . . . . . . . . 39
3.11 Text-to-model, model-to-model, and model-to-text transformations involved

in software processes tailoring. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.12 Relationship between UMA (yellow boxes) and eSPEM elements (gray boxes). 43
3.13 Pipeline architecture of the projectors. . . . . . . . . . . . . . . . . . . . . . 47
3.14 Rhiscom’s software process model in EMT. . . . . . . . . . . . . . . . . . . . 50
3.15 Rhiscom’s adapted software process in EPF. . . . . . . . . . . . . . . . . . . 51
3.16 An example of the tailoring transformation in ATL [65]. . . . . . . . . . . . . 52

4.1 An overview of tailoring rules specification. . . . . . . . . . . . . . . . . . . . 59

xiii



4.2 Abstract Syntax: Variation Decision Metamodel. . . . . . . . . . . . . . . . 64
4.3 Rhiscom’s VDM from eclipse modeling framework. . . . . . . . . . . . . . . . 75
4.4 Selection of the organizational software process with variability and the orga-

nizational context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Selection of variable software process elements. . . . . . . . . . . . . . . . . . 76
4.6 User interface for defining tailoring rules. . . . . . . . . . . . . . . . . . . . . 77

5.1 An overview of tailoring transformation generation. . . . . . . . . . . . . . . 82
5.2 A HOT for generating tailoring transformations. . . . . . . . . . . . . . . . . 83
5.3 Header of the transformation model generated from the VDM2ATL. . . . . . 85
5.4 Mached rules of the transformation model generated from the VDM2ATL. . 86
5.5 Matched and called rules of the transformation model generated from the

VDM2ATL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Excerpt of a transformation model generated from our HOT. . . . . . . . . . 89
5.7 Extractor for generating tailoring transformation as ATL code. . . . . . . . . 90
5.8 ATL configuration in EMF for executing the HOT. . . . . . . . . . . . . . . 92
5.9 Tailoring transformation model of Rhiscom. . . . . . . . . . . . . . . . . . . 93
5.10 Extracting the transformation code of Rhiscom. . . . . . . . . . . . . . . . . 94
5.11 Graphical Environment for Generating Tailoring Transformations. . . . . . . 96

6.1 Structure of the megamodel along with the user interfaces . . . . . . . . . . 102
6.2 Rhiscom’s software process breakdown in EPF. . . . . . . . . . . . . . . . . 106
6.3 Rhiscom’s software process behavior in EPF. . . . . . . . . . . . . . . . . . . 107
6.4 Organization context model definition of Rhiscom. . . . . . . . . . . . . . . . 108
6.5 Selecting the organizational software process and the organizational context. 109
6.6 Selecting the variation elements specified in the organizational software process.109
6.7 Defining tailoring rules for requirements activity. . . . . . . . . . . . . . . . . 110
6.8 Executing the HOT and ATL extractor using the formal tailoring rules speci-

fication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.9 Project context definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.10 Adapted software process model generation . . . . . . . . . . . . . . . . . . . 111
6.11 The adapted software process of Rhiscom in EPF. . . . . . . . . . . . . . . . 112

7.1 Template-based software process tailoring. . . . . . . . . . . . . . . . . . . . 114
7.2 MDE-based software process tailoring . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Software process breakdown of Rhiscom that includes four optional elements. 119
7.4 Software process breakdown of Mobius that includes sixteen optional elements. 121
7.5 Part of tailoring decisions in Rhiscom’s organizational software process. . . . 125
7.6 Part of tailoring decisions in Mobius’s organizational software process. . . . . 127
7.7 Rhiscom’s automatically tailoring ATL transformation. . . . . . . . . . . . . 132
7.8 Rhiscom’s Requirements activity automatically tailored to context E. . . . . 133
7.9 Predefined software process for experimental Context B. . . . . . . . . . . . 134
7.10 Mobius automatic tailoring transformation. . . . . . . . . . . . . . . . . . . . 136
7.11 Mobius Requirements activity automatically tailored to Context E. . . . . . 136
7.12 Predefined software process for experimental Context E. . . . . . . . . . . . 137

8.1 Software process of Ki teknology (EPF version). . . . . . . . . . . . . . . . . 148
8.2 Software process of Ki teknology (Web version). . . . . . . . . . . . . . . . . 148

xiv



8.3 Tailoring decisions of Ki teknology’s software process . . . . . . . . . . . . . 151
8.4 Ki teknology’s organizational context. . . . . . . . . . . . . . . . . . . . . . . 152
8.5 Selecting organizational software process and organizational context. . . . . . 152
8.6 Selecting variability points for defining tailoring rules. . . . . . . . . . . . . . 153
8.7 Defining tailoring rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.8 Variation decision model of Ki teknology as XMI file. . . . . . . . . . . . . . 154
8.9 Generating tailoring transformation of Ki teknology. . . . . . . . . . . . . . . 155
8.10 Tailoring transformation of Ki teknology as ATL code. . . . . . . . . . . . . 156
8.11 Defining a concrete context of Ki teknology. . . . . . . . . . . . . . . . . . . 157
8.12 Executing Ki teknology’s organizational context. . . . . . . . . . . . . . . . . 157
8.13 Software process of Ki teknology (EPF version) . . . . . . . . . . . . . . . . 158
8.14 Distribution of the usability results according to the Likert scale. . . . . . . . 163
8.15 Distribution of the operability results according to the Likert scale. . . . . . 164
8.16 Distribution of software quality factors results according to the Likert scale. . 165
8.17 Distribution of usability results about the tailoring rules definition using a

Likert scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.18 The percentage distribution (in terms of Likert items) of the expressiveness

characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.19 The percentage distribution (in terms of Likert items) of the software quality

factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.20 Software process of Ki teknology (EPF version) . . . . . . . . . . . . . . . . 170
8.21 Software process of Ki teknology (EPF version) . . . . . . . . . . . . . . . . 171
8.22 Software process of Ki teknology (EPF version) . . . . . . . . . . . . . . . . 172

xv



Chapter 1

Introduction

Software companies define their processes in order to manage their development projects in
a systematic way, being able to plan, assign resources and control the progress of the project.
Software processes are defined from simple elements called process elements. Process element
names depend on the vocabulary used to define a software process; for example role can be
used to represent somebody who performs a task or activity, or one that can generate an
artifact or document of the software process. Formally defining the software process allows
companies to rigorously document their process and tool support for formal process analysis
and management, as well as making process evolution easier.

Software process modeling refers to the definition of the processes as models, plus any
optional automated support available for modeling and executing the models during the
software process. A software process model is an abstract representation of a software pro-
cess from some particular perspective. It provides definitions of the software process to be
used, instantiated, enacted, or executed. Therefore, a software process model can be ana-
lyzed, validated, simulated or executed if it is appropriately defined according to these goals.
Finkelstein et al. [42] define a process model as the description of a process expressed in a
suitable process modeling language. To this end, the Object Management Group (OMG)1
proposed the Software and Systems Process Engineering Metamodel specification 2.0 (SPEM
2.0) [55] that is a standard for modeling software processes.

Development projects faced by a particular company may be of different kinds, e.g., large
or small, complex or simple, new development or evolution, and therefore the same software
process is not equally appropriate for addressing all of them. Software process tailoring is
the activity of adapting a general software process to match the needs of the project at hand
according to its particular characteristics. This activity is generally performed together with
the process engineer and the project manager. The process engineer knows about the organi-
zational process and how the project characteristics affect tailoring, while the project manager
knows about the project’s particular characteristics. There are several strategies for software
process tailoring, including template-based tailoring [29], framework-based tailoring [15], con-
structive tailoring [126] and automated tailoring [65]. Empirical studies show that process

1OMG website: http://www.omg.org/spec/SPEM/2.0/

1



tailoring is difficult because it involves intensive knowledge generation and application [27].

Model-driven Engineering (MDE) [83] is a software development paradigm that can help
address this difficulty. MDE promotes the use of models, as the main and first class elements
to face the difficulties of third generation programming languages for dealing with platform
complexity and for efficiently expressing domain-specific concepts. The MDE paradigm advo-
cates the use of models as the most important artifacts in the software development process,
while artifacts such as documentation and source code can quickly be produced from those
models by using automated transformations [45].

A model transformation takes one or more source models as input and produces one or
more target models as output, following a set of transformation rules [139]. In this way, MDE
can be applied to tailor process models. MDE-based software process tailoring proposed
in [66] requires a definition of the project context and the general software process along
with its variability, i.e., the process elements that might be included or not during process
tailoring. These models are used as input of a transformation whose output is the adapted
software process model. Although this proposal reaches the expected technical results, there
are still usability factors that make it difficult to deploy it in software industry [78]. First,
current transformation languages and tools are not simple for defining and applying tailoring
transformations. Second, the potential users -process engineers and project managers- do
not usually have the required knowledge about MDE.

As a means to address these challenges, this thesis proposes the automatic generation and
execution of tailoring transformations through the interactive definition of transformation
rules, thus improving the usability and hiding the complexity of MDE components. The
transformation rules are defined using a high-level language and they are formally specified
as a model that we call a variation decision model. A higher-order transformation takes
this variation decision model as input and generates a transformation in an automatic way.
This resulting transformation can then be used for software process tailoring. In order to
improve the usability of the proposed solution, we developed an integrated tool as front-end
for defining transformation rules and generating tailoring transformations without interacting
with MDE components. The back-end of this integrated tool is implemented as a megamodel
that can support process modeling, tailoring and evolution.

The following sections describe the motivation and the problem addressed. We then
present the general research question, hypotheses, goals, research method and the outline of
this thesis document.

1.1 Motivation

A software process is a structured set of activities required to develop a software system [95].
There are several kinds of software processes from traditional software development pro-
cesses, such as the Waterfall [131], to more modern ones such as Rational Unified Process
(RUP) [88], Scrum [136] or Extreme programming (XP) [9]. Having a defined process al-
lows companies to analyze a project’s results in terms of quality and productivity as a basis

2



for improvement. Moreover, if the process is rigorously defined, the company can get an
ISO 12207 certification [150] or a CMMI evaluation [154] that may give them a commercial
advantage.

Software companies get involved in different kinds of projects; e.g., large software de-
veloped from scratch, developments with an experienced or a novice team, bug fixing, and
software projects using well–known or highly innovative technologies. Therefore, the same
process is not usually appropriate for addressing all kinds of projects, or it is not equally
productive and effective in all cases. If the defined software process is not easily under-
stood and applied, investing time and money on its definition is not productive for software
companies. Therefore, an obvious conclusion is that it is necessary to count on a series of
processes, each one for each kind of project, i.e., a process family. Evolving several processes
independently implies significant effort, as well as a risk of introducing inconsistencies among
these processes.

In this scenario, Software Process Lines (SPrL) appear as a potential approach to deal
with this challenge. A SPrL is a software product line where the products are software
processes [111]. In this way, a SPrL defines its reusable process assets and a mechanism for
obtaining particular processes within the SPrL scope; this mechanism corresponds to process
tailoring. MDE techniques can contribute to developing SPrL.

An MDE-based SPrL was presented by Hurtado et al. [65, 66], in which two source mod-
els were considered as input for a process tailoring transformation. The transformation for
tailoring the process model was called tailoring transformation and it was implemented using
the Atlas Transformation Language (ATL) [76]. The tailoring transformation generates an
adapted software process model that includes only the activities that are required for ad-
dressing projects in a particular context and nothing else. The input models used by such a
transformation are: (1) the software process model of a certain company based on SPEM [55],
and (2) the context model for a project where the process needs to be applied. Figure 1.1
shows the structure of the proposal.

This MDE-based tailoring approach obtains the adapted software process model, but
it requires defining the software process model that conforms to the SPEM metamodel,
identifying the process potential variability, the project context model and its corresponding
metamodel, as well as programming the tailoring transformation itself.

MDE solutions are powerful and suitable for different application domains, but they are
almost always complex. There are social and organizational factors that threaten their in-
dustrial adoption [67] (e.g., technological factors, and resistance to change). Probably, if
we could lower complexity, then adoption of this solution would be higher. In this sense, if
software companies want to reuse their defined processes through model-based tailoring by
defining and applying the transformation rules, they should not require direct interaction
with the source code of any model transformation. This is particularly important for small
software companies, which usually are fragile in terms of human, technological and economic
resources [68, 157].

Moreover, writing tailoring transformations requires not only knowledge about transfor-
mation programming languages, but also about the particular process model and the way

3



Figure 1.1: MDE-based strategy for tailoring software process [65].

its variability should be resolved according to the project context characteristics. These
two kinds on knowledge –programming a model transformation and configuring a software
process– are almost never mastered by the same person in the company, and it is even less
frequent in small and medium-sized software companies, where the average expertise of the
staff is not high [125]. Even if someone possessed both kinds of knowledge, manually writing
and maintaining complex model transformations would still be a time-consuming and error-
prone activity. Moreover, the whole effort invested in this endeavor cannot be reused across
different companies.

1.2 Problem Statement

MDE-based approaches in general allow software modeling at different abstraction levels
and addressing different application domains [86]. However, they require mastering complex
concepts and formalisms relating model definition and writing model transformations in
specific languages. Particularly, generating appropriate tailoring transformations requires
two different kinds of knowledge: (1) how the process should be tailored and (2) how to build
models and transformations.

On the one hand, process engineers -at least in Chile- are in charge of tailoring the or-
ganizational software process and should know precisely how the context attribute values
impact the process variation, but they are almost never experienced in the use of transfor-
mation languages and MDE concepts. On the other hand, project managers know about
the characteristics of the project to address and so they can define the project context for
software process tailoring, but they do not know how to execute the tailoring transformation.
MDE knowledge can be obtained through training in both cases, but highly skilled people

4



are still required, and these people are not generally in charge of the software process in
small and medium-sized software companies. In this scenario, generating transformations
automatically seems an appealing solution.

There are some proposals for partially generating model transformations, but they are
not easily applicable in the software industry, because there are still several factors that
jeopardize their usage in software companies, such as:

• Model transformation development is expert-dependent in MDE. Moreover, it is not
enough to hire a specialized professional to define these model elements, since all of
them evolve: variable process elements, context attributes and potential values.
• The process tailoring knowledge encapsulated within the transformation rules is gener-

ally only managed by the company’s process engineer, but he/she is usually unfamiliar
with the syntax and semantics of transformation languages.
• The current transformation languages and tools are not simple for defining and applying

tailoring transformations, even for trained engineers.

1.3 Research Question and Hypotheses

1.3.1 General research question

Considering the problem stated in Sec. 1.2, this thesis addresses the following general research
question: Can software process tailoring be successfully conducted in an expert-independent
way?. This question intends to explore if software process tailoring can be conducted in an
easy and successful way by process engineers and project managers that do not necessar-
ily have knowledge in MDE. The usability of software process tailoring should consider the
potential capabilities of these real users. In order to improve the adoption of MDE-based tai-
loring approaches, the software process tailoring solution should be thus expert-independent
and automatic.

1.3.2 Hypotheses

By considering the stated problem and research question, the hypotheses of this thesis work
are the following:

• H1: The complexity of using the MDE-based tailoring approach can be hidden through
the use of a high-level language that allows defining tailoring rules using just processes
concepts and project characteristics.
• H2: The MDE-based tailoring approach allows automatic generation and execution of

the tailoring transformations that software companies may require.
• H3: The whole MDE-based tailoring approach can be implemented as a usable organization-

independent tool.

5



1.4 Research Goals

The main goal of this thesis is to define a generic and usable tool for generating and executing
process tailoring transformations. This work intends to improve the usability of the current
solutions for transformation generation through a graphical environment that includes only
domain concepts. It also achieves the required expressiveness for the generated tailoring
rules.

Based on the main goal, the specific goals of this thesis are the following:

• G1: Define a high-level language for specifying tailoring rules.
• G2: Specify and develop a usable graphical environment for defining and executing

tailoring rules.
• G3: Generate tailoring transformations in an automatic way by using tailoring rules

as input.

1.5 Research Methodology

The research method used in this thesis is based on controlled experiments and case studies.
Typically, controlled experiments involve a set of experiments for formulating hypothesis by
looking for changes brought on by alterations to a particular variable [147]. Thus, controlled
experiments allow us to focus on observing specific variables and relationships between them.

On the other hand, a case study is an empirical inquiry that investigates a contemporary
phenomenon within its real-life context [173]. According to Runeson and Höst [133], a case
study is an appropriate method for this type of research, because in other cases it would be
difficult to control all of the experimentation variables and understand the software process
tailoring and process analysis phenomena in industrial settings. Case studies use a variety
of evidence from different sources [127], such as documents, artifacts, interviews and obser-
vation, surpassing the range of sources of evidence that might be available in a historical
study.

The research methodology used in this thesis has four phases: (1) experimentation, (2)
exploration, (3) formulation and (4) validation. Figure 1.2 shows methodology phases and
their associated research methods.

A controlled experiment is defined for evaluating the feasibility of transformation rules
definition and tailoring transformation generation. The controlled experiments consider a
real Software Process that is used for generating another Experimental Software Process.
The transformation rules definition and tailoring transformation generation are applied us-
ing a Proof-of-Concept that is a basic interface (see Fig. 1.3). In this case, the controlled
experiments have three objectives: (1) characterize the transformation rules, (2) develop a
basic interface for defining transformation rules in an interactive way, and (3) using gener-
ative programming for obtaining the tailoring transformations [31]. Finally, the controlled

6



Figure 1.2: Phases of the research methodology.

Figure 1.3: Detailed structure of the research methodology.

experiment is evaluated using inspection of the transformation rules and testing the generated
transformation.

An exploratory case study is applied for evaluating correctness and productivity of the
proposed solution in two small and medium-sized Chilean software companies: Mobius2 and
Rhiscom3 respectively. The exploratory case study is used for evaluating syntactic correct-

2Mobius website: http://www.mobius.cl
3Rhiscom website: http://www.rhiscom.com

7



ness (well-formed output model) and productivity (identification of missing and extra tasks)
of two preliminary tool components: (1) transformation rules definition and (2) tailoring
transformation generation. This case study considers the definition of a Software Process
with variability, and Context Definition for generating a Organizational Context. The pro-
posed solution includes a Preliminary Tool that automatically generates transformations (see
Fig. 1.3).

An explanatory case study is applied for evaluating the integrated tool (in terms of
usability and expressiveness of the proposed solution) in one medium-sized Chilean software
company: Ki teknology4. The evaluation of expressiveness of the high-level language con-
sists in verifying that it counts on all the required constructs for expressing the software
process engineer’s intentions for tailoring software process. The evaluation of usability of
the integrated tool consists in applying structured questionnaires to process engineers about
their perception and potential adoption of the tool for three components: (1) transformation
rules definition, (2) tailoring transformation generation and (3) software process tailoring
execution.

The evaluation of the proposed solution was conducted in various small and medium-
sized Chilean software companies that were part of the Adaptable Domain and Process
Technology Engineering (ADAPTE) research project5; and the Experimental Management
of Software Improvement (GEMS) project6. In the ADAPTE project, the organizational
software processes of various companies were formalized using the Eclipse Process Framework
(EPF) 7. In the GEMS project, the use in practice of these software processes were analyzed
in terms of software process components (tasks and work products), and the software process
variability was also specified in the EPF. The software process variability considers: optional
elements, and alternative elements. At tailoring time, the optional elements may be removed
from organizational software process and the alternative elements are chosen from a given
set.

1.6 Contributions

The main contributions of this thesis are depicted in Fig. 1.4 and can be grouped in two
areas:

• Scientific Contributions:
– A domain-specific language (DSL) that supports the definition of tailoring rules.

The DSL allows the software process engineer to define tailoring rules in a simple
way. We call this DSL Variation Decision Model (VDM). The Variation Decision
Metamodel was thus specified for defining the abstract syntax of the language,
describing the elements provided by the language and how they may be combined
to instantiate models. Transformation rules are specified in a model that conforms

4Ki Teknology website: http://www.kiteknology.com
5ADAPTE website: http://www.adapte.cl
6GEMS website: http://www.dcc.uchile.cl/gems
7EPF website: http://www.eclipse.org/epf

8



Figure 1.4: Contributions of this Thesis.

to this metamodel.
The DSL reduces the complexity of defining tailoring rules by just using domain
concepts: process and context elements.

– A higher-order transformation (HOT) that takes the variation decision model that
specifies the tailoring rules and automatically generates the tailoring transforma-
tion. This is achieved in two steps: (1) an M2M transformation takes the VDM
as input and generates the tailoring transformation model, and (2) a M2T trans-
formation takes the tailoring transformation model as input and generates the
tailoring transformation code, that is finally what needs to be executed. This
mechanism allows users to generate tailoring transformations in an automatic way
without interacting directly with models and transformations.

It is worth noting that both, the DSL and the HOT are organization independent, and
therefore they can be reused across different organizations.

• Industrial Contributions:
– A graphical environment for specifying tailoring rules. This environment allows

software process engineers to define tailoring rules for each variation point of the
software process according to the values in the organization context model.

– A usable integrated tool for adapting software processes according to project con-
texts. The integrated tool allows for the generation and execution of tailoring
transformations in an automatic way hiding the complexity of managing models

9



and writing model transformations.
This tool-set is also organization independent.

1.7 List of Publications

During the development of this thesis, the author published in the following papers:

International Conferences and Workshops

• Luis Silvestre, María Cecilia Bastarrica, Sergio F. Ochoa. “Reducing Complexity of
Process Tailoring Transformations Generation", Model-Driven Engineering and Soft-
ware Development, Second International Conference, MODELSWARD 2014, Lisbon,
Portugal, January 7-9, 2014, Revised Selected Papers, Springer International Publish-
ing, vol. 506, pp. 171–182, December, 2015.
• Luis Silvestre. “Automatic Generation of Transformations for Software Process Tai-

loring", ACM Student Research Competition at 18th International Conference on
Model Driven Engineering Languages and Systems, MoDELS’2015, CEUR-WS, vol.
1503, pp. 46–51, Ottawa, Canada, September 30, 2015.
• Jocelyn Simmonds, Daniel Perovich, María Cecilia Bastarrica, Luis Silvestre. “A

megamodel for Software Process Line modeling and evolution", 18th International Con-
ference on Model Driven Engineering Languages and Systems, MoDELS’2015, IEEE,
pp. 406–415, Ottawa, Canada, September 30, 2015.
• Luis Silvestre, María Cecilia Bastarrica, Sergio F. Ochoa. “A Usable MDE-based Tool

for Software Process Tailoring ", Posters and Demos at 18th International Conference
on Model Driven Engineering Languages and Systems, MoDELS’2015, CEUR-WS, vol.
1554, pp. 36–39, Ottawa, Canada, September 27, 2015.
• Felipe González, Luis Silvestre and María Cecilia Bastarrica. “Template-Based vs.

Automatic Process Tailoring”, In proceedings of the XXXIII International Conference
of the SCCC, pp. 124-127, Talca, Chile, November 2014.
• Luis Silvestre. “A Domain Specific Transformation Language to Support the In-

teractive Definition of Model Transformation Rules", Doctoral Symposium at 17th
International Conference on Model Driven Engineering Languages and Systems, MoD-
ELS’2014, CEUR-WS, vol. 1321, Valencia, Spain, September 30, 2014.
• María Cecilia Bastarrica, Gerardo Maturro, Romain Robbes, Luis Silvestre, René

Vidal. “How does Quality of Formalized Software Processes Affect Adoption?”, 26th
International Conference on Advanced Information Systems Engineering, CAiSE’2014,
LNCS 8484, pp. 226–240. Springer International Publishing Switzerland, Thessaloniki,
Greece, 16-20, June 2014.
• María Cecilia Bastarrica, Jocelyn Simmonds, Luis Silvestre. “Using Megamodeling to

Improve Industrial Adoption of Complex MDE Solutions”, 6th Workshop on Modeling
in Software Engineering, MiSE’2014, Hyderabad, India, pp. 31-36, May 31th - June
7th, 2014.
• Luis Silvestre, María Cecilia Bastarrica and Sergio F. Ochoa. “A Model-Based Tool

for Generating Software Process Model Tailoring Transformations”. 2nd International

10



Conference on Model-Driven Engineering and Software Development, MODELSWARD
2014. Lisbon, Portugal, pp. 533-540, January, 2014.
• Luis Silvestre, María Cecilia Bastarrica and Sergio F. Ochoa. “Implementing HOTs

that Generate Transformations with Two Input Models”, In proceedings of the XXXII
International Conference of the SCCC, pp. 26–29, Temuco, Chile, November, 2013.
• Jocelyn Simmonds, María Cecilia Bastarrica, Luis Silvestre, Alcides Quispe. “Vari-

ability in Software Process Models: Requirements for Adoption in Industrial Settings”,
4th Workshop on Product LinE Approaches in Software Engineering (PLEASE 2013)
in 35rd International Conference on Software Engineering (ICSE 2013), pp. 33–36, San
Francisco, USA, May, 2013.
• Daniel Ortega, Luis Silvestre, María Cecilia Bastarrica, Sergio Ochoa. “A Tool for

Modeling Software Development Contexts”, In Proceedings of the XXXI International
Conference of the SCCC, pp. 29–35, Valparaíso, Chile, November, 2012.
• Aldo Bertero, Luis Silvestre, María Cecilia Bastarrica. “Text-to-Model and Model-

to-Text Transformations between Software Processes and Software Process Models”, In
Proceedings of the XXXI International Conference of the SCCC, pp. 36–40, Valparaíso,
Chile, November, 2012.

Technical Reports

• TR/DCC-2015-1 Jocelyn Simmonds, Daniel Perovich, Cecilia Bastarrica and Luis Sil-
vestre. "Software Process Line Modeling and Evolution", May 6, 2015.
• TR/DCC-2014-1 María Cecilia Bastarrica, Jocelyn Simmonds, Luis Silvestre. "A

Megamodel for Process Tailoring and Evolution", January 20, 2014.
• TR/DCC-2013-7 Luis Silvestre, María Cecilia Bastarrica and Sergio F. Ochoa. "A

Model-Based Tool for Generating Software Process Model Tailoring Transformations",
September 04, 2013.
• TR/DCC-2012-3 Jocelyn Simmonds, María Cecilia Bastarrica, Luis Silvestre and

Alcides Quispe. "Modeling Variability in Software Process Models", March 5, 2012.
• TR/DCC-2011-12 Jocelyn Simmonds, María Cecilia Bastarrica, Luis Silvestre and

Alcides Quispe. "Analyzing Methodologies and Tools for Specifying Variability in Soft-
ware Processes", November 4, 2011.

1.8 Outline of the Thesis

The thesis is structured as follows:

Chapter 2 provides the background about basic concepts used in this thesis.

Chapter 3 describes the previous research about MDE-based tailoring approach. This
chapter also identifies initial problems to be addressed and presents the previous work about
tools for defining contexts and generating software process models.

Chapter 4 presents the domain-specific language for formally defining tailoring rules. To

11



this end both, the abstract and the concrete syntax are presented.

Chapter 5 presents the tailoring transformation generation using a higher-order trans-
formation. The higher-order transformation takes the tailoring rules definition and automat-
ically generates the tailoring transformation.

Chapter 6 presents the integrated tool for automatically generating tailoring transfor-
mations and executing software process tailoring. The user interface and all components are
described as well as a running example that illustrates its usage.

Chapter 7 presents an exploratory case study for evaluating correctness and productivity
of the integrated tool in one small and one medium-sized Chilean software companies.

Chapter 8 presents an explanatory case study that analyzes and discusses the expres-
siveness and usability of the integrated tool when applied in other medium-sized Chilean
software company.

Finally, Chapter 9 presents conclusions, contributions and discusses limitations of the
proposed solution.

12



Chapter 2

Basic Concepts

This chapter introduces basic concepts and definitions in the field of software processes and
model-driven engineering. Section 2.1 explains basic concepts about software process, soft-
ware process modeling and software process lines. Section 2.2 addresses model-driven engi-
neering, models, metamodels, metametamodels and model transformations.

2.1 Software Process

In software engineering, various definitions of software processes can be found. Although
differences of opinion still exist, there appears to be some agreement that a software process
refers to a set of organizational activities (sometimes as a workflow) for managing develop-
ment projects in a systematic way, as stated by Humphrey [60] and Somerville [148]. In
addition, Feiler and Humphrey [40] consider a software process as a set or sequence of steps
followed to reach a defined goal, whereas Fuggetta et al. [46] claim that a software process
is a set of patterns or activities compiled to find a solution to a series of software develop-
ment problems. ISO/IEC 12207 [150] defines the software development process as a set of
interrelated or interacting activities, which transforms inputs into outputs, where the stan-
dard embodies the process as an outcome-based instrument that should be beneficial to the
stakeholders. Finally, Humphrey [61] says that a software process is a set of tools, methods,
and practices for producing software products. Taking into consideration all of these features
presented by different authors, we consider the following definition.

Definition 2.1 A software process is a set of tools, methods, practices, patterns, and activ-
ities organized that transform inputs into outputs so that a goal may be reached in order to
serve the interest of its stakeholders.

The goal of a software process is to provide a roadmap for the production of high quality
software products that meet the needs of their stakeholders within a balanced schedule and
budget [174].

13



If a company aims to certify or evaluate its software process, it should be strictly defined
with some model and standard such as CMMI [154] or ISO/IEC 12207 [150]. Formally
defining the software process allows software organizations to use supporting tools for formal
process analysis and management, also facilitating evolution of software processes. Software
processes can evolve in different ways, such as adding or removing activities, changing a work
product template, or assigning a new role to a particular task, among others.

2.1.1 Software process modeling

A software process can be expressed in an abstract representation as a model. A software
process model is a description of a software process from some particular perspective and it is
used to analyze, understand and improve the specific process [2]. According to Selby [137], a
software process model is used to refer to the development activities and the ways to control
the software product by understanding the steps taken throughout a process. Finkelstein et
al. [42] define a software process model as the description of a process expressed in a suitable
process modeling language. Considering these definitions we will consider an extension of
that proposed by Lonchamp [95].

Definition 2.2 A software process model is an abstract description of a software process
from a particular point of view, using a suitable process modeling language for representing,
tailoring, enacting, simulating or executing a software process.

Process engineers are usually responsible for developing flexible and customizable soft-
ware processes. To support authoring and customization of software processes, the Object
Management Group (OMG)1 proposes the Software and Systems Process Engineering Meta-
model (SPEM 2.0) specification [55]. It is an industry open standard for modeling software
processes.

In SPEM, a software process is a collection of activities where an activity is a "big-step"
that groups roles, work products and task uses. Roles perform activity tasks, and work
products usually represent the input/output artifacts for tasks. Software process elements
(like tasks, roles and work products) are defined and stored in a method library. These
definitions can later be reused in multiple software process definitions.

SPEM provides a standardized and managed representation of method libraries in order
to allow reuse of methods content. It aims to support development practitioners in defining
a knowledge base for software development. It allows them to manage and deploy method
library content using a standardized format. SPEM also provides a standardized representa-
tion of process structure for defining an independent life cycle, allowing method content to
be placed into a specific process life cycle. Such processes can be represented as workflows
and/or breakdown structures.

Enterprise Architect (EA)2, IBM Rational Method Composer (RMC)3 and Eclipse Process
1OMG website: http://www.omg.org/spec/SPEM/2.0/
2EA website: http://www.sparxsystems.com.au/products/ea/
3RMC website: http://www-03.ibm.com/software/products/en/rmc

14



Figure 2.1: Example of software process breakdown using EPF.

Framework (EPF)4 are three popular integrated development environments (IDE) used to
specify software processes in SPEM. Figure 2.1 shows a software process breakdown that
describes all SPEM’s software process elements (e.g., phases, capability patterns, activities,
tasks, roles, and work products) along with its relationships using EPF.

In EPF, the process elements are defined in the Method Content and can be categorized as
roles, tasks, work products and guidance. The process elements are the building blocks from
which software processes are composed as breakdown structure. The process elements used
in the breakdown structure can have a description about its complementary information as:
name, presentation name and its software process characteristics. Therefore, the breakdown
structure in EPF supports bridging the gap between process elements definition and process
enactment in projects (see Fig. 2.1).

The EPF allows visualizing software process behavior using activity diagrams, even though
this is not part of SPEM. Figure 2.2 shows an activity diagram for the Architecture validation
capability pattern that is part of the software process breakdown shown in Fig 2.1. More-
over, EPF allows visualizing other diagrams that are associated with the activity diagram.
Figure 2.3 shows a diagram based on the Developer role that is in charge of the set of tasks,
which takes work products as input and/or output.

A well-defined software process model is a determinant factor for achieving quality prod-
ucts and productive projects [60]. However, defining a software process model demands an
enormous effort for making explicit common practices and defining desired practices that
may not yet exist within the company.

4EPF website: https://eclipse.org/epf/

15



Figure 2.2: Example of activity diagram of the Architecture validation activity using EPF.

2.1.2 Software process lines

Software companies define software processes for planning and guiding projects. However,
software process definition is expensive, and in practice, no one process fits all projects.
Consequently, the formalized process should be adapted to each project context before it can
be used. As mentioned before, an alternative to address this challenge is to use Software
Process Lines (SPrL).

SPrL are software product lines (SPL) where the products are software development pro-
cesses [111]. The SPrL approach, similar to SPL, proposes the formalization of this set of
software processes as a base software process, which represents its common parts, along with
its potential variability. Consequently, a SPrL is an appropriate way to define, tailor and
evolve a set of related processes. This opinion is supported by the work on process vari-
ability representation [145], process families [128], SPrL architectures [167], process domain
analysis [106], and SPrL scoping [3].

Table 2.1 shows the stages of a SPL according to [115] and the correspondence with each

16



Figure 2.3: Partial view of tasks and work products related to the developer role, as part of
the activity diagram shown in Fig. 2.2 using EPF.

Table 2.1: Software process lines as product lines.

Domain Modeling Architecture Process Line Process Line
Modeling Implementation Testing

• Organizational Pro-
cess (including variabil-
ity)

• Organizational Pro-
cess Formalization

• Method Library Defi-
nition

• Organizational Pro-
cess in Use Testing

• Organizational Con-
text Definition

• Organizational Con-
text Modeling

• Organizational Pro-
cess in Use

Product Product Architec- Product Product
Requirements ture Definition Instantiation Testing
• Product Context
Modeling

• Process Tailoring or
Process Selection

• Process Configuration • Process Configuration
Testing

phase of SPrL. The process of instantiating a SPrL to a particular project context is called
process tailoring [8]. As a typical SPrL instantiation, software process tailoring is the activity
in which a software process variation points are resolved, so that it is adapted to deal with
the particular characteristics of a project.

SPrL has been used in software companies for generating software processes adapted to
specific project contexts [63]. In this way they achieve higher productivity as no extra work
is required, while also achieving higher product quality, as no required work is left out. All
of this accomplished by reusing process assets. Therefore, SPrL promotes software process
asset reuse, since common elements are defined only once, and specific processes are generated
through software process tailoring.

Software process tailoring requires knowledge about the organizational process of the com-
pany, as well as potential project contexts. This activity must be carried out in a structured
manner [30] in order to ensure that the resulting process meets the needs of the project.
There are different approaches to process tailoring, such as counting on a set of predefined
processes, building a software process by configuring a series of process elements, or generat-

17



ing particular processes by customizing a general predefined process that includes or not its
potential variability. All these approaches may be supported by tools if the software process
is formalized, but each one has its own challenges.

2.2 Model-driven Engineering

Software systems are reaching such a high degree of complexity that even current third-
generation programming languages like Java or C#, are sometimes unable to efficiently sup-
port their creation [135]. One of the problems with these languages is that they are still too
oriented toward specifying how the solution should work, instead of what the solution should
be. This leads to a need for mechanisms and techniques that allow the developer to abstract
over the programming language itself and focus on creating a solution for a certain problem.

The Model-driven engineering paradigm promotes the use of models to raise the level of
abstraction and automation (of the model manipulation operations) in the software develop-
ment [135]. Abstraction is a primary technique to deal with complexity, whereas automation
is an effective method for promoting productivity and quality. The objective is to increase
productivity and reduce time-to-market, by enabling the development of complex systems by
means of abstract models defined with concepts that are much less bound to the underlying
implementation technology and much closer to the problem domain [11].

The MDE paradigm promotes the use of models as the main and first class elements to
face the difficulties of third generation programming languages for dealing with platform com-
plexity and for efficiently expressing domain-specific concepts [83]. This paradigm includes
the following concepts [135]:

Transformation Engines and Generators analyze certain aspects of the models and are
able to create various kinds of artifacts, such as source code, input for simulation, use
description, or alternative representations of the models.

Domain-Specific Modeling Languages (DSML) focus on modeling and are used for
formalizing the application structure, behavior and requirements within particular do-
mains.

MDE has been applied in different areas such as the development of applications [5],
automatic change evolution [52] and also in software process engineering [22].

2.2.1 Technical spaces

A technical space (TS) is defined as a working context with a set of associated concepts, body
of knowledge, tools, required skills, and capabilities [91]. The artifacts of which a software
system is composed conform to the TS used to develop them. For example, the source
code of a program conforms to the grammar TS, called grammarware [87], whereas XML
documents conform to the XML TS, that we can call xmlware. Similarly, models conform

18



Figure 2.4: Technical spaces (adapted from Kurtev [91]).

to the MDE TS, called modelware [171]. A TS is defined based on a number of artifacts
in different abstraction levels, which are related to each other by means of a conformance
relationship (e.g., program/grammar in grammarware, xml document/schema in xmlware
and model/metamodel in modelware).

A technical space is a model management framework with a set of tools that operate on
the models definable within the framework [92]. However, TSs are not isolated and bridges
can in fact be defined between two different TSs. Bridging TSs allows the artifacts created
in one TS to be transferred to another different TS in order to use the best capabilities of
each technology, promoting interoperability between applications. When bridging the MDE
TS with other TSs, two operations should be supported: (1) the extraction of models from
software system artifacts defined in the TS considered and (2) the generation of these artifacts
from models. For instance, a bidirectional grammarware-modelware bridge should provide
both a model extractor from source code and a source code generator from models.

For example, Fig. 2.4 shows a bridge between the modelware, the grammarware and
xmlware technical spaces. Model and Program are two representations of the same system
in those technical spaces. Bridging those two worlds enables the generation of a program
from a model and vice versa. This in turn enables the reuse of existing artifacts. Moreover,
artifacts can be built within the technical space where their construction and operation is
more cost-effective. This implies the availability of appropriate artifacts (called extractors)
that are able to extract knowledge from a TS and of others called injectors that are able to
inject the knowledge into another TS.

2.2.2 Models and metamodels

As models play an important role in MDE, a step to the definition of models is to represent
the models themselves as instances of some more abstract models. A model is a representation

19



Figure 2.5: Three-level architecture in MDE (adapted from Bezivin [11]).

containing the essential structure of some object or event in the real world [135]. A model can
be viewed as a reduced specification of a system that represents entities composing software
artifacts/concepts in the real world [11]. The main assumption of MDE is that a model, and
not the programming source code, is the right representation level for managing all artifacts
within a software engineering process. Figure 2.5 shows a three-level architecture in MDE
for creating models of any domain:

• Level 3: The metametamodeling level forms the foundation of the metamodeling
hierarchy. The primary responsibility of this level is to define the language for specifying
a metamodel.
• Level 2: The metamodeling level is an instance of a metametamodel, meaning that

every element of the metamodel is an instance of the metametamodel. The primary
responsibility of the metamodel level is to define a language for specifying models.
• Level 1: The modeling is an instance of a metamodel and it is a simplified represen-

tation of a certain reality, according to the rules of a certain language.

Models, metamodels and metametamodels are related in terms of a conformance relation.
Such relation is equivalent to the relation the code written in a programming language must
conform to the grammar rules of that language. Moreover, this three-level architecture may
be implemented according to different modeling standards. For instance, the OMG proposes
a standard metametamodel called Meta Object Facility (MOF) [56], and it is used as the
metametamodel for defining the Unified Modeling Language (UML) [56] metamodel. The
UML metamodel allows users to specify their own UML models.

Considering the three-level architecture in MDE and their relations, we can define the
following concepts [11, 18, 138]:

Definition 2.3 Conforms-to is a relation where a model M conforms to a metamodel MM
if it is created using the modeling language which is based on MM.

Definition 2.4 Modeling language is any graphical or textual computer language that provi-
sions the design and construction of structures and models following a systematic set of rules
and frameworks.

20



2.2.3 Model transformations

A benefit of the three-level architecture in MDE is that models can be transformed into other
models. In other words, a model conforming to one metamodel can also be transformed
into a model conforming to another metamodel. An important feature of MDE enabled by
model formalization is the automatic model manipulation. This manipulation is called model
transformation, in which a target model is the automatic generated from a source model,
according to a transformation definition [86]. A model transformation takes one or more
models as input, and generates one or more models as output according to mappings defined
over the concepts of the input and output metamodels [139]. The input and output models
do not necessarily conform to the same metamodel.

According to Czarnecki and Helsen [33], the main features of model transformations are:
transformation rules, rule application scoping, source-target relationship, rule application
strategy and rule scheduling. Next we explain each of them.

• Transformation Rules. A transformation rule is composed of a left-hand side (LHS)
and a right-hand side (RHS). The left-hand side accesses the source model while the
right-hand side considers the target model. The goal of these transformation rules is
to describe a transformation process; in other words, it determines how a source model
is transformed into a target model.
• Rule Application Scoping. Rule application scoping allows a transformation to

restrict the parts of a model that participate in the transformation. The target scope
of that transformation can be defined, which is the scope of the target model.
• Source-Target Relationship. The purpose of model transformations is to transform

a source model into a target model. The target model can be a newly created model,
based on information presented by the source model and the transformation rules, or
it can be an updated version of the source model by updating, removing or adding
elements to the source model.
• Rule Application Strategy. A rule application strategy is needed in order to de-

termine where to apply a rule in a given source scope when more than one match
is possible. The rule application strategy can be deterministic, non-deterministic or
interactive.
• Rule Scheduling. This approach determines the order in which individual rules are

applied. Rule scheduling can vary in the following main areas: form, rule selection,
rule interaction and phasing.

At the top level, model transformations can be distinguished between model-to-text (M2T)
and model-to-model (M2M) [33]. The distinction is that, while a model-to-model transfor-
mation creates its target as a model that conforms to the target metamodel, the target of a
model-to-text transformation is essentially a string.

• M2M transformations provide the necessary support for translating models into
other models, essentially by mapping source model elements into corresponding target
model elements. In M2M transformation, both the source and target elements of the
transformation are inside the MDE TS.

21



• M2T transformations are typically used to extract code from a model by defining
code generations that produce text from models, such as documentation or textual
representations of a model’s content. It is the opposite of text-to-model (T2M) trans-
formations that extract a model analyzing the source code.

M2T (called extractors) and T2M (called injectors) must deal with the different kinds of
artifacts, that is, they must deal with the TS in which the artifact involved in the trans-
formation are implemented. In the case of M2T transformations [32, 98], the vast majority
of existing solutions allow these transformations to be defined through the use of templates,
where the text to be generated conforms to a layout which is filled in by model information.
For instance, we can extract and generate Java code from a UML model using a M2T trans-
formation. On the other hand, solutions aimed at performing T2M transformations [32, 98]
are normally ad-hoc tools that deal with a specific type of text artifacts. For instance, we
need a parser to extract information from Java code and generate a UML model. The main
difference between M2T and T2M is that template based M2T transformations can generate
any text-based artifact (i.e., source code, XML, etc.) regardless of the formalism to which
such an artifact conforms. However, the T2M transformations must know such formalism to
be able to produce correct artifacts (correctness from the point of view of the conformance
relationship).

In general, model transformations involve models in the sense of abstractions above pro-
gram code. Since the concept of models is more general than the concept of program code,
model transformations tend to operate on a more diverse set of artifacts than program trans-
formations. In this scenario, model transformations can be classified according to the next
categories [32, 98]:

• Horizontal Model Transformation is a transformation, where the source model and
the target model belong to the same abstraction level. An example for this particular
type of transformation is refactoring, because the target model marks a change in
internal structure compared to the source model, but without altering the abstraction
level of the model.
• Vertical Model Transformation is the opposite of horizontal model transformation.

In this case, different levels of abstraction are used in the source and target model. It is
also called refinement, because additional information is added, resulting in decreasing
the abstraction level of the target model. On the other hand, information could be
removed from the source model to create a more abstract target model.
• Endogenous Model Transformation is a transformation that affects models ex-

pressed in the same language. Both source and target models conform to the same
metamodel. Examples for endogenous transformations include optimization or refac-
toring.
• Exogenous Model Transformation is the opposite of endogenous transformation.

Exogenous transformations are expressed between models conforming to different meta-
models. Exogenous transformations can also be called translations, because they focus
on the mapping of a model in different metamodels. An important example for exoge-
nous transformations is code generation, or its opposite, reverse engineering. During
code generation, a model conforming to a specific metamodel is translated to its equiv-
alent expressed in another metamodel.

22



Figure 2.6: Model transformations approach using transformation models (adapted from
Jouault et al. [76]).

A model transformation can be expressed in a model transformation language like ATL [76],
QTV [56], Tefkat [94], Kermeta [38] or RubyTL [134], or in a general purpose language like
Java, C, C#, etc. However, model transformation languages can offer advantages, such as
syntax that makes it easy to refer to model elements. Model transformation languages are
also based on a metamodel, and every written transformation can be regarded as an instance
of a metamodel.

Figure 2.6 shows a model transformation that takes as input a model conforming to a given
source metamodel and produces as output another model conforming to a target metamodel.
In this case, a transformation can be expressed as a model that is called transformation
model. Following this principle, it is possible to write a transformation that transforms a
model into an instance of a transformation language metamodel, meaning that the output of
the transformation is a transformation itself. This is called a higher-order transformation.

2.2.4 Higher-order transformations

Model transformations can either be written manually by a programmer or automatically
generated using Higher-order Transformations (HOT). These are transformations modify-
ing/reading/creating model transformations. A higher-order transformation is a model trans-
formation such that its input and/or output models are themselves transformation mod-
els [156].

The generation of transformations is possible, since a transformation is also a model that
conforms to some transformation metamodel [161, 155]. For instance a transformation writ-
ten in ATL is indeed a model that conforms to the ATL metamodel. This uniformity has
several benefits: it allows the reuse of tools and methods, and it creates a framework that can
be applied recursively (since transformations of transformations can be transformed them-
selves). In this sense, Tisi et al. [155] identified four HOT patterns: transformation synthesis,

23



Figure 2.7: Higher-order transformation architecture for transformation modification [156].

transformation analysis, transformation composition and transformation modification. The
transformation synthesis is the common pattern for HOTs that generate transformations from
different information sources. The transformation analysis is the pattern for HOTs that take
transformations as input, to generate different kinds of data, in the form of output models.
The transformation composition is the pattern for HOTs that take multiple transformations
as input and/or output. The transformation modification is the pattern for HOTs that take
a transformation as input and generate a modified version of the same transformation.

HOT patterns are used for different applications; for instance, Figure 2.7 shows the typical
schema of a HOT for transformation modification. These HOTs must have one transformation
as input and one transformation as output. HOTs can also be classified according to the TS
involved:

• Injector. The textual representation of the transformation rules is translated into a
model representation. The generated model conforms to the transformation metamodel.
• Higher-order transformation. The transformation model is the input of a model trans-

formation that produces another transformation model. In transformation modification
the input, output and HOT transformation models all conform to the same transfor-
mation metamodel.
• Extractor. Finally an extraction is performed to serialize the output transformation

model back into the output transformation model into textual transformation code.

2.2.5 Domain-specific languages and MDE

All engineering areas apply generic techniques together with others with more specific pur-
poses. Applying generic techniques provides general solutions to several problems, even
though these solutions may not be optimal. Specific techniques are usually optimized for
the domain and provide a better solution for a reduced set of problems. This dichotomy
also exists for programming languages and modeling: general-purpose and domain-specific
languages.

24



A Domain-specific Language (DSL) is a language designed to be useful for a specific task
(or set of tasks) in a certain problem-domain, as opposed to a general-purpose language [109].
Fowler, also called them micro or small languages; and he defines a DSL as a computer pro-
gramming language of limited expressiveness focused on a particular domain [44]. These DSLs
are programming or specification languages capable of being executed by a computer, and
whose expressive power is focused and constrained to a problem domain [99]. Van Deursen
et al. [159] provide a comprehensive definition, indicating that a DSL is a programming lan-
guage or executable specification language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually restricted to, a particular problem
domain.

A DSL is defined by means of concrete and abstract syntax definitions, and possibly a
semantics definition, which may be formulated at various degrees of preciseness and formal-
ity [44]. According to Voelter et al. [164], abstract syntax of a language is a data structure
that holds the core information in a program, but without any of the notational details. The
concrete syntax of a language is a textual or graphical representation that consists of a set
of rules (productions) that define the way programs look to the programmer. Finally, the
semantics captures the effect of sentences of the language and describes the meaning of each
element.

A DSL may be classified as external or internal, depending on how it is designed and
implemented. An external DSL is designed to be independent of any particular language.
An internal DSL, on the other hand, is designed and implemented using a host language.
Both kinds of DSLs have pros and cons: an external DSL gives the developer the freedom to
design the syntax of a language in exactly the way he/she likes, and an internal DSL rides
on the syntax of a host language, so the developer does not need to spend any time or effort
worrying about compiling or parsing.

Although there exist DSLs for defining model transformations, these languages contain
complex syntax and constructs that require advanced knowledge in these languages. A
Domain-specific Transformation Language (DSTL) is a small, abstract, expressive and ef-
ficient language specifically designed to be applied in a certain domain and/or kind of trans-
formations, if compared to other general transformations languages that have higher syntactic
and semantic complexity [132]. Irazabal et al. [69] have proposed a DSTL implementation
using MOFScript [108] (Model-to-text transformation language) for the databases domain.
Izquierdo et al. [24] developed Gra2Mol using Java (general purpose language) for generating
text-to-model transformations.

2.2.5.1 The notion of modelware

In MDE, metamodels can be used for defining new modeling languages for exchanging and
storing information. This paradigm is the world where models live, and it is known as
modelware. Modelware is a technical space centered on the concept of models. These mod-
els provide abstract representations of some concern of a software system, such as views,
high-level designs, or implementation-level artifacts such as source code [171]. Each model
conforms to a metamodel, which describes the language of the model. Metamodels are also

25



Figure 2.8: Modelware vs. Grammarware (adapted from Brambilla et al. [18]).

models and conform to their own metametamodel (e.g., ECore, KM3 or MOF). The bene-
fit of describing everything in terms of models is that we can reason about the diversity of
languages in a uniform manner.

Modelware is not different from grammarware (technical space where languages are defined
by grammar) in terms of definition and architecture. Figure 2.8 shows the relationship be-
tween modelware and grammarware technical spaces. In grammarware, a language is defined
in terms of grammars that conforms to Extended Backus–Naur Form (EBNF) metalanguage,
which is a textual representation of the grammar rules of the language, and allows users to
write programs. Analogously, in modelware a language can be defined in terms of metamod-
els that conform to a MOF metametamodel and allow users to define models that conform
to metamodel. The model/metamodel relationship is equivalent to the relation between the
grammar of a given programming language and a language to define grammars.

2.2.5.2 Domain-specific modeling

The Domain-specific Modeling (DSM) is a software engineering methodology for designing
and developing systems, such as computer software. It involves systematic use of a domain-
specific language to represent the various facets of a system [82]. DSM and DSML (domain-
specific modeling language) are similar to the DSL concepts, but applied to the world of
models. Whereas in DSLs the language (its textual representation) is domain specific, in
DSM the models are domain specific.

DSM can raise the level of abstraction beyond coding by specifying programs directly using
domain concepts. The final products can be generated from these high-level specifications.
This automation is possible because the modeling language and generator only need to fit
the requirements of one domain, often in only one company [81].

The DSML is a modeling language dedicated to a particular problem domain and/or a
particular solution technique. DSMLs are closer to the problem domain and concepts than
general purpose modeling languages such as UML. Moreover, DSMLs aimed at modeling and
used for formalizing an application structure, behavior and requirements within a particular

26



domain. DSMLs have become very important within the field of MDE because each model is
written in a specific language, and these models may be transformed into other models [85].
DSML can be developed using two approaches: create a DSML as an instance of a certain
metamodel, or create a DSML by using some modeling language. The language used to
create other modeling languages is called metalanguage.

A metamodel specifies a DSML. The metamodeling language consists of a set of elementary
modeling concepts that represent the basic conceptual building blocks of any given approach
and corresponding support tools. The metamodel defines fundamental concepts that may
include composition, inheritance, various associations, attributes and other concepts. More-
over, the metamodel allows for specifying what concepts to include, how to combine them,
and what editing operations should operate on them.

DSM enables developers to separate previously connected development activities for a
software system. Thus, it allows them to concentrate on a single task at a time, which leads
to better results [82]. In accordance to Czarnecki we identify the following three activities
during development [32]:

• DSMLs are developed, reused or the existing ones are enhanced to express the desired
models of the problem domain.
• Code generators are implemented. These components transform models to an exe-

cutable solution.
• The project specific knowledge or problem description is expressed in the DSMLs, and

the generators are used to map these models into a running solution.

27



Chapter 3

Supporting the Development of Tailoring
Transformations

This chapter presents several tools developed in this thesis work, which help improve the
MDE-based strategy for tailoring software processes proposed by Hurtado [62] that is part
of the motivation of this thesis. These tools not only address some issues of such proposal,
but also are part of the integrated solution for supporting the tailoring software processes
approach presented in Chapter 4.

In order to introduce the Hurtado’s proposal and the tools developed to deal with the
unsolved issues, the next section presents a running example. Section 3.2 shows the MDE-
based strategy for tailoring software processes using models and transformations proposed
by Hurtado [62]. Section 3.3 presents a software context modeling tool, developed as part of
this thesis work, which allows users to define the project context in two stages. Section 3.4
describes two projectors, which allow users to transform software processes into software pro-
cess models, and vice versa. Section 3.5 describes the tailoring transformation and highlights
potential challenges that are the motivation for the rest of this thesis.

3.1 Running Example

In order to illustrate the MDE-based tailoring strategy proposed by Hurtado [62], we will
show how this approach is applied for tailoring software processes. For this purpose, we will
illustrate the approach using part of the organizational software process of Rhiscom. Also,
we use this organizational software process to show some of the tools developed for building
the whole solution.

Rhiscom1 is a software services company based in Santiago, Chile. It is a medium-sized
company that develops integrated software and hardware solutions for the retail business.
Employees perform more than one role in the company, according to traditional software

1Rhiscom website: http://www.rhiscom.com

28



Table 3.1: Decisions for Rhiscom’s variable process elements.

Decision Process
Element

Variability
Type Conditions Conclusion

Decision
1

Requirements Optional

(Project Type=
Maintenance-adaptation)

AND
(Project Duration=Small)

Remove:
Requirements

Decision
2

Design Optional

(Project Type=
Maintenance-correction)

AND
(Project Duration=Small)

Remove:
Design

Decision
3

Specify
Requirements Alternative

(Project Type=Incidents
OR

Project Type=
Maintenance-enhancement)

AND
(Business Knowledge=Know)

Replace:
Specify
Requirements
in plain text

Decision
4

Establish
Requirements
Baseline

Alternative

Project Type=
New development

AND
Project Duration=Medium

AND
Business Knowledge=Unknown

Replace:
Establish
Requirements
Baseline and
Test Cases

engineering disciplines (e.g., developer, analyst, tester, etc.). This company has a software
process that was formalized using Eclipse Process Framework (EPF) 2 tool together with its
variability, as part of the ADAPTE project3.

The software development process is based on RUP and it is quite detailed in its defini-
tion. Figure 3.1a shows the Elaboration phase and Fig. 3.1b shows the Requirements activity.
Note that variability is indicated in the activity diagram as a set of annotations, even though
variability is actually specified using SPEM variability primitives in EPF. For instance, ac-
tivities or tasks with red annotations denote optional elements that determine if they should
be included or not in the adapted software process; and activities or tasks with green anno-
tations denote alternative elements that establish if they should be replaced by another task
or activity. These color annotations are not standard; they were defined by the company for
their own use.

Table 3.1 describes four decisions for variable elements that are part of Rhiscom’s software
process. Each variable element has a set of conditions and a conclusion that decides on the
variable element. For instance,the Requirements activity is optional and can be removed
from the adapted software process for small maintenance projects (Decision 1). On the other
hand, Specify Requirements is an alternative task and can be replaced to Specify Requirements
in plain text in the adapted software process (Decision 3) for incidences or simple projects.

2EPF website: http://www.eclipse.org/epf/
3ADAPTE website: http://www.adapte.cl

29



(a) Rhiscom’s Elaboration Phase (b) Rhiscom’s Requirements Activity

Figure 3.1: Rhiscom’s Software Process in EPF (partial view).

3.2 The Hurtado Proposal

Although MDE techniques have been applied for tailoring software processes [90], particularly
Hurtado et al. [65] proposed an MDE-based tailoring as a production strategy of project-
specific process models in the context of a SPrL, which was the inspiration and the basis
for this thesis. That tailoring proposal uses as input an organizational software process
and the project context formally defined as models as shown in Figure 3.2. Consequently,
the tailoring is implemented by means of a model transformation, whose inputs are the
organizational software process model including variabilities, and the project context model.

30



Figure 3.2: MDE-based Strategy for tailoring software processes (adapted from Hurtado et
al. [65]).

Its output is the project-adapted software process model.

The organizational software process is defined as a Software Process Model conforming
to the SPEM 2.0 [55] and the project context is defined as a Context Model conforming
to Software Process Context Metamodel (SPCM) [65]. The adapted software process model
is a SPEM 2.0 process model with variabilities resolved, i.e., with no variabilities. The
transformation is implemented in ATL. The following subsections describe these components
more in detail.

3.2.1 Organizational software process model

Hurtado et al. [65] defined experimental SPEM (eSPEM) that is a subset of SPEM 2.0 used
for specifying the organizational software process model. eSPEM provides primitives for
specifying software process models and also variability. Figure 3.3 shows part of the eSPEM
metamodel.

A software process model that conforms to eSPEM is modeled as a method plug-in in-
cluding ProcessElements and their linkedmethodContentElements. ThesemethodContentEle-
ments specifically correspond to TaskDefinitions that have WorkProductDefinitions as input
and output, and performed by (or participate with) RoleDefinitions. ProcessElements corre-
spond to RoleUse, TaskUse and WorkProductUse that refer to activity-specific occurrences of

31



Figure 3.3: Part of experimental SPEM (eSPEM) highlighting where variability is speci-
fied [65]).

the respective MethodContentElement. The ProcessElements are organized in a WorkBreak-
downElements.

The variability in the software process model can be either optional and/or alternative.
A ProcessElement is optional when it can be removed from the software process and it is
indicated using the isOptional attribute. A ProcessElement is alternative when it can be mod-
ified or extended by other VariableElements of the same kind according to a VariabilityType
(extends, replaces, contributes, extends-replace). Therefore, each MethodContentElement
(TaskDefinition, RoleDefinition and WorkProductDefinition) can be a VariableElement.

In Hurtado’s proposal, software process models are defined conforming to eSPEM and
they are edited using Exeed (Extended EMF Editor). Modeling and tailoring take place
using the Eclipse Modeling Framework (EMF)4 that allows defining models in a tree-like
format and also executing transformations.

In order to use Hurtado’s proposal, Rhiscom’s software process needs to be defined as a
formal model in eSPEM. In this sense, the process engineer needs to define an equivalent
software process model in EMF environment to apply MDE-based tailoring. Figure 3.4 shows
part of Rhiscom’s software process model that was manually translated from the software
process specified in EPF. The Method Plugin includes Process Package and Method Content
Package. The Process Package has a Process Pattern that includes activities and tasks of
Rhiscom’s software process. Requirements activity is depicted in Fig. 3.4 and it has seven
tasks: Hold First Meeting, Analyze Requirements, Specify Requirements, Verify Requirements,
Validate Requirements, Approve Requirements and Establish Requirements Baseline. Require-
ments is highlighted and in the lower part of the figure we can see the properties available for

4EMF website: http://www.eclipse.org/modeling/emf/downloads/

32



Figure 3.4: Rhiscom’s eSPEM software process model.

defining complementary information; in this case Requirements is marked as optional. The
Method Content Package has all definitions for tasks, roles and work products.

Even though eSPEM provides the formalisms required for MDE-tailoring, formally model-
ing software processes, it can be difficult to understand for process engineers and it is usually
error prone. Moreover, most process engineers could hardly translate the software process
specified in EPF into an eSPEM model.

3.2.2 Context model

The context of a project may vary according to the value of different project variables along
different dimensions such as: size, duration, complexity, development team size and knowl-
edge about the application domain. Hurtado et al. [65] formalize these characteristics as a
context model that can be used to tailor the organizational software process model. This
context model is defined by the Software Process Context Metamodel (SPCM) shown in
Figure 3.5.

SPCM is based on three basic concepts: ContextAttribute, Dimension and ContextConfig-
uration. Every element in SPCM extends a ContextElement. A ContextAttribute represents

33



Figure 3.5: Software Process Context Metamodel (SPCM) [65]).

a relevant characteristic of the project context required for software process tailoring and
can take one of a set of values defined as ContextAttributeValue. A ContextAttributeValue
represents a type for qualifying a ContextAttribute. A Dimension represents a collection of
related ContextAttribute. A Context is specified as a collection of dimensions and represents
the whole context model. To represent possible specific process contexts, ContextCon-
figuration can be defined from the context model. A ContextConfiguration is a collection
of ContextAttributeConfiguration that is set to one of the possible ContextAttributeValue for
each ContextAttribute. Therefore, a ContextAttributeConfiguration is associated with Con-
textAttribute and also with one unique ContextAttributeValue.

In Hurtado’s proposal, context models are defined conforming to SPCM, and they are
edited using EMF. In order to define Rhiscom’s project context, the process engineer needs
to define both, a context model and the project manager needs to configure a project context
in the EMF environment. Figure 3.6 shows Rhiscom’s context model that was manually
built, which includes two sections: Context that includes all context attributes and their
potential values and Context Configuration that configures the context attributes with a
particular value for defining a project context. The Context section has one Management
dimension that includes four context attributes: Project Type, Project Duration, Team Size
and Businesses Knowledge. The first context attribute may be either New Development,
Maintenance-Enhancement, Maintenance-Correction, Maintenance-Adaptation or Incidents,
and the last one may be Known, Affordable or Unknown. The Context Configuration section
includes a list of all context attributes that can be configured with a particular value for
defining a project context. The context attribute Project Type is highlighted and in the
lower part we can configure the ProjectType as Maintenance-Correction as well as the other
context attributes.

However, formally modeling project contexts, which is usually required to perform this
tailoring activity, also represents a challenge for potential users; and particularly for small

34



Figure 3.6: Rhiscom’s context model.

and medium-sized software companies, which usually have low expertise and resources to
deal with formal methods and notations.

In order to address this difficulty, we developed a user friendly tool that allows defining
the context in two sequential activities [110]. The first activity is performed by the process
engineer, and its goal is to define the relevant dimensions, attributes and potential values
of an organizational context model. The second activity is performed by the project man-
ager, and its goal is to configure the previously defined organizational context model as a
particular project context model. These two activities are coordinated so that only those at-
tributes defined as part of the organizational context model can be configured for a project.
The output of this tool is the organizational context model represented through an XML file
and the project context model represented through an XMI file that is used as one of the
inputs for the process tailoring transformation. In this way, users do not have to deal with
EMF or any other modeling environment in order to count on the context model required
for MDE-tailoring. Next we present the main features of this tool.

3.3 Software Context Modeling Tool

The software context modeling tool allows process engineers to perform two key activities
through a graphical user interface: the organizational context model definition and project
context model configuration. Next we explain how these activities are conducted and also
present the main user interfaces that allows performing them.

35



Figure 3.7: Defining the organizational context model.

3.3.1 Organizational context model definition

The organizational context model is the specification of the context attributes and their sets
of potential context attributes values that allow characterizing a particular project context.
For example, a Project Type that is a context attribute can have three potential values: New
Development, Maintenance and Incidents, and a Project Duration can have three potential
values: Small, Medium, Large. The context attributes can be grouped in different dimen-
sions for better comprehension, e.g., a Project dimension can include two context attributes:
Project Type and Project Duration.

The organizational context model that conforms to SPCM can be defined manually using
EMF in XML Metadata Interchange (XMI) format5. This activity is not highly complex,
but it is not user friendly for software process engineers. In order to maximize usability, we
developed a graphical interface for defining the organizational context model that conforms
to SPCM and can be visualized in EMF.

Figure 3.7 shows part of the user interface that allows the process engineer to define the
organizational context model. The tool provides a canonical specification that has been
obtained from empirical experiences in software process definition and improvement. The
canonical context proposes four dimensions and their attributes: Project, Team, Product and
Process. Based on that, the tool presents this canonical organizational context model as a
starting point, and the process engineer can then adjust it according to the needs of the

5XMI website: http://www.omg.org/spec/XMI/

36



organization. This Web tool is available at the ADAPTE project website6.

The tool has a context section in the top-left of the user interface that allows process
engineers to edit (service available by clicking edit icon) and save (save icon) the name and
description of the context model being defined. Moreover, the tool has a dimension section
at the bottom-left of the user interface that allows process engineers to create (add button),
remove (trash icon) and update (using the name and description text field in the top-right)
context dimensions.

The tool also has an attributes section (shown in the right part of the figure) that allows
process engineers to create (add button), remove (trash icon) and update (name and de-
scription text field) context attributes belonging to a context dimension. Moreover, process
engineers can create, remove and update context attributes values for each context attribute.
Finally, the organizational context is specified as a model, and it is generated as an XML file
by clicking on the "create context model" button.

Every software company can interpret each context value in a different way, because
different companies can use the same attribute or value name with different meanings. These
companies have to determine which context variables and dimensions are relevant for them
(i.e., for their projects). For instance, a certain company may get engaged in different types of
project, such as New Development or Maintenance. In that case, the Incidents Project Type,
as established by the canonical context model, does not make sense for them and it should be
removed. The canonical context model does not only act as a guideline for process engineers,
but also contributes to homogenizing the jargon used for project dimensions, variables and
values within each company.

Figure 3.8 shows an example of an organizational context model defined using the or-
ganizational context modeling tool. The canonical context model has been modified ac-
cording to Rhiscom’s organizational context. In this case, Rhiscom’s organizational con-
text only has the Management dimension that includes four context attributes ( Project
Type, Project Duration, Team Size and Business Knowledge) and their potential values. For
instance, Project Type can assume five possible values: New Development, Maintenance-
Enhancement, Maintenance-Correction, Maintenance-Adaptation and Incidents.

3.3.2 Project context model configuration

Each particular software project that the company develops has its own characteristics, and
these characteristics determine the concrete software process that best fits it; therefore, they
should be identified. The project characteristics are specified by instantiating the context
variables of the organizational context model. For example, a concrete project context may
consider six attributes and respective their values: Project Type is New Development, Project
Duration is Medium, Team Size is Medium, Technical Complexity is High, Quality Type is
High and Process Focus is Final Product.

As mentioned before, the project context model definition is not a highly complex activity,
6ADAPTE website: http://adapte.dcc.uchile.cl:8080/Context/contextModelHome.html

37



Figure 3.8: Rhiscom’s organizational context model.

but do it is not simple for project managers if they have to do it manually. Therefore,
we extended the previous tool to support the specification of particular project contexts
(i.e., their features) through a graphical user interface, and thus to ease such an activity.
This specification activity requires configuring the project context model, using as input the
organizational context model shown in the previous section. This configuration tool allows
project managers to set the attributes established by the organizational context model, and
also select the appropriate value in each case (i.e., according to the features of the project to
be addressed).

The tool has a concrete context section for defining the name and description of the
context model. Also, the tool has a configuration section at the bottom-left of the user
interface that allows project managers to define a particular project context by setting the
attributes values of the organizational context for the project at hand. Figure 3.9a shows
part of the user interface for defining the project context model.

Figure 3.10a shows a concrete (project) context model of Rhiscom, based on the organiza-
tional context model defined in Fig. 3.8. In this case, the Rhiscom’s concrete project context
has the following characteristics: Project Type is Maintenance-Correction, Project Duration
is Small, Team Size is Small and Business Knowledge is Known. Figure 3.10b shows the re-
sulting project context model (called context model in MDE-based tailoring) that is required

38



(a) Project context (b) Project context model

Figure 3.9: Defining the project context model.

(a) Project context (b) Project context model

Figure 3.10: Rhiscom’s project context model.

as input for the tailoring transformation together with the software process model.

Although the formal representation of the context model is specified in XMI format, end-
users (i.e., the process engineer and the project manager) only interact with typical web user
interfaces to create, adjust and configure this model. This eases considerably such an activity
and makes it more affordable, particularly for small and medium-sized software companies
that have non-specialized human resources. This tool was designed to support both, the
process engineer during the definition of the project attributes that may affect the process
to be applied, and also the project manager when assigning the particular values to these

39



attributes depending on the project at hand. This tool has been successfully verified using
already defined and validated formal context models in several Chilean software companies.

3.4 Transformations between Software Process and Soft-
ware Process Model

In the MDE-based tailoring approach proposed in [65], the organizational software process
needs to be defined as a model so that transformations can be applied. Modeling and tai-
loring take place using the Eclipse Modeling Framework (EMF)7, which is an environment
that allows defining models and transformations, and also executing transformations. The
organizational software process model that conforms to eSPEM can be defined manually us-
ing EMF in XML Metadata Interchange (XMI)8 format. Performing manually this activity
is not very difficult, but it is error prone. Moreover, once the organizational software process
model has been tailored, its model format results difficult to understand for users (process
engineers) in the tree-like format provided by EMF. Therefore, the users could hardly val-
idate the results of the tailored process, let alone make use of the benefits of the tailored
process without translating it back to its graphical format.

Eclipse Process Framework implements most part of the SPEM standard from a user
point of view, and it can import/export the specified software processes as XML files, so
that processes can be externally manipulated. Even though EPF implements the SPEM 2.0,
the data is represented internally conforming to a different metamodel, i.e., Unified Method
Architecture (UMA) metamodel.

Projectors are used to implement either model-to-text or text-to-model transformations,
and they receive the name of extractor and injectors, respectively [75]. The difference be-
tween a projector and a traditional transformation is that while transformations define a
correspondence between elements from the source and target metamodels, the projectors do
not count on a metamodel in either side of the equation, source or target, but elements of
the grammar of a certain language, so matching should be defined in a different fashion. One
of the widest uses of extractors is generating source code from a model.

7EMF website: http://eclipse.org/modeling/emf/
8XMI website: http://www.omg.org/spec/XMI/

40



F
ig
ur
e
3.
11

:
Te

xt
-t
o-
m
od

el
,m

od
el
-t
o-
m
od

el
,a

nd
m
od

el
-t
o-
te
xt

tr
an

sf
or
m
at
io
ns

in
vo
lv
ed

in
so
ft
w
ar
e
pr
oc
es
se
s
ta
ilo

ri
ng

.

41



As part of this thesis work we developed two projectors that allow potential users to apply
transformations between software process and software process model [10]. These projectors
transform a software process from EPF (specified as an XML file) into a software process
model that conforms to eSPEM in XMI format and vice versa. The translation back and
forth is now transparent, and the potential users can easily understand and validate the
tailored process as depicted in Fig. 3.11. Therefore, projectors play an important role in the
whole tailoring process in order to improve its usability, and the understandability of the
results.

MDE technology allows for formally manipulating concepts as models with a high level of
abstraction. However, some of these models may require alternate representations in another
technical space [11]; therefore, it may be necessary to represent an artifact both as a model
and as a non-model. On the one hand, a model can be manipulated via model transforma-
tions. On the other hand, a non-model can be generated via generative programming. It can
also be more appropriately manipulated either manually by a developer or automatically by
existing external tools. Bridging those two worlds, projectors allow generating a model from
external representation and vice versa.

There are several Domain-specific Transformation Languages (DSTL) designed for model-
to-text and text-to-model transformations. Textual Concrete Syntax (TCS) [75] is a par-
ticular technology for performing such kind of transformations9. Here the structure of the
textual elements is specified by its grammar, while the metamodel is used for the model, and
a mapping is specified between these two worlds. There are other languages for implement-
ing projectors, such as EGL (Epsilon Generation Language) [130], JET10 and Xpand [84].
Although these languages are generally used for code generation, they are not the best choice
for two directional projectors since they are not easy to maintain by our potential users (i.e.,
process engineers and project managers). Similar to other transformations, projectors can
also be implemented in general purpose languages like Java, C++ or C#.

3.4.1 Projectors

3.4.2 Projectors implementation

As mentioned before, in this thesis work we developed two projectors: an injector and an
extractor. The first one transforms the software process that is exported by EPF (XML
file that conforms to the UMA metamodel), into a software process model (XMI file that
conforms the eSPEM metamodel). The second projector (i.e., the extractor) transforms the
adapted software process model back into an adapted software process, allowing thus to
visualize it in EPF and validate it with the users (see Fig. 3.11).

9TCS website: http://www.eclipse.org/gmt/tcs/
10JET website: http://www.eclipse.org/modeling/m2t/?project=jet

42



F
ig
ur
e
3.
12

:
R
el
at
io
ns
hi
p
be

tw
ee
n
U
M
A

(y
el
lo
w

bo
xe
s)

an
d
eS
P
E
M

el
em

en
ts

(g
ra
y
bo

xe
s)
.

43



Table 3.2: Matching between UMA and eSPEM elements of ManagedContent.

UMA
Element

eSPEM
Element Observation

DisciplineGrouping

ContentCategory ContentCategory represents the
generalization of UMA Elements.

RoleSet
RoleSetGrouping
Domain
WorkProductType
Tool
Discipline
CustomCategory ContentCategory CustomCategory and ContentCategory

are equivalent.
DescribableElement DescribableElement

UMA and eSPEM have some similar process elements, but there are other process elements
that are not present in both metamodels. Figure 3.12 shows the relationship between UMA
(yellow boxes) and eSPEM elements (gray boxes). The UMA metamodel is much larger than
the eSPEM metamodel (123 vs. 31 classes), and thus it is expected that there is information
loss when transforming the XML file into XMI. This is not a problem in itself, but some of
the classes originally in the UMA process that are not part of the obtained eSPEM process,
may be needed afterwards when the adapted software process is to be visualized back in
EPF, i.e., the extractor should be able to restate these lost process elements. Consequently,
the extractor needs the original software process (XML file) to complete the lost process
elements.

Table 3.2 shows the matching between UMA and eSPEM elements belonging to the Man-
agedContent package. The ManagedContent meta-model package introduced concepts for
managing the textual content of such descriptions. These concepts can either be used stan-
dalone or in combination with process structure concepts. Considering the UMA and eSPEM
specification, we can define that ContentCategory of eSPEM represents the generalization of
UMA elements: DisciplineGrouping, RoleSet, RoleSetGrouping, Domain, WorkProductType,
Tool, Discipline and Custom Category. Moreover, the CustomCategory and ContentCategory
are equivalent.

Table 3.3 shows the matching between UMA and eSPEM elements belonging to the
Core package. The Core meta-model package contains the meta-model classes and abstrac-
tions that build the fundamental elements for all other meta-model packages. Considering
the UMA and eSPEM specification, we can define that UMA elements ExtensibleElement,
WorkDefinition and NamedElement are semantically equivalent to the following eSPEM el-
ements: ExtensibleElements, WorkDefinitionParameter, spemElement.

Table 3.4 shows the matching between UMA and eSPEM elements of MethodPlugin pack-
age. The MethodPlugin meta-model package provides the concepts for SPEM 2.0 users and
organization to build up a development knowledge base that is independent of any specific
process and development project. Considering the UMA and eSPEM specification, we can
define that the concepts of UMA and eSPEM are the same for building the software pro-
cess structure: MethodLibrary, MethodConfiguration, MethodPlugin, VariabilityElement and
ProcessComponent (notice that the name of elements are the same).

44



Table 3.3: Matching between UMA and eSPEM elements of Core.

UMA
Element

eSPEM
Element Observation

ExtensibleElement ExtensibleElement
WorkDefinition WorkDefinitionParameter WorkDefinition and WorkDefinitionPa-

rameter are equivalent.
NamedElement spemElement NamedElement and spemElement are

equivalent.

Table 3.4: Matching between UMA and eSPEM elements of MethodPlugin.

UMA
Element

eSPEM
Element Observation

MethodLibrary MethodLibrary
MethodConfiguration MethodConfiguration
MethodPlugin MethodPlugin
VariabilityElement VariabilityElement
ProcessComponent ProcessComponent

Table 3.5: Matching between UMA and eSPEM elements of MethodContent.

UMA
Element

eSPEM
Element Observation

Deliverable
WorkProductDefinition WorkProductDefinition represents the

generalization of UMA Elements.Outcome
Artifact
WorkProduct WorkProductDefinition WorkProduct and WorkProductDefini-

tion are equivalent.
Task TaskDefinition Task and TaskDefinition are equivalent.
Role RoleDefinition Role and RoleDefinition are equivalent.
ContentElement MethodContentElement ContentElement and MethodCon-

tentElement are equivalent.
ContentPackage MethodContentPackage MethodContentPackage represents the

generalization of UMA Elements.ContentCategoryPackage

Table 3.5 shows the matching between UMA and eSPEM elements of MethodContent
package. The MethodContent meta-model package provides concepts for defining lifecy-
cle and process-independent reusable method content elements, which provide a base of
documented knowledge of software development methods, techniques, and best practices.
MethodContent comprises of textual step-by-step explanations, describing how specific fine-
granular development goals are achieved, by which roles, and with which resources and
results, regardless of the placement of these steps within a specific development lifecycle.
Considering the UMA and eSPEM specification, we can define that WorkProductDefinition
and MethodContentPackage of eSPEM represent the generalization of the following UMA
elements: Deliverable, Outcome, Artifact, ContentPackage, and ContentCategoryPackage, re-
spectively. Moreover, the UMA elements WorkProduct, Task, Role and ContenElement are
semantically equivalent to the following eSPEM elements: WorkProductDefinition, TaskDef-
inition, RoleDefinition, and MethodContentElement.

Finally, Table 3.6 shows the matching between UMA and eSPEM elements belonging to

45



Table 3.6: Matching between UMA and eSPEM elements of ProcessStructure.

UMA
Element

eSPEM
Element Observation

Activity Activity
BreakdownElement WorkBreakDownElement BreakdownElement and WorkBreak-

DownElement are equivalent.
TaskDescriptor TaskUse TaskDescriptor and TaskUse are equiv-

alent.
RoleDescriptor RoleUse RoleDescriptor and RoleUse are equiv-

alent.
ProcessElement ProcessElement
WorkProductDescriptor WorkProductUse WorkProductDescriptor and WorkPro-

ductUse are equivalent.
ProcessElement ProcessElement
ProcessPackage ProcessPackage
Phase Phase
Iteration Iteration
Process Process
DeliveryProcess DeliveryProcess
ProcessPlanningTemplate ProcessPattern ProcessPlanningTemplate and Process-

Pattern are equivalent.

the ProcessStructure package. The ProcessStructure meta-model package provides concepts
for defining a structure of the software process. Considering the UMA and eSPEM specifi-
cation, we can define that the UMA elements Activity, BreakdownElement, TaskDescriptor,
RoleDescriptor, ProcessElement, WorkProductDescriptor, ProcessElement, ProcessPackage,
Phase, Iteration, Process, DeliveryProcess and ProcessPlanningTemplate are semantically
equivalent to the eSPEM elements as shown in Table 3.6.

The projectors implemented in this thesis are Java applications that conduct both a
text-to-model (T2M) and a model-to-text transformation (M2T). For this purpose, UMA
and eSPEM metamodel elements are transformed into Java objects. The Java objects have
methods that allow setting/getting information in the object (attributes and child nodes from
XML/XMI file) by using an XML/XMI node (expressed in an org.w3c.dom.Element object).

The Java classes org.w3c.dom.Document and org.w3c.dom.Element were used for storing
temporary elements during translation. Figure 3.13 shows the pipeline architecture followed
by the projectors. The blue arrows —from the XML file to the XMI file-– represent the flow
for the injector, while the red arrows —from the XMI file to the XML file-– illustrate the
extractor’s flow.

Document (org.w3c.dom.Document) represents an XML or XMI file. Document is
used to get an Element object using Element element=document.getDocumentElement(), or
set an Element (see line 8 in Listing 3.1). The Document implements methods for getting
and setting nodes, attributes and values using JDOM11. JDOM is a Java library for accessing,
manipulating, and outputting XML data. Notice that XMI is a specific application of XML
and can be manipulated using JDOM. Listing 3.1 shows two methods for parsing a UMA
(XML) file to eSPEM (XMI) file representation and vice versa: parseDocsUmaToSpem (see

11JDOM website: http://www.jdom.org

46



Figure 3.13: Pipeline architecture of the projectors.

line 1 in Listing 3.1) and parseDocsSpemToUma (see line 17 in Listing 3.1).

Listing 3.1: Excerpt of the Document implementation in Java.
1 pub l i c void parseDocsUmaToSpem( St r ing umaFileToParse , S t r ing spemTargetFile , S t r ing encoding ) {
2 Document umaDoc = DocumentUtils . getDocumentFromSrc ( umaFileToParse ) ;
3 Document spemDoc = new DocumentImpl ( ) ;
4 i f (umaDoc == nu l l | | spemDoc == nu l l ) {
5 return ;
6 }
7 ReferenceObject r e f e r e n c e = new ReferenceObject ( spemDoc , umaDoc) ;
8 Element s r c = umaDoc . getDocumentElement ( ) ;
9 UmaMethodLibrary toParse = new UmaMethodLibrary ( r e f e r e n c e ) ;
10 toParse . loadFromSrc ( s r c ) ;
11 SpemMethodLibrary parsed = parseUmaToSpem( toParse ) ;
12 Element t rg = parsed . getElement ( ) ;
13 St r ing toPr int = ElementUti l s . pr intElement ( trg , encoding ) ;
14 S t r i n gU t i l s . p r in tToFi l e ( encoding , spemTargetFile , toPr int ) ;
15 }
16
17 pub l i c void parseDocsSpemToUma( St r ing spemFileToParse , S t r ing umaOriginalFi le , S t r ing umaTargetFile ,

S t r ing encoding ) {
18 Document spemDoc = DocumentUtils . getDocumentFromSrc ( spemFileToParse ) ;
19 Document umaDoc = new DocumentImpl ( ) ;
20 Document umaOriginalDoc = DocumentUtils . getDocumentFromSrc ( umaOrig ina lFi le ) ;
21 i f ( spemDoc == nu l l | | umaDoc == nu l l | | umaOriginalDoc == nu l l ) {
22 return ;
23 }
24 ReferenceObject r e f e r e n c e = new ReferenceObject ( spemDoc , umaDoc) ;
25 ReferenceObject r e f e r e n c eO r i g i n a l = new ReferenceObject ( spemDoc , umaOriginalDoc ) ;
26 Element s r c = spemDoc . getDocumentElement ( ) ;
27 Element s r cO r i g i n a l = umaOriginalDoc . getDocumentElement ( ) ;
28 SpemMethodLibrary toParse = new SpemMethodLibrary ( r e f e r e n c e ) ;
29 toParse . loadFromSrc ( s r c ) ;
30 UmaMethodLibrary o r i g i n a l = new UmaMethodLibrary ( r e f e r e n c eO r i g i n a l ) ;
31 o r i g i n a l . loadFromSrc ( s r cOr i g i n a l ) ;
32 UmaMethodLibrary parsed = parseSpemToUma( toParse , o r i g i n a l ) ;
33 Element t rg = parsed . getElement ( ) ;
34 St r ing toPr int = ElementUti l s . pr intElement ( trg , encoding ) ;
35 S t r i n gU t i l s . p r in tToFi l e ( encoding , umaTargetFile , toPr int ) ;
36 }

Element (org.w3c.dom.Element) represents a node in the XML or XMI file. Element

47



extends the Node class (org.w3c.dom.Node) and contains a name (getNodeName()), a value
(getNodeValue()), and a content (getTextContent()). Also, Element can get attributes of
a Node object in a NamedNodeMap (org.w3c.dom.NamedNodeMap) using NamedNodeMap
attributes = element.getAttributes() method. Moreover, the Element gets and sets all node
children elements using NodeList listOfChils = element.getChildNodes(). Listing 3.2 shows
two methods for getting eSPEM and UMA elements: getSpemElement (see line 1 in List-
ing 3.2) and getUmaElement (see line 20 in Listing 3.2).

Listing 3.2: Excerpt of the Element implementation in Java.
1 pub l i c SpemMethodLibrary getSpemElement ( St r ing nodeName) {
2 SpemMethodLibrary r e s u l t = new SpemMethodLibrary ( r e f e r e n c e ) ;
3 r e s u l t . s e t I d ( id ) ;
4 r e s u l t . setNodeName (nodeName) ;
5 r e s u l t . setName (name) ;
6 r e s u l t . s e tDe s c r i p t i on ( b r i e fD e s c r i p t i o n ) ;
7 List<SpemMethodPlugin> ownedMethodPlugins = new ArrayList<SpemMethodPlugin>() ;
8 f o r (UmaMethodPlugin mp : methodPlugins ) {
9 ownedMethodPlugins . add (mp. getSpemElement ( "ownedMethodPlugin" ) ) ;
10 }
11 r e s u l t . setOwnedMethodPlugin ( ownedMethodPlugins ) ;
12 List<SpemMethodConfiguration> prede f i n edCon f i gu ra t i on s = new ArrayList<SpemMethodConfiguration >() ;
13 f o r ( UmaMethodConfiguration pc : methodConf igurat ions ) {
14 pr ede f i n edCon f i gu ra t i on s . add ( pc . getSpemElement ( " prede f inedCon f i gu ra t i on " ) ) ;
15 }
16 r e s u l t . s e tPr ede f i n edCon f i gu ra t i on s ( p r ede f i n edCon f i gu ra t i on s ) ; return r e s u l t ;
17 }
18
19 pub l i c UmaMethodLibrary getUmaElement ( St r ing nodeName) {
20 UmaMethodLibrary r e s u l t = new UmaMethodLibrary ( r e f e r e n c e ) ;
21 r e s u l t . s e t I d ( id ) ;
22 r e s u l t . setNodeName (nodeName) ;
23 r e s u l t . setName (name) ;
24 r e s u l t . s e tB r i e fD e s c r i p t i o n ( d e s c r i p t i o n ) ;
25 List<UmaMethodPlugin> methodPlugins = new ArrayList<UmaMethodPlugin>() ;
26 f o r ( SpemMethodPlugin omp : ownedMethodPlugin ) {
27 methodPlugins . add (omp . getUmaElement ( "MethodPlugin" ) ) ;
28 }
29 r e s u l t . setMethodPlugins ( methodPlugins ) ;
30 List<UmaMethodConfiguration> methodConf igurat ions = new ArrayList<UmaMethodConfiguration >() ;
31 f o r ( SpemMethodConfiguration pc : p r ede f i n edCon f i gu ra t i on s ) {
32 methodConf igurat ions . add ( pc . getUmaElement ( "MethodConfiguration " ) ) ;
33 }
34 r e s u l t . setMethodConf igurat ions ( methodConf igurat ions ) ; return r e s u l t ;
35 }

Transformer (javax.xml.transform.Transformer) generates an XML or XMI from a
Document. The transformer needs to initialize using TransformerFactory (javax.xml.transf-
orm.TransformerFactory). The transformer implements a mapping between UMA and eS-
PEM elements using Map<String, UmaElement> and Map<String, SpemElement>. More-
over, we developed a template that is used by the transformer for building a eSPEM model
(XMI) or a UMA file (XML). The template considers encoding, indentation and recursive
methods for building and validating a model or file (see Listing 3.3).

Listing 3.3: Excerpt of the Transformer implementation in Java.
1 pub l i c s t a t i c Element baseUmaElement (Document doc , S t r ing nodeName) {
2 Element element = doc . createElement (nodeName) ;
3 element . s e tAt t r i bu t e ( "xmlns : x s i " , " http ://www.w3 . org /2001/XMLSchema−i n s tance " ) ;
4 element . s e tAt t r i bu t e ( "xmlns :uma" , " http ://www. e c l i p s e . org / epf /uma/1 . 0 . 6 " ) ;
5 return element ;
6 }
7
8 pub l i c s t a t i c Element baseSpemElement (Document doc , S t r ing nodeName) {
9 Element element = doc . createElement (nodeName) ;
10 element . s e tAt t r i bu t e ( "xmi : v e r s i on " , " 2 .0 " ) ;
11 element . s e tAt t r i bu t e ( "xmlns : xmi" , " http ://www. omg . org /XMI" ) ;
12 element . s e tAt t r i bu t e ( "xmlns : x s i " , " http ://www.w3 . org /2001/XMLSchema−i n s tance " ) ;
13 element . s e tAt t r i bu t e ( "xmlns : methodContent" , " http :// spem/1.0/MethodContent" ) ;
14 element . s e tAt t r i bu t e ( "xmlns : methodPlugin" , " http :// spem/1.0/MethodPlugin" ) ;
15 element . s e tAt t r i bu t e ( "xmlns : p ro c e s sS t ruc tu r e " , " http :// spem/1.0/ Proce s sSt ruc ture " ) ;
16 element . s e tAt t r i bu t e ( " x s i : schemaLocation" , " http :// spem/1.0/MethodPlugin␣"
17 + "http :// spem/1.0/MethodContent#//MethodPlugin␣"
18 + "http :// spem/1.0/ Proce s sSt ruc ture ␣"
19 + "http :// spem/1.0/MethodContent#//Proce s sSt ruc ture " ) ;
20 return element ;
21 }

48



The transformations (T2M and M2T) are executed in Java using the following syntax:

<mode> <input-file> <output-file> <original-file>

where mode is the execution mode for parsing XMI and XML files.

There are two modes ("uma2spem" and "spem2uma") that transforms UMA to eSPEM
(T2M) and eSPEM to UMA (M2T), respectively. The variable input-file indicates the path
to the input file, and output-file has the path to the output file. Fanally, original-file is only
used in "spem2uma" mode, and it allows for the recovery of UMA elements, which were not
considered in "uma2spem" mode.

For example, we can use the injector for generating a software process model that conforms
to eSPEM, from an XML file that conforms to UMA using the following instruction:

uma2spem OriginalUMAProcess.xml eSPEMProcess.xmi

On the other hand, we can use the extractor for generating a software process that con-
forms to UMA, from an XMI file that conforms to eSPEM using the following instruction:

spem2uma eSPEMProcess.xmi OtherUMAProcess.xml OriginalUMAProcess.xml

Rhiscom’s software process can be exported as an XML file from EPF (see Fig. 3.1a
and 3.1b in Sec. 3.1). The injector (uma2spem) takes this XML file as input and generates
the software process model that conforms to eSPEM. Figure 3.14a shows the software process
model that is automatically generated and that can be visualized using EMT. On the other
hand, Fig. 3.14b shows the adapted software process model that does not include the Design
activity (notice that this activity is highlighted in Fig. 3.14a). Moreover, we can see that
both software process models also include more information about other software process
elements, as RoleUse and WorkProductUse.

The extractor (spem2uma) takes as input the XMI file conforming to eSPEM that results
from the tailoring transformation, and generates the adapted software process. Figures 3.15a
and 3.15b show the software process that is automatically generated and it can be visualized
from the EPF. We can see that the Design task has also been removed from the software
process shown in EPF.

3.5 Tailoring Transformation

In MDE-based tailoring, the organizational software process model is specified in SPEM
2.0, and includes its potential variability. The variability of the software process may apply
to: activities, tasks, roles and work products, and can be optional or alternative. Their
variability can be established by setting to true the value of the Boolean attribute isOptional,
and alternatives are specified by linking variation points to possible realizations using the
replaces SPEM 2.0 variability primitive. On the other hand, as the organizational software
process can be specified in UMA, we just use UMA constructs for specifying SPEM variability

49



(a) Rhiscom’s software process model that includes
the Design activity

(b) Rhiscom’s adapted software process model
without the Design activity

Figure 3.14: Rhiscom’s software process model in EMT.

primitives.

Tailoring rules are the set of transformation rules about how to tailor the organizational
software process. Tailoring rules decide on a variable process element using conditions and
conclusions. Hurtado et al. [65] define tailoring rules within a tailoring transformation. The
tailoring transformation is programmed in ATL [76] and allows for tailoring the organizational
process model according to the values of different context configurations in the context model.
The proposed tailoring transformation is endogenous [32] because its output conforms to the
same eSPEM metamodel as the input.

The tailoring transformation in ATL is represented as a module that is divided into a
header and a body section. The header states the name of the transformation module and
declares the source and target models, which are typed by their metamodels. The body is
composed of a set of rules as matched rules and helpers as called rules, which are stated
in arbitrary order after the header section. Matched rules describe how the model should
be generated from the source model. Called rules are auxiliary functions that enable the
possibility of factorizing the ATL code used in different points of the transformation.

The matched rules allow us to specify: (i) which target elements should be generated for
each source element, and (ii) how generated elements are initialized from the matched source
elements. The helpers implement tailoring rules as ATL rules with their conditions, and
they decide on variable process elements. Each variable process element has an associated
helper called from the matched rule. Figure 3.16 shows rule TaskUse. The source pattern
MM!TaskUse is defined after the keyword from, meaning that the rule will generate target
elements for each source element matching the pattern. To select only those optional source

50



(a) Rhiscom’s Elaboration phase (b) Rhiscom’s Requirements activity

Figure 3.15: Rhiscom’s adapted software process in EPF.

elements that are relevant for a specific project, an extra condition is added: an Optional-
TailoringRule implemented as a helper function. When this rule returns false, the element
is removed from the process.

In eSPEM’s variability mechanisms, a process element (e.g., TaskUse) could be linked to
several alternative variants of method elements (e.g., Task Definition). An AlternativeTai-
loringRule is defined as a rule that returns the selected method element according to the
helper rule. The AlternativeTailoringRule chooses the most suitable TaskDefinition alterna-
tive variant, according to the attribute value in the context (e.g., Domain Knowledge). If
there were more variability points, a conjunction of rules would be applied, also specifying
priorities to make trade-offs.

51



Figure 3.16: An example of the tailoring transformation in ATL [65].

Listing 3.4 shows an excerpt of the tailoring transformation that includes the header
and body sections, and it also shows two helper rules that are part of Rhiscom’s tailoring
transformation: optionalRule (line 25). The transformation implements two optional rules
involving Requirements and Design activities, and alternativeRule (line 45) that implements
two alternative rules involving the Establish Requirements Baseline and Specify Requirements
tasks. For example, optionalRule states that if "Project Type" is "Maintenance-Correction"
and "Project Duration" is "Small", then the corresponding process element (in this case, the
Design activity) will be omitted (false) from the adapted software process, otherwise it will
be included (true). On the other hand, alternativeRule states that if "Project Type" is "New-
Development", "Project Duration" is "Medium", and "Business Knowledge" is "Unknown",
then the Establish Requirements Baseline and Test Cases task should replace the Establish
Requirements Baseline task in the development process.

Listing 3.4: Rhiscom’s tailoring transformation [65].
1 −− HEADER
2 −− Module :
3 −− Input and output metamodels
4 module Ta i l o r i ng ;
5 c r ea t e OUT : MM2 from IN : MM, IN1 : MM1;
6
7 −− BODY
8 −− Helpers : Cal led Rules
9 −− To obta in the context a t t r i b u t e s
10 he lpe r de f : ge tContextAttr ibuteConf igurat ion ( nameAttribute : S t r ing ) :
11 MM1! ContextAttr ibuteConf igurat ion = MM1! ContextAttr ibuteConf igurat ion . a l l I n s t a n c e s ( )−>asSequence ( )−>s e l e c t (

a | a . myContextElement .name =nameAttribute )−>f i r s t ( ) ;
12 he lpe r de f : getValue ( nameAttribute : S t r ing ) :
13 St r ing = thisModule . ge tContextAttr ibuteConf igurat ion ( nameAttribute ) . myContextAttributeValue . va lue ;
14
15 he lpe r de f : g e tTaskDe f in i t i on ( taskDef init ionName : St r ing ) : MM! TaskDef in i t i on =
16 MM! TaskDef in i t i on . a l l I n s t a n c e s ( )−>asSequence ( )−>s e l e c t ( t | t .name = taskDef init ionName )−>f i r s t ( ) ;
17
18 −− Helpers : Cal led Rules
19 −− To obta in the next WorkBreakDownElement
20 he lpe r de f : nextElement ( a :MM!WorkBreakDownElement ) : MM!WorkBreakDownElement = MM!WorkBreakDownElement .

a l l I n s t a n c e s ( )−>s e l e c t ( t | t=a . next )−>f i r s t ( ) ;
21 he lpe r de f : next ( a :MM!WorkBreakDownElement ) : MM!WorkBreakDownElement = i f ( thisModule . opt iona lRule ( thisModule

. nextElement ( a ) .name ) ) then a e l s e thisModule . next ( thisModule . nextElement ( a ) ) end i f ;
22
23 −− Helpers : Cal led Rules
24 −− To de s c r i b e t rans fo rmat ion r u l e s

52



25 he lpe r de f : opt iona lRule (name : S t r ing ) : Boolean =
26 i f ( Sequence{ ’ Requirements ’ , ’ Design ’ } . i n c l ude s (name ) ) then (
27 i f ( ’ Requirements ’= name ) then
28 {
29 i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−Adaptation ’ and thisModule .

getValue ( ’ Pro j ec t Duration ’ ) = ’ Small ’ ) then false
30 e l s e true
31 end i f ;
32 }
33 e l s e (
34 i f ( ’ Design ’= name ) then
35 {
36 i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−Correct ion ’ and

thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’ Small ’ ) then false
37 e l s e true
38 end i f ;
39 }
40 )
41 )
42 e l s e true
43 end i f ;
44
45 he lpe r de f : a l t e rna t i v eRu l e ( tu :MM! TaskUse ) : MM! TaskDef in i t ion =
46 i f ( Sequence{ ’ Es tab l i sh Requirements Base l ine ’ , ’ Spec i f y Requirements ’ } . i n c l ude s ( tu .name ) ) then (
47 i f ( ’ Spec i f y Requirements ’= tu .name ) then
48 {
49 i f ( ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’ In c i d en t s ’ or thisModule . getValue ( ’

Pro j ec t Type ’ ) = ’Maintenance−Enhancement ’ ) and thisModule . getValue ( ’ Bus iness
Knowledge ’ ) = ’Known ’ ) then thisModule . ge tTaskDe f in i t i on ( ’ Spec i f y Requirements
in p l a in text ’ )

50 e l s e thisModule . ge tTaskDe f in i t i on ( tu .name )
51 end i f ;
52 }
53 e l s e (
54 i f ( ’ E s tab l i sh Requirements Base l ine ’= tu .name ) then
55 {
56 i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’New Development ’ and

thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’Medium ’ and
thisModule . getValue ( ’ Bus iness Knowledge ’ ) = ’Unknown ’ ) then
thisModule . ge tTaskDe f in i t i on ( ’ Es tab l i sh Requirements Base l ine
and Test Cases ’ )

57 e l s e thisModule . ge tTaskDe f in i t i on ( tu .name )
58 end i f ;
59 }
60 e l s e tu . l inkTask
61 end i f
62 ) end i f
63 ) e l s e tu . l inkTask
64 end i f ;
65
66 −− Rules : Matched Rules
67 −− to map model e lements
68 ru l e main{
69 from ml :MM! MethodLibrary
70 to mll :MM2! MethodLibrary (
71 name <− ml .name ,
72 d e s c r i p t i o n <− ml . de s c r i p t i on ,
73 ownedMethodPlugin<− ml . ownedMethodPlugin ,
74 prede f inedConf igurat ion<−ml . p r ede f inedCon f i gu ra t i on
75 )
76 }
77 ru l e methodplugin{
78 from mp:MM! MethodPlugin
79 to mpp:MM2! MethodPlugin (
80 name<− mp.name ,
81 d e s c r i p t i o n <− mp. de s c r i p t i on ,
82 ownedProcessPackage<− mp. ownedProcessPackage ,
83 ownedMethodContentPackage <− mp. ownedMethodContentPackage
84 )
85 }
86 ru l e methodconf igurat ion {
87 from c :MM! MethodConfiguration
88 to cc :MM2! MethodConfiguration (
89 name <−c .name ,
90 d e s c r i p t i o n <− c . d e s c r i p t i on ,
91 baseConf igurat ion<−c . baseConf igurat ion ,
92 methodPluginSelect ion<−c . methodPluginSelect ion ,
93 defaultView<−c . defaultView ,
94 processView<−c . processView ,
95 proces sPackageSe l ec t ion<−c . proces sPackageSe l ec t ion ,
96 myProcessPackage<−c . myProcessPackage ,
97 contentSe l e c t i on<−c . c on t en tSe l e c t i on
98 )
99 }
100 ru l e ProcessPackage {
101 from pp :MM! ProcessPackage
102 to ppp :MM2! ProcessPackage
103 (
104 name <− pp .name ,
105 processElements <− pp . processElements ,
106 processPackages <− pp . processPackages
107 )
108 }
109 ru l e Act iv i ty {
110 from a :MM! Act iv i ty (
111 thisModule . opt iona lRule ( a .name )

53



112 )
113 to aa :MM2! Act iv i ty (
114 name <− a .name ,
115 nestedElements <− a . nestedElements ,
116 processPer former <− a . processPer former ,
117 processParameter <− a . processParameter ,
118 usedAct iv i ty <− a . usedAct iv i ty ,
119 useKind <− a . useKind ,
120 next <− a . next ,
121 ownedParemeter <− a . ownedParemeter ,
122 d e s c r i p t i o n <− a . de s c r i p t i on ,
123 va r i ab i l i t yType <− a . var i ab i l i tyType ,
124 var iabi l i tyBasedOnElement <− a . var iabi l i tyBasedOnElement )
125 }
126 ru l e TaskUse{
127 from tu :MM! TaskUse ( thisModule . opt iona lRule ( tu .name ) )
128
129 us ing {
130 task :MM! TaskDef in i t i on = thisModule . a l t e rna t i v eRu l e ( tu ) ;
131 }
132
133 to tuu :MM2! TaskUse (
134 name <− tu .name ,
135 l inkTask<− task ,
136 next <− tu . next ,
137 ownedParemeter <− tu . ownedParemeter ,
138 d e s c r i p t i o n <− tu . d e s c r i p t i o n )
139 }
140 ru l e RoleUse{
141 from ru :MM! RoleUse
142 to ruu :MM2! RoleUse (
143 name <− ru .name ,
144 l inkRole<−ru . l inkRole ,
145 myPerformer <− ru . myPerformer ,
146 ownedParemeter <− ru . ownedParemeter ,
147 d e s c r i p t i o n <− ru . d e s c r i p t i o n
148 )
149 }
150 ru l e WorkProductUse{
151 from wpu :MM!WorkProductUse
152 to wpuu :MM2!WorkProductUse (
153 name <− wpu .name ,
154 linkWorkProduct<−wpu . linkWorkProduct ,
155 l inkedProcessElement <− wpu . l inkedProcessElement ,
156 ownedParemeter <− wpu . ownedParemeter ,
157 d e s c r i p t i o n <− wpu . d e s c r i p t i o n
158 )
159 }
160 ru l e MethodContentPackage{
161 from pp :MM! MethodContentPackage
162 to ppp :MM2! MethodContentPackage (
163 name <− pp .name ,
164 methodContentElement <− pp . methodContentElement ,
165 methodPackages <− pp . methodPackages ,
166 c a t e g o r i e s <− pp . c a t e g o r i e s
167 )
168 }
169 ru l e Category{
170 from c :MM! Category
171 to cc :MM2! Category (
172 name<−c .name ,
173 d e s c r i p t i o n <− c . d e s c r i p t i on ,
174 subCategory<− c . subCategory ,
175 subCategor ies<− c . subCategor ies ,
176 categor izedElement <− c . categor izedElement )
177 }
178 ru l e TaskDef in i t i on {
179 from tu :MM! TaskDef in i t i on
180 to tuu :MM2! TaskDef in i t i on (
181 name <− tu .name ,
182 d e s c r i p t i o n <− tu . d e s c r i p t i on ,
183 performer<−tu . performer ,
184 par t i c ipant<−tu . pa r t i c ipant ,
185 inputs<−tu . inputs ,
186 outputs<−tu . outputs ,
187 opt i ona l Input s <− tu . opt iona l Inputs ,
188 variabi l i tyBasedOnElement<−tu . var iabi l i tyBasedOnElement ,
189 var i ab i l i tyType<−tu . va r i ab i l i t yType )
190 }
191 ru l e Ro l eDe f i n i t i on {
192 from ru :MM! Ro l eDe f i n i t i on
193 to ruu :MM2! Ro l eDe f i n i t i on (
194 d e s c r i p t i o n <− ru . d e s c r i p t i on ,
195 name <− ru .name ,
196 va r i ab i l i t yType <− ru . var i ab i l i tyType ,
197 var iabi l i tyBasedOnElement <− ru . var iabi l i tyBasedOnElement )
198 }
199 ru l e WorkProductDefinit ion {
200 from wpu :MM! WorkProductDefinit ion
201 to wpuu :MM2! WorkProductDefinit ion (
202 d e s c r i p t i o n <− wpu . de s c r i p t i on ,
203 name <− wpu .name ,
204 va r i ab i l i t yType <− wpu . var i ab i l i tyType ,
205 var iabi l i tyBasedOnElement <− wpu . var iabi l i tyBasedOnElement )
206 }

54



3.6 Related Work

The literature also reports that there are other proposals for generating transformations using
MDE concepts. For instance, the Atlas Model Weaver (AMW) [36] is a tool for establishing
relationships (i.e., links) between models. These links are stored in a model called weaving
model, which is created conforming to a weaving metamodel. AMW provides a base weaving
metamodel enabling to create links between model elements and associations between links.
Moreover, the weaving model can then be used as input to automatically generate model
transformations. However, AMW does not support complex conditions; particularly, it is not
possible to include conditions for matching elements as we need for tailoring process models
according to the project context.

Other examples are the Model Transformation Language (MOLA) [77] and Graph Rewrit-
ing and Transformation (GREaT) [4] that allow specifying transformation rules through
visual mapping patterns. They specify rules and mappings using class diagrams, but consid-
ering an environment inspired by activity diagrams. A limitation of MOLA and GREaT is
that they need that the users to directly interact with metamodels and class diagrams, which
still represents a strong usability restriction for these persons. Therefore, if the users do not
count on the required experience for managing these elements, they could neither write nor
maintain the transformation code.

Another proposal is MTrans [114] that is a rule-based executable approach for describing
model transformations. MTrans allows programmers to write arbitrarily complex transfor-
mation programs. The expressiveness and generality of the approach constitutes also its main
disadvantage, because the programmers must make sure that their program performs correct
transformations and that the underlying rule set is consistent. Moreover, no tool support for
consistency checking is available.

Finally, according to Tisi et al. [156], the knowledge for generating transformations is ver-
bose, i.e., a long and complex code is required for generating just a small output transforma-
tion. This is mainly the problem with technological approaches for building transformations,
since they are always complex.

3.7 Summary and Discussion

Although there exist proposals for generating model transformations, these approaches con-
tain complex syntax and constructs that require advanced knowledge in these approaches.
Building appropriate tailoring transformations requires expertise for specifying tailoring rules,
making decisions, choosing the right kind of transformation, and also mastering the trans-
formation language syntax and semantics. In this sense, we can envision ensuing potential
challenges in manually writing ATL tailoring transformations:

Tailoring Rules: For each variable element identified as part of the organizational soft-
ware process, there is a rule included in the transformation. For optional process elements,

55



the rule decides, according to the values in the project context model attributes, if it should
be included or not in the adapted software process. For process elements defined with al-
ternatives, the rule decides which of them will be included in the adapted software process.
Even though this strategy seems quite clear, translating it into ATL rules is a challenging
task.

Programming transformations: Writing transformations is usually a complex activity
and requires a transformation language knowledge that is not usually known for process
engineers. Moreover, there is a lot of syntactical terminology around transformations. These
terms are usually only defined with some specific examples to get a clear understanding [78].
Consequently, writing transformations manually can be error-prone.

Organization-dependent: The tailoring transformation is specific to a set of variable
processes and context elements that are part of a particular software process. Therefore, the
tailoring transformation is not compatible with other software companies that usually have
their own software process and context projects. Therefore, knowledge about writing model
transformation cannot be reused across organizations.

Evolution: The organizational software process and organizational context model can
evolve over time. Evolution can occur at the model or relationships level; model elements
can be added, removed or modified; and changes to the relationship between context elements
and variable software process elements may lead to a reorganization of the rules, and thus
changes to the transformations [57, 58].

Adoption: There are several factors affecting the adoption of software process tailoring
in industry [102]: (a) the complexity, expressiveness and understandability of the notations
and languages, (b) the cost of coping with variability for particular development scenarios,
(c) the degradation of the expensively-captured software process, and (d) the availability and
usability of tool support.

Currently most of small and medium-sized companies in Chile do not invest effort in
tailoring their software process at all, probably because it is not possible to ensure usefulness
of the obtained tailored software process. We have worked with MDE-based software process
tailoring for the last five years and it has proved to be technically feasible. However, writing
transformations manually is not a cost-effective strategy, if we seek adoption of MDE-based
software process tailoring in the software industry. This problem is also valid for large
software companies.

The difficulties of the approach proposed in [64] have been considerably reduced with the
tools described in this chapter. Now, neither the process model nor the context model need
to be manually defined. However, writing tailoring transformations remains a high challenge,
and this difficulty is the main motivation for continuing to improve the support for this
process. As part of this improvement effort, the next two chapters of this thesis present:

• a DSL for specifying tailoring rules in a usable manner.
• a HOT that automatically generates tailoring transformations in a way that is trans-

parent for the users.

56



Chapter 4

Tailoring Rules Specification

This chapter presents a domain-specific language for specifying tailoring rules. The tailoring
rules are a set rules for tailoring a software process. The domain-specific language is a decision
language that allows process engineers to formally specify tailoring rules as a model.

Section 4.1 introduces a motivation for specifying tailoring rules. Section 4.2 shows an
overview of domain-specific languages. Section 4.3 presents the decision language for defining
tailoring rules using the notion of modelware. Section 4.4 illustrates the use of the decision
language using an example. Section 4.5 shows the graphical environment we have built for
defining tailoring rules. Finally, section 4.6 discusses some related work about tailoring rules
specification.

4.1 Motivation

As mentioned before, process engineers are in charge of tailoring the organizational software
process to make it fit to each project using tailoring rules, among other tasks. Tailoring rules
are a set of rules that indicates how to tailor an organizational software process according
to a specific project context. The tailoring rules involve three main components: concepts,
conditions and conclusions, and they can be specified as text, tables, annotations in the
software process or other formats. However, the required knowledge is encapsulated and
stored, and not necessarily formally specified.

In Chapter 3, we presented the MDE-based tailoring strategy for generating project-
adapted software processes by tailoring an organizational software process, applying a set of
tailoring rules defined in a tailoring transformation. The tailoring transformation was im-
plemented in ATL and thus it is feasible to use this strategy for tailoring software processes.
However, the tailoring rules still need to be written in ATL, which represents a challenge
for process engineers. In order to deal with this challenge, the literature reports different
approaches for generating transformation rules without interacting with code, but these ap-
proaches require MDE formalisms that process engineers usually do not possess. Therefore,
if the users do not count on the required experience for managing MDE concepts and pro-

57



gramming transformations, they can neither implement nor maintain the tailoring rules.

In this sense, we propose a domain-specific language (DSL) for defining tailoring rules
without interacting with the ATL code. Using this language the tailoring rules are specified
as a model that can be used for generating tailoring transformations. To that end, the DSL is
supported by a graphical environment that helps reduce the complexity of defining tailoring
rules and specifying tailoring rules as a model.

4.2 An Overview of Domain-specific Languages

Modelware TS enables the definition of models using a domain-specific language (DSL).
Executable DSLs hide software implementation details by generating executable code or
models. Particularly, domain-specific modeling languages (DSML) –a special type of DSL–
are very important within the field of MDE, where each model is written in a specific language,
and may be transformed into another model written (in most cases) in yet another language.

According to Greenfield et al. [53], a DSL definition in terms of metamodels (modelware) is
more powerful for specifying languages than traditional Backus-Naur Form (BNF) grammars.
A DSL definition in the modelware TS considers the following language aspects:

Abstract syntax. Describing the structure of the language and the way the different
primitives can be combined together, independently of any particular representation or en-
coding. The abstract syntax is the definition of the modeling concepts and their properties
by defining metamodels which play a role corresponding to grammars for textual languages.
While a grammar defines all valid sentences of a language, a metamodel defines all valid
models of a modeling language.

Concrete syntax. Describing specific representations of the modeling language, covering
encoding and/or visual appearance issues. As mentioned before, metamodels only define the
abstract syntax but not the concrete notation of the language, i.e., the graphical or textual
elements used to render models elements in modeling editors. The concrete syntax is a
representation that the user commonly uses to refer to a particular language.

Static semantics. Describing the meaning of the elements defined in the language and
the meaning of the different ways of combining them. The semantics of a language captures
the effect of “sentences” of the language. Static semantics expresses the structural meaning
of a language term and corresponds to the well-formed rules on top of the abstract syntax
(expressed as invariants of metamodel classes).

Additional operations over DSLs. In addition to checked execution by the static
semantics, there may be other possible operations manipulating programs written in a given
DSL. Each may be defined by a mapping represented by a model transformation.

58



Figure 4.1: An overview of tailoring rules specification.

4.3 Decision Language for Defining Tailoring Rules

In our application domain, the tailoring rules are a set of rules that decide which software
process elements to exclude or keep using particular specifications. The upper part of Fig-
ure 4.1 shows two kinds of specifications for tailoring rules: tables and annotations. These
approaches have some drawbacks: informality, error-proneness and complexity. In order to
deal these drawbacks, we propose a formal specification of tailoring rules using a domain-
specific language.

The decision language (DL) is a domain-specific language that allows users to specify
tailoring rules in modelware TS; i.e., the tailoring rules are specified as a model. In this
sense, the tailoring rules can be specified in a high-level formalism that is compatible with

59



the MDE-based tailoring strategy. Consequently, we can use models and transformations for
generating tailoring transformations.

The DL definition involves two steps: 1) conceptualizing the domain-specific concepts
involved in tailoring rule definition, and 2) formally specifying the DL as a language that
allows defining transformation rules.

4.3.1 Conceptualizing the process tailoring rules

A Software Process Line (SPrL) captures the commonalities and variabilities in a set of
processes. The set of all the possible software processes that a company follows, i.e., process
variants, defines a SPrL. Differences are managed by means of process design decisions,
thereby introducing variation points [129]. The whole set of variation points is typically
referred to as the variability of the software process line [28].

In the MDE-approach for software process lines [63], tailoring rules are used to resolve on
variable process elements. A tailoring rule is a set of rules whose conditions are related to
project characteristics (context) and that decide how variable process concepts are resolved
when their conditions hold. These rules embody decisions that take place in different process
granularity levels (both, optional and alternative).

Process engineers that are in charge of tailoring the software process can specify tailoring
rules using natural language. For instance, two tailoring rules are defined for removing two
activities, design and requirements, as follows:

"if project type is maintenance-correction and project duration is small, then remove design
activity"

"if project type is maintenance-adaptation and project duration is small, then remove
requirement activity"

Process engineers can specify tailoring rules using different representations, such as tables,
annotations, or text. The upper part of Figure 4.1 shows two tailoring rules for removing de-
sign and requirement activities, using tables and annotations. These kinds of representations
allow process engineers to identity variable process elements, conditions and conclusions for
generating variants of a software process.

Tailoring rules are specified using a particular language in a software process domain.
The particular language involves variable process elements, rules and context characteristics.
Table 4.1 shows the domain concepts involved in tailoring rules for software process tailoring:
variable process elements, rules and context.

Process elements can be either mandatory or variable. Mandatory elements are included in
all software processes. Variable elements can be optional or alternative. Optional elements
can be either included or not in any software process. Alternative elements have a set of
alternatives that should replace the alternative element in all software processes.

60



Table 4.1: Domain concepts.

Type Elements Definition
Capability pattern Capability patterns are a special type of process

that describes a reusable cluster of activities in
common process areas.

Variable
process
element

Optional or
Alternative

Activity An activity is a collection of work breakdown el-
ements such as tasks, roles, work products, and
milestones. Activities can include other activities.
The three activity types are Iterations, Phases
and Activities.

Task A task is an assignable unit of work. Every task
is assigned to a specific role.

Condition A condition is a logical statement in terms of con-
text attributes and their values, e.g., if project
type is maintenance.

Rule Simple or
Composed

Logical connector A logical connector is a symbol used to connect
simple conditions. These symbols can be opera-
tors or quantifiers.

Conclusion A conclusion is the statement that "follows" from
the condition, e.g., if project type is maintenance
then remove requirements.

Context Attribute A context attribute is a project characteristic that
affects the project context definition, e.g., project
size, project duration or team size.

Context N/A
Context Attribute//Value A context attribute value is a potential value that

defines the context attribute, e.g., project type is
a context attribute and it can have the following
values: new development, maintenance, incidents
or bugs.

The rules are a set of conditions and conclusions that decide on variable process elements.
Conditions are a set of predicates for software process tailoring that are stated in terms of
simple or compound relationships between context attributes and their values. Conditions
can be composed by logical predicates. Conclusions decide actions about concepts that are
variable process elements.

4.3.2 Developing the decision language

The DL definition considers three main components [165]: (1) the abstract syntax, (2) the
semantics, and (3) the concrete syntax. These components are here specified on the notion
of modelware.

4.3.2.1 Abstract syntax

One of the most important aspects of creating a new modeling language is the definition
of its abstract syntax. The abstract syntax of a language consists of its set of concepts
and respective relationships [18] [165], which together establish a structure for the domain’s

61



information that is relevant to model. Concepts define the domain information that can be
stored by models, and relationships define how concepts are related among themselves.

The abstract syntax involves two definitions: the abstract syntax model and the abstract
form. The abstract syntax model of a language is a metamodel whose nodes represent the
concepts in the language and whose edges represent relationships between these concepts.
Abstract form of a language is a labeled graph typed over the abstract syntax model of that
language.

Variation Decision Metamodel. The DL’s abstract syntax model is specified as a
metamodel called Variation Decision Metamodel (VDMM) that describes domain concepts
for specifying tailoring rules. The VDMM is inspired by Decision Models [169] and Semantics
of Business Vocabulary and Business Rules (SMVB) used for building decision rules [54].

VDMM uses the domain concepts for specifying tailoring rules in terms of process variable
elements, rules and contexts. The Fig. 4.2 shows the VDMM that describes the language
concepts. DecisionModel is the name of the metamodel that considers two main concepts:
ConfigurationContent and ConfigurationRule. These concepts are explained next.

• ConfigurationContent incorporates specific information needed for modeling decisions,
and particularly it considers ContextElements and VariabilityPointElements.
– ContextElements is a collection of organizational context elements that includes

attributes and their values for a specific context. This collection describes one
possible ContextAttributeValue for each ContextAttribute.

– ContextAttribute represents a relevant characteristic of the project context re-
quired for software process tailoring, and it can take one value from a set defined
as ContextAttributeValue.

– ContextAttributeValue represents a particular value for qualifying a ContextAt-
tribute.

– VariabilityPointElements is a set of elements that can be optional (OptionalPoint)
or alternative (AlternativePoint).

– OptionalPoint is a set of software process elements that can be removed for a
specific project.

– AlternativePoint is a set of software process elements that can be replaced for
other software process element.

• ConfigurationRule defines the tailoring rules using domain concepts and it considers a
set of Rules.
– Rule is a set of Conditions and Conclusions for each VariabilityPointElement.
– Conditions may be simple (include just one condition) using ConditionSimple, or

complex (consider several conditions with logical connectors) using ConditionEle-
ment that includes a set of ConditionSimple and LogicalConnector.

– LogicalConnector is a symbol used to connect a set of Conditions.
– Conclusion decides actions about a Conditions (simple or complex) for each Op-

tionalPoint and AlternativePoint. In this sense, the Conclusion can be Optional-
Conclusion or AlternativeConclusion.

62



– OptionalConclusion specifies the decision for each OptionalPoint. The Optional-
Conclusion considers two boolean values: true for keeping an OptionalPoint and
false for removing an OptionalPoint.

– AlternativeConclusion specifies the decision for each AlternativePoint. The Alter-
nativeConclusion is used for replacing an AlternativePoint with another software
process element.

Variation Decision Metamodel Form. The DL’s abstract form is an instance, as
a model of VDMM, that contains the relevant information of the linguistic utterance. A
linguistic utterance can be defined in the abstract syntax model using labels and constraints
between metaclasses, and their relationships.

In this sense, the VDMM shown in Fig. 4.2 contains a conceptual model of the DL and a
large number of constraints between metaclasses that allow defining a decision model. The
DecisionModel is the principal metaclass for deriving a decision model using relationships
and constraints between metaclasses of the VDMM. For instance, it ensures that when the
model is derived from DecisionModel type, the parameters type of an actual type fit the
declared formal parameters of the DecisionModel type. The description of the constraints is
the following:

• DecisionModel should define two components: ConfigurationRule and ConfigurationCon-
tent using myConfigurationRule and myConfigurationContent labels, respectively. The
DecisionModel only can define one ConfigurationRule and one ConfigurationContent.
• ConfigurationRule defines Rule using myRule label. The ConfigurationRule can be

composed by a larger number of Rules.
• Rule defines Conditions and Conclusion using myConditionRule and myConclusion-
Rule labels, respectively. The Rule can define a set of Conditions and one Conclusion.
• Conditions defines ConditionElement using myConditionElement label.
• Conclusion defines OptionalConclusion and AlternativeConclusion using myOptional-
Conclusion and myAlternativeConclusion labels, respectively.
• ConditionElement defines ConditionSimple and LogicalConnector for simple conditions,

but ConditionElement can be defined as a composed condition in terms of a set of
ConditionSimple using itself for defining another ConditionElement.
• ConfigurationContent should define ContextElements and VariabilityPointElements us-

ing myContentContextElements and myVariabilityPointElements labels, respectively.
• VariabilityPointElements should be defined as a larger number of AlternativePoint

and/or OptionalPoint using myAlternativeElement and myOptionalElement, respec-
tively.
• AlternativePoint should include one or more Alternatives using myAlternatives.

According to the literature on decision models [169], conditions should have a left and a
right hand side, that in our case are called ContextAttribute (left) and ContextAttributeValue
(right). Similarly, the conclusion must also have a left and a right hand side; in our case they
are VariabilityPointElements and myVariabilityValue, respectively.

63



F
ig
ur
e
4.
2:

A
bs
tr
ac
t
Sy

nt
ax

:
V
ar
ia
ti
on

D
ec
is
io
n
M
et
am

od
el
.

64



4.3.2.2 Semantics

Semantics describes the meaning of each element and of each orchestration of elements,
such as sentences, diagrams, or compositions of modeling elements that constitutes a model.
Although technology has not yet evolved to a point in which we can make a computer
“understand” a model (namely to ensure its correctness), semantics can nevertheless still
be addressed when creating a metamodel. This is done by specifying rules that restrict
the different possibilities for element orchestrations in a model, in order to prevent model
designers from using invalid ones.

Table 4.2 shows the semantics of the DL. It describes language elements and considers the
two main parts of the abstract syntax: ConfigurationContent and ConfigurationRule. The
ConfigurationContent considers context attributes and their values, and variable process ele-
ments. The ConfigurationRule considers the set of rules to adapt the organizational software
process, which are defined using the ConfigurationContent.

Table 4.2: Semantic: Transformation Rules Language.

Element Semantic Action Artifacts of the appli-
cation domain

Decision
Model DecisionModel is a formal

representation of tailoring
rules. The decision model
considers a particular con-
text for software process
tailoring using a set of
rules.

DecisionModel derives the
tailoring rules and spec-
ifying the organizational
context.

Organizational software
process and Organiza-
tional context.

Configuration
Rule ConfigurationRule is a

specification of tailoring
rules. The configuration
rules are a set of rules
that allow users to define
tailoring decisions in
terms of conditions and
conclusions.

ConfigurationRule is de-
rived from DecisionModel
and encapsulates a set of
rules.

Organizational software
process and Organiza-
tional context.

Rule k Rule is a set of conditions
and conclusions that de-
cide on variable software
process elements. The
rules are expressions using
organizational context ele-
ments for adapting the or-
ganizational software pro-
cess.

Rule decide about variable
software process elements.

Organizational software
process, Organizational
context and Adapted
software process.

65



Table 4.2: Semantic: Transformation Rules Language.

Element Semantic Action Artifacts of the appli-
cation domain

Condition Condition is a set of pred-
icates for software pro-
cess tailoring. The con-
dition establishes a rela-
tionship between context
attributes and their val-
ues and can be composed
by logical predicates. A
condition can be simple or
complex.

Condition define a predi-
cate in terms of context
attributes and their values
for software process tailor-
ing.

Organizational context
and Adapted software
process.

Condition
Element ConditionElement is a ex-

pression for defining a sim-
ple conditions and logi-
cal connectors. Moreover,
ConditionElement can be
composed for other Con-
ditionElement for defining
complex conditions.

ConditionElement define
a condition or a logical
connector.

Organizational context
and Adapted software
process

Simple
Condition SimpleCondition is a

primitive condition. A
primitive condition is a
expression that is com-
posed by one context
attribute and its value.

SimpleCondition define a
primitive condition.

Organizational context
and Adapted software
process

Logical
Connector LogicalConnector is a log-

ical operators that allow
users to specify complex
conditions. The com-
plex conditions establishes
two or more relations be-
tween simple conditions
using the logical operators
AND and OR.

LogicalConnector add
a logical operator be-
tween simple conditions
for defining complex
conditions.

SimpleCondition and
ConditionElement.

Conclusion Conclusion is a expres-
sion that considers a set
of conditions for deciding
about a variable process
element(OptionalPoint or
AlternativePoint). The
conclusion is the tailoring
decision for generating the
adapted software process

Conclusion define a deci-
sion about a variable pro-
cess element.

Organizational context
and Adapted software
process

66



Table 4.2: Semantic: Transformation Rules Language.

Element Semantic Action Artifacts of the appli-
cation domain

Optional
Conclusion OptionalConclusion is a

decision for removing an
optional process element
(OptionalPoint). The
OptionalConclusion is a
Boolean expression that
can be True or False. If
the OptionalConclusion is
True, the optional process
element will not be re-
moved. If the Optional-
Conclusion is False, the
optional process element
will be removed.

OptionalConclusion de-
cides about an optional
process element.

Organizational software
process and Adapted
software process.

Alternative
Conclusion AlternativeConclusion is

a decision for replacing
an alternative process ele-
ment (AlternativePoint).
The AlternativeConclu-
sion is an expression that
replace a software process
element with another
software process element.

AlternativeConclusion de-
cides about an alternative
process element.

Organizational software
process and Adapted
software process

Configuration
Content ConfigurationContent is

a specification of context
attributes and variable
process elements. The
ConfigurationContent
consider context and
software process elements
that are used for defining
the ConfigurationRule.

ConfigurationContent is
derived from "Decision-
Model" and encapsulates
context and software
process elements.

Organizational context.

Context
Element ContextElement is a set

of context attributes and
their values that are part
of organizational context.
The ContextElements are
used for defining condi-
tions of the tailoring rules.

ContextElement defines
context attributes and
their potential values.

Organizational context.

Context
Attribute ContextAttribute repre-

sents a relevant char-
acteristic of the project
context required for soft-
ware process tailoring
and can take one of a
set of values defined as
ContextAttributeValue.

ContextAttribute defines
a relevant characteristic of
a particular project.

Organizational context.

67



Table 4.2: Semantic: Transformation Rules Language.

Element Semantic Action Artifacts of the appli-
cation domain

Context
Attribute
Value

ContextAttributeValue
represents a value for
qualifying a ContextAt-
tribute. A ContextAt-
tribute can have one or
more ContextAttribute-
Value.

ContextAttributeValue
defines the potential
values for qualifying a
ContextAttribute.

Organizational context.

Variability
Point
Elements

VariabilityPointElement
is a set of variable soft-
ware process elements
that are considers for
software process tailoring.
The variable process
elements can be Optional
or Alternative.

VariabilityPointElement
define variable software
process elements.

Organizational software
process and Adapted
software process.

Optional
Point OptionalPoint is an op-

tional process element
that can be removed in
the adapted software
process.

OptionalPoint defines an
optional process element.

Organizational software
process and Adapted
software process.

Alternative
Point AlternativePoint is an al-

ternative process element
that can be replaced by
another process element in
the adapted software pro-
cess.

AlternativePoint defines
an alternative process
element.

Organizational software
process and Adapted
software process.

Alternative Alternative is a set of pro-
cess elements that can re-
place an AlternativePoint
in the adapted software
process.

Alternative defines pro-
cess elements for replacing
another software process.

Organizational software
process and Adapted
software process.

4.3.2.3 Concrete syntax

Concrete syntax provides the textual representation of the metamodel elements, which fa-
cilitates the presentation and construction of a model. The concrete syntax of the DL for
defining tailoring rules has a textual representation based on Extensible Markup Language
(XML).

Table 4.3 shows the concrete syntax of the DL. It describes constructors for defining a
Decision Model, constraints and dependencies. For example, < myRule >< \myRule > is a
construct to describe a Rule and it can be used one or more times (constraint).

68



Table 4.3: Concrete Syntax: Transformation Rules Language.

Element Construct Action Cons-
traints

Dependencies

Decision
Model

< DecisionModel >
< \DecisionModel >

New decision model 1 ... 1

Configuration
Rule

< myConf igurationRule >
< \myConf igurationRule >

New configuration
rule

1 ... 1 Decision Model

Rule < myRule >
< \myRule >

New rule 1 ... * Configuration
Rule

Condition < myConditionRule >
< \myConditionRule >

New condition 1 ... 1 Rule

Condition
Element

< myConditionElements >
< \myConditionElements >

New condition
element that
support composed
condition

0 ... * Condition
Condition Element

Simple
Condition

< mySimpleCondition >
< \mySimpleCondition >

New simple condi-
tion

1 ... 1 Condition
Element

Logical
Connector

< myLogicalConnector >
< \myLogicalConnector >

Add a logical con-
nector between sim-
ple condition and
other simple con-
ditions or between
condition elements

1 ... 1 Condition
Element

Conclusion < myConclusionRule >
< \myConclusionRule >

New conclusion 1 ... 1 Rule

Optional
Conclusion

< myOptionalConclusion >
< \myOptionalConclusion >

New optional con-
clusion

1 .. * Conclusion

Alternative
Conclusion

< myAlternativeConclusion >
< \myAlternativeConclusion >

New alternative
conclusion

1 ... * Conclusion

Configuration
Content

< myConf igurationContent >
< \myConf igurationContent >

New configuration
content

1 ... 1 Decision Model

Context
Element

< myContentContextElement >
< \myContentContextElement >

New context ele-
ment

0 ... 1 Configuration
Content

Context
Attribute

< myContextAttribute >
< \myContextAttribute >

New context at-
tribute

1 ... 0 Context Element

Context
Attribute
Value

< myAttributeV alue >
< \myAttributeV alue >

New context value 1 ... * Context Attribute

Variability
Point
Elements

< myV ariabilityPointElements >
< \myV ariabilityPointElements >

New variability
point elements

0 ... 1 Configuration
Content

Optional
Point

< myOptionalElement >
< \myOptionalElement >

List of optional
points

1 ... * Variability Point
Elements

Alternative
Point

< myAlternativeElement >
< \myAlternativeElement >

List of alternative
points

1 ... * Variability Point
Elements

Alternative < myAlternatives >
< \myAlternatives >

List of alternatives 1 ... * Alternative Point

69



A textual representation of the DL for defining tailoring rules is presented in listing 4.1.
The textual representation of the DL considers three kinds of sentences: (1) Constructs (black
in listing 4.1), (2) Attributes (blue in listing 4.1) and Attribute Values (red in listing 4.1).

Listing 4.1: Concrete syntax: Textual representation of the DSL.
1 //Concrete Syntax o f the DL
2 <DecisionModel>
3 // Conf igurat ion Content : Context Elments and Va r i a b i l i t y Points
4 <myConfigurationContent xmi : id="myConfCont">
5 //Context Elements and i t s va lues
6 <myContentContextElements xmi : id="myContConteEle">
7 <myContextAttribute name="Pro j ec t Type" xmi : id="Pro j ec t Type">
8 <myContextAttributeValue name="New Pro j ec t " xmi : id="New Pro j ec t "/>
9 <myContextAttributeValue name="Maintenance" xmi : id="Maintenance"/>
10 </myContextAttribute>
11 <myContextAttribute name="Team Size " xmi : id="Team Size ">
12 <myContextAttributeValue name="Small " xmi : id="Small "/>
13 <myContextAttributeValue name="Medium" xmi : id="Medium"/>
14 <myContextAttributeValue name="Large" xmi : id="Large"/>
15 </myContextAttribute>
16 <myContextAttribute name="Pro j ec t Duration" xmi : id="Pro j ec t Duration">
17 <myContextAttributeValue name="Small " xmi : id="Small "/>
18 <myContextAttributeValue name="Medium" xmi : id="Medium"/>
19 <myContextAttributeValue name="Large" xmi : id="Large"/>
20 </myContextAttribute>
21 </myContentContextElements>
22 //Optional and a l t e r n a t i v e po in t s
23 <myVariabi l i tyPointElements xmi : id="_gXraUPgVEeKIEco4bOm3fg">
24 <myOptionalElement name="Requirements " xmi : id="Requirements "/>
25 <myOptionalElement name="Use Cases " xmi : id="Use Cases "/>
26 <myOptionalElement name="Design" xmi : id="Design"/>
27 <myAlternativeElement xmi : id=" Es tab l i sh Requirements Base l ine " name="Estab l i sh Requirements

Base l ine ">
28 <myAlternat ives xmi : id=" Es tab l i sh Requirements Base l ine without Test Cases " name="Estab l i sh

Requirements Base l ine without Test Cases "/>
29 <myAlternat ives xmi : id=" Es tab l i sh Requirements Base l ine and Test Cases " name="Estab l i sh

Requirements Base l ine and Test Cases "/>
30 </myAlternativeElement>
31 </myVariabi l i tyPointElements>
32 </myConfigurationContent>
33
34 // Conf igurat ion Rules : Rules and i t s c ond i t i on s
35 <myConfigurationRule>
36 //Rule 1 with opt i ona l conc lu s i on
37 <myRule>
38 <myConditionsRule>
39 <myConditionsElements>
40 <myConditionSimple myAttribute="Pro j ec t Type" myAttributeValue="Maintenance"/>
41 </myConditionsElements>
42 </myConditionsRule>
43 <myConclusionRule>
44 <myOptionalConclusion myVariabi l i tyElement="Requirements " myVariabi l i tyValue=" f a l s e "/>
45 </myConclusionRule>
46 </myRule>
47 //Rule 2 with a l t e r n a t i v e conc lu s i on
48 <myRule>
49 <myConditionsRule>
50 <myConditionsElements>
51 <myConditionSimple myAttribute="Team Size " myAttributeValue="Small "/>
52 </myConditionsElements>
53 <myConditionsElements>
54 <myLogicalConnector l o g i c a lVa lu e="or "/>
55 </myConditionsElements>
56 <myConditionsElements>
57 <myConditionSimple myAttribute="Pro j ec t Duration" myAttributeValue="Small "/>
58 </myConditionsElements>
59 </myConditionsRule>
60 <myConclusionRule>
61 <myAlternat iveConclus ion myVariabi l i tyElement=" Es tab l i sh Requirements Base l ine "

myVariabi l i tyValue=" Es tab l i sh Requirements Base l ine without Test Cases "/>
62 </myConclusionRule>
63 </myRule>
64 </myConfigurationRule>
65 </DecisionModel>

The concrete syntax of the DL for defining tailoring rules considers the abstract syntax
to specify myConfigurationContent (context elements and variability points) and myConfig-
urationRules (rules, conditions and conclusions).

70



4.4 Using the Decision Language

In Chapter 3, we defined a running example to illustrate the MDE-based tailoring strategy.
The running example considers part of Rhiscom’s software process and describes decisions for
four variable process elements. Two decisions are defined for removing two optional process
elements: Design and Requirements ; and two other decisions are defined for replacing two
alternative process elements: Specify requirements and Establish requirements baseline.

We use our decision language (DL) for specifying these rules as a Variation Decision Model
(VDM). The VDM is a model that is defined using our DL. In this sense, we need to apply
two steps: (1) Identify the domain concepts of tailoring decision, (2) Define a VDM using
the DL.

4.4.1 Identifying the domain concepts

Rhiscom defined tailoring decisions in natural language. In this sense, we need to identify
and specify the domain concepts of these tailoring decisions.

Decision 1: "if project type is maintenance-adaptation and project duration is small, then
remove Requirements activity".

This tailoring rule is in natural language and its specification in terms of domain concepts is
the following:

Variable element:
Optional : Requirements activity
Rule:
Condition: project type is maintenance-adaptation
Logical predicate: and
Condition: project duration is small
Conclusion: Remove requirements
Context:
Context attribute: project type
Context attribute value: maintenance-adaptation
Context attribute: project duration
Context attribute value: small

Decision 2: "if project type is maintenance-correction and project duration is small, then
remove Design activity".

Now the specification in terms of domain concepts is the following:

Variable element:
Optional : Design activity
Rule:

71



Condition: project type is maintenance-correction
Logical predicate: and
Condition: project duration is small
Conclusion: Remove design
Context:
Context attribute: project type
Context attribute value: maintenance-correction
Context attribute: project duration
Context attribute value: small

Decision 3: "if (project type is incidents or project type is maintenance-enhancement) and
business knowledge is known, then replace Specify requirements by Specify requirements in

plain text".

The specification in terms of domain concepts is the following:

Variable element:
Alternative: Specify requirements
Rule:
Condition: project type is incidents or project type is maintenance-enhancement
Logical predicate: and
Condition: business knowledge is known
Conclusion: Replace specify requirements by specify requirements in plain text
Context:
Context attribute: project type
Context attribute value: incidents
Context attribute: project type
Context attribute value: maintenance-enhancement
Context attribute: business knowledge
Context attribute value: known

Decision 4: "if project type is new development and project duration is medium and
business knowledge is unknown, then replace Establish requirements baseline by Establish

requirements baseline and test cases".

The specification in terms of domain concepts is the following:

Variable element:
Alternative: Establish requirements baseline
Rule:
Condition: project type is new development
Logical predicate: and
Condition: project duration is medium
Logical predicate: and
Condition: business knowledge is unknown
Conclusion: Replace Establish requirements baseline by Establish requirements baseline and

72



test cases
Context:
Context attribute: project type
Context attribute value: new development
Context attribute: project duration
Context attribute value: medium
Context attribute: business knowledge
Context attribute value: unknown

4.4.2 Defining a VDM using the DL

We have identified the domain concepts for each decision. Then, we need to define a VDM.
Listing 4.2 shows Rhiscom’s VDM that is defined using our DL and its concrete syntax.

Listing 4.2: Rhiscom’s VDM using textual representation of the DL.
1 //Concrete Syntax o f the DL
2 <DecisionModel>
3 // Conf igurat ion Content : Context Elments and Va r i a b i l i t y Points
4 <myConfigurationContent xmi : id="myConfCont">
5 //Context Elements and i t s va lues
6 <myContentContextElements xmi : id="myContConteEle">
7 <myContextAttribute name="Pro j ec t Type" xmi : id="Pro j ec t type">
8 <myContextAttributeValue name="New Pro j ec t " xmi : id="New development"/>
9 <myContextAttributeValue name="Maintenance" xmi : id="Maintenance−adaptat ion "/>
10 <myContextAttributeValue name="Maintenance" xmi : id="Maintenance−c o r r e c t i o n "/>
11 <myContextAttributeValue name="Maintenance" xmi : id="Maintenance−enhancement"/>
12 <myContextAttributeValue name="Maintenance" xmi : id=" Inc i d en t s "/>
13 </myContextAttribute>
14 <myContextAttribute name="Team Size " xmi : id="Pro j ec t durat ion ">
15 <myContextAttributeValue name="Small " xmi : id="Small "/>
16 <myContextAttributeValue name="Medium" xmi : id="Medium"/>
17 <myContextAttributeValue name="Large" xmi : id="Large"/>
18 </myContextAttribute>
19 <myContextAttribute name="Pro j ec t Duration" xmi : id="Bus iness knowledge">
20 <myContextAttributeValue name="Small " xmi : id="Known"/>
21 <myContextAttributeValue name="Medium" xmi : id="Af fo rdab le "/>
22 <myContextAttributeValue name="Large" xmi : id="Unknown"/>
23 </myContextAttribute>
24 </myContentContextElements>
25 //Optional and a l t e r n a t i v e po in t s
26 <myVariabi l i tyPointElements xmi : id="_gXraUPgVEeKIEco4bOm3fg">
27 <myOptionalElement name="Requirements " xmi : id="Requirements "/>
28 <myOptionalElement name="Design" xmi : id="Design"/>
29
30 <myAlternativeElement name=" Spec i f y Requirements " xmi : id=" Spec i f y Requirements "/>
31 <myAlternat ives xmi : id=" Spec i f y Requirements in p l a in text " name=" Spec i f y Requirements in p l a in text "/>
32 <myAlternat ives xmi : id=" Spec i f y Requirements in use ca s e s " name=" Spec i f y Requirements in use ca s e s "/>
33 </myAlternativeElement>
34 <myAlternativeElement xmi : id=" Es tab l i sh Requirements Base l ine " name="Estab l i sh Requirements Base l ine ">
35 <myAlternat ives xmi : id=" Es tab l i sh Requirements Base l ine without Test Cases " name="Estab l i sh Requirements

Base l ine without Test Cases "/>
36 <myAlternat ives xmi : id=" Es tab l i sh Requirements Base l ine and Test Cases " name="Estab l i sh Requirements

Base l ine and Test Cases "/>
37 </myAlternativeElement>
38 </myVariabi l i tyPointElements>
39 </myConfigurationContent>
40
41 // Conf igurat ion Rules : Rules and i t s c ond i t i on s
42 <myConfigurationRule>
43 //Rule 1 with opt i ona l conc lu s i on
44 <myRule>
45 <myConditionsRule>
46 <myConditionsElements>
47 <myConditionSimple myAttribute="Pro j ec t type" myAttributeValue="Maintenance−adaptat ion "/>
48 <myConditionsElements>
49 <myLogicalConnector l o g i c a lVa lu e="or "/>
50 </myConditionsElements>
51 <myConditionsElements>
52 <myConditionSimple myAttribute="Pro j ec t durat ion " myAttributeValue="Small "/>
53 <myConditionsElements>
54 </myConditionsRule>
55 <myConclusionRule>
56 <myOptionalConclusion myVariabi l i tyElement="Requirements " myVariabi l i tyValue=" f a l s e "/>
57 </myConclusionRule>
58 </myRule>
59 //Rule 2 with opt i ona l conc lu s i on

73



60 <myRule>
61 <myConditionsRule>
62 <myConditionsElements>
63 <myConditionSimple myAttribute="Pro j ec t type" myAttributeValue="Maintenance−c o r r e c t i o n "/>
64 </myConditionsElements>
65 <myConditionsElements>
66 <myLogicalConnector l o g i c a lVa lu e="and"/>
67 </myConditionsElements>
68 <myConditionsElements>
69 <myConditionSimple myAttribute="Pro j ec t Duration" myAttributeValue="Small "/>
70 </myConditionsElements>
71 </myConditionsRule>
72 <myConclusionRule>
73 <myOptionalConclusion myVariabi l i tyElement="Design" myVariabi l i tyValue=" f a l s e "/>
74 </myConclusionRule>
75 </myRule>
76 //Rule 3 with a l t e r n a t i v e conc lu s i on
77 <myRule>
78 <myConditionsRule>
79 <myConditionsElements>
80 <myConditionSimple myAttribute="Pro j ec t type" myAttributeValue=" i n c i d en t s "/>
81 </myConditionsElements>
82 <myConditionsElements>
83 <myLogicalConnector l o g i c a lVa lu e="or "/>
84 </myConditionsElements>
85 <myConditionsElements>
86 <myConditionSimple myAttribute="Pro j ec t type" myAttributeValue="Maintenance−enhancement"/>
87 <myConditionsElements>
88 <myLogicalConnector l o g i c a lVa lu e="and"/>
89 </myConditionsElements>
90 <myConditionSimple myAttribute="Bus iness knowledge" myAttributeValue="known"/>
91 </myConditionsElements>
92 </myConditionsRule>
93 <myConclusionRule>
94 <myAlternat iveConclus ion myVariabi l i tyElement=" Spec i f y Requirements " myVariabi l i tyValue=" Spec i f y

Requirements in p l a in text "/>
95 </myConclusionRule>
96 </myRule>
97 //Rule 4 with a l t e r n a t i v e conc lu s i on
98 <myRule>
99 <myConditionsRule>
100 <myConditionsElements>
101 <myConditionSimple myAttribute="Pro j ec t type" myAttributeValue="New development"/>
102 </myConditionsElements>
103 <myConditionsElements>
104 <myLogicalConnector l o g i c a lVa lu e="and"/>
105 </myConditionsElements>
106 <myConditionsElements>
107 <myConditionSimple myAttribute="Pro j ec t durat ion " myAttributeValue="Medium"/>
108 <myConditionsElements>
109 <myLogicalConnector l o g i c a lVa lu e="and"/>
110 </myConditionsElements>
111 <myConditionSimple myAttribute="Bus iness knowledge" myAttributeValue="Unknown"/>
112 </myConditionsElements>
113 </myConditionsRule>
114 <myConclusionRule>
115 <myAlternat iveConclus ion myVariabi l i tyElement=" Es tab l i sh Requirements Base l ine " myVariabi l i tyValue="

Estab l i sh Requirements Base l ine and Test Cases "/>
116 </myConclusionRule>
117 </myRule>
118 </myConfigurationRule>
119 </DecisionModel>

Rhiscom’s VDM can be shown using Eclipse Modeling Framework (EMF). Figure 4.3
shows a visual representation of Rhiscom’s VDM as defined in listing 4.2. In Rhiscom’s
VDM, we can see context elements, variability points and rules. Context elements include
three context attributes and their values: Project type, project duration and Business knowl-
edge. Variability points includes four software process elements: two optional (Design and
Requirements) and two alternative (Specify Requirements and Establish Requirements Base-
line). Rules includes four tailoring rules with their conditions and conclusions. Finally, in
order to visualize a tailoring rule specification, rule 4 is highlighted to show its conditions
and conclusion in the properties section that provides EMF.

74



Figure 4.3: Rhiscom’s VDM from eclipse modeling framework.

4.5 Graphical Environment for Defining Tailoring Rules

In order to improve the usability of our DL that allow defining a VDM, we developed a
graphical environment for defining tailoring rules. The process engineer uses the graphical
environment to indicate the organizational software process and organizational context that
will be used in the definition of tailoring rules. After that, she/he can define tailoring rules
for each variable software process element.

The graphical environment has three steps: (1) selection of the organizational software
process and organizational context, (2) selection of variable software process elements, and
(3) definition of tailoring rules using our DL that is supported by a user interface.

In the first step, the process engineer uses an interface to select the organizational software
process with variability that is exported from EPF as XML file, and the organizational context
that is generated from context modeling tool as XML file. Figure 4.4 shows a user interface for
selecting the organizational software process with variability and the organizational context
of Rhiscom software company. Moreover, the organizational software process is transformed
in the organizational software process model as XMI file using our Injector (see Chapter 2)

75



Figure 4.4: Selection of the organizational software process with variability and the organi-
zational context.

Figure 4.5: Selection of variable software process elements.

that can be used for MDE-based software process tailoring.

In the second step, the user interface presents a set of variable software process elements
that can be selected from the organizational software process. The variable process elements
can be either optional or alternative. Then, the process engineer uses the graphical environ-
ment to indicate which variable process element is selected for defining its tailoring rules.
Figure 4.5 shows two optional variation points for Rhiscom’s software process: Requirements
and Design, and also two alternative variation points: Specify Requirements and Establish
Requirements Baseline. If the user selects a variation point (e.g., Requirements) and clicks
on the “Create Rule” button, she/he can define the rules that will be used to tailor the or-
ganizational process in such a point, depending on the values of the context attributes of a
specific project.

76



Figure 4.6: User interface for defining tailoring rules.

In the third step, the process engineer interactively defines the relationships between the
context attribute values and the variable process elements. The graphical interface supports
the DL for defining tailoring rules and allows specifying a VDM. Figure 4.6 shows a tailoring
rule definition using our DL and the graphical environment. The process engineer defines
that the Requirements activity should be removed when the Project Type is Maintenance-
adaptation and, Project Duration is Small. This decision is part of the adaptation rules
defined by Rhiscom for its organizational software process.

Finally, the graphical environment generates a formal specification of the tailoring rules
as a VDM using our DL. The models generated from our graphical environment can be
imported into EMF. Moreover, the main purpose of building a graphical environment is to
aid the process engineer in using our DL without interacting with the concrete syntax.

4.6 Related Work

Proposals trying to address MDE solutions in general should balance the formality required
by MDE and the usability needed for final users, if the solution is intended for industrial appli-
cations. As mentioned before, proposals like Model Transformation Language (MOLA) [77]
and Graph Rewriting and Transformation (GREaT) [4] allow specifying transformation rules
through visual mapping patterns, that allow establishing relationships between metamodel
attributes and elements from the source and target models. In these language the users need
to directly interact with metamodels and class diagrams, which reduces the usability and
adoption of these representations (at least for these end-users). therefore, users without the

77



required experience become unable to write or maintain the code of the transformations.

Varró and Balogh propose the Visual Automated Model Transformations (VIATRA)
framework [162] that provides a rule editor (in textual format) for specifying patterns. This
tool is supported by Eclipse, but it has the same usability limitations as the previous tools,
since VIATRA does not have a graphical environment for defining rules and establishing its
own syntax for defining and executing the resulting transformations.

Other option is AToMPM (A Tool for Multi-Paradigm Modeling) [153] that is a Web-based
metamodeling and transformation tool for multi-paradigm modeling. It allows defining DSLs
through an interactive interface for defining its abstract syntax. It also provides support for
rule definition and scheduling using graph transformation rules. In this sense their approach
is similar to the one proposed in this thesis. However, in AToMPM rules still need to be
specified using a custom language, and they only support simple conditions.

Some researchers have developed domain-specific languages as well as tools that support
the rule specification; for instance, Jia et al. [70] developed ZOOM, a platform for its own
DSL that allows textual specification of rules, and whose main advantage is the possibility of
inserting pre and post-conditions for analysis purposes. Sijtema [140] proposes an extension
to the Atlas Transformation Language (ATL), which is based on feature models and requires
the specification of the so-called variability rules. In this approach, the variability rules are
transformed into standard ATL code, i.e., variability is translated to called rules in ATL
using a HOT. Although the proposal raises the abstraction level, the process engineer still
needs to understand the ATL extension and interact with the source code.

4.7 Summary and Discussion

The literature reports DSLs for defining transformation rules in different abstraction levels,
using semi-automatic generators and visual tools. This review provided a basis and useful
ideas for implementing and developing a DSL for defining transformation rules in the software
process domain.

To that end, we conceptualized the process tailoring rules in terms of domain concepts
and the developed decision language (DL) for defining tailoring rules. The domain concepts
are a set of keywords that software process engineers use for specifying tailoring rules.

By keeping in mind the goal of reducing the skills required to define tailoring rules, we
developed a graphical user interface that allows software process engineer to use the DL for
building decision models. In this sense, the DL allows users to generate a variation decision
model (VDM) that is a formal representation of tailoring rules as a model (i.e., a VDM
that conforms to VDMM). This interface allows the users to define tailoring rules for each
variation point of the organizational software process to be tailored without interacting with
the concrete syntax of the DL.

This activity involves two steps: the definition of tailoring rules and the automatic gen-
eration of the decision model (VDM). Concerning the first one, the tool guides the users

78



presenting process elements defined as variables, and allows them to specify a rule (either
simple or complex) for each variation point. The tool also counts on a menu where the
context attributes and their potential values can be selected, not requiring any typing. The
second step is done without the user intervention.

The proposed graphical user interface allows conducting a more usable, useful and less
error-prone procedure for defining tailoring rules. So far, we have not found any tailoring rule
that could not be specified using the proposed DL, raising our confidence about its expres-
siveness for this application domain. However, more practical experimentation is required to
have conclusive evidence.

79



Chapter 5

Tailoring Transformation Generation

This chapter presents a higher-order transformation (HOT) and an ATL extractor for gen-
erating tailoring transformations. The HOT is a model-to-model transformation that takes
the variation decision model as input and generates a transformation model as output. The
ATL extractor is a model-to-text transformation that takes a transformation model and gen-
erates a tailoring transformation. The tailoring transformation is generated in an automatic
manner and it can be used to perform software process tailoring.

Section 5.1 introduces a motivation for generating tailoring transformations. Section 5.2
shows an overview of higher-order transformations. Section 5.3 defines the higher-order trans-
formation for generating transformation models. Section 5.4 presents the ATL extractor for
generating transformation code from a transformation model. Section 5.5 illustrates the use
of the higher-order transformation and ATL extractor using an example. Section 5.6 presents
a tool for the configuration and execution of higher-order transformation and ATL extractor.
Finally, section 5.7 discusses the related work concerning transformation generation.

5.1 Motivation

In the MDE-based tailoring approach proposed by Hurtado et al. [65], a tailoring transfor-
mation is usually programmed in ATL, and it is supported by tools developed in Eclipse,
which support the use of model transformations. However, programming transformations are
complex themselves because expertise is required for describing transformation rules, and for
mastering transformation languages.

In Chapter 2, we presented the tailoring transformation that was manually implemented
in ATL. Writing tailoring transformations is not an easy task because the process engineer
needs to know about the transformation language. Actually, there are some proposals for
automatically generating part of the transformations, but they are not easily applicable in
the software industry because the potential users usually do not have the skills for developing
or maintaining the non-automatically generated part of the transformations.

80



Provided that transformations can also be considered as models [12], HOTs [156] are
special kind of transformations that takes a transformation as input and/or generates a
transformation as output. In particular, Atlas Model Weaver (AMW) [36] is a proposal
that uses HOTs for generating transformation models using a weaving model that defines the
relationships between two models. We follow the structure of the AMW for our solution [142]:
defining the relationship between both, input models and the output model, using the DSL
defined in the previous chapter and also this model as the input for a HOT to generate a
transformation model.

According to Mens et al. [98], the transformation models can range from abstract analysis
models over more concrete design models, to very concrete models of source code. In this
sense, transformation models involve a kind of ability to reuse, guarantee correctness, and
compose and verify the transformations that allow dealing with complete or consistent mod-
els. Moreover, transformation models may be transformed into other models until the model
can be made executable using a code generator [170]. In particular, the target model of a
transformation can be a transformation itself, possibly defined in a different transformation
language, such as ATL, QVT or XSLT.

In order to establish a bridge between technical spaces, AMW tool considers a pluggable
architecture for enabling an integration of weaving models and ATL transformations. In this
sense, AMW tool provides injectors and extractors for generating ATL transformations.

We propose a HOT and an ATL extractor for automatically generating tailoring trans-
formations. The HOT has one input model (the VDM), and generates the tailoring trans-
formation model that conforms to the ATL metamodel. The ATL extractor generates the
tailoring transformation from the tailoring transformation model.

5.2 An Overview of Higher-Order Transformation

Generators and transformations allow for the synthesis of different artifacts, such as source
code or alternative model representations, and also the transformation of different models
with the possibility of ensuring consistency. Transformations and generators can be grouped
using different criteria, for example, depending on whether they are imperative or declarative,
how many input and output models are involved, if they are horizontal or vertical, whether
they directly manipulate a model, if they are described via algebraic relations, are graph-
based or use a hybrid approach [32, 98].

These transformation manipulations can be implemented by means of several MDE tech-
nologies, like program transformations [156] or multi-paradigm modeling [153]. The MDE
paradigm allows the use of the same transformation infrastructure also for transformation
manipulation, by considering model transformations as a particular kind of model. The
transformation is represented by a transformation model that conforms to a transformation
metamodel. Just as any other model, it can be created, modified, and augmented by a
transformation. Moreover, a transformation model can itself be instantiated or modified by
a so-called Higher-Order Transformation [156].

81



Figure 5.1: An overview of tailoring transformation generation.

HOTs are transformations that take a model as input and generate a transformation as
output. They are transformations for modifying/reading/creating model transformations.
In the HOT approach transformations must be treated as models conforming to a relevant
metamodel. Although the HOT idea can be applied to any transformation language, the
most proposed HOTs have been created for the ATL language [156]. A specific use-case for
HOTs is the translation of models, where HOTs are developed to translate model elements
from a particular model to other models or transformations.

5.3 Higher-Order Transformation for Generating Trans-
formation Models

Considering transformations and generator goals, we propose the automatic generation of a
tailoring transformation using both a HOT and an extractor. Figure 5.1 shows the structure
of our proposed solution for tailoring transformation generation using a HOT and an ATL
code extractor. The HOT takes the tailoring rules as a VDM that conforms to VDMM,
and it generates a transformation model that conforms to ATL metamodel. The ATL code
extractor takes the transformation model and generates tailoring transformation code. This
tailoring transformation generation as a whole produces ATL code that can then be used for
software process tailoring.

82



Figure 5.2: A HOT for generating tailoring transformations.

Next we describe the HOT in two steps: 1) implementation of the HOT, and 2) benefits
and drawbacks of the HOT.

5.3.1 Implementation

Our HOT implements a transformation synthesis pattern for generating a transformation
model using a model-to-model transformation. Transformation synthesis is the common
pattern for HOTs that generates transformations from different information sources [156].
These HOTs are defined by two conditions: 1) the output model is a transformation and 2)
the input model is not a transformation.

Our HOT is also an exogenous transformation because its input and output models are
expressed using different languages (decision and transformation models, respectively). Fig-
ure 5.2 shows the structure of HOT for generating tailoring transformations. The HOT is
implemented in ATL and it is called VDM2ATL, since this transformation takes a variation
decision model (VDM) as input and generates a transformation model as output. The VDM,
that conforms to the variation decision metamodel (VDMM), is a formal specification of
the tailoring rules. The transformation model that conforms to ATL metamodel is a formal
specification of a transformation.

VDM2ATL is a transformation that uses ATL constructs for generating a transformation
model. As mentioned before, the transformation model is a module that is divided into a
header and a body section. VDM2ATL implements the header section as a set of matched
rules, and the body section as a set of matched and called rules.

The header section declares the name and the source and target models of the trans-
formation model. Listing 5.1 shows matched rules for defining the header section of the
transformation model. This part of the HOT implements a module as ATLMeta!Module
(line 8 in listing 5.1). ATLMeta!Module is an ATL construct that has attributes (that allow
declaring a transformation name) as well as its source and target models. The transfor-

83



mation name is "TailoringTransformation" (name <- ’TailoringTransformation’), the input
models are a software process model (inModels <- inputModels_spem) and a context model
(inModels <- inputModels_scpm), and the output model is adapted software process model
(outModels <- outputModels_spem). The transformation needs other ATL constructs, as
Object Constraint Language (OCL) 1 for implementing expressions. For example inModels
(line 15 in listing 5.1) requires ATLMeta!OclModel for defining a model’s name and model’s
metamodel. Finally, the header section declares the rest of the rules that will be executed
for generating the rest of the transformation model. The complete header section of the
VDM2ATL is presented in Annex A, Section A.1 (see Listing A.1).

Listing 5.1: Excerpt of the HOT for Generating the Header Section
1 module VDM2ATL;
2 c r ea t e OUT : ATLMeta from IN : VDMM;
3
4 ru l e Module {
5 from
6 vdm : VDMM! Decis ionModel
7 to
8 a t l : ATLMeta !Module (
9 i sRe f i n i n g <− false ,
10 name <− ’ Ta i lo r ingTrans format ion ’ ,
11 outModels <− outputModels_spem ,
12 inModels <− inputModels_spem ,
13 inModels <− inputModels_spcm
14 ) ,
15 outputModels_spem :ATLMeta ! OclModel (
16 name <− ’OUT’ ,
17 metamodel<− outputMetamodel_spem
18 ) ,
19 outputMetamodel_spem :ATLMeta ! OclModel (
20 name <− ’MM2’
21 ) ,
22 inputModels_spem : ATLMeta ! OclModel (
23 name <− ’ IN ’ ,
24 metamodel <−inputMetamodel_spem
25 ) ,
26 inputMetamodel_spem :ATLMeta ! OclModel (
27 name <− ’MM’
28 ) ,
29 inputModels_spcm : ATLMeta ! OclModel (
30 name <− ’ IN1 ’ ,
31 metamodel <−inputMetamodel_spcm
32 ) ,
33 inputMetamodel_spcm :ATLMeta ! OclModel (
34 name <− ’MM1’
35 )
36 . . .
37 }

Figure 5.3 shows the header section that is generated from Listing 5.1. The header sec-
tion is part of the transformation model that conforms to ATL metamodel and it can be
visualized in Eclipse Modeling Framework (EMF). The header section declares the source
and target models, which are typed by their metamodels. In our case, the source models
are the organizational software process model (IN) that conforms to eSPEM (MM), and the
organizational context model (IN1) that conforms to SPCM (MM1). The target model is the
adapted software process model (OUT) that conforms to eSPEM (MM2).

The body section declares rules and helpers of the transformation model. Rules are
matched rules for describing the transformation from a source model to a target model
by relating metamodels. Helpers can be used to define (global) variables and functions, and
they are OCL expressions. Helpers can call each other (recursion is possible) or they can be
called from within rules.

Listing 5.2 shows matched rules for defining rules of the transformation model. This
part of the HOT implements matched rules as ATLMeta!MatchedRule (line 4 in listing 5.2).

1OCL website: http://www.omg.org/spec/OCL/

84



Figure 5.3: Header of the transformation model generated from the VDM2ATL.

ATLMeta!MatchedRule is an ATL construct that also allows declaring attribute rules, source
pattern and target pattern. A source pattern consists of the keyword inPattern that defines a
variable declaration and optionally a filter. A filter is an OCL expression restricting the rule
to elements of the source model that satisfy certain constraints. A target pattern consists
of the keyword outPattern that declares to which element(s) of the target model the source
pattern has to be transformed. A target pattern element consists of a variable declaration
(or more precisely the declaration of the target pattern variable) and a sequence of bindings
(assignments). These patterns are defined as ATLMeta!InPattern (line 13 in listing 5.2) and
ATLMeta!OutPattern (line 25 in listing 5.2), respectively.

ATLMeta!InPattern and ATLMeta!OutPattern require other ATL constructs for defining
their elements as varName, type and bindings. The varName is "mpp" (varName <- ’mpp’),
the type is an OCL expression (type <- outOclType) and the binding is an expression in
terms of source or target binding (bindings <- bindingMethodPluginOutElement_name).
The complete matched rules section of the VDM2ATL is presented in Annex A, Section A.2
(see Listing A.2).

Listing 5.2: Excerpt of the HOT for Generating Matched Rules
1 ru l e createMethodPlugin (vdm : VDM! Decis ionModel ) {
2 to
3 −− InPattern y outPattern
4 methodPluginRule : ATLMeta ! MatchedRule (
5 name <− ’ methodPlugin ’ ,
6 i sAbs t r a c t <− false ,
7 i sRe f i n i n g <− false ,
8 module <− thisModule . resolveTemp (vdm, ’ a t l ’ ) ,
9 inPattern <− methodPluginInPattern ,
10 outPattern <− methodPluginOutPattern
11 ) ,
12 −− From Sect ion
13 methodPluginInPattern : ATLMeta ! InPattern (
14 elements <− Set {methodPluginInElement}
15 ) ,
16 methodPluginInElement : ATLMeta ! SimpleInPatternElement (
17 varName <− ’mp ’ ,
18 type <− inOclType
19 ) ,
20 inOclType : ATLMeta ! OclModelElement (
21 name <− ’ MethodPlugin ’ ,
22 model <− thisModule . resolveTemp (vdm, ’ inputMetamodel_spem ’ )
23 ) ,
24 −− To Sect ion
25 methodPluginOutPattern : ATLMeta ! OutPattern (
26 elements <− Set {methodPluginOutElement}
27 ) ,
28 methodPluginOutElement : ATLMeta ! SimpleOutPatternElement (
29 varName <− ’mpp ’ ,
30 type <− outOclType ,
31 bind ings <− bindingsMethodPluginOutElement_name ,
32 bind ings <− bindingsMethodPluginOutElemen_description ,
33 bind ings <− bindingsMethodPluginOutElemen_ownedProcessPackage ,
34 bind ings <− bindingsMethodPluginOutElemen_ownedMethodContentPackage
35 ) ,
36 outOclType : ATLMeta ! OclModelElement (
37 name <− ’ MethodPlugin ’ ,
38 model <− thisModule . resolveTemp (vdm, ’ outputMetamodel_spem ’ )
39 ) ,
40 . . .

85



Figure 5.4 shows matched rules section that is generated from Listing 5.2. The matched
rules section is part of the transformation model that conforms to ATL metamodel, and it can
be visualized in EMF. The matched rules section declares rules that establish the matching
between the source and target models. In our case, we need matching rules for mapping the
organizational software process model and the adapted software process model elements; for
example: rule main, rule methodplugin and rule methodconfiguration.

Figure 5.4: Mached rules of the transformation model generated from the VDM2ATL.

Listing 5.3 shows matched and called rules for defining helpers of the transformation
model. This part of the HOT implements called rules as ATLMeta!Helper (line 3 in list-
ing 5.3). ATLMeta!Helper is an ATL construct that allows declaring helpers and this
definition. ATLMeta!Helper is defined in terms of other ATL constructors as operations,
parameters, model elements, expressions and others attributes. ATLMeta!Helper has two
attributes: module and definition. Module is an expression for referencing an ATL element
that is defined by another rule. Definition is a helper’s feature definition in terms of an OCL
expression. These attributes are defined as keywords resolveTemp (line 4 in listing 5.3) and
ATLMeta!OclFeatureDefinition (line 7 in listing 5.3), respectively.

ATLMeta!Operation is the helper definition that requires other ATL constructs for defin-
ing its elements: name, parameters, return type and body. The name element is a string
that is "getContextAttributeConfiguration" (name <- ’getContextAttributeConfiguration’),
the parameter element is an input operation in terms of an ATL type (parameter <- param-
eterOperation), the return type element is a return operation in terms of an ATL type or an
OCL expression (returnType <- returnTypeOperation) and the body element is an expression
in terms of another operation that includes iterations, variables and other expressions (body
<- bodyOperation). These helper’s elements are defined as ATLMeta!Operation (line 12 - 17
in listing 5.3), ATLMeta!Parameter (line 19 - 22 in listing 5.3), ATLMeta!OclModelElements
(line 24 - 27 in listing 5.3) and ATLMeta!CollectionOperationCallExp (line 32 - 35 in list-
ing 5.3), respectively. The complete matched and called rules sections for defining helpers of

86



the VDM2ATL is presented in Annex A, Section A.3 (see Listing A.3).

Listing 5.3: Excerpt of the HOT for Generating Helpers
1 ru l e he lpe rge tContextAtt r ibuteCon f i gurat i on (vdm : VDMM! Decis ionModel ) {
2 to
3 getContextAttr ibuteHelper : ATLMeta ! Helper (
4 module <− thisModule . resolveTemp (vdm, ’ a t l ’ ) ,
5 d e f i n i t i o n <−d e f i n i t i o nHe l p e r
6 ) ,
7 d e f i n i t i o nHe l p e r :ATLMeta ! Oc lFeatureDe f in i t i on (
8 f e a tu r e <− f e a tu r eOc lFea tu r eDe f i n i t i on
9
10 ) ,
11
12 f e a tu r eOc lFea tu r eDe f i n i t i on : ATLMeta ! Operation (
13 name <− ’ ge tContextAttr ibuteConf igurat ion ’ ,
14 parameters<−parameterOperation ,
15 returnType<−returnTypeOperation ,
16 body<−bodyOperation
17 ) ,
18
19 parameterOperation : ATLMeta ! Parameter (
20 varName <− ’ nameAttribute ’ ,
21 type<−typeParameter
22 ) ,
23
24 returnTypeOperation :ATLMeta ! OclModelElement (
25 name<− ’ ContextAttr ibuteConf igurat ion ’ ,
26 model<−thisModule . resolveTemp (vdm, ’ inputMetamodel_spcm ’ )
27 ) ,
28
29 typeParameter :ATLMeta ! StringType (
30 ) ,
31
32 bodyOperation :ATLMeta ! Col l ect ionOperat ionCal lExp (
33 operationName <− ’ f i r s t ’ ,
34 source<−sourceCo l l e c t i onOpera t i on
35 ) ,
36 . . .

Figure 5.5 shows the section of matched and called rules generated from Listing 5.3. The
called rules section is part of the transformation model that conforms to ATL metamodel
and it can be visualized in EMF. The called rules section declares rules as called helpers
that describe how to map model elements between the organizational software process model
and the adapted software process model. In our case, we need called rules for describing
the transformation rules that remove or replace software process elements, for instance the
following helpers: getContextAttributeConfiguration, getTaskDefinition, optional rules and
alternative rules.

The HOT is a generic transformation that generates a transformation model. To apply
our HOT, we need to define a VDM and execute the HOT in Eclipse Modeling Tools (EMT)
as an ATL project. Figure 5.6 shows an excerpt of a transformation model that can be
visualized in EMF. The transformation element is automatically generated from the HOT.

The transformation model specifies elements as: ATL modules, matched rules, attributes,
transformation rules and variable declarations. Each element requires a kind of constructor
for defining its structure. For instance, Matched Rule methodPlugin is a transformation
element that requires two constructors:Out Pattern and In Pattern. Figure 5.6a highlights
Matched Rule methodPlugin that is defined from our HOT. Figure 5.6b highlights Out Pattern
that is a constructor of Matched Rule methodPlugin. In both figures we can see a set of
properties that are generated from our HOT.

Finally, the HOT can be used for generating any transformation model from a particular
VDM.

87



Figure 5.5: Matched and called rules of the transformation model generated from the
VDM2ATL.

5.3.2 Benefits and drawbacks of the HOT

Generating the transformation model automatically based on a variation decision model and a
higher-order transformation instead of direct manipulation of code separates the transforma-
tion generation from tailoring rules specification. This separation can achieve high variability
and flexibility in the generation of transformation models because the HOT is generic to any
VDM. The HOT does not get polluted with ATL code that is only responsible for checking
the input model. Moreover, this alleviates the complexity of transformation evolution.

The main benefit of the proposed HOT for this scenario is the generation of transformation
models. In this sense, the transformation model is generated in an automatic manner, and it
is well-formed according to the evaluation results. Additionally, the generated transformation
models are better structured and therefore more understandable.

According to Syriani [152], the verification of well-formed higher-order transformation is
quite limited. In this case, with a correctness and completeness mechanism at the end of the
transformation level, the developer of HOT may test that the target model produced by the
transformation is well-formed in a set of test cases. In our application domain (for software
process tailoring), we can compare the transformation model expected and the transformation
model generated. Moreover, the Eclipse Modeling Tool (EMF) considers a set of tools for
verifying the syntactic correctness when a transformation model is generated. So far, we have
not generated incorrect transformations in practice.

Despite the advantages in simplifying the generation of transformation models with our
HOT, there are also some drawbacks that need to be discussed. First, the execution of
our HOT should be executed in EMF as ATL project. Second, the potential users need
to configure the ATL project for generating a new transformation model using other VDM.

88



(a) Elements and properties of the Matched
Rule methodPlugin.

(b) Elements and properties of the Out pattern
that is part of the Matched Rule methodPlugin.

Figure 5.6: Excerpt of a transformation model generated from our HOT.

Third, the transformation model is saved as ecore in a file format for ATL model encoding.

In order to address the drawbacks, we propose a graphical environment for executing and
configuring the HOT, and an ATL extractor for generating ATL code from an ecore file.
The graphical environment will be presented in section 5.6 and the ATL extractor will be
presented in the next section 5.4.

5.4 ATL Extractor for Generating Transformation Code

In the MDE-based approach, the transformation is implemented in ATL code and it includes
tailoring transformation rules for software process tailoring.

After applying our HOT, we can obtain a transformation model that includes tailoring
rules, and it can be used for generating ATL code using an extractor. Figure 5.7 shows an
extractor that takes a transformation model as input and generates ATL code as output.
This code generation is a vertical transformation because its source and target models are at
different levels of abstraction (model representation and code generation). The extractor is

89



Figure 5.7: Extractor for generating tailoring transformation as ATL code.

called ATL extractor.

The ATL extractor is a plugin developed by AtlanMod MegaModel Management (AM3)
project 2. This extractor takes an ATL model as input and automatically generates ATL code.
The ATL model is generated by our HOT and the ATL code is the tailoring transformation.
Moreover, the ATL extractor can also be executed in EMT.

The tailoring transformation is generated only once, and it can be used for MDE-based
tailoring approach with different project contexts generating a particular software process for
each of them. Listing 5.4 shows an excerpt of ATL code generated by the ATL extractor.

Listing 5.4: Excerpt of the ATL code part of the tailoring transformation
1 module Tai lor ingTrans format ion ;
2 c r ea t e OUT : MM2 from IN : MM, IN1 : MM1;
3
4 he lpe r de f : ge tContextAttr ibuteConf igurat ion ( nameAttribute : String ) : MM1! ContextAttr ibuteConf igurat ion =
5 MM1! ContextAttr ibuteConf igurat ion . a l l I n s t a n c e s ( )−>as Sequence ( )−>s e l e c t ( a |
6 a . myContextElement .name = nameAttribute )−>f i r s t ( ) ;
7
8 he lpe r de f : opt iona lRule (name : String ) : Boolean =
9 i f ( Sequence { ’ Requirements ’ } . i n c l ude s (name ) ) then
10 ( i f ( ’ Requirements ’=name ) then
11 thisModule . ruleOpt1 ( ) )
12 e l s e
13 true
14 end i f ;
15
16 he lpe r de f : ruleOpt1 ( ) : Boolean =i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−adaptat ion ’ and

thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’ Small ’ ) then false
17 e l s e true
18 end i f ;
19
20 ru l e main {
21 from
22 ml : MM! MethodLibrary
23 to
24 mll : MM2! MethodLibrary (
25 name <− ml .name ,
26 de s c r i p t i on <− ml . de s c r ip t i on ,
27 ownedMethodPlugin <− ml . ownedMethodPlugin ,
28 prede f inedCon f i gura t i on <− ml . prede f inedCon f i gura t i on
29 )
30 }
31
32 ru l e methodPlugin {
33 from
34 mp : MM! MethodPlugin
35 to

2AM3 website: https://wiki.eclipse.org/AM3

90



36 mpp : MM2! MethodPlugin (
37 name <− mp.name ,
38 de s c r i p t i on <− mp. de s c r ip t i on ,
39 ownedProcessPackage <− mp. ownedProcessPackage ,
40 ownedMethodContentPackage <− mp. ownedMethodContentPackage
41 )
42 }
43 . . .
44 . . .
45 . . .

5.5 Using the Tailoring Transformation Generation

In Chapter 3, we defined a running example to illustrate the MDE-based tailoring. The
running example considered part of Rhiscom’s software process and showed a tailoring trans-
formation in ATL code. The tailoring transformation implemented two decisions for remov-
ing two optional process elements: Design and Requirements ; and other two decisions for
replacing two alternative process elements: Specify requirements and Establish requirements
baseline.

We use our HOT and ATL extractor for automatically generating this tailoring transfor-
mation. In this sense, we need to apply two steps: (1) generate a transformation model using
the HOT, (2) generate a tailoring transformation using the ATL extractor.

5.5.1 Generating a transformation model using the HOT

The HOT takes the VDM as input for generating the tailoring transformation model. To
that end, the user needs to configure and execute the HOT in EMF. An ATL launch configu-
ration aims to resume all the information that is required to execute an ATL transformation.
Figure 5.8 shows an ATL launch configuration for executing our HOT. This mainly includes
the path of the files involved in the transformation (the transformation file, the input and
output models, the input and output metamodels, the libraries). In this sense, the ATL
launch configuration is the following:

• ATL Module section enables specifying the transformation file. The transformation file
is VDM2ATL.atl
• Metamodels section enables specifying the source and target metamodels. The source

metamodel is the VDMM and its name is variationDecisionMetamodel.ecore. The
target metamodel is the ATLMeta and its name is atl.ecore.
• Source Models section enables specifying the source model that conforms to source

metamodel. The source model is the VDM that conforms to VDMM and its name is
variationDecisionModelRhiscom.xmi
• Target model section enables specifying the target model that conforms to the target

metamodel. The target model is the ATL model that conforms to ATLMeta and its
name is atlTransformationModelRhiscom.ecore

The ATL Module and Metamodels have the same name and path in any case. However,

91



Figure 5.8: ATL configuration in EMF for executing the HOT.

the Source Model can have another name and path because it was generated by the graphical
environment for defining tailoring rules described in Chapter 4. On the other hand, the
Target model can have another path and name but it should have ecore extension that is
compatible with the ATL extractor.

Finally, the Run button executes the HOT and generates the tailoring transformation
model. Figure 5.9 shows the ATL model that is the tailoring transformation model of Rhiscom
software company described in Chapter 3.

5.5.2 Generating a tailoring transformation using the ATL code ex-
tractor

The ATL extractor takes the tailoring transformation model and generates tailoring trans-
formation code. The ATL extractor is a plugin that can be executed in EMF. To that end,

92



Figure 5.9: Tailoring transformation model of Rhiscom.

the user needs to follow the following actions: (1) Select the transformation model in Project
Explorer, (2) Execute the pop up menu of transformation model, and (3) Select the Extract
ATL code from Model. Figure 5.10 shows the execution of the ATL extractor in EMF for
extracting the transformation code from the tailoring transformation model of Rhiscom. To
that end, the user selects atlTransformationModelRhiscom.ecore that is the tailoring trans-
formation model and executes Extract ATL-0.2 model to ATL-0.2 file that generates the
transformation as ATL code. Finally, the ATL extractor automatically generates atlTrans-
formationModelRhiscom.atl that can be used for applying the MDE-based software process
tailoring.

Listing 5.5 shows an excerpt of the tailoring transformation that is generated using the
HOT and the ATL extractor. The complete tailoring transformation as ATL code is presented
in Annex A, Section A.4 (see Listing A.4).

93



Figure 5.10: Extracting the transformation code of Rhiscom.

Listing 5.5: Tailoring transformation generated by the HOT and the ATL extractor
1 module Ta i l o r i ng ;
2 c r ea t e OUT : MM2 from IN : MM, IN1 : MM1;
3
4 he lpe r de f : ge tContextAttr ibuteConf igurat ion ( nameAttribute : String ) :
5 MM1! ContextAttr ibuteConf igurat ion = MM1! ContextAttr ibuteConf igurat ion . a l l I n s t a n c e s ( )−>as Sequence ( )−>s e l e c t (

a | a . myContextElement .name =nameAttribute )−>f i r s t ( ) ;
6
7 he lpe r de f : getValue ( nameAttribute : String ) :
8 String = thisModule . ge tContextAttr ibuteConf igurat ion ( nameAttribute ) . myContextAttributeValue . va lue ;
9
10 he lpe r de f : g e tTaskDe f in i t i on ( taskDef init ionName : String ) : MM! TaskDef in i t i on =
11 MM! TaskDef in i t i on . a l l I n s t a n c e s ( )−>as Sequence ( )−>s e l e c t ( t | t .name = taskDef init ionName )−>f i r s t ( ) ;
12
13 he lpe r de f : nextElement ( a :MM!WorkBreakDownElement ) : MM!WorkBreakDownElement = MM!WorkBreakDownElement .

a l l I n s t a n c e s ( )−>s e l e c t ( t | t=a . next )−>f i r s t ( ) ;
14 he lpe r de f : next ( a :MM!WorkBreakDownElement ) : MM!WorkBreakDownElement = i f ( thisModule . opt iona lRule ( thisModule

. nextElement ( a ) .name ) ) then a e l s e thisModule . next ( thisModule . nextElement ( a ) ) end i f ;
15
16 he lpe r de f : opt iona lRule (name : String ) : Boolean =
17 i f ( Sequence { ’ Requirements ’ , ’ Design ’ ) then (
18 i f ( ’ Design ’= name ) then
19 thisModule . ruleOpt2 ( )
20 e l s e (
21 i f ( ’ Requirements ’= name ) then
22 thisModule . ruleOpt1 ( )
23 e l s e true
24 end i f
25 ) end i f
26 ) e l s e true end i f ;
27
28 he lpe r de f : a l t e rna t i v eRu l e ( tu :MM! TaskUse ) : MM! TaskDef in i t ion =
29 i f ( Sequence { ’ Spec i f y Requirements ’ , ’ E s tab l i sh Requirements Base l ine ’ } . i n c l ude s ( tu .name ) ) then (
30 i f ( ’ E s tab l i sh Requirements Base l ine ’= tu .name ) then
31 thisModule . ru l eA l t2 ( tu )
32 e l s e (
33 i f ( ’ Spec i f y Requirements ’= tu .name ) then
34 thisModule . ru l eA l t1 ( tu )
35 e l s e tu . l inkTask
36 end i f
37 ) end i f
38 ) e l s e tu . l inkTask end i f ;
39
40 he lpe r de f : ruleOpt1 ( ) : Boolean =i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−adaptat ion ’ and

thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’ Small ’ ) then false
41 e l s e true
42 end i f ;
43 . . .
44
45 ru l e main{

94



46 from ml :MM! MethodLibrary
47 to mll :MM2! MethodLibrary (
48 name <− ml .name ,
49 de s c r i p t i on <− ml . de s c r ip t i on ,
50 ownedMethodPlugin<− ml . ownedMethodPlugin ,
51 prede f inedConf igurat ion<−ml . prede f inedCon f i gura t i on
52 )
53 }
54 ru l e methodplugin{
55 from mp:MM! MethodPlugin
56 to mpp:MM2! MethodPlugin (
57 name<− mp.name ,
58 de s c r i p t i on <− mp. de s c r ip t i on ,
59 ownedProcessPackage<− mp. ownedProcessPackage ,
60 ownedMethodContentPackage <− mp. ownedMethodContentPackage
61 )
62 }
63 . . .

5.6 Graphical Environment for Generating Tailoring Trans-
formations

In order to improve the usability of the HOT and ATL extractor, we developed a graphi-
cal environment for generating the tailoring transformation. The process engineer uses the
graphical environment for selecting the VDM and automatically generating the ATL configu-
ration. After that, she/he defines a name for the tailoring transformation and automatically
executes the HOT for generating the tailoring transformation as ATL code.

To that end, we developed an ATL Launcher for configuring and executing ATL trans-
formations. The ATL Launcher uses Java libraries of ATL and Eclipse Modeling Framework
(EMF) that are available in EMT. EMF is a modeling framework and code generation facility
for building tools and other applications based on a structured data model. From a model
specification described in XMI, EMF provides tools and runtime support to produce a set
of Java classes for the model, along with a set of adapter classes that enable viewing and
command-based editing of the model, and a basic editor.

The ATL Launcher can be integrated with a standalone Java project that can be reused to
run ATL model-to-model transformations programmatically. In this sense, we can configure
and execute the HOT and ATL extractor without interacting the EMT.

Figure 5.11 shows a graphical environment for generating tailoring transformations. The
graphical environment includes the HOT and ATL extractor that are executed using the ATL
Launcher. In this sense, the user only needs to select the variation decision model and the
graphical environment generates the tailoring transformation as ATL code.

Finally, the tailoring transformation is saved in the same workspace of the VDM. The
tailoring transformation can be used for software process tailoring according to Hurtado
proposal [65].

95



Figure 5.11: Graphical Environment for Generating Tailoring Transformations.

5.7 Related Work

HOTs are transformations that may produce other transformations as output. This is an ad-
vantage, as instead of writing transformations manually, one can write a transformation that
automatically generates the desired transformation. There is still no standard language for
developing HOTs, and there are not many successful real world implementation experiences
reported either.

The most widely used language to build HOTs is ATL. The literature also reports that
there are other languages that allow implementing HOTs, such as GReAT [4], MOFScript [108]
and XSLT [26]. Tisi et al. [156] use ATL to define patterns for building HOTs, and establish
transformations aimed at improving their use. Also, they present a summary of HOTs for
different applications.

According to Tisi et al. [156], the knowledge for generating HOTs is verbose, i.e., it
requires a long and complex code for generating just a small output transformation. This
is mainly the problem with technological approaches for building HOTs, because they are
always complex. In this sense, the HOTs have a generic structure that can be reused in
other domains. However, there are not HOTs for generating tailoring transformations in the
software process domain.

The literature reports a few HOTs for implementing model transformations. Tisi et
al. [156] presented a categorized survey of HOTs. The categorization was divided based
on some variant types of the four base transformation patterns (synthesis, analysis, compo-
sition and modification). Table 5.1 shows a list of published HOTs considering source and
target metamodels and transformations types, and it highlights other HOTs that were found
in the literature. The list of HOTs is adapted from Tisi et al. [156] and considered the same
variant types that were defined in the original characterization.

96



Table 5.1: Summary of HOTs (adapted and updated from Tisi et al. [156]).

Name (# of cases) Language Source MM Target MM Type Ref. Year
AMWtoATL_KM32SQL ATL AMW ATL Implementation [124] 2005
AMWtoATL_MantisBug ATL AMW ATL Implementation [35] 2006
AMWtoATL ATL AMW ATL Implementation [123] 2006
AMWtoXSLT ATL AMW XSLT Implementation [123] 2006
ATL2BindingDebugger ATL ATL ATL Weaving [119] 2005
ATL2Tracer ATL ATL ATL Weaving [74] 2005
ATL2WTracer ATL ATL ATL Weaving [118] 2006
ATL2Problem ATL ATL Problem Analysis [121] 2005
KM32CONFATL ATL KM3 ATL Generic [51] 2007
KM32ATLCopier ATL KM3 ATL Generic [122] 2005
AMWtoATL_Kelly ATL AWM ATL Implementation [47] 2005
MMD2ATL ATL KM3 ATL Implementation [25] 2007
MMTtoMT ATL ATL, Ecore ATL Execution [20] 2008
MSDSL2EMF ATL KM3 ATL Generic [13] 2005
Superimpose ATL ATL, ATL ATL Composition [166] 2008
ATLCopy ATL ATL, ATL ATL Composition [166] 2008
HITransform MOFScript MOFScript MOFScript Variants [107] 2007
Topcased ATL ATL ATL Analysis [39] 2006
Metamodel2Derivation ATL Ecore ATL Generic [16] 2007
DUALLyLeft2Right (2) ATL AMW,

Ecore,
Ecore

ATL Implementation [97] 2010

Easystyle XSLT HTML XSLT Implementation [168] 2008
HOT4Tests ATL Ecore ATL Testing [21, 19] 2008
Mutators (11) ATL ATL, Trace ATL Mutation [21, 19] 2008
SingleApplication ATL ATL ATL Execution [21, 19] 2008
patchgen ATL AMW ATL Implementation [34] 2007
propagate ATL ATL,

INMM,
INMM,
AMW

ATL Implementation [34] 2007

VariabilityMM_HOT GREaT GME,
GReAT

GReAT Analysis [80] 2008

MML2MMR (2) ATL AMW,
Ecore,
Ecore

ATL Implementation [72] 2007

AML2ATL ATL AML ATL Extension [48] 2009
UITransReconfig ATL ATL, US-

RMM
ATL Adaptation [149] 2007

Ecore2RDF (2) ATL Meo, Ecore,
OWL

ATL Implementation [59] 2008

ATL2BindingDebugger ATL ATL, Ecore ATL Testing [120] 2007
QVT2ATL ATL QVT ATL Generic [73] 2007
CDM2ATL ATL CDM ATL Implementation [172] 2012
MOFScript2MOFScript MOFScript MOFScript,

HandyMOF
MOFScript Testing [49] 2014

Metamodel2Derivation ATL DSL_MM ATL Implementation [17] 2009
MTL2T-Core Motif MTL T-Core Implementation [37] 2014
DSL_MM2ATL MOFScript DSL_TransformationATL Implementation [69, 50] 2010
DSML_MM2Motif Motif DSL_MM DSL_MM Generic [160, 153] 2013

97



In Table 5.1, we can see that the most widely used language to build HOTs is ATL. More-
over, we can see a set of common transformation types that involve HOTs: implementation,
weaving, analysis, generic, execution, composition, variants, testing, mutation and adapta-
tion. In this sense, we found that the similar transformation types for building a tailoring
transformation are implementation and weaving.

Implementation is the abstract representation that can be considered as the higher-level
specification of a mapping that needs to be implemented as a transformation [156]. This
type of transformation is used for enabling tool interoperability between different systems
or languages. For example, Didonet del Fabro al. [35] report the use of ATL to create
a transformation that uses a implementation mapping to transform a bug tracking model
in Mantis, into an equivalent model in Bugzilla (bug-tracking systems). The authors also
provide other examples using Atlas Model Weaver (AMW) [36] (mapping between the source
and the target model) and ATL to generate a model transformation that translates a Kernel
Metametamodel (KM3) into the Structured Query Language (SQL) data definition language,
and vice versa. In both cases an AMW mapping that correlates two different metamodels is
translated into two transformations at model level (one for each direction of the mapping).

Weaving is used to weave cross-cutting concerns into a model transformation. Examples
of these concerns are related to debugging, traceability, program tracing [156]. A HOT for
adding a cross-cutting concern can usually be programmed with extreme generality, and
complete independence from the logic of the original transformation. In this way the same
HOT can be used as a general means to add that specific feature to any transformation.
There are several cases in literature that exploit ATL HOTs for cross-cutting concerns. ATL
project [119] describes an ATL2BindingDebugger HOT that adds a debug instruction to each
attribute binding in an input ATL transformation. Jouault [74] reports two different weaving
implementations for another application case, in which the addressed cross-cutting concern
is traceability, i.e., the maintenance of a set of links between the corresponding source and
target model elements.

There are also proposals such as Model Transformations By Example [163] and Model
Transformation By Demonstration [151], which present solutions for simplifying the imple-
mentation of model transformations by using strategies and patterns with a visual support.
They both generate part of the transformation code, but the user still needs to complete
the generated code, and thus the transformation rule generation becomes a semi-automatic
process. Both proposals highlight the need for developing new solutions that simplify the rule
definition, so that they become usable solutions for non-experts in model-driven engineering
and model-driven development.

5.8 Summary and Discussion

The literature reports few numbers of HOTs for generating tailoring transformations using
semi-automatic generators. A promising approach for developing HOTs is the Atlas Model
Weaver (AMW) [36]; it defines a mapping model between the source and target model, and
this mapping model is automatically translated into the model transformation using a HOT.

98



The purpose of AMW is to generate transformations for traceability or matching, so the
transformation rules are simple and they do not include complex structures. In particular, it
is not possible to include conditions for matching elements as we need for software process tai-
loring. Nevertheless, we follow the structure of the AMW for defining a relationship between
the organizational software process model and the adapted software process model, but using
the VDM that is a kind of mapping model with complex structures and constructors. The
VDM can be used as an input model for a HOT and generating a tailoring transformation.

The proposed HOT takes a VDM that conforms to VDMM as input and generates a
transformation model that conforms to the ATL metamodel, using a transformation synthe-
sis pattern. This HOT is an exogenous transformation because the input and output models
conform to different metamodels (decision and transformation models). Finally, we apply
an ATL extractor for generating the tailoring transformation from the tailoring transforma-
tion model. The ATL extractor applied a vertical transformation because the source and
target model reside at different abstraction levels, thus the tailoring transformation model is
translated into the tailoring transformation source code.

99



Chapter 6

A Tool-set for Automatically Generating
Tailoring Transformations - ATAGeTT

This chapter presents an integrated tool-set for automatically generating tailoring transfor-
mations and executing software process tailoring. The integrated tool set allows process
engineers to define the organizational software process and the organizational context using
the software context modeling tool, as well as tailoring rules using a graphical environment,
so that the project manager just requires defining the project context of the particular project
using the software context modeling tool in order to automatically obtain the tailored soft-
ware process. This tool-set hides the complexity of MDE components and the users only
require the knowledge about project characteristics and how they affect tailoring.

Section 6.1 introduces a motivation for specifying tailoring rules. Section 6.2 shows an
overview of megamodeling. Section 6.3 presents the integrated tool for generating tailoring
transformations and executing software process tailoring. Section 6.4 illustrates the inte-
grated tool using an example.

6.1 Motivation

In this thesis, we present the tailoring rules specification (see Chapter 4) that allows process
engineers to specify tailoring rules as a model using our decision language (DL), and the
tailoring transformation generation (see Chapter 5) that allows users to generate transfor-
mations as an ATL code using our HOT and an ATL extractor. Although the tailoring rules
specification and tailoring transformation generation are supported by tools, the users need
to interact with models, transformation and configurations in EMF for executing software
process tailoring. Moreover, the tools have several dependencies with other tools as the
context modeling tool and projectors (see Chapter 2) that jeopardize its usage in software
industry because the users need to use different tools.

To improve the integration of these tools, we propose A Tool-set for Automatically Gen-
erating Tailoring Transformations (ATAGeTT). It provides an integrated tool that allows

100



users -the process engineer and the project manager- to deal only with the software process
and context-related concepts hiding and integrating all dependencies involved in software
process tailoring [143, 144]. With the tool-set process engineers can define organizational
contexts, project contexts and tailoring rules, and project managers can execute software
process tailoring. All these activities are executed without the need of manipulating models
or transformations.

6.2 An Overview of Megamodeling

Practical applications of MDE are increasingly intensive in modeling artifacts. They involve
a large number of heterogeneous and interrelated models which change over time. Megamod-
eling is the model-based approach for coping with the complexity of managing and evolving
such large model repositories [6]. It is centered on the notion of megamodel introduced by
Bezivin et al. [14], which conveys the idea of modeling-in-the-large by establishing and using
the global metadata and relationships on the modeling artifacts while ignoring their internal
details. Global Model Management [100] is a megamodeling approach that offers Eclipse-
based tool support for managing modeling artifacts. It has a metamodel that characterizes
the different kinds of modeling artifacts and their interrelations.

6.3 Integrated Tool-set for Automatically Generating Tai-
loring Transformations and Executing Software Pro-
cess Tailoring

The main stakeholders in software process tailoring are: 1) the process engineer, who is in
charge of defining, evaluating and evolving the software process, and 2) the project manager,
who follows the tailored software process during a project. We provide two integrated tools,
one for each stakeholder, that support their activities and that hide the complexities of the
megamodel. Figure 6.1 shows the structure of our complete model-based process tailoring
solution using a megamodel as back end and user interfaces as front end. The megamodel
includes models, their corresponding metamodels, and text-to-model (T2M), model-to-model
(M2M), model-to-text (M2T) transformations, as well as higher-order transformations [146].

101



F
ig
ur
e
6.
1:

St
ru
ct
ur
e
of

th
e
m
eg
am

od
el

al
on

g
w
it
h
th
e
us
er

in
te
rf
ac
es

102



6.3.1 User interfaces

Process Engineer’s Interface. The company’s process engineer is in charge of the Or-
ganizational Software Process Definition. We use the Eclipse Process Framework (EPF) for
this task, which allows the specification of software process models in SPEM 2.0 (Software
and Systems Process Engineering Metamodel). The process engineer must also indicate the
variation points of the software process model.

Project characteristics determine which is the most appropriate process for a project; these
characteristics can be modeled as a project "context". We use the software context modeling
tool (defined in Chapter 2) for the Organizational Context Definition; the process engineer
uses this tool for defining the context attributes that affect the variable elements of a process,
as well as their potential values, generating the organizational context model as output.

The most challenging task for the process engineer is the Tailoring Rules Definition,
i.e., specifying the relationships between context attributes and variable process elements.
These relationships define how variability is resolved during software process tailoring. In
this definition, we use the graphical environment for defining tailoring rules and generating
tailoring transformations (defined in Chapters 4 and 5), generating the variation decision
model, the transformation model and the tailoring transformation as ATL code.

Project Manager’s Interface. The project manager is in charge of the Project Context
Definition using the software context modeling tool (defined in Chapter 2) that takes the
organizational context model as input and allows her/him to choose the particular values
for the attributes of the project at hand, generating the project context model as output.
Moreover, the tool allows project managers to execute the software process tailoring using
an adaptation of the ATL Launcher (defined in Chapter 5), generating the adapted software
process model.

The EPF is used for Adapted Software Process Visualization, allowing the project manager
to examine the tailored process to be followed during the project.

6.3.2 Megamodel

The elements in this section are explained in the order that they are usually defined or
generated. The input models are modified directly by the user using tools, while rest of the
models are generated from these input models using mapping transformations.

Organizational Software Process Model. The Organizational Software Process Def-
inition can export a software process as XML, so we use the Injector (defined in Chapter 3)
to generate the organizational Software Process model from this type of XML file. This
model conforms to eSPEM (defined by Hurtado et al. [65]). In this metamodel, tasks, roles
and work products represent optional process elements by setting the value of a Boolean
attribute, and alternatives are specified by linking variation points to possible realizations
using the replaces SPEM variability primitive.

103



Organizational Context Model. The Organizational Context Definition can generate
an Organizational Context as XML. The Software Process Context Metamodel (SPCM) is a
metamodel that has two sections: Context and Context Configuration (defined by Hurtado
et al [65]). We use the Context section for specifying the Organizational Context. The
organizational context model is a set of attributes and their potential values that can be
used for characterizing project contexts. These attributes can be grouped in dimensions for
better comprehension.

Variation Decision Model. The Tailoring Rules Definition establishes the relationship
between context attribute values and variable process elements as Variation Decision model
(defined in Chapter 4) using the Decision Language (DL). The variation decision model is
a series of <condition, conclusion> pairs that conforms to Variation Decision Metamodel
(VDMM).

Transformation Model. The Tailoring Rules Definition includes the generation of Tai-
loring Transformation. We use the Higher-order Transformation (HOT) (defined in Chap-
ter 5) that automatically generates the Transformation model. This HOT takes the variation
decision model as input and generates the Transformation model as output. The transfor-
mation model conforms to ATL metamodel.

Project Context Model. The Project Context Definition allows generate the Project
Context model. We use the Context Configuration section of SPCM for specifying the Project
Context model. The project context model is a valid configuration of the organizational
context model, where each attribute has been assigned a value.

Tailoring Transformation. We use the ATL extractor (defined in Chapter 5) for gener-
ating the Tailoring Transformation. The Tailoring Transformation takes the Organizational
Software Process model and the Project Context model as input, and produces a Adapted-
Software Process model as output, which also conforms to eSPEM.

Adapted Software Process Model. The tailoring process generates the Adapted Soft-
ware Process model, but this model cannot be directly manipulated by the project manager
because it is not in a format supported by the tools that she/he uses. To remedy this we
use the Extractor (defined in Chapter 3) to transforms the Adapted Software Process from
its XMI format back into its original XML format, so that it can be imported by the EPF
for Adapted software Process Visualization.

6.4 Building Adapted Software Process with ATAGeTT

ATAGeTT involves the front end and back end for a complete model-based process tailoring
solution. Our integrated tool provides interfaces for process engineers and project man-
agers. We show the application of the integrated tool using the running example defined in
Chapter 2.

104



6.4.1 The process engineer user interface

The process engineer is in charge of defining the organizational process model, the organiza-
tional context model, and the variation decision model, i.e., the model that represents the
tailoring rules. Our tool integrates user interfaces for performing each of these activities.

The process engineer is the one who designs/defines:

• The software process along with its variable elements.
• The attributes that characterize the projects developed by the company.
• The rules that determine how to resolve process variability according to the values of

the context attributes.

6.4.1.1 Organizational software process definition

Several Chilean software companies are already using EPF as the tool for defining their
software process, even though there are other available tools [146]. It is a free tool that
implements SPEM, the OMG process modeling standard notation. We will include this tool
as part of our solution in order to enhance adoption. It allows use to define the software
process breakdown, including primitives for specifying the variability of process element, as
well as software process behavior using activity diagrams. The EPF allows exporting the
software process as an XML file that is used as input for other activities. Moreover, EPF
allows the formalization of:

• Software process breakdown, that is, all software process elements along with its rela-
tionships.
• Software process elements’ variability, either optional or alternative. This is essential

for identifying which elements should be resolved during process tailoring.
• Software process behavior using activity diagrams, even though this is not part of

SPEM.

We consider the software process of Rhiscom for showing the formalization of software
process in EPF. Figure 6.2 shows the software process breakdown that includes a formal
specification of two optional elements and two alternative elements using SPEM primitives.
Such a Figure also highlights the Requirements activity that is marked as optional in the last
column.

Figure 6.3 shows the software process behavior of Elaboration phase and Requirements
activity that include an specification of tailoring rules as annotations. We use red annotations
for specifying the rules of optional elements and green annotations for specifying the rules of
alternative elements.

105



Figure 6.2: Rhiscom’s software process breakdown in EPF.

6.4.1.2 Organizational context definition

The process engineer is in charge of defining which attributes of a project may affect how
the process is tailored, as well as defining the potential values these attributes may take.
In order to maximize usability, the tool provides a default definition of attributes organized
into dimensions: Team, Project, Business, and Product dimensions. Within each of them
there are attributes with default potential values. Figure 6.4 shows the attributes defined for
the Management dimension along with their values. For example the attribute Project type
may take values Maintenance-correction, Maintenance-adaptation, Incidents, Maintenance-
enhancement and New development. The user interface allows editing this organizational
context by adding or deleting attributes, and/or modifying their potential values. The output
of this interface will be saved as the Organizational Context Model. The process engineer can
edit the organizational context by adding, removing or editing dimensions, attributes and
attribute values.

Finally, the Organizational Context Model is generated as XML file and is stored in a
predetermined folder of ATAGeTT environment.

106



(a) Rhiscom’s Elaboration Phase (b) Rhiscom’s Requirements Activity

Figure 6.3: Rhiscom’s software process behavior in EPF.

6.4.1.3 Tailoring rules definition

Tailoring rules determine how variability is resolved during tailoring. Our integrated tool
defines a user interface for defining tailoring rules that allows the process engineer to create
models through a graphical environment. This graphical environment supports the definition
of tailoring rules using our decision language for each variation point of the software process
according to the values in the organizational context; therefore, the graphical environment
considers the Organizational Software Process and the Organizational Context Model. The
tailoring rules definition specify:

• The organizational software process model.
• Simple and/or complex rules for resolving each identified variable process element.

1. Simple rules define a simple condition over a variable process element of the form
if attribute = value then true/false, for optional elements. (e.g., Prototyping).

2. Complex rules include conjunction or disjunction of simple rules. (e.g., Require-
ment Specification).

3. For alternative elements, the result is the alternative to be included in the adapted
software process when the condition holds.

107



Figure 6.4: Organization context model definition of Rhiscom.

• The tailoring transformation using our HOT and ATL extractor.

This activity involves two steps, the definition of tailoring rules and the generation of tai-
loring transformations. In the first step, the tool guides the users by presenting them only the
process elements defined as variable and allowing them specify a rule either simple or complex
for each variation point. Figure 6.5 shows the selection of inputs for defining tailoring rules in
XML format. The Organizational Software Process is the XML file exported from EPF that
can be transformed in the Organizational Software Process Model using our Injector. The
Organizational Context is the XML file generated by the Organizational Context Definition.
Figure 6.6 shows the variable elements grouped in optional elements and alternative elements
that are specified in the Organizational Software Process Definition. Finally, Figure 6.7 shows
the definition of rules using the tailoring rules specification. The tool also counts on a menu
where the context attributes and their potential values can be selected, not requiring any
typing.

In the second step, the tool automatically generates the VDM that is the input of tailoring
transformation generation. The tool executes the HOT and ATL extractor for automatically
generating the tailoring transformation. Figure 6.8 shows an interface when the user writes a
name that is used for automatically generating the VDM, the tailoring transformation model
and the tailoring transformation.

Finally, the Organizational Software Process Model, the Variation Decision Model, the Tai-

108



Figure 6.5: Selecting the organizational software process and the organizational context.

Figure 6.6: Selecting the variation elements specified in the organizational software process.

loring Transformation Model and the Tailoring Transformation are stored in a predetermined
folder of ATAGeTT environment.

6.4.2 The project manager user interface

The process engineer is in charge of applying the software process tailoring, i.e., the process
engineer defines a project context as a model and executes the tailoring transformation. Our
tool integrates user interfaces for performing each of these activities in an automatic manner.
The process engineer is the one who:

• Specifies the context of the particular project to be developed.
• Obtains and applies the adapted software process for executing the particular project.

109



Figure 6.7: Defining tailoring rules for requirements activity.

Figure 6.8: Executing the HOT and ATL extractor using the formal tailoring rules specifi-
cation.

6.4.2.1 Project context definition

Our integrated tool allows the project manager to define the particular Project Context by
setting the values of the Organizational Context for the project at hand, and then to obtain
the Adapted software Process. To that end, the project manager can select the Organizational
Context that was stored in a predetermined folder of ATAGeTT environment.

Figure 6.9 shows a Project Context where the project manager can specify the characteris-
tics of a particular project. In this case, a maintenance project is defined using the following
characteristics: the Project Type is Maintenance-correction, Project duration is Small, Team

110



Figure 6.9: Project context definition

Figure 6.10: Adapted software process model generation

size is Small and Business knowledge is Known.

Once the project context is defined, the integrated tool executes the Tailoring Transfor-
mation. The tool automatically takes the Project Context model and the Organizational
Software Process model as input, and generates the Adapted Software Process model. No-
tice that the Tailoring Transformation, the Project Context model and the Organizational
Software Process model were stored in a predetermined folder of ATAGeTT environment.

Figure 6.10 shows a user interface that allows executing the tailoring transformation using
our ATL launcher that applies the MDE-based software process tailoring automatically.

Finally, the Organizational Software Process Model, the Variation Decision Model, the
Tailoring Transformation Model and the Tailoring Transformation Code are stored in a pre-
determined folder of ATAGeTT environment.

111



(a) Rhiscom’s Elaboration
Phase

(b) Rhiscom’s Requirements Activity

Figure 6.11: The adapted software process of Rhiscom in EPF.

6.4.2.2 Adapted software process visualization

Also, the integrated tool allows the project manager to generate the Adapted software Process
that can be visualized in EPF. To that end, the tool automatically takes the Adapted software
Process model and generates the Adapted software Process as XML file using our Extractor.
Figure 6.11 shows the Adapted software process in EPF. Notice that the Design activity is
not part of the adapted software process.

Finally, the integrated tool allows potential users to define tailoring rules, generate tai-
loring transformations and apply software process tailoring without interacting with models,
transformations and ATL code. In this sense, the MDE-based software process tailoring is
transparent for the users and it is applied in a usable way.

112



Chapter 7

Exploratory Case Study

This chapter presents an evaluation of the suitability of applying our integrated tool for
tailoring software processes in two software companies. The evaluation was conducted using
an exploratory case study, where we compare the correctness and productivity of two different
approaches: template-based tailoring and automatic MDE-based tailoring.

Section 7.1 introduces a motivation for applying the exploratory case study. Section 7.2
shows the design of the case study that considers a description of template-based and auto-
matic MDE-based tailoring, the research question and a description of the cases. Section 7.3
presents the case study preparation. Section 7.4 explains the running of case study in two
Chilean software companies. Section 7.5 shows the analysis of the gathered data. Section 7.6
presents the results and observations of the case study. Finally, Sec. 7.7 presents the lessons
learned from this case study.

7.1 Motivation

There are several strategies for software process tailoring, in ADAPTE [117] and GEMS [117]
projects, we found that most software companies use a template-based software tailoring
strategy. The template-based software tailoring strategy [29] consists of a set of predefined
software processes that are used in similar project contexts. On the other hand, as part of
these research projects, we developed an MDE-based software process tailoring strategy [65]
for generating adapted software processes to specific project contexts. In order to improve the
adoption of MDE-based software process tailoring, we developed an integrated tool [143, 144]
to support the MDE-based software process tailoring strategy (see Chapter 6). The automatic
MDE-based software process tailoring allows users to generate models and transformations
using an automatic strategy, and apply MDE-based software process tailoring in a usable
manner.

A case study was designed for exploring the suitability of applying either the template-
based or automatic MDE-based software process tailoring in terms of the correctness and
productivity of each approach. The obtained results were then compared and discussed to

113



Figure 7.1: Template-based software process tailoring.

show the potential impact of the proposed integrated tool.

7.2 Case Study Design

We designed an exploratory case study where we evaluated the correctness and productivity
of applying both, the template-based and also the automatic MDE-based software process
tailoring strategy. In this sense, we followed the case study design proposed by Yin [173].
After presenting both strategies, we describe the evaluation strategy for comparing software
processes, the characteristics evaluated in this case study, and the involved research question.
Finally, we describe the case study itself.

7.2.1 Description of approaches

Software process tailoring refers to the activity of tuning a standardized process to meet the
needs of a specific project [8]. There are several approaches for software process tailoring,
ranging from always applying the same software process to defining a new software process for
each project; the former is inefficient while the latter is expensive. Regardless this situation,
there are two intermediate strategies used in industry and academia are template-based and
automatic MDE-based software process tailoring. Next we briefly explain both approaches:

Template-based software process tailoring is a strategy that proposes to count on
a series of predefined software processes for different project types, and choose the most
appropriate of them for each project as shown in Fig. 7.1. It is the strategy followed by Crys-
tal [29], that uses project criticality and team size as the project dimensions for determining
the process to be applied, e.g., Clear, Yellow, Diamond, Quartz. This strategy inspires the
template-based tailoring. Crystal, as well as all template-based tailoring by extension, are
easy methodologies a company can adopt.

Automatic MDE-based software process tailoring applies an MDE approach for
defining software process models, and adapting them to project contexts through transfor-
mations so that optimal processes are obtained [65, 89]. In order to automatically tailor

114



Figure 7.2: MDE-based software process tailoring

the software process it is necessary to formally define the project context, the organizational
software process (including its potential variability) and the rules that make the transfor-
mation [65], as shown in Fig. 7.2. The model transformation resolves each variation point
in the organizational process according to the context attribute values. Our integrated tool
encapsulates this strategy [141].

7.2.2 Evaluation strategy for comparing the approaches

Software companies define their development processes in order to make them more pre-
dictable and manageable. However, once the process is defined, it is not useful for all kinds
of projects since, e.g., large and complex projects require more activities and work products
than small simple projects.

Template-based tailoring consists in having a series of predefined software processes and
selecting the one to be applied in each project depending on the project context. On the
other hand, automatic MDE-based software process tailoring generates the optimal software
process for a project context. Notice that the two approaches require a project context for
selecting one predefined software process or generating an optimal software process.

In the template-based tailoring, a particular project context is exactly the one defined
for a predefined software process. However, different project contexts can select one of the
predefined processes considering these project contexts. In this sense, the software process
obtained by the template-based tailoring can be sub-optimal.

In order to evaluate the suitability of applying either the template-based and the auto-
matic MDE-based software process tailoring, we compare the both approaches in terms of
extra or missing software process elements. To that end, we consider two particular aspects:
comparison between contexts and comparison between software processes.

Comparison between contexts allows computing similarity between a predefined project
context and unexpected project context. Similarity is defined as the numerical value between
zero and one, obtained by correspondingly comparing the context attributes values of two
project contexts. This value is zero if all context attributes have different context attribute

115



values, whereas this value is one if all context attributes have the same context attribute
values, and an intermediate value if some context attributes values are different. We assume
that the project contexts are generated from the same organizational context.

However, when calculating the similarity we assume that all context information is equally
relevant for the definition of a project, but our experience formalizing software processes
indicates that this assumption is not true. A context attribute can be more relevant than
others because there are tailoring rules that can remove software process elements. Notice
that context attributes and context attribute values are part of the tailoring rules for selecting
one predefined software process or generating an optimal software process.

The intuition of how a context attribute impact in the software process can be represented
by the weight of such a context attribute. The weight of such a context attribute is defined as
a value between zero and one, calculated as the relative occurrence frequency of the context
attribute in the tailoring rules of the organizational process. This definition captures the
impact of each context attribute for selecting one predefined software process.

Finally, we can define the comparison between contexts as distance. Distance is a numer-
ical value that calculates similarity between two project contexts; it considers the weight of
the context attributes.

Comparison between software processes allows computing difference between a pre-
defined software process and an optimal software process. There are three concepts related to
difference: match, merge and diff. Match refers to identifying how many and which software
process elements coincide in the software process being compared. Diff consists in identifying
those elements that are part of only of one software process. Merge two software process con-
sists on building a new software process that includes all matching software process elements
once, and also those software process elements in the difference. Both, match and diff can
either yield a new software process or a measure of the value indicating to which degree both
software processes match or differ.

To that end, we apply custom language-specific matching to compute the value of match-
ing elements [104]. This approach allows users to define specific rules for computing the
match and diff of two software processes in terms of models. In this sense, we can compute
the difference between two software processes, using its models that are considered in the
automatic MDE-based software process tailoring.

Finally, we can define the comparison between software processes as difference. Difference
is a number of missing or extra software process elements that are computed using match
and diff of software process models. In this case, we can use a particular tool called Eclipse
Modeling Framework Compare (EMF Compare) [23]. EMF Compare allows comparing and
merging generic models in a simple way.

116



7.2.3 Description of characteristics

The aim of the exploratory case study is evaluating the suitability of using MDE-based tai-
loring or template-based tailoring in terms of productivity and correctness. Several authors,
such as Landauer et al. [93], Macleod et al. [96] and Jokela et al. [71], define some criteria for
evaluating the productivity of any software product in terms of generating useful outputs.
On the other hand, Macleod et al. [96] define correctness as goals achievement in a particular
context. This meaning of correctness is similar to the ISO/IEC9126 [43] definition, in terms
of achieving specific goals with accuracy and completeness in a specified context of use. Tak-
ing as reference these works about productivity and correctness, we consider the following
evaluation criteria:

Productivity is measured as the existence of no extra work for executing a task. It
implies that the productivity of the two approaches can be measured in terms of the missing
and extra tasks.

Correctness is measured as the software process ability to perform the tasks exactly
defined by the project context. In this case, the correctness can be evaluated by comparing
the adapted software processes obtained using the two approaches.

7.2.4 Research question

We assume that, whenever the project context is exactly the one defined for a predefined
software process, this software process is exactly the same as that automatically generated.
However, for contexts different from those of predefined processes, how much are we losing
or gaining by using predefined processes if compared to automatically tailored processes? In
this sense, we define the following research question:

RQ1: Considering productivity and correctness, what is the difference between the tailored
software processes obtained using each strategy?

7.2.5 Description of the cases

In this exploratory case study, two software companies were considered as independent cases.
A summary of their characteristics appears in Table 7.1. Rhiscom1 is an eighteen year-old
software services and products company based in Santiago, Chile. It develops point of sale
software for the retail industry. Mobius2 is a five year-old software services, products and
hardware company also based in Santiago, Chile. This company develops attendance man-
agement software and video-conference services. Concerning the type of services, they offer:
a) projects (software development); b) products (COTS application development); and c)
services (consulting, training, etc.). Concerning to the number of long-term clients, Rhiscom

1Rhiscom website: http://www.rhiscom.com
2Mobius website: http://www.mobius.cl

117



Table 7.1: Characteristics of the software companies.

Company Business
(activity)

Age
(years) Clients Total

(people)

People in
software
development
tasks

People in other
tasks

Rhiscom
Retail
(point of sale
software)

18 >20 51 43 (84%) 8 (16%)

Mobius

Attendance
management and
video-conference
service

5 6 25 11 (44%) 14 (56%)

has 20 clients and Mobius has 6 clients. Both companies do not have ISO certifications, but
they are working to apply for obtaining it in the short-term.

Considering their size in terms of number of employees, Mobius is a small software company
(25 people), and Rhiscom is a medium-sized company (51 people). Moreover, Rhiscom
sells its products and services in 5 other countries. Table 7.1 also shows the number of
people working in tasks specifically related to software development (e.g., project managers,
developers, testers, analysts, etc.) and people working in other tasks (e.g., secretary, sales
managers, cleaning staff, etc.). There we can see that Rhiscom has relatively more employees
committed to software engineering tasks (86%) than Mobius (44%).

7.3 Case Study Preparation

The units of analysis for this exploratory case study were the organizational software process
with variability, and the adapted software processes (that includes all the process elements
that are needed for a specified project). Next we explain the requirements of the tailoring
strategies:

• Template-based tailoring strategy requires predefined software processes and their cor-
responding project context. Depending on the characteristics of the project to be
addressed, there is a particular predefined process that is the most appropriate.
• Automatic MDE-based tailoring strategy requires the organizational project context

(that describes attributes and their values for defining a project context), project con-
texts (that describes characteristics of a particular project), organizational software
process (that describe activities, roles, tasks, work products for conducting a software
development) and tailoring rules (that describe how to tailor the organizational software
process for a particular project context).

Both companies satisfy the requirements for each tailoring strategy: the organizational
software process with variability, the organizational context, the tailoring decisions, the pre-
defined software processes and its project contexts. Both companies have all requirements
for each strategy. In the next subsections, we present the requirements of each company.

118



Figure 7.3: Software process breakdown of Rhiscom that includes four optional elements.

7.3.1 Rhiscom

Figure 7.3 shows a snapshot of the Rhiscom’s organizational software process in EPF. This
process includes information about the tasks, roles and work products related to initiation,
elaboration, construction and transition. It also includes information about the variabilities
of the process.

Rhiscom’s organizational software process has six variable elements: four optional elements
and two alternative elements that can be reused in different parts of the software process.
Figure 7.3 highlights Requirements capability pattern as an Optional element and it is marked
in the last column. On the other hand, alternative elements are specified using replaces ; i.e.,
an alternative element can be replaced by a base element that is specified as part of the
method content. For instance, Specify requirements is a base element that can be replaced
by Specify requirements in plain text or Specify requirements in use cases.

Table 7.2 shows Rhiscom’s organizational context. It has five attributes: Project type,
which has five potential values: New development, Maintenance-enhancement, Maintenance-

119



Table 7.2: Rhiscom’s organizational context

Dimensions Attributes Values

Management

Project type

New development
Maintenance-enhancement
Maintenance-correction
Maintenance-adaptation
Incidents

Project duration
Small
Medium
Large

Team size
Small
Medium
Large

Business knowledge
Known
Affordable
Unknown

Table 7.3: Rhiscom’s predefined contexts

Management

Project type Project
duration Team size Business

knowledge

N
ew

de
ve
lo
pm

en
t

M
ai
nt
en
an

ce
-e
nh

an
ce
m
en
t

M
ai
nt
en
an

ce
-c
or
re
ct
io
n

M
ai
nt
en
an

ce
-a
da

pt
at
io
n

In
ci
de
nt
s

Sm
al
l

M
ed
iu
m

La
rg
e

Sm
al
l

M
ed
iu
m

La
rg
e

K
no

w
n

A
ffo

rd
ab

le

U
nk

no
w
n

New project
√ √ √ √

Corrective project
√ √ √ √

Incident project
√ √ √ √

correction, Maintenance-adaptation and Incidents ; Project duration that has three potential
values: Small, Medium, Large; Team size that has five potential values: Small, Medium,
Large; and Business knowledge that has three potential values: Known, Affordable, Un-
known. These context attributes are grouped in one dimension for better comprehension:
Management.

Table 7.3 shows three predefined project contexts, corresponding to typical kinds of
projects: New project, Corrective project and Incident project. Their corresponding con-
texts are defined by particular combinations of organizational context attributes values. For
each of these context, there is a predefined software process that will be applied whenever
the new project context matches the predefined context. For example, a predefined context
for a New project is defined as: Project type is New development, Project duration is Large,
Team size is Medium and Business Knowledge is Unknown. Moreover, its predefined soft-
ware process is the same organizational software process (see Fig. 7.3), because all software
process elements are required and the alternative software process elements are resolved.

120



Figure 7.4: Software process breakdown of Mobius that includes sixteen optional elements.

7.3.2 Mobius

Figure 7.4 shows a snapshot of the Mobius’ organizational software process. The organiza-
tional software process includes information about the tasks, roles and work products related
to initiation, elaboration, construction and transition. It also includes information about the
variabilities of the process.

Mobius’ organizational software process has sixteen variable elements: sixteen optional
elements. Figure 7.4 highlights Develop vision task as optional element (marked in the last
column). In this case, Mobius’s organizational software process does not have alternative
elements.

Table 7.4 shows Mobius’ organizational context, which has ten attributes. Project type has
three potential values: New development, Corrective, Non-corrective. System type has two
potential values: Guarantee, No guarantee. Interaction with other system has two potential
values: Simple, Complex. Team experience has two potential values: Yes, No. Usability has
two potential values: High, Low. Documentation has two potential values: Report, No report.

121



Table 7.4: Mobius’ organizational context

Dimensions Attributes Values

Project Project type
New development
Corrective
Non-corrective

System
System type Guarantee

No guarantee

Interaction with other systems Simple
Complex

Team Team experience Yes
No

Product

Usability High
Low

Documentation Report
No report

Complexity of the functionality
High
Average
Low

Data access layer Yes
No

Business logic Yes
No

Source code Yes
No

Complexity of the functionality has three potential values: High, Average, Low. Data access
layer has two potential values: Yes, No. Business logic has two potential values: Yes, No.
Source code has two potential values: Yes, No. These context attributes are grouped in four
dimensions: Project (project type), System (system type, interaction with other systems),
Team (team experience), Product (usability, documentation, complexity of the functionality,
data access layer, business logic, source code).

Table 7.5 shows three predefined project contexts, corresponding to typical kinds of
projects: New project, Corrective project and Non-corrective project. For each of them there is
a predefined software process that will be applied whenever the new project context matches
the predefined context. For example, a predefined context is New project that is defined
from project context: Project type is New development, System type is Guarantee, Interac-
tion with other systems is Complex, Experience in the architecture is No, Usability is High,
Documentation is No report, Complexity in the functionality is High, Data access layer is
Yes, Business logic is No and Source code is No, and its predefined software process is the
same organizational software process (see Fig. 7.4) because all software process elements are
required.

7.4 Case Study Execution

In this exploratory case study, we conduct a focus group as the method for data collection.
From August 2013 to January 2014, focus groups were conducted in two software companies.

122



Table 7.5: Mobius’ predefined contexts

Project System Team

Project type System
type

Interaction
with other
systems

Experience
in the

architecture

N
ew

de
ve
lo
pm

en
t

C
or
re
ct
iv
e

N
on

-c
or
re
ct
iv
e

G
ua

ra
nt
ee

N
o
gu

ar
an

te
e

Si
m
pl
e

C
om

pl
ex

Y
es

N
o

New project
√ √ √ √

Corrective project
√ √ √ √

Non-corrective project
√ √ √ √

Product

Usability Documentation
Complexity

in the
functionality

Data
access
layer

Business
logic

Source
code

H
ig
h

Lo
w

R
ep

or
t

N
o
re
po

rt

H
ig
h

A
ve
ra
ge

Lo
w

Y
es

N
o

Y
es

N
o

Y
es

N
o

New project
√ √ √ √ √ √

Corrective project
√ √ √ √ √ √

Non-corrective project
√ √ √ √ √ √

123



Table 7.6: Summary of sessions

Company Date S
es
si
on

s

H
ou

rs
(t
ot
al
)

C
om

p
an

y
te
am

R
es
ea
rc
h
te
am

Activities Tools
Rhiscom August

2013
3 7 2 2 – Review organizational

software process
– Review tailoring decisions
– Define experimental project
contexts
– Apply tailoring strategies

EPF

Mobius December
2013 -
January
2014

3 7 2 2

Both companies formalized their descriptive software process with variability in EPF as part
of the ADAPTE project.

Table 7.6 shows dates, activities, tools, sessions, hours and team in the case study for
each company. The study considers four main activities: review organizational software
process for updating software process elements, identify tailoring decisions as annotations in
the software process, define project contexts for characterizing particular projects and apply
tailoring strategies.

The focus groups lasted for seven hours in total and involved three sessions (between 2 and
3 hours each). Each session was conducted in the company’s offices with both, the company
and the research teams. In the Rhiscom study, a total of four people participated during
the focus group sessions: two people from the software company team (analyst and quality
assurance leader) and two people from the research team (the author of this thesis and other
PhD. student). Similarly, in the focus group sessions in Mobius also participated four people:
two people (project manager and quality assurance leader) from the software company and
two people from the research team (the author of this thesis and a MSc. student). In the
following subsections we present the activities that were conducted in each company.

7.4.1 Review of the organizational software processes

Rhiscom’s organizational software process was formalized in 2011 and it had four variable
elements: two optional and two alternative elements. On the other hand, Mobius’s organiza-
tional software process was formalized in 2012 and it had sixteen variable elements: all are
optional. In order to verify these software processes, we reviewed the organizational software
processes with project managers of the corresponding company.

In the first session, the research and company team reviewed and verified the organizational
software processes. Table 7.7 shows a summary of organizational software process reviewed
in both software companies. Rhiscom’s organizational software process did have important
changes and had six variable elements: four optional elements (includes 2 new optional
elements) and two variable process elements. On the other hand, Mobius’ organizational

124



Table 7.7: Rhiscom’s organizational software process reviewed.

Company Software
process

Tasks Roles Work products Variable ele-
ments

Rhiscom RUP 36 10 37 6
Mobius OpenUP 47 10 44 16

software process did not have any change in the variable elements and had the same sixteen
variable process elements.

(a) A specification as annotation of an
optional element in Construction phase.

(b) A specification as annotation of
an alternative element in Require-
ments activity.

Figure 7.5: Part of tailoring decisions in Rhiscom’s organizational software process.

7.4.2 Identification of tailoring decisions

Tailoring decisions of Rhiscom and Mobius were defined in 2011 and 2012, respectively. The
tailoring decisions were specified as annotations in the organizational software process for each
variable element. To verify these decisions, we reviewed them in each software company.

In the first session, the research and company teams reviewed tailoring decisions. We

125



Table 7.8: Tailoring decisions for variable elements of Rhiscom’s software process.

Decision Process
Element

Variability
Type Conditions Conclusion

Decision
1

Requirements Optional

(Project type=
Maintenance-adaptation)

AND
(Project duration=Small)

AND
(Business knowledge=Known)

Remove:
Requirements

Decision
2

Design Optional

(Project type=
Maintenance-correction)

AND
(Project duration=Small)

AND
{(Team size=Small)

OR
(Business knowledge=Know)}

Remove:
Design

Decision
3

Execute Test
Cases Optional

(Project type=
Maintenance-correction)

AND
{(Project duration=Small)

OR
(Business knowledge=Affordable)}

Remove:
Execute Test
Cases

Decision
4

Meet for
integration
agreements

Optional

(Business knowledge=Known)
AND

(Project type=
Maintenance-enhancement)

Remove:
Meet for
integration
agreements

Decision
5

Specify
Requirements Alternative

{(Project type=Incidents
OR

Project type=
Maintenance-enhancement)}

AND
(Business knowledge=Know)

Replace for:
Specify
Requirements
in plain text

Decision
6

Establish
Requirements
Baseline

Alternative

Project type=New development
AND

Project duration=Medium
AND

Business knowledge=Unknown

Replace for:
Establish
Requirements
Baseline and
Test Cases

defined red notes for describing optional elements and green notes for alternative elements.
Figure 7.5a shows a snapshot of Rhiscom’s software process in EPF. In the software process,
we can see annotations that describe conditions and conclusions as text for each variable
element. For example, Fig. 7.5a shows a red note for describing optional decisions for Re-
quirements and Design activities. Figure 7.5b shows green notes for describing alternative
decisions to Specify requirements and Establish requirements baseline tasks.

In order to improve the description of tailoring decisions, we specified them as a table
that includes information as: Process element, Variability type, Conditions and Conclusions.
Table 7.8 shows a description of six tailoring decisions.

Concerning Mobius, Figure 7.6 shows a snapshot of the organizational software process
in EPF that also includes tailoring decisions as annotations. For example red notes for

126



Figure 7.6: Part of tailoring decisions in Mobius’s organizational software process.

describing tailoring decisions for Develop vision, System architecture_definition, UI design,
Use cases definition, Requirements list definition tasks. Table 7.9 shows a description of all
sixteen tailoring decisions.

Table 7.9: Decisions for Mobius’ variable process elements.

Decision Process
Element

Variability
Type Conditions Conclusion

Decision
1

tsk_
develop_vision Optional (Project type=Non-corrective) Remove:

Requirements

Decision
2

tsk_
system_arq_def Optional

(Project type=New development)
OR

(Interaction with other systems=
Complex)

Remove:
Design

Decision
3

tsk_
ui_design Optional (Usability=High) Remove:

Design

Decision
4

tsk_
use_cases_def Optional

{(Project type=Non-corrective)
OR

(Project type=New development)}
AND

(Documentation=No report)

Remove:
Design

Decision
5

tsk_
req_lists_def Optional

(Documentation=Report)
OR

(Project type=Corrective)

Remove:
Design

Decision
6

tsk_
commercial_
proposal_def

Optional

(Project type=Non-corrective)
OR

{(Project type=Corrective)
AND

(System type=No guarantee)}

Remove:
Design

127



Decision
7

tsk_
commercial_
proposal_
validation

Optional

(Project type=Non-corrective)
OR

{(Project type=Corrective)
AND

(System type=No guarantee)}

Remove:
Design

Decision
8

tsk_ project_
execution_
approval

Optional (Project type=Non-corrective) Remove:
Design

Decision
9

tsk_project_
cancellation_
notification

Optional (Project type=Non-corrective) Remove:
Design

Decision
10

tsk_create_
project_
integration_
server

Optional (Source code=Yes) Remove:
Design

Decision
11

cp_
architecture_
validation

Optional

{(Project type=New development)
OR

(Project type=Non-corrective)}
AND

(Experience in the architecture=
No)

Remove:
Design

Decision
12

tsk_
notify_project_
infeasibility

Optional

{(Project type=New development)
OR

(Project type=Non-corrective)}
AND

(Experience in the architecture=
No)

Remove:
Design

Decision
13

tsk_
perform_
detailed_design

Optional (Complexity of the functionality=
High)

Remove:
Design

Decision
14

tsk_integrate_
software Optional (Source code=Yes) Remove:

Design

Decision
15

tsk_create_
unit_tests Optional

(Business logic=Yes)
OR

(Data access layer=Yes)

Remove:
Design

Decision
16

tsk_execute_
unit_tests Optional

(Business logic=Yes)
OR

(Data access layer=Yes)

Remove:
Design

7.4.3 Defining the project contexts

In the second session, the project contexts were defined for applying template-based and
automatic MDE-based software process tailoring. These contexts were based on the orga-
nizational contexts of Rhiscom and Mobius, respectively. In both cases, five experimental
project contexts were designed as contexts that can be feasible in the business activities of
each company. Teams from the university and the company participated in this activity.

Table 7.10 shows five experimental project contexts of Rhiscom. Table 7.10 highlights
Context A for characterizing new projects: Project type is New development, Project duration
is Medium, Team size is Medium and Business knowledge is Affordable.

128



Table 7.10: Rhiscom’s experimental project contexts.

Management

Project type Project
duration Team size Business

knowledge

N
ew

de
ve
lo
pm

en
t

M
ai
nt
en
an

ce
-e
nh

an
ce
m
en
t

M
ai
nt
en
an

ce
-c
or
re
ct
io
n

M
ai
nt
en
an

ce
-a
da

pt
at
io
n

In
ci
de
nt
s

Sm
al
l

M
ed
iu
m

La
rg
e

Sm
al
l

M
ed
iu
m

La
rg
e

K
no

w
n

A
ffo

rd
ab

le

U
nk

no
w
n

Context A
√ √ √ √

Context B
√ √ √ √

Context C
√ √ √ √

Context D
√ √ √ √

Context E
√ √ √ √

Table 7.11 shows experimental project contexts of Mobius. For example, Context B is
a context for characterizing corrective projects: Project type is Corrective, System type is
Guarantee, Interaction with other systems is Complex, Experience in the architecture is No,
Usability is Low, Documentation is Report, Complexity in the functionality is Average, Data
access layer is No, Business logic is No and Source code is Yes.

7.4.4 Applying both tailoring strategies

In the third session, we applied the template-based and the automatic MDE-based tailoring
strategies. We also provided tables to compare the predefined context and the experimental
context. This was required for selecting the most appropriate predefined process, i.e., the one
that is closest to the experimental context. Once the closest context is selected, we analyzed
the resulting template-based process so that we can compare it with the automatically tailored
software process. For the predefined contexts, we assumed that the corresponding process in
the template-based strategy is exactly the same as that obtained with automatic MDE-based
tailoring.

Table 7.12 shows the number of tasks and the number of variation points in each process.
We can see that Mobius’s software process is more detailed, since it includes more than twice
the number of tasks, if compared with Rhiscom’s software process. However, in both software
processes, the number of variation points is about one fourth the number of tasks.

We computed the similarity between each of the five experimental contexts with respect
to predefined contexts project using EMF Compare3. We call Distance to the measure of
similarity. The Distance between two context instances is calculated as follows: first we
consider the weight for each context variable, and then the Distance between two contexts is

3EMF Compare - http://www.eclipse.org/emf/compare/

129



Table 7.11: Mobius’ experimental project contexts.

Project System Team

Project type System
type

Interaction
with other
systems

Experience
in the

architecture

N
ew

de
ve
lo
pm

en
t

C
or
re
ct
iv
e

N
on

-c
or
re
ct
iv
e

G
ua

ra
nt
ee

N
o
gu

ar
an

te
e

Si
m
pl
e

C
om

pl
ex

Y
es

N
o

Context A
√ √ √ √

Context B
√ √ √ √

Context C
√ √ √ √

Context D
√ √ √ √

Context E
√ √ √ √

Product

Usability Documentation
Complexity

in the
functionality

Data
access
layer

Business
logic

Source
code

H
ig
h

Lo
w

R
ep

or
t

N
o
re
po

rt

H
ig
h

A
ve
ra
ge

Lo
w

Y
es

N
o

Y
es

N
o

Y
es

N
o

Context A
√ √ √ √ √ √

Context B
√ √ √ √ √ √

Context C
√ √ √ √ √ √

Context D
√ √ √ √ √ √

Context E
√ √ √ √ √ √

Table 7.12: Size of software processes.

Company Number of Tasks Variation Points
Rhiscom 48 10
Mobius 104 26

130



Table 7.13: The weights of Rhiscom’s context attributes.

Variables Weight Values
Project type 0.35 New Development

Maintenance-Enhancement
Maintenance-Correction
Maintenance-Adaptation
Incidents

Project 0.24 Small
Duration Medium

Large
Business 0.35 Known
Knowledge Affordable

Unknown
Team Size 0.06 Small

Medium
Large

Table 7.14: Similarities between predefined and experimental contexts in Rhiscom.

Experimental Predefined Contexts
Contexts New project Corrective project Incident project

A 0.41 0.00 0.00
B 0.06 0.35 0.35
C 0.00 0.65 0.30
D 0.00 0.30 0.30
E 0.41 0.24 0.59

the sum of the weights of those variables in each context that match. A higher value implies
higher similarity between contexts.

7.4.4.1 Tailoring in Rhiscom

Table 7.3 described the predefined project contexts considered for Rhiscom (New project,
Corrective project and Incident project). Table 7.13 describes Rhiscom’s project context
attributes as well as their weight and potential values. The weight of the context variables
is considered as the relative frequency they affect process elements variability, i.e., the more
variation point conditions the attribute participates in, the higher the weight of the attribute.
The sum of the weight of all attributes is 1.

Table 7.14 shows the distance between predefined contexts: New project, Corrective
project and Incident project, with the five experimental ones. We have highlighted those
closest contexts. There are two experimental contexts –B and D– that are equidistant from
two existing ones: Corrective project and Incident project for B, and Corrective project and
Incident project for D. We use these contexts for illustrating both tailoring strategies.

131



Figure 7.7: Rhiscom’s automatically tailoring ATL transformation.

Automatic MDE-based Tailoring

The automatic tailoring executes ATL rules for generating the adapted software process.
Figure 7.7 shows an excerpt of the transformation applied to the software process in Fig. 7.5b.
Figure 7.8 shows the automatically tailored Requirements activity for context E.

In this case we can see that the Specify requirements in plain text has been selected and
not the Specify requirements in use cases. Similarly, the Requirements activity has kept the
Establish requirements baseline without test cases and not the Establish requirements baseline
and test cases.

Template-based Strategy

For the template-based strategy, Corrective project and Incident project are equally close
to B. We show the Requirements activity predefined for contexts Corrective project and
Incident project in Figs. 7.9a and 7.9b, respectively. We can see that all decisions about
alternatives have been resolved and the resulting process for context C is exactly the same as
that automatically tailored, i.e., there are no extra nor missing tasks, and no different alter-
native task chosen either; however the Requirements activity tailored for context Corrective
project chooses the Specify requirements in use cases exhibits no missing nor extra tasks, but
it chooses a different alternative: while the automatically tailored activity chooses Specify
requirements in plain text, the template-base tailored to context Corrective project exhibits
Specify requirements in use cases.

132



Figure 7.8: Rhiscom’s Requirements activity automatically tailored to context E.

7.4.4.2 Tailoring in Mobius

Figure 7.5 describes the predefined project contexts considered for Mobius (New project,
Corrective project and Non-corrective project) as well as five other experimental project
contexts that are different from the former ones.

Table 7.15 describes Rhiscom’s project context attributes as well as their weight and
potential values.

In Tab. 7.16 we report the Distance between predefined and experimental contexts. In
each case we highlighted the closest context. Notice that E es equally distant from New
project and Corrective project. We will use this context as an example to illustrate the
consequences of applying the template-based strategy depending on the process we select to
apply.

Automatic MDE-based Tailoring

The automatic tailoring executes ATL rules for generating the tailored process so that all
variation points are resolved. Figure 7.10 shows an excerpt of the transformation applied to
the software process in Fig. 7.6. We can see in the highlighted rule that System architecture

133



(a) Rhiscom’s Requirements activity
tailored to context corrective project.

(b) Rhiscom’s Requirements activity
tailored to context incident project.

Figure 7.9: Predefined software process for experimental Context B.

definition is included whenever (‘Project type’ = ‘New development’ or ‘Interaction with
other systems’ = ‘Complex’, as is the case for context H where even though ‘Project type’ is
“Corrective’, ‘Interaction with other systems’ is ’Complex’ and therefore the whole disjunction
is ’true’. To exemplify how automatic tailoring computes the tailored process, we show in
Fig. 7.11 the result of automatically tailoring Mobius’s Requirements activity to context E.
We can see that when considering the alternative condition, it evaluates to ’Yes’ because
’Project type’ = ’Corrective’, and therefore the alternative Requirements list definition is
chosen.

Template-based Strategy

When comparing context E with the predefined New project, Corrective project or Non-
corrective project, we realized that contexts Corrective project or Non-corrective project are
equidistant from E (see Tab. 7.16). Therefore we show both processes, one corresponding to
context New project in Fig. 7.12a and another corresponding to context Corrective project
in Fig. 7.12b. We can see that both results are different between them, and they are also
different from that tailored automatically (see Fig. 7.11). While the template-based tailored
Requirements activity to context New project in Fig. 7.12a has one extra task -UI design-,

134



Variables Weight Values
Project type 0.30 New Development

Corrective
Non Corrective

System Type 0.10 Guarantee
No Guarantee

Interaction with 0.10 Simple
other systems Complex
Team 0.10 Yes
Experience No
Usability 0.10 High

Low
Documentation 0.05 Report

No report
Functionality 0.05 High
Complexity Average

Low
Data Access 0.05 Yes
Layer No
Business Logic 0.05 Yes

No
Source Code 0.05 Yes

No

Table 7.15: Mobius’s organizational context model.

Table 7.16: Similarities between predefined and experimental contexts in Mobius.

Experimental Predefined Contexts
Contexts New project Corrective project Non-corrective project

A 0.50 0.45 0.15
B 0.25 0.70 0.35
C 0.35 0.40 0.80
D 0.30 0.45 0.50
E 0.45 0.45 0.30

it does not have any missing task but chooses a different alternative: Use cases definition.
On the other hand, the one tailored to context Corrective project exhibits a missing task:
System architecture definition, but it neither adds any extra tasks nor chooses a different
alternative.

7.5 Data Collection and Analysis

The former sections illustrated how different strategies yield different software processes for
the Requirements activity. Here we report the comparison of the complete Mobius develop-
ment process for the different contexts by measuring the number of extra or missing tasks
of the template-based tailored process if compared to the optimal solution obtained by auto-

135



Figure 7.10: Mobius automatic tailoring transformation.

Figure 7.11: Mobius Requirements activity automatically tailored to Context E.

matic tailoring. In the first column of Tab. 7.17 we present the experimental contexts along
with the closest predefined context according to Tab. 7.16. The second and third columns
show the extra and the missing tasks in each case. The fourth column states the number
of different tasks selected whenever an alternative variation point needs to be resolved. No-
tice that the last two lines correspond to context E; this is because both New project and
Corrective project have exactly the same difference with E. However the results of selecting
Corrective project are much better than those of selecting New project for all columns: extra
tasks, missing tasks and different choices.

Similarly, we here report the comparison of the whole Rhiscom process for different con-
texts by measuring the number of extra or missing tasks of the template-based and automatic

136



(a) Mobius Requirements template-based tailored
to context New project

(b) Mobius Requirements activity template-
based tailored to context Corrective project

Figure 7.12: Predefined software process for experimental Context E.

Table 7.17: Comparison of the whole Mobius’s process tasks in both strategies.

Difference in Tasks
Process Extra Missing Different alternative
Comparison tasks tasks tasks chosen
A - New project 3 3 3
B - Corrective project 10 8 0
C - Non-corrective project 3 2 3
D - Non-corrective project 3 8 3
E - New project 11 3 3
E - Corrective project 6 7 0

tailored processes. Different from Mobius’s process whose only variability was optionality,
Rhiscom’s process also exhibits alternatives. The differences between strategies can be mea-
sured in extra or missing process elements, as well as different alternative choices whenever
the variability is alternative. Table 7.18 summarizes these differences. The first column,
presents the experimental contexts along with the closest predefined context. The second
and third columns show the extra and the missing tasks in each case. The last column in-
dicates the number of cases where a different alternative has been chosen. In this case both
context B and D have two different predefined context equally distant.

We can see that for B, there is a big difference in productivity and correctness depending
on the predefined context that is chosen. If we chose Corrective project, then the differences
are much higher than those when choosing context Incident project. Similarly for D, if
Incident project is chosen there is almost no difference, but if Corrective project is chosen
instead, differences are much greater.

137



Table 7.18: Comparison of the whole Rhiscom process tasks in both strategies.

Difference in Tasks
Process Extra Missing Different alternative
Comparison tasks tasks tasks chosen
A - New project 0 0 0
B - Corrective project 3 6 2
B - Incident project 2 0 0
C - Corrective project 0 0 0
D - Corrective project 3 8 0
D - Incident project 0 0 2
E - Incident project 0 0 2

7.6 Results and Observations

We compared the suitability of use a template-based or an automatic MDE-based tailoring
strategies in terms of productivity and correctness. The case study compared the software
process tailoring in two Chilean software companies: Mobius and Rhiscom. The former in-
cludes a complex process with several variation points, while the latter is a simpler process
with fewer variation points. For the automatic MDE-based tailoring, we computed the op-
timal process for each of the eight defined contexts. For the template-based strategy we
considered the same eight contexts, three of them predefined as context-process pairs, and
the remaining five as experimental contexts and for each of them we selected an approximate
predefined process. Finally we compared the obtained process in each case using the EMF
Compare tool in order to compare the resulting software processes.

In this study, we initially formulated a research question for evaluating the appropriateness
of applying our integrated tool for tailoring software processes:

• Considering productivity and correctness, what is the difference between
the tailored software processes obtained using each strategy?. The evidence
suggest that there is always a difference between template-based and automatic MDE-
based tailoring when the project context does not exactly coincides with the prede-
fined context in the template-based strategy. This difference tends to be smaller for
software process with little variability and larger for software process with several vari-
ation points. Automatic MDE-based tailoring encloses highly sophisticated tools, so
construction costs are high if compared to template-based tailoring. The automatic
tailoring presented has advantages over the predefined processes, even in the presence
of limited variability points. These advantages are expressed as the complete precision
of the output process for every context instance and therefore, it is adaptable for a
company with increasing maturity. Even when the company has not evaluated to any
level of CMMI, the results are guaranteed to be optimal. So far, the only theoretical
advantage of the predefined processes is the ease of definition, because there is only
a need for a few predefined processes, corresponding to the company’s most common
project types. As for Mobius and Rhiscom, we only defined three processes based on
this assumption.

After analyzing both strategies in each company, we found that the automatic MDE-

138



based tailoring approach is almost always better, in terms of productivity and correctness,
than the template-based tailoring approach. The only exceptions are the tailored processes
for context A and C in the Rhiscom case, where both strategies obtained similar results.
This confirms, using empirical data, something that is theoretically expected: the automatic
tailoring strategy has more fine-grained rules for generating the process and the results of
template-based tailoring could be sub-optimal. When comparing the differences in process
productivity and correctness in each company, the impact of using an automatic or template-
based tailoring strategy is more profound in the Mobius case. The numbers of extra and
missing tasks are both greater in the company with most process variability points.

7.7 Lessons Learned

The only theoretical advantage of the predefined processes (template-based approach) is the
ease of usage, since the company only needs to count on a process to support its most common
project types. As for Mobius and Rhiscom, we only defined three processes based on this
assumption.

For the predefined processes, if there are two context instances equally close to the new
project’s context, there is actually no preemptive way to decide which one is the best one.
For the cases presented, there is the risk of not reaching the most suitable process when
selecting a template process. This risk potentially reduces both the productivity and quality
of the process, which is more harmful for small companies.

There is a need to count on a mechanism that offers a better solution when the distance
from the target process context to two template-based process contexts is equal. A merge
between the corresponding template-based processes would be a better "guess" for this case,
even when they are similar. There is also a possibility for the predefined processes to be the
initial mechanism for companies that want to include the initial levels of maturity in their
software development.

On the other hand, automatic tailoring encloses highly sophisticated tools, where their
construction costs are high if compared to template-based tailoring. However, the presented
automatic tailoring (i.e., the use of these tools) has advantages over the use of predefined
processes, even in the presence of limited variability points. These advantages are expressed as
through the suitability (precision) of the output process according to every context instance.
Therefore, this approach is adaptable for a company with increasing maturity. Even when
the company was not evaluated to any level of CMMI, the results are usually good.

As with any empirical study, case study threats to validity should be identified and ad-
dressed in a systematic way. In our case, researchers are not assuming beforehand that one
tailoring strategy is better than the other, but we found that our partners in software com-
panies use a template-based software tailoring strategy. In this sense, we decided to compare
the template-based and the automatic MDE-based tailoring, although there are probably
other tailoring strategies used for such a purpose.

139



Regarding the external validity of results, a clear limitation of this study is that only
two entities are used in the comparison. However, obtaining companies with formalized
software process and using process-line approaches for coping with variation in not easy.
Moreover, obtaining collaboration of the companies to open their process and applying new
approaches is also a difficult endeavor. Similarities of the two companies are mainly in the
previous formalization of their process, as well as being Chilean software companies. On the
other hand, differences between these companies add diversity for comparing the tailoring
strategies. The companies are different in key aspects such as application domains and
lifetime in the market.

Other source of validation threats comes from the involvement of studies in the definition
and tailoring of the software process-line. In this case study, researchers were actively col-
laborating with the software process practitioners for applying the tailoring strategies. To
address this threat we used observer triangulation for collecting the data. Finally, the defini-
tion of variables to measure productivity and correctness of the adapted software processes
was validated by people from the two Chilean software companies.

140



Chapter 8

ATAGeTT Validation

This chapter presents a complementary validation of the integrated tool for tailoring soft-
ware processes in one additional software company. The validation was conducted using
an explanatory case study where we evaluated expressiveness of the decision language and
usability of the integrated tool.

Section 8.1 presents a motivation for conducting this explanatory case study. Section 8.2
shows the design of the case study that considers characteristics of ATAGeTT being eval-
uated, and also the stated research questions. Section 8.3 presents the setting of the case
study and Section 8.4 illustrates its execution in a Chilean software company. Section 8.5
shows the results and data analysis. Section 8.6 discusses the results and Sec. 8.7 presents
the threats to validity of the case study.

8.1 Motivation

In 2011, Adaptable Domain and Process Technology Engineering (ADAPTE)1 project pro-
posed by three Chilean universities (University of Chile, Technical University Federico Santa
Maria, and Catholic University of Valparaiso) received funding from the Chilean govern-
ment for a period of three years, with the aim of developing a tool that uses a MDE-based
approach to tailor software process according to specific project contexts [65]. Four small
Chilean software companies headquartered in Santiago, Chile participated in the ADAPTE
project: Rhiscom, Imagen, Amisoft and Ki teknology.

Ki teknology formalized its development software process six years ago, as part of the
ADAPTE project, and it applied MDE-based tailoring strategy to adjust its software pro-
cesses, creating a Software Process Line (SPrL) [64]. To that end, the company specified
three main components: (1) a general software process model that represents its organiza-
tional development software process (that includes variability), (2) a general context model
that can be used to characterize particular projects, and (3) a tailoring transformation in

1ADAPTE web page: http://www.adapte.cl

141



ATL that includes tailoring rules for generating an adapted software process model. However,
the use of the MDE-based tailoring strategy required expertise of the process engineer for
defining models, writing and maintaining the tailoring transformation, and also mastering
the transformation language syntax and semantics.

In order to support software process engineers during these activities we developed a Tool-
set for Automatically Generating Tailoring Transformations (ATAGeTT), which allows these
engineers defining tailoring rules using the decision language (DL), automatically generating
tailoring transformations using a HOT, and executing the software process tailoring [141].
The integrated tool (described in Chapter 6) hides the complexity of the automatic MDE-
based tailoring and allows potential users to apply software process tailoring in a usable way.
An explanatory case study was designed with the aim of gathering empirical evidence about
the usability of integrated tool, expressiveness of the DL, and the feasibility of using it in the
software industry.

8.2 Case Study Design

The explanatory case study followed the proposal of Yin [173]. Next we briefly introduce the
integrated tool, describe the characteristics of ATAGeTT to be evaluated and present the
research questions of the case study. Finally, we describe the case study.

8.2.1 Brief description of ATAGeTT

As part of the software process tailoring, we have to define tailoring rules as a model using
the DL and automatically generated tailoring transformations in ATL using the presented
HOT. In order to improve the usability and hide the complexity of MDE-based tailoring, we
developed ATAGeTT [141, 144] for encapsulating and applying the automatic MDE-based
software process tailoring for final users. This integrated tool balances the formality required
by MDE and the usability needed by the users for software process tailoring. It also allows
process engineers to interactively and transparently define tailoring rules, and automatically
generate tailoring transformations. Moreover, the tool allows project managers to execute
tailoring transformations for applying the proposed automatic MDE-based software process
tailoring approach.

8.2.2 Description of characteristics to be evaluated

The aim of the explanatory case study is to evaluate the usability and expressiveness of
ATAGeTT. Several authors, such as van Amstel et al. [158], Padda [112], Molina et al. [103]
and Abrahao et al. [1], have defined some criteria for evaluating the usability of MDE con-
cepts. There are also researchers like Felleisen [41], Paige et al. [113], Karsai et al. [79],
Mohagheghi et al. [101], Barišić et al. [7], and Popovic et al. [116] that have defined some

142



Table 8.1: Validation factors of ATAGeTT.

Factors Definition
Navigability Whether users can move around in the application in an efficient way
Familiarity Whether the user interface offers recognizable elements and interactions that

can be understood by the user
Consistency Degree of uniformity among elements of user interface and whether they offer

meaningful metaphors to users
Flexibility Whether the user interface of the software product can be tailored to suit users’

personal preferences
Simplicity Whether extraneous elements are eliminated from the user interface without

significant information loss
Operability Effort required to operate and control the software application

Table 8.2: Validation factors of DL.

Factors Definition
Orthogonality The language should be based on a few simple features, which can be combined

to produce predictable results
Compatibility The degree to which a DL is compatible with the development process
Scalability It should be useful for modeling systems with a few components and interrela-

tions, and systems with thousands of components and inter-relations
Suitability The degree to which a DL is suitable to be used in the target domain

criteria validation for DSL. Considering these works, we defined the following evaluation
criteria:

Usability is the level of learning, understanding, and memorizing of different concepts,
relations, and also the knowledge about the when and why of using each concept. It usually
implies counting on uniform notation, terminology, and features that are easy to learn, un-
derstand, and remember. In this sense, and considering the previously mentioned attributes,
the usability of ATAGeTT was measured in terms of six factors: navigability, familiarity,
consistency, flexibility, simplicity and operability. These factors are described in Table 8.1.

Expressiveness is measured by the ease and conciseness in which it is possible to express
what is desired. On the other hand, the clarity of the language is a measure of how easy to
understand and use it is for the users. This implies that the DL comes down to how clearly
the language constructs can express the users’ intentions. In this sense, the expressiveness
of the DL is measured in terms of four factors: orthogonality, compatibility, scalability and
suitability. These factors are described in Table 8.2.

8.2.3 Research questions definition

Taking into account the exploratory case study (presented in Chapter 7), which formulated
a first research question, we conducted the explanatory case study considering the following
two additional questions:

RQ2: How well does ATAGeTT work in practice?

143



Table 8.3: Characteristics of Ki teknology.

Business activity Age
(years) Certification Type of offering Clients

Web development and
design for the financial
industry

20 ISO 9001:2008 (since
2004) CMMI Level 2
(since 2008)

Projects, products,
services >20

RQ3: How expressive is the decision language for specifying transformation rules to tailor
software processes?

The RQ2 intends to understand the usefulness and usability of ATAGeTT in an industrial
setting. This evaluation requires the participation of process engineers and project managers
who evaluate the tool and provide their perception about the usability and usefulness of its
graphical user interface.

The RQ3 intends to determine how suitable is the DL is for defining tailoring rules in
terms of expressiveness. In order to evaluate the language expressiveness we have to verify
that it counts on all the required constructs for expressing the process engineer’s intentions
for tailoring software process.

8.2.4 Description of the case study

In this explanatory case study participated only Ki teknology 2 personnel. This is a twenty
years old Chilean company, located in Santiago city, that is certified in ISO 9001:2008 and
CMMI Level 2. Ki teknology counts on an organizational software process based on Rational
Unified Process (RUP), that is used to support developments of Web applications for the
financial industry, particularly: projects (bespoke software development), products (COTS
application development), and services (consulting, training, etc.).

In 2013, Ki teknology merged the best practices of RUP, CMMI level 2 and SCRUM in
order to create the Ki Agile Software Process, which was designed by the process engineer and
the SCRUM master of the company. Actually, the company has 95 clients and develops agile
projects using such an agile process. A summary of the company characteristics is shown in
Table 8.3.

According to the number of employees, Ki teknology is a medium-sized software company.
It has sales of products and services in two other countries in addition to Chile. Table 8.4
shows the number of people that work in tasks specifically related to software development
(e.g., project manager, developers, testers, analysts, etc.) and those who are involved in other
tasks not related to software development (e.g., secretary, sales manager, cleaning staff, etc.).

2Ki teknology website: http://www.kiteknology.com

144



Table 8.4: Number of employees of Ki teknology.

Total
(people)

People in software
development tasks

People in other
tasks

48 20 (42%) 28 (58%)

8.2.5 Units of analysis

The units of analysis represents the major entities being analyzed in the case study. In this
case they were the end-users (i.e., the Ki teknology employees who evaluated the usability and
usefulness of ATAGeTT) and ATAGeTT artifacts (e.g., the organizational software process,
organizational context, and tailoring decisions). Next we briefly explain these units.

8.2.5.1 Ki teknology employees

There are two roles involved in automatic generation of transformations for software process
tailoring in Ki teknology: the software process engineer and the project manager. The former
is in charge of defining the organizational software process, the organizational context, and the
tailoring rules. The latter is in charge of defining the project context (i.e., the characteristics
of the project at hand) and generating the adapted software process.

8.2.5.2 Artifacts of ATAGeTT

There are two main artifacts involved in the automatic generation of transformations for
software process tailoring: the decision language and the ATAGeTT software application.
The first one allows the formal specification of tailoring rules, and it should be expressive
enough as to grant generating rules in the software process domain. The second one is the
tool that integrates several components, e.g., the organizational context definition, tailoring
rules definition and project context definition. The components involve models and trans-
formations that should be used in a transparent way, i.e., they should be invisible for the
end-users.

8.3 Case Study Preparation

Table 8.5 shows the status of the artifacts of Ki teknology required to perform the auto-
matic generation of transformations. The organizational software process with variability
(i.e., the process that includes optional and alternative process elements) should be speci-
fied in EPF. The organizational context and tailoring decision that can be specified in other
representations, should be reviewed and specified using ATAGeTT.

145



Table 8.5: Status of artifacts in Ki teknology.

Organizational
software process

Organizational con-
text

Tailoring decisions

Current status
(2015)

Defined and formal-
ized in EPF (2013)

Defined and formalized
in EMT (2013)

Defined in ATL (2013)

Future actions
(2015-2016) • Review the orga-

nizational software
process.

• Identify variable el-
ements in the orga-
nizational software
process.

• Specify the vari-
able elements in
EPF.

• Review the organi-
zational context.

• Specify the organi-
zational context in
ATAGeTT.

• Review the tailor-
ing decision for each
variable element.

• Specify the tai-
loring decisions in
ATAGeTT.

8.4 Case Study Execution

In this explanatory case study, we used focus groups in each work session with the aim of
understanding the usability and usefulness of ATAGeTT in a software industry scenario.
From November 2015 to January 2016 various focus groups were conducted in Ki technology.
Table 8.6 shows the dates, conducted activities, tools used in the sessions, number of work
sessions, total of hours and teams participating in the case study.

This case study considered four main activities: (1) reviewing of the organizational soft-
ware process of Ki teknology for updating software process elements and their variable ele-
ments, (2) reviewing of the organizational context for updating context attributes and their
values, (3) reviewing of the tailoring rules for identifying variable software process elements
(and labeling them as annotations in the organizational software process), and (4) using
ATAGeTT in practice for tailoring the Ki software process. The EPF was used to support
this experience, since the participants were familiar with such a tool. Therefore, ATAGeTT
was used for applying the automatic MDE-based software process tailoring and the EPF to
visualize the result.

The focus groups lasted eleven hours in five work sessions; the first work session lasted
3 hours, and 2 hours for the others. Each session was conducted in the software company’s
offices involving the company and research teams. A total of four Ki employees participated
during the focus group sessions: one person from the chief commercial office, two people from
the process and product quality assurance area, one person from the software development
team. Moreover, one person from the research team (the author of this thesis). Next we
present the activities conducted on them.

146



Table 8.6: Summary of work sessions.

Date W
or
k
se
ss
io
n
s

H
ou

rs
(t
ot
al
)

C
om

pa
ny

te
am

R
es
ea
rc
h
te
am

Activities Tools
November
2015 -
January
2016

5 11 4 1
• Review the organizational software process

• Review the organizational context

• Review the tailoring decisions

• Apply ATAGeTT for tailoring the Ki soft-
ware process

EPF and
ATAGeTT

Table 8.7: Summary of revisions of Ki teknology’s organizational software process.

Version Software process
based on

Tasks Roles Work prod-
ucts

Variable elements

2013 SCRUM and RUP 30 16 17 0
2016 SCRUM and RUP 41 16 20 17 optional elements

8.4.1 Review of the organizational software process

Ki agile software process was formalized in 2013 without variability. In order to validate this
software process, the research and the company team reviewed such a process (the descriptive
software process) in three work sessions. The software process included information about the
tasks, roles and work products. It also included information about the optional variability in
the software process. Figure 8.1 shows a snapshot of the Ki agile software process represented
in EPF, and highlights Transfer, a task as an optional element (marked in the last column).
Figure 8.2 shows a snapshot of this software process in its Web version, which was generated
automatically using EPF.

Table 8.7 shows a summary of software process that was reviewed; i.e., the Ki agile software
process (2016), which had 11 new process elements and 17 new variable (optional) elements.
In this case, Ki agile software process does not have alternative elements.

8.4.2 Review of the organizational context

The organizational context of Ki teknology was specified in 2010 and reported in [65]. How-
ever, this context model was used to characterize the project contexts for tailoring require-
ments engineering process that was part of organizational software process based on RUP.
In the fourth work session, we reviewed this organizational context model (Table 8.8) that
has five attributes: Customer type that can assume two potential values: New and Old ;
Project type that can have three potential values: UX, Development and Design and devel-

147



Figure 8.1: Software process of Ki teknology (EPF version).

Figure 8.2: Software process of Ki teknology (Web version).

148



Table 8.8: Organizational context of Ki teknology

Dimensions Attributes Values

Process

Customer type New
Old

Project type
UX
Development
Design and development

Sales source Customers service
Other divisions

Customer with maintenance Yes
No

Factory adopts Ki process Yes
No

opment ; Sales source that can be: Customers service, and Other divisions ; Customer with
maintenance that can be: Yes and No; and Factory adopts KI process that can assume two
potential values: Yes and No. These context attributes are grouped in one dimension for
better comprehension: Process.

8.4.3 Review of the tailoring decisions

The tailoring decisions of Ki teknology were also specified in 2010 for tailoring purposes [65].
These decisions were specified in ATL and only considered the tailoring of the requirements
engineering process. In the fourth work session, we reviewed these tailoring decisions, and
put notes in the organizational software process for each variable element involved in these
decisions. Figure 8.3 shows a snapshot of Ki agile software process in EPF that includes
notes in the variable elements. These notes describe conditions and conclusions as text. We
can also observe red notes for describing optional elements and green notes for alternative
elements. Figure 8.3 shows red notes to indicate tailoring decisions in several tasks, e.g., in
Create customers, Create version control repository, Create environment and Create project
in continuous integration tool.

We identified seventeen variable process elements with its notes that include tailoring deci-
sions (see Table 8.9). Each tailoring decision was described through the following information
(table columns): process element, variability type, conditions and conclusions.

Table 8.9: Tailoring Decisions of Ki teknology

Decision Process
Element

Variability
Type Conditions Conclusion

Decision
1

Transfer Optional (Sales source=Other divisions) Remove:
Transfer

Decision
2

Create customer Optional (Customer type=Old) Remove:
Create customer

Decision
3

Create
environment Optional

(Customer with maintenance=No)
OR

(Factory adopts KI process=No)

Remove:
Create
environment

149



Decision
4

Create
version control
repository

Optional (Customer with maintenance=No)

Remove:
Create
version control
repository

Decision
5

Create
project in
continuous
integration tool

Optional (Project type=UX)

Remove:
Create
project in
continuous
integration tool

Decision
6

Estimate
user story Optional (Factory adopts KI process=No)

Remove:
Estimate
user story

Decision
7

User experience Optional
(Project type=Development)

OR
(Factory adopts KI process=No)

Remove:
User experience

Decision
8

Benchmarking Optional
(Project type=Development)

OR
(Factory adopts KI process=No)

Remove:
Benchmarking

Decision
9

Create
interaction scores Optional

(Project type=Development)
OR

(Factory adopts KI process=No)

Remove:
Create
interaction scores

Decision
10

Define
team speed Optional (Factory adopts KI process=No)

Remove:
Define
team speed

Decision
11

Create
burn up Optional (Factory adopts KI process=No)

Remove:
Create
burn up

Decision
12

Define
sprint backlog Optional (Factory adopts KI process=No)

Remove:
Define
sprint backlog

Decision
13

Generate
sprint goal Optional (Factory adopts KI process=No)

Remove:
Generate
sprint goal

Decision
14

Daily scrum
meeting Optional (Factory adopts KI process=No)

Remove:
Daily scrum
meeting

Decision
15

Update
feed graphic Optional (Factory adopts KI process=No)

Remove:
Update
feed graphic

Decision
16

Update
sprint goal Optional (Factory adopts KI process=No)

Remove:
Update
sprint goal

Decision
17

Execute sprint Optional (Factory adopts KI process=No) Remove:
Execute sprint

8.4.4 Apply ATAGeTT for software process tailoring

In the fifth work session we applied ATAGeTT for defining the organizational context, defin-
ing tailoring rules, generating tailoring transformations, defining project contexts, executing
software process tailoring and visualizing adapted software process. In the next subsections,
we presented the application of ATAGeTT for adapting Ki agile software process to a concrete

150



Figure 8.3: Tailoring decisions of Ki teknology’s software process

project context.

8.4.4.1 Defining the organizational context

In Ki teknology the software process engineer is in charge of defining the organizational
context, which includes dimensions, context attributes and context attributes values (Ta-
ble 8.8). Figure 8.4 shows the organizational context of Ki teknology in the user interface of
ATAGeTT. In this case, the organizational context was called KIOrgContext.

The software process engineer can edit the organizational context by adding, removing
or editing dimensions, attributes and attribute values. Moreover, this engineer can also
save the organizational context, as XML file, using the create context model button. The
organizational context is stored in a predetermined folder of the ATAGeTT environment.

8.4.4.2 Defining the tailoring rules

The software process engineer is also in charge of defining the tailoring rules. These rules
were specified in Table 8.9, and they include process elements, variability type, conditions and
conclusions. To that end, the definition of rules requires information about the organizational
software process and the organizational context.

151



Figure 8.4: Ki teknology’s organizational context.

Figure 8.5 shows the selection of organizational software process and organizational con-
text using ATAGeTT. The organizational software process was called KIOrgProcess and it
was exported from EPF as a XML file. The organizational context was called KIOrgCon-
text and it was generated from the definition of organizational context, also as a XML file.
Moreover, the organizational software process is transformed in the organizational software
process model using the proposed Injector.

Figure 8.5: Selecting organizational software process and organizational context.

152



Figure 8.6: Selecting variability points for defining tailoring rules.

Once the organizational context and the organizational software process have been se-
lected, ATAGeTT allows the software process engineer to select a variability point of the
software process for defining tailoring rules. Figure 8.6 shows a list of variable process ele-
ments that can be obtained from KIOrgProcess. The process engineer can select a variable
process element and define tailoring rules. For example, he/she can select Create customer
and click on Create rule button.

Figure 8.7 shows the definition of tailoring rules using our DSL and ATAGeTT. The defi-
nition of tailoring rules considers the information of organizational context, i.e., the context
attributes and their values. The software process engineer can define conditions and conclu-
sions for each variable process element using the graphical environment. For example, we
can define a tailoring rules to Create customer with a condition: Customer type is Old, and
conclusion: Remove Create customer.

After defining tailoring rules, ATAGeTT generates the variation decision model of Ki
teknology. Figure 8.8 shows this model as XMI file, which can be visualized in EMF. For
example, we can identify a Rule with conditions and conclusion for Create customer in
Configuration Rule section. The variation decision model is stored in a predetermined folder
of the ATAGeTT environment.

Finally, ATAGeTT allows the software process engineer to execute the HOT and the ATL

153



Figure 8.7: Defining tailoring rules.

Figure 8.8: Variation decision model of Ki teknology as XMI file.

154



Figure 8.9: Generating tailoring transformation of Ki teknology.

extractor for automatically generating the tailoring transformation. To that end, the graph-
ical environment automatically uses the variation decision model generated in the definition
of tailoring rules.

The process engineer defines a name for the transformation, and then the graphical en-
vironment executes the HOT and the ATL extractor in automatic way. Figure 8.9 shows
the graphical environment where the software process engineer writes a name of the tailoring
transformation. In this case, we can write KiTailoringRules as such a name. The tailoring
transformation is generated automatically when the user clicks on the Next button.

Figure 8.10 shows the tailoring transformation (as ATL code) that can be visualized in
EMF. We can see that the tailoring rule for Create customer is called ruleOpt2 (see line
155 in Fig. 8.10). This transformation is stored in a predetermined folder of ATAGeTT
environment.

8.4.4.3 Defining the project context

As mentioned, ATAGeTT allows a project manager to define and execute software process
tailoring in an automatic way. In order to do that, the project manager defines a project
context by setting the values of the organizational context for the project at hand. Figure 8.11

155



Figure 8.10: Tailoring transformation of Ki teknology as ATL code.

shows a graphical environment for defining a concrete context, called TurBus New Project. In
this case, the concrete context is a new project where Customer type is New, Project type is
Development, Sales source is Other divisions, Customer with maintenance is No and Factory
adopts KI process is Yes. The project manager can then generate the concrete context as
model by clicking on the Configure concrete context button.

Once defined the project context, ATAGeTT executes the automatic MDE-based software
process tailoring by taking the project context model and the organizational software process
model as input, and generating (using the tailoring transformation) the adapted software
process model as output. Figure 8.12 shows the graphical environment for executing software
process tailoring, which encapsulates the MDE-based software process tailoring using the
ATL launcher. This launcher is a standalone application (developed by the author of this
thesis) that implements model transformations in programmatic way. In this case, the project
manager can execute the ATL launcher by clicking on the Execute software process tailoring
button. Finally, the project context model and the adapted software process model are in a
predetermined folder of the ATAGeTT environment.

8.4.4.4 Visualizing the adapted software process

The project manager requires visualizing the adapted software process in EPF. In order to
do that, ATAGeTT takes the adapted software process model and generates the adapted
software process as XML file using the Extractor presented in Chapter 3.

Figure 8.13 shows the adapted software process that can be visualized in EPF. There
we can see that the software process of Ki teknology includes, in this case, all the process

156



Figure 8.11: Defining a concrete context of Ki teknology.

Figure 8.12: Executing Ki teknology’s organizational context.

elements because the TurBus New Project requires all activities, tasks, artifacts and roles.

8.5 Data Collection and Analysis

In the former four sections, we applied the software process tailoring using ATAGeTT, and in
the fifth session we collected and stored multiple sources of evidence for evaluating ATAGeTT.
We therefore defined three sources of evidence: surveys, observations and records. Finally, we
analyzed the sources of evidence for evaluating the usability and expressiveness of ATAGeTT.

8.5.1 Data collection

In the data collection, we considered the result of defining the organizational context, tailoring
rules and project context. These activities were described and applied in the section 8.4.4
using particular tools that are part of ATAGeTT. In the following subsections, we describe
the data gathering activities and the artifacts resulting from them.

157



Figure 8.13: Software process of Ki teknology (EPF version)

8.5.1.1 Description of data gathering

We collected quantitative and qualitative data during the fifth work session with the Ki
teknology team. Table 8.10 shows the main characteristics of data gathering session with the
support of two process engineers and one project manager of the company. The former are
in charge of defining organizational context and defining tailoring rules that allow to build
the tailoring transformations. On the other hand, the latter is in charge of defining project
contexts that determine how to execute the software process tailoring.

As mentioned before, at the end of each activity we consider three sources of evidence:

Table 8.10: Characteristics of data gathering.

Ki team Activities Source of
evidence Evaluation artifacts

2 Software
process
engineers

– Defining organizational context
– Defining tailoring rules

Survey
Observation
Record

Form
Logbook
Audio and video

1 Project
manager – Defining project context

Survey
Observation
Record

Form
Logbook
Audio and video

158



surveys, observations and records. In order to do that, we defined artifacts for each source
of evidence: forms (survey), logbook (observation), and audio/video record (record). Next
we briefly explain each of them.

Surveys consider a series of questions designed to gather quantitative and qualitative
information from the participants. At the end of each activity, we deployed particular surveys
for evaluating usability and expressiveness of ATAGeTT (see Annex B).

Observations are watching activities carefully conducted by someone or something (e.g.,
an agent) for gathering quantitative and qualitative data from or about the units of study.
During each activity, we used a logbook for obtaining complementary data from the end-users.

Records are documents that memorializes and provides objective evidence about the
activities performed by the participants. During each activity, the author of this thesis
requested a written authorization for recording (in audio and video) the activities the users
perform on the computer desktop while using ATAGeTT.

8.5.2 Description of evaluation artifacts

In the fifth work session we also considered three surveys and three video records for each
activity of data gathering, and one audio record of the complete session. These artifacts were
used to establish a triangulation of the empirical data, which involved the use of more than
one data collection method on the same topic. In the following subsections, we describe the
evaluation artifacts.

8.5.2.1 Evaluation forms

A particular form was designed for evaluating each activity; i.e., the organizational context,
tailoring rules and project contexts. Each evaluation form had two sections: a survey and a
questionnaire.

The survey section considered a set of sentences for validating each evaluation factor
of ATAGeTT and DL, which were described in table 8.1 and table 8.2 respectively. The
evaluation score related to these sentences was specified in a five-point Likert scale. On the
other hand, the questionnaire section considered two questions that try to capture the users
feeling about the usefulness and adoption effort of ATAGeTT, and it also asked for the points
of improvement of the tool. Next, we present the description of the three surveys.

Organizational context survey. The survey form had 33 sentences and two questions.
All of them focused on evaluating quality attributes related to the organizational context
definition tool. The sentences were organized in eight sections: six of them for evaluating
usability factors of the tool, one section for evaluating the software operability, and one
section for evaluating other quality factors. The questions section considered the following
two questions: the first one (closed-ended question) focused on identifying the usefulness
of the tool for defining the organizational context, and the second one (open-ended) asked

159



about improvement aspects of the tool. The organizational context survey is presented in
Annex B, Section B.1.

Tailoring rules survey. This survey form had 49 sentences and two questions. All
of them focused on evaluating the usability and usefulness (expressiveness) of the tailoring
rules definition tool. The sentences were organized in eleven sections: nine for evaluating
usability factors, one for evaluating expressiveness of the decision language, and one section
for evaluating other software quality factors of the user interface that allows the user to
define the tailoring rules. Similar to the previous case, the questions section considered two
questions: one closed-ended and the other open-ended. The first one intended to determine
adoption effort of the tool and the second one asked for improvement aspects of such an
ATAGeTT component. The tailoring rules survey is presented in Annex B, Section B.2.

Project context survey. This survey had 32 sentences and two open questions that
evaluated the project context definition tool. The sentences were organized in eight sections
for evaluating usability factors, one section for evaluating operability factors, and one section
for evaluating software quality factors of the project context definition tool. Once again, the
final questions were two: one closed-ended and the other open-ended. The first one focused on
determining the usefulness of the tool, and the second one focused on the improvement aspects
of such a service. The organizational context survey is presented in Annex B, Section B.3.

8.5.2.2 Logbook of observations

The author of this thesis used a logbook to obtain complementary information about the
usability and expressiveness of ATAGeTT. The logbook had three sections for each activity of
data gathering. Each section considered information about usability, expressiveness, timing,
usefulness and improvement aspects of ATAGeTT.

8.5.2.3 Record of audio and video

During the fifth work session we recorded audio and video of the users while they per-
formed the activities in their desktop applications, i.e., during the evaluation in practice of
ATAGeTT. In this case we also obtained a written authorization from the users for record-
ing audio and video of their activities. These records considered complementary information
about usability, expressiveness, timing, usefulness, adoption effort and possible improvements
of ATAGeTT.

8.5.3 Data analysis

In the data analysis, we considered three potential users: two process engineers and one
project manager. We also considered several sources of evidence for each activity: five
surveys, three videos of the user activities, one audio record, and one logbook. These resources
have information about activity timing (records and logbook), usability and expressiveness

160



Table 8.11: Activity timing for adapting the Ki agile software process to a concrete project
context.

Activity Activity
elements

Activity
timing

Total
timing

Software process engineer 1
Defining organizational
context 6 context attributes 3.18 min. 16.58 min.
Defining tailoring
rules 17 tailoring rules 13.40 min.

Software process engineer 2
Defining organizational
context 6 context attributes 4.32 min. 18.42 min.
Defining tailoring
rules 17 tailoring rules 14.10 min.

Project manager Defining project
context 1 context configuration 1.35 min. 1.35 min.

factors (surveys and logbook), usefulness, adoption effort, and improvement aspects (surveys
and logbook). We performed a quantitative analysis of this information. Next, we describe
each variable and the results obtained from these resource.

8.5.3.1 About activity timing for adapting the Ki agile software process

Table 8.11 shows the activity timing for defining the organizational context, defining tailoring
rules (including tailoring transformations generation) and defining project contexts (includ-
ing software process tailoring execution). Notice that the organizational context considers
six context attributes, the tailoring rules considers seventeen rules and the project context
considers one configuration for a particular project.

The "software process engineer 1" performed the organizational context definition in 3.18
minutes and the tailoring rules definition in 13.40 minutes; therefore, both activities required
16.58 minutes in being completed. Moreover, the "software process engineer 2" performed
the organizational context definition in 4.32 minutes and the tailoring rules definition in 14.10
minutes; therefore, both activities required 18.42 minutes. In this case, both process engineers
had the same professional qualifications in terms of technical skills and job experience in
software process analysis, therefore, their performances are comparable. In consequence, the
average for defining the organizational context and the tailoring rules was 17.50 minutes.
After that, the project manager performed the project context definition in 1.35 minutes.
Although we can argue that the system is responsible for performing this activity in a very
short time period, we have also to recognize this last user had extensive experience planning
and managing software process.

Although these results are promising, it is not possible to guarantee the same performance
for other software companies, because the number of context attributes and tailoring rules
can increase or decrease the time spent in these model definition activities. However, we
consider highly positive the fact that software process engineers do not have to interact with
models, transformations, and ATL code for tailoring the software process.

161



Table 8.12: Evaluation of timing for each activity that is used for the adapting Ki agile
software process.

Evaluation Number of
items

Evaluation
timing Total timing

Software process engineer 1
Organizational context
survey

33 sentences
2 questions 12.10 min. 27.30 min.

Tailoring rules
survey

49 sentences
2 questions 15.20 min.

Software process engineer 2
Organizational context
survey

33 sentences
2 questions 13.50 min. 30.28 min.

Tailoring rules
survey

49 sentences
2 questions 16.38 min.

Project manager 1 Project context
survey

32 sentences
2 questions 12.42 min. 12.42 min.

8.5.3.2 About usability and expressiveness of ATAGeTT

Anonymous surveys were used with the software process engineers and the project manager
to evaluate the usability and expressiveness of ATAGeTT. Each evaluation was represented
through one or more sentences (items) that considered particular factors: usability, operabil-
ity and other quality factors of the tool, and also the expressiveness of the decision language.
The sentences are evaluated using a 5-point Likert scale (strongly disagree, disagree, neither
agree nor disagree, agree, strongly agree). In the following subsections, we analyze the results
of each evaluation.

Evaluation of the organizational context definition

In this case, we evaluated the usability, operability and other software quality factors of
the ATAGeTT component that allows the user to define the organizational context of the
company. These evaluations were performed by two software process engineers; next, we
explain them.

Usability. The usability was evaluated in terms of navigability (2 sentences), familiarity
(3 sentences), consistency (4 sentences), flexibility (5 sentences), simplicity (5 sentences),
and usefulness (6 sentences). Figure 8.14 presents the results of the usability evaluation.
The software process engineers considered that the organizational context definition tool
showed good usability in terms of familiarity (50% agree and 50% strongly agree), consis-
tency (62% agree and 38% strongly agree), flexibility (60% agree and 40% strongly agree),
simplicity (90% agree and 10% strongly agree) and usefulness (83% agree and 8% strongly
agree). However, the software process engineers were neutral about the navigability of the
organizational context definition tool.

The survey results shows a tendency towards agree or strongly agree about the usability
of the tool, and it offers a good user experience in the organizational context definition.
Moreover, we can indicate that the context definition tool was usable in practice because
the 83% of usability factors were evaluated between agree and strongly agree. However, we

162



Figure 8.14: Distribution of the usability results according to the Likert scale.

recognize that the tool requires improvements in terms of navigability.

In order to understand the navigability results, we analyzed the logbook to obtain com-
plementary information. In this sense, we obtained suggestions to improve the navigability
of the tool. Next, we present some quotes with these suggestions:

"The use of traceability links can facilitate the navigation between the user interface and
the process elements".

"Knowing the current location of the user in the interface of the system can ease the
definition of the organizational context process".

Operability. This attribute was evaluated in terms of clarity (1 sentence), flexibility (1
sentence), simplicity (1 sentence) and familiarity (1 sentence) of the organizational context
definition tool. Figure 8.15 presents the obtained results. The software process engineers
were positive (agree and strongly agree) about the operability of the tool, in terms of its
clarity (50% agree and 50% strongly agree), simplicity (50% agree and 50% strongly agree),
familiarity (50% agree and 50% strongly agree). However, the software process engineers
were partially negative about the flexibility the organizational context definition provides to
address the process tailoring needs (50% disagree and 50% agree).

The survey results suggest that the organizational context definition is operable because it
minimizes the time and effort needed by the software process engineers. In this sense, 75% of
operability factors were evaluated positively (with agree and strongly agree). Moreover, the
evidence indicates the organizational context definition worked well in practice and it was
addressable for the end-users. However, we can recognize the tool requires improvements in
terms of flexibility.

In order to understand the flexibility results, once again we analyzed the logbook for

163



Figure 8.15: Distribution of the operability results according to the Likert scale.

obtaining complementary information. In this sense, we obtained comments about flexibility
limitations that can be attributed to either: (1) accessibility of unusual actions and (2)
personalization of the interface elements. Next, we present some quotes from the comments
made by the software process engineers.

"The tool does not have enough flexibility for considering unpredicted actions of the user
during the context attributes definition".

"Probably, other kind of customization of the system can facilitate the organizational con-
text definition".

Software quality factors. The software quality factors were evaluated in terms of un-
derstandability, correctness, usability and functionality of the tool (4 sentences). Figure 8.16
presents the obtained results. The software process engineers were positive (agree) about
the quality of the organizational context definition tool, in terms of the understandability
of the domain concepts (100% agree), correctness (100% agree) and usability of the tool
(100% agree). The software process engineers were partially positive about the functionality
provided by the tool (50% neither agree nor disagree and 50% agree).

The software quality results support the suitability of the organizational context definition
tool, indicating that this application can be used in industrial settings; the users agree with
the quality factors of the tool (75%), however, the functionality of the system still needs some
improvements.

We corroborated that the understandability of domain concepts are supported by other
previously analyzed characteristics; particularly, usability (familiarity and simplicity) and
operability (simplicity of the process). Moreover, the correctness of the service is supported
by usability (consistency). On the other hand, the service usability is supported by the
previously analyzed characteristics. Regardless of the positive results, the functionality aspect

164



Figure 8.16: Distribution of software quality factors results according to the Likert scale.

of the organizational context definition service should be improved.

We analyzed the logbook for complementary information about the service functionality
and identified several functionality limitations that can be attributed to lack of flexibility
for conducting basic operations. In this case, the identification of functionality improve-
ment aspect was supported by other previously analyzed factors; particularly by operability
(flexibility). Next, we present some quotes retrieved from the logbook.

"More flexibility in the use of basic operations (save, edit, delete) can facilitate the orga-
nizational context definition".

"Probably, the functionality of basic operations can improve in terms of the guidance pro-
vided to the users".

While these results indicate that the organizational context definition is quite usable and
operable, we cannot positively conclude the existence of such an effect in other scenarios,
because the observed characteristics are not statistically significant. However, the evidence
suggests the organizational context definition service worked well in practice, because the
users were able to define such a context in a usable manner using the domain concepts.

Evaluation of tailoring rules definition

In the evaluation of the tailoring rules definition service embedded in ATAGeTT, we consid-
ered several quality attributes of the software (related to usability) and also expressiveness
that provide the user interfaces for defining the tailoring rules. This evaluation was performed
by two software process engineers. Next we briefly describe the evaluated attributes.

Usability. The usability was evaluated in terms of navigability (2 sentences), familiarity

165



Figure 8.17: Distribution of usability results about the tailoring rules definition using a Likert
scale.

(3 sentences), consistency (4 sentences), flexibility (5 sentences), simplicity (5 sentences),
facility (5 sentences), usefulness (6 sentences), expressiveness (5 sentences) and support and
documentation (3 sentences). Figure 8.17 presents the results of the usability evaluation.
The software process engineers indicated that the tailoring rules definition tool was usable
in terms of navigability (100% agree), familiarity (100% agree), consistency (75% agree and
25% strongly agree), flexibility (40% agree and 40% strongly agree), facility (90% agree),
usefulness (57% agree and 36% strongly agree) and expressiveness (80% agree and 20%
strongly agree). However, these evaluators were partially negative about the simplicity of
the tool (33% disagree and 50% neither agree nor disagree), and partially positive about the
tool support and documentation (50% neither agree nor disagree and 50% agree).

The survey results show a positive opinion about the tool usability and it offers a good
user experience during the organizational context definition. Moreover, we can indicate
that the tailoring rules definition tool is usable in practice because 78% of usability factors
were evaluated between Agree and Strongly agree. However, the simplicity, support and
documentation of the tool requires some improvements.

Following the same strategy as in previous cases, we analyzed the logbook to obtain
complementary information about simplicity, support and documentation. The comments
about simplicity can be attributed to either: (1) Ease of use of the tool and (2) Flexibility
of tailoring rules definition. The comments about support and documentation of the tool
that can be attributed to either: (1) Availability of the helper information and (2) Examples

166



Figure 8.18: The percentage distribution (in terms of Likert items) of the expressiveness
characteristics.

and documentation are required in other actions. Next, we present some quotes from the
comments about these quality aspects made by process engineers:

"The process for selecting input XML files can be implemented in a more simple way".

"It is not easy to find help documentation about tailoring rules definitions".

"It is required more information about the helpers; for instance when using complex con-
ditions".

Expressiveness. The expressiveness of the decision language was evaluated in terms of
visibility, understandability, compatibility, orthogonality, robustness, simplicity, usefulness,
suitability and support (9 sentences). Figure 8.18 presents the results of the expressiveness.
The software process engineers Agree and Strongly agree that the tailoring rules definition
service is expressive enough as to allow people to define the rules they required to tailor
their process. This Expressiveness was reported through the visibility of the tool (50% agree
and 50% strongly agree), understandability of domain concepts (50% agree and 50% strongly
agree), compatibility of the language (50% agree and 50% strongly agree), orthogonality of
the language (100% agree), robustness of the tool (100% agree), simplicity of the tool (100%
agree), usefulness of the language (50% agree and 50% strongly agree), suitability of the
language (100% agree) and support of the tool (100% agree). In this case, all expressiveness
factors were evaluated between Agree and Strongly agree.

167



Figure 8.19: The percentage distribution (in terms of Likert items) of the software quality
factors.

The survey results suggest that the decision language is expressive enough as for defining
tailoring rules in terms of orthogonality, robustness, simplicity and suitability, because this
language can express the intentions of the software process engineers, and allows them to
represent simple and complex conditions. In addition, the graphical environment allows
process engineers to use the decision language without interacting with the concrete syntax
of the language that can be complex to understand. Therefore, we can suggest that the
decision language can be used for end-users without MDE knowledge, using a tool support
that hides the complexity of the language, since there is a binding between the decision
language and the tool.

After analyzing the logbook to obtain complementary information about expressiveness,
we do not identify improvement opportunities reported by the process engineers. We can
therefore speculate that the decision language is easier to use than writing tailoring rules
directly in a transformation language, such as ATL. Moreover, the decision language keeps
the essential structure of the tailoring rules (conditions and conclusion) that can be used for
generating a transformation without sacrificing expressiveness.

Software quality factors. Other quality factors of the tailoring rules definition ser-
vice were evaluated in terms of clarity, flexibility, simplicity and familiarity (4 sentences).
Figure 8.19 presents the results of this software quality evaluation. The software process
engineers Agree and Strongly agree that this service has good Quality in terms of clarity
(100% agree), flexibility (50% agree and 50% strongly agree), simplicity (100% agree) and
familiarity (50% agree and 50% strongly agree) of the process. In this case, all expressiveness
factors were evaluated between Agree and Strongly agree.

The obtained results suggest that the tailoring rules definition has good quality and it can
be used in practice. In this sense, we can corroborate that the flexibility of the process is
supported by other analyzed factors like usability (flexibility). Moreover, the familiarity of the

168



process is supported by both, usability (familiarity) and expressiveness (understandability).
However, we can recognize that the tailoring rules definition requires improvements in terms of
clarity and simplicity. Comments recorded in the logbook identify improvement opportunities
that can be attributed to either: (1) Simplicity for creating tailoring rules, (2) Clarify for
editing tailoring rules. In this case, the clarity and simplicity improvements were supported
by other factors previously analyzed: usability (simplicity, support and documentation) and
expressiveness (simplicity of the tool). Next, we present some quotes from the logbook:

"Although the tailoring rules definition works well in practice, it requires more simplicity
for creating tailoring rules".

"More clarify for editing tailoring rules can help us to maintain them".

Finally, the evidence suggest that the tailoring rules definition is usable and useful enough,
because the users can define tailoring rules in a quite simple manner. Moreover, the decision
language is expressive enough because the users can define tailoring rules using the language
constructors. Although the results are promising in terms of expressiveness and usability,
we are aware that the reality of each software company may be also different, and therefore
these results cannot be generalized to other software companies. We plan (as future work)
to verify the expressiveness of the DL by replicating this study in other scenarios, but always
considering small and medium-sized software companies.

Evaluation of project context definition

In the evaluation of the project context definition service embedded in ATAGeTT we consid-
ered its usability, operability and the quality factors included in the project context survey.
This evaluation were performed by one project manager since this is part of his business
activity.

Usability. The usability of the service was evaluated in terms of navigability (2 sen-
tences), familiarity (3 sentences), consistency (4 sentences), flexibility (5 sentences), simplic-
ity (5 sentences), usefulness (5 sentences). Figure 8.20 presents the results of the usability
evaluation of the project context definition tool. The project manager Agrees and Strongly
agrees that the project context tool has factors that suggest good Usability of the service in
terms of navigability (100% agree), familiarity (100% agree), consistency (50% agree and 25%
strongly agree), simplicity (80% agree) and usefulness (100% agree). However, this person is
partially positive about the flexibility (50% neither agree nor disagree and 50% agree) shown
by the service.

The usability results show a positive tendency indicating that the user can learn and use
the project context tool. This service offers a good user experience during the project context
definition. However, the tool still has space for improving its flexibility in terms of facility of
the project context configuration. The following are some quotes from the logbook:

"The usability of the project context definition tool is good enough, but the project con-
text configuration should be more flexible to configure general contexts without considering a
particular project".

169



Figure 8.20: Software process of Ki teknology (EPF version)

Operability. The operability was evaluated in terms of flexibility, usefulness, correctness
and simplicity (4 sentences). Figure 8.21 presents the results of the operability of the auto-
matic tailoring. The project manager considered the automatic tailoring of software process
operable in terms of flexibility (100% strongly agree), usefulness (100% agree), correctness
(100% agree) and simplicity (100% strongly agree). He also thinks that the system reduces
the time and effort needed for unplanned interventions.

This evidence suggests that this tailoring strategy provides not only reliable functionality
to end-users, but also it works well with the common and complementary activities supported
by ATAGeTT. This automatic tailoring has been designed and implemented to operate with
artifacts that were generated by the organizational context and the tailoring rules definition
tools.

Software quality factors. The software quality factors were evaluated in terms of
understandability, correctness, usability and functionality (4 sentences). Figure 8.22 presents
the results of the software quality evaluation. The project manager was highly positive about
the Quality of the project context definition tool, in terms of the understandability of domain
concepts (100% strongly agree), and the correctness (100% strongly agree), usability (100%
agree) and functionality of the tool (100% agree).

We can corroborate that the understandability of domain concepts is supported by other
factors analyzed: usability (familiarity) and operability (simplicity). The correctness of the
tool is supported by usability (consistency) and operability (correctness). The usability is
supported by usability factors, and the functionality is supported by operability factors. On
the other hand, we recognize that the flexibility of the project context definition tool should
improve its usability.

170



Figure 8.21: Software process of Ki teknology (EPF version)

The evaluation results show that this tool automatically generates transformations using
the decision language for defining tailoring rules, and applies the generated transformation
for obtaining an adapted software process. Furthermore, using the tool the Ki agile process
can be adapted to different project contexts in a usable and transparent manner for the
project managers.

8.5.3.3 About usefulness of ATAGeTT

In order to understand how the use of ATAGeTT impacted the software process tailoring
of Ki teknology, we considered one closed-ended question that can be answered by a simple
"yes" or "no", and also one open-ended question. The first one evaluates the usefulness of
the tool, and the second one intends to identify improvement aspects for this application.
Next, we present the answers to each question.

Concerning the organizational context definition tool

In the evaluation of the project context definition, the answers to the questions were the
following:

Do you consider that the tool is useful for your software company?

The two software process engineers answered "yes", showing that the organizational con-
text tool was useful for defining such the organizational context.

What would you suggest to improve the user experience when using the tool?

In this case the process engineers suggested the following improvements: "Increasing the

171



Figure 8.22: Software process of Ki teknology (EPF version)

margins of the user interface", "Improving the navigability of the user interface", "Improving
the flexibility of the tool for defining optional context attributes".

These answers suggest a correlation with the evaluation of the usability and operability of
the organizational context definition, where usability (navigability), operability (flexibility)
and software quality (functionality) required improvements.

Concerning the tailoring rules definition tool

Next we present the answers to the questions that evaluated the suitability of the tailoring
rules definition tool:

Do you consider the tool useful for supporting the tailoring rules definition?

In this case the two process engineers answered "yes", emphasizing that the tool eases the
definition of tailoring rules and the generation of the tailoring transformation.

What would you suggest for improving the user experience while using the tool for tailoring
rules definition?

Here the process engineers indicated: "There is a need to improve the support and docu-
mentation of the tool. It also needs to include help buttons or pop-up information indicating
the meaning of the user interface elements" and "It requires more flexibility for editing the
variable process elements that have tailoring rules". These comments show a correlation
with the evaluation of the usability and expressiveness of the tailoring rules definition, where
usability (simplicity, support and documentation) has space for improvements.

172



Concerning the project context definition tool

Next we indicate the questions used in the evaluation of the project context definition tool,
and also the corresponding answers:

Do you consider the tool useful for supporting the project context definition?

In this case the project manager (the only evaluator) answered "yes", indicating the
application was useful for generating a project context and executing the software process
tailoring.

Are you willing to adopt the automatic software process tailoring based on project context
and tailoring rules? Why?

The project manager answered "Yes. Today we do it manually. If we can automatically
obtain a software process adjusted to the characteristics of the project to address, we should
improve the efficiency of our developments by reducing the operational costs". These answers
suggest a potential suitability of ATAGeTT for being adopted by the software industry.
Moreover, the project manager recognizes potential benefits of adapting the Ki agile process
for reducing their operational costs.

8.6 Discussion

In order to understand the evaluation results of this chapter, next we summarize the data
analysis of this case study.

• Timing. The software process engineers required between 3.18 and 4.32 minutes for
defining the organizational context that considers six context attributes; and they re-
quired between 13.40 and 14.10 minutes for defining the tailoring rules that considers
seventeen rules. These numbers make us expect a good user experience in industrial
settings. On the other hand, the project manager required between 1.35 minutes for
defining the project context used to adapt the organizational software process. Al-
though one sample is clearly not enough to make conclusions, the number is highly
positive.
• Organizational context definition. According to the preliminary results, the orga-

nizational context definition tool was usable in this industrial setting; a 83% of usability
factors were evaluated between Agree and Strongly agree. The organizational context
definition was operable; a 75% of operability factors were evaluated between Agree
and Strongly agree. The quality of the organizational context definition tool was good
enough as to be used in industrial settings; the users evaluated positively 75% of the
quality factors.
• Tailoring rules definition. The tailoring rules definition tool offers a good user

experience because 78% of usability factors were evaluated between Agree and Strongly
agree. The decision language resulted expressive enough as to define tailoring rules of
the company. The language was able to express the intentions of the software process

173



engineers and 100% of expressiveness factors were evaluated between Agree and Strongly
agree. The rules definition tool was perceived as with good quality, and therefore it
could be used in practice.
• Project context definition. The project context definition tool was also perceived

as usable enough. The user thinks that he can (and also other project managers) learn
and use this tool in practice. The automatic software process tailoring was perceived
as operable because it works well with the common (mandatory) and complementary
activities. Moreover, the tool had also enough quality as to use it in practice. The
software quality factors for applying in the practice and also the integration with other
artifacts of the ATAGeTT did not show compatibility problems.

On the other hand, in this study we initially formulated two research questions for evalu-
ating ATAGeTT and the decision language:

• How well does ATAGeTT work in practice? The evidence suggests that the
three tools embedded in ATAGeTT offer a good user experience and are useful in
the evaluated industrial settings; therefore, they could be used in practice. The system
provides an usable user interface that allows its users -the software process engineers and
the project managers- to deal only with software process and context-related concepts,
hiding the complexity of manipulating the models and transformations involved in the
tailoring activity.
• How expressive is the decision language for specifying transformation rules
to tailor software processes? The evidence suggests that the decision language is
expressive enough to specify tailoring rules, and the language constructs can express the
intentions of the process engineers. Moreover, using the decision language is easier than
writing the tailoring rules directly in a transformation language, because in the first
case the use of the language is hidden behind a user-friendly graphical user interface.

These preliminary results are promising. Nevertheless, we are aware that the reality
of software companies may be diverse, and therefore the suitability of ATAGeTT is not
guaranteed in all scenarios. For instance, it may be the case that some conditions for resolving
variability do not only depend on context values, but also on the way that other variation
points are resolved during the tailoring. The current version of the tool does not support
these kinds of conditions yet, but we have not found the need of doing it in practice.

Finally, the answers to the two research questions allow us to expect a positive adoption
of ATAGeTT in at least a portion of the software industry, since the end-users recognize the
potential benefits of automatically adapting their software processes, reducing thus opera-
tional costs and improving the competitiveness of the software companies. The use of this
solution will probably also enhance the quality of the obtained software products, but this
evaluation is out of this thesis scope.

The obtained results are not strong enough to make conclusions given the small number
of users participating in the case studies; therefore, we cannot generalize the results to other
software companies. However, the results are highly consistent, which make us expect pos-
itive experiences when the ATAGeTT are applied for tailoring processes in other software
companies.

174



8.7 Threats to Validity

The threats to the validity of this explanatory case study are analyzed according to the aspects
proposed in [173]: construct validity, reliability, internal validity, and external validity.

8.7.1 Construct validity

This aspect of validity is concerned with the extent to which the concepts being studied,
really represent what the researcher claims to study. We have worked with MDE-based
software process tailoring for the last six years, and this approach has proved to be technically
feasible. However, MDE-based tailoring is difficult to deploy in industrial settings because
it requires knowledge for writing transformations and manipulating models. For that reason
we developed a generic and usable tool for automatically generating transformations and
applying MDE-based software process tailoring. The preliminary results show ATAGeTT
improved the usability of the current solutions for transformation generation, through a
graphical user interface that includes only domain concepts.

8.7.2 Reliability

This aspect is concerned with the fact that the case study can be repeated by other re-
searchers, obtaining the same or a similar result. In this sense, we provide the set of
ATAGeTT components that allows other people to tailor software processes step-by-step,
through the definition of organizational contexts, tailoring rules and project contexts. In
consequence, other researchers would have no difficulty in applying ATAGeTT for software
process tailoring in the same or other software organizations. This tool is available online at:
http://adapte.dcc.uchile.cl:8080/Context.

8.7.3 Internal validity

This aspect is concerned with how well our case study was conducted. A source of threats
to the internal validity would be the reliance on the focus group conducted with the aim of
reviewing the software processes, organizational contexts and tailoring rules of Ki teknology.
Although such a reviewing process was guided by a case study protocol, it was necessary to
have a certain level of trust in the information about the software process (including tasks,
roles and work products), organizational context (including context attributes and their
values) and tailoring rules of the company (conditions and conclusions). However, the effect
of this aspect was minimized using different sources of evidence, like surveys, observations
and automatic records generated by ATAGeTT (log files).

On the other hand, the validation of ATAGeTT focused on evaluating usability and ex-
pressiveness. In this sense, there may be a threat related to the evaluation of user interfaces.

175



However, this aspect was minimized considering other quality factors that were part of the
survey forms, such as: clarity, flexibility, simplicity, familiarity and functionality.

8.7.4 External validity

The external validity is concerned with the generalization of the findings. The validation
of ATAGeTT was conducted in small and medium-sized Chilean software companies. Al-
though, the validation results are promising, we are aware that the processes and tailoring
strategies, e.g., of large software companies, may be more complex. Therefore, the suitability
of ATAGeTT is not guaranteed and the results obtained in the case studies are not general-
izable to a broader population; even if we think only about the Chilean software industry.

176



Chapter 9

Conclusions, Contributions, Limitations
and Future Work

9.1 Summary of the Thesis Work

In order to systematize development, software companies define their organizational software
processes. A process engineer is usually in charge of this activity. Tailoring the organizational
software processes is an activity that allows project managers to adapt such general processes
to the needs and characteristics of a particular project. MDE-based tailoring strategies have
been applied with that purpose using models and transformations. However, building appro-
priate models and transformations requires expertise of the process engineers for specifying
tailoring rules, making decisions, choosing the right kind of transformation, and also mas-
tering the transformation language syntax. In this sense, there are potential challenges in
terms of usability, adoption, and evolution of the MDE-based software process tailoring that
are not easy to address, mainly by small and medium-sized software companies.

To address these challenges, Chapter 3 presents several tools for defining organizational
context models and project context models through a graphical user interface without inter-
acting with models and metamodels. These tools reduce some difficulties for generating the
input models that MDE-based software process tailoring required. Moreover, we also created
projectors that allow users to translate software processes into software process models, and
vice versa. The translation back and forth is now transparent for the end-users, and there-
fore these people can easily understand and validate the tailored software process. However,
writing tailoring transformations and their rules remained a high challenge for the process
engineers.

In order to improve the support for MDE-based software process tailoring, we presented
a DSL for specifying tailoring rules (Chapter 4) and a HOT for automatically generating
tailoring transformations (Chapter 5). The DSL is a decision language that allows process
engineers to formally specify tailoring rules as a model, and the HOT is a generic transforma-
tion that takes the previous model and automatically generates a tailoring transformation.
Moreover, the DSL and HOT are supported by a graphical user interface that improves the

177



user experience by hiding the complexity of applying an automatic MDE-based strategy for
tailoring a software process.

The tools and the graphical environments were integrated in a tool-set named ATAGeTT
(Chapter 6). For tailoring a software process the users of this system only require to know the
organizational context, project characteristics and how they affect software process tailoring.
In order to evaluate the suitability of ATAGeTT we conducted an exploratory case study,
and then an explanatory case study validating the results.

In Chapter 7 the exploratory case study compared advantages and disadvantages of using a
template-based and an automatic MDE-based strategies for tailoring a software process. The
comparison between these two strategies was done in terms of productivity and correctness
(RQ1: Considering productivity and correctness, what is the difference between
the tailored software processes obtained using each strategy?). The results indicated
that the automatic MDE-based tailoring is always more productive and correct for generating
a software process for each project context than the template-based approach.

On the other hand, in Chapter 8, the explanatory case study validated the usability of
ATAGeTT and expressiveness of the decision language (RQ2: How well does ATAGeTT
work in practice? and RQ3: How expressive is the decision language for specify-
ing transformation rules to tailor software processes?). The evidence suggests that
ATAGeTT offers good user experience and it is useful for the end-users for tailoring soft-
ware processes. Moreover, the decision language is expressive enough for specifying tailoring
rules, and the language constructs can express the intentions of software process engineers.
Although the results are promising, more empirical evidence is required to obtain stronger
conclusions.

9.2 Conclusions

Considering the problem described in Chapter 1, we have stated three hypotheses:

H1: The complexity of using the MDE-based tailoring approach can be hidden through
the use of a high-level language that allows defining tailoring rules using just process concepts
and project characteristics.

H2: The MDE-based tailoring approach allows automatic generation and execution of
the tailoring transformations that software companies may require.

H3: The whole MDE-based tailoring approach can be implemented as a usable organization-
independent tool.

Regarding (H1), we proposed a decision language for specifying tailoring rules that is
supported by a graphical user interface that hides the complexity of directly manipulating the
language. Moreover, the evidence of the explanatory case study suggests that the decision
language is expressive and suitable enough as for defining tailoring rules in the software
process domain.

178



Concerning (H2), we proposed a Higher-order Transformation (HOT) and ATL extractor
for generating tailoring transformations that are supported by another graphical user inter-
face. The evidence of the exploratory and the explanatory case studies suggests that the
MDE-based tailoring approach is useful for generating a software process tailored according
to each project context. In addition, the graphical user interface generates and executes in a
usable manner, the tailoring transformations required by the software companies according
to the previous specifications.

Concerning (H3), we presented ATAGeTT for encapsulating the complexity of the tailoring
rules specification and the tailoring transformation. The evidence collected during the ex-
planatory case study suggests that ATAGeTT is usable and it can be used in practice by other
software companies. The tool is available online (http://adapte.dcc.uchile.cl:8080/Context),
therefore any researcher can use it for applying the proposed MDE-based software process
tailoring approach.

After using ATAGeTT in three software companies and obtaining positive results in prac-
tice, we can say that the use of the tool is feasible even for small software companies. The
effort of using ATAGeTT involves the definition of the organizational context, the tailoring
rules and the project context, and as a result the project manager obtains a tailored software
process adjusted to the project features.

These results support the general research question defined in Section 1.3.1: RQ: Can soft-
ware process tailoring be successfully conducted in an expert-independent way?. Considering
the previously mentioned restrictions, we can say that the case studies results are aligned with
the stated hypotheses, since ATAGeTT has shown to be usable and useful for applying the
MDE-based software process tailoring through a graphical user interface. In this sense, the
users no longer require expertise in MDE for generating models or transformations, because
ATAGeTT hides such a formality behind its user interface.

9.3 Contributions

This thesis makes three contributions to the state-of-the-art: (1) a formal specification of
tailoring rules using models, (2) a systematic generation of tailoring transformations using
HOTs, (3) a software tool-set that supports the tailoring rules specification and the automatic
tailoring transformations generation and execution.

Concerning the first contribution, we defined a DSL (called Decision Language) that sup-
ports the specification of tailoring rules. This language was specified on the notion of mod-
elware, and we defined a variation decision model that conforms to a variation decision
metamodel. The variation decision model is a formal specification of tailoring rules that
was inspired in decision models and semantics of business vocabulary and business rules
used for building decision rules. The proposed decision language reduces the complexity of
defining tailoring rules by just using domain concepts: process and context elements. Fi-
nally, the variation decision metamodel is freely available and it can be downloaded from
http://www.dcc.uchile.cl/∼lsilvest/DSL/VDMM.ecore (VDMM is compatible with Eclipse

179



Modeling Framework).

Concerning the second contribution, we defined a HOT (called VDM2ATL) that automat-
ically generates tailoring transformations. The HOT takes the variation decision model and
generates a tailoring transformation. However, this is achieved in two steps: (1) the HOT
takes the variation decision model and generates a transformation model using a model-to-
model transformation, and (2) the ATL extractor takes the transformation model and gen-
erates the tailoring transformation as ATL code, using a model-to-text transformation. The
developed HOT is generic, therefore, it can be used in any company regardless the software
process, project context and tailoring rules specifically defined by the software company. Such
an application is freely available at: http://www.dcc.uchile.cl/∼lsilvest/HOT/VDM2ATL.atl
(VDM2ATL is compatible with ATL Integrated Environment).

The third contribution is the integrated tool (ATAGeTT) that was designed for defining
tailoring rules, generating tailoring transformations and executing MDE-based software pro-
cess tailoring. This tool allows software process engineers to interactively define tailoring
rules using the decision language and generate transformations using the HOT, taking ad-
vantage of the formality provided by MDE, but hiding its inherent complexity behind a user
interface. ATAGeTT allows project managers to execute the MDE-based software process
tailoring in a transparent way, and it has shown to be usable and useful in the companies
that participated in the case studies. We expect these results can also be obtained by other
software companies in future evaluation experiences of the tool.

From the practical experience with the industrial partners, we have not found a tailor-
ing rule that could not be specified using the decision language, raising thus our confidence
about its expressiveness for this application domain. Moreover, we have generated tailoring
transformations for three software companies in a correct and automatic way, raising also
our confidence on the reusability of the proposed HOT. Finally, we have validated that the
proposed integrated tool is easy to learn and use for the potential users –software process
engineers and project managers–, raising also our confidence on the usability and usefulness
of ATAGeTT. We expect these contributions ease the tailoring of software processes, partic-
ularly in small and medium-sized organizations that are usually limited in performing this
activity.

9.4 Scope of the Proposed Solution

The proposed solution requires that the software companies have their organizational software
processes specified in Eclipse Process Framework (EPF). In this sense, ATAGeTT does not
work with others specifications.

The decision language was designed for defining tailoring rules in the software process
domain, and particularly in small and medium-size Chilean software companies. Therefore,
the expressiveness of the language cannot be guaranteed in other application domains or
other type of companies.

180



Concerning the HOT, it is an important support for the development of model transfor-
mations in the software process domain; however, we recognize that this component does not
work with other input models, and generates only transformations as ATL code.

Although ATAGeTT offers good user experience and can be used in practice in small
and medium-sized software companies, it may be not suitable for tailoring software processes
in large software companies, since the processes and the tailoring are usually much more
complex than in the former.

9.5 Future Work

ATAGeTT was validated in three Chilean software companies, however it is not enough to get
strong conclusions about the generality of its usability and usefulness. Therefore, we intend to
validate the tool in other software companies both in Chile and Bolivia. These experiences
will help us identify future improvements, particularly for improving its capability to be
adopted by small and medium-sized software organizations.

As part of the future work we also want to improve the use of ATAGeTT by connect-
ing other software processes modeling tools that support a separation of concerns between
processes and methods using SPEM (such as Enterprise Architect and Rational Method
Composer). In this sense, we have to review the software process modeling tools that are
used in the software industry (including those used by large software companies).

Concerning the decision language, we also want to extend it for including negative condi-
tions using the logical operator NOT. The logical operator NOT allows the users to express
conditions that are best expressed in a negative way. Although this operator was not required
in the presented case studies, some conditions would have been simpler if the language had
counted on the NOT operator.

We also plan to use weaving models for improving the consistency between the models
used as input for the VDM (i.e., the organizational software process and the organizational
context model) and software process and project context used as input for the generated
tailoring transformation. In the current implementation of ATAGeTT this consistency is
assumed but not ensured. Weaving models can be used for managing traceability between
common elements that are defined in the organizational software processes, organizational
contexts and tailoring rules.

181



Bibliography

[1] Silvia Abrahao and Emilio Insfran. Early usability evaluation in model driven ar-
chitecture environments. In Quality Software, 2006. QSIC 2006. Sixth International
Conference on, pages 287–294. IEEE, 2006.

[2] Silvia Teresita Acuña and Xavier Ferré. Software process modelling. In World
Multiconfer- ence on Systemics, Cybernetics and Informatics, ISAS-SCIs, volume 1,
pages 237–242, 2001.

[3] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto, Jürgen Münch, Haruka Nakao,
and Alexis Ocampo. Scoping software process lines. Software Process: Improvement
and Practice, 14(3):181–197, 2009.

[4] Daniel Balasubramanian, Anantha Narayanan, Chris vanBuskirk, and Gabor Karsai.
The graph rewriting and transformation language: GReAT. Electronic Communica-
tions of the EASST, 1, 2007.

[5] Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai, Janos Szti-
panovits, and Sandeep Neema. Developing applications using model-driven design
environments. Computer, 39(2):33–40, 2006.

[6] Mikaël Barbero, Frédéric Jouault, and Jean Bézivin. Model driven management of
complex systems: Implementing the macroscope’s vision. In Engineering of Computer
Based Systems, 2008. ECBS 2008. 15th Annual IEEE International Conference and
Workshop on the, pages 277–286. IEEE, 2008.

[7] Ankica Barišić, Vasco Amaral, Miguel Goulao, and Bruno Barroca. Quality in use
of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN
workshop on Evaluation and usability of programming languages and tools, pages 65–72.
ACM, 2011.

[8] Victor Basili and Dieter Rombach. Tailoring the Software Process to Project Goals
and Environments. In Proceedings of the 9th International Conference on Software
Engineering, ICSE ’87, pages 345–357, Los Alamitos, CA, USA, 1987. IEEE Computer
Society Press.

[9] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al.

182



Manifesto for agile software development. 2001.

[10] Aldo Bertero, Luis Silvestre, and María Cecilia Bastarrica. T2m and m2t transforma-
tions between software processes and software process models. In SCCC 2012, Proceed-
ings of the XXXI International Conference of the Chilean Computer Science Society,
Valparaiso, Chile, November 2012, pages 36–40. IEEE, 2012.

[11] Jean Bézivin. Model driven engineering: an emerging technical space. In Heidelberg
Berlin, editor, Proceedings of the 2005 International Conference on Generative and
Transformational Techniques in Software Engineering, GTTSE’05, pages 36–64, Braga,
Portugal, 2006. Springer-Verlag.

[12] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev, and
Arne Lindow. Model transformations? transformation models! In Nierstrasz et al.
[105], pages 440–453.

[13] Jean Bézivin, Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev, and William Piers.
Bridging the ms/dsl tools and the eclipse modeling framework. In Proceedings of the
International Workshop on Software Factories at OOPSLA, volume 5, 2005.

[14] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the need for megamodels.
In Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software De-
velopment workshop, 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2004.

[15] Pedro Borges, Paula Monteiro, and RicardoJ. Machado. Mapping RUP Roles to Small
Software Development Teams. In Stefan Biffl, Dietmar Winkler, and Johannes Bergs-
mann, editors, Software Quality. Process Automation in Software Development, vol-
ume 94 of Lecture Notes in Business Information Processing, pages 59–70. Springer
Berlin Heidelberg, 2012.

[16] Goetz Botterweck, Liam O’Brien, and Steffen Thiel. Model-driven derivation of product
architectures. In Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 469–472. ACM, 2007.

[17] Goetz Botterweck, Andreas Polzer, and Stefan Kowalewski. Using higher-order trans-
formations to derive variability mechanism for embedded systems. In Models in Soft-
ware Engineering, pages 68–82. Springer, 2009.

[18] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineer-
ing in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

[19] Marco Brambilla, Piero Fraternali, and Massimo Tisi. WebRatio Framework - WebML.
http : //home.deib.polimi.it/mbrambil/legacytomda/.

[20] Marco Brambilla, Piero Fraternali, and Massimo Tisi. A metamodel transformation
framework for the migration of WebML models to MDA. In MDWE, CEUR Workshop
Proceedings, volume 389, pages 91–105. Citeseer, 2008.

183



[21] Marco Brambilla, Piero Fraternali, and Massimo Tisi. A transformation framework to
bridge domain specific languages to MDA. In Models in Software Engineering, pages
167–180. Springer, 2008.

[22] Erwan Breton and Jean Bézivin. Model driven process engineering. In COMPSAC,
pages 225–230. IEEE, 2001.

[23] Cédric Brun and Alfonso Pierantonio. Model differences in the eclipse modeling frame-
work. UPGRADE, The European Journal for the Informatics Professional, 9(2):29–34,
2008.

[24] Javier Luis Cánovas, Jesús Sánchez, and Jesús Garcıa. Gra2mol: A domain specific
transformation language for bridging grammarware to modelware in software modern-
ization. In Workshop on Model-Driven Software Evolution, MoDSE’08, Athens, Greece,
2008.

[25] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A Metamodel Indepen-
dent Approach to Difference Representation. Journal of Object Technology, 6(9):165–
185, 2007.

[26] James Clark et al. Xsl transformations (xslt). World Wide Web Consortium (W3C).
URL http://www. w3. org/TR/xslt, page 103, 1999.

[27] Paul Clarke and Rory V O’Connor. The situational factors that affect the software
development process: Towards a comprehensive reference framework. Information and
Software Technology, 54(5):433–447, 2012.

[28] Paul Clements and Linda Northrop. Software product lines: practices and patterns.
2002.

[29] Alistair Cockburn. Crystal Clear a Human-powered Methodology for Small Teams.
Addison-Wesley Professional, first edition, 2004.

[30] Kieran Conboy and Brian Fitzgerald. Method and Developer Characteristics for Ef-
fective Agile Method Tailoring: A Study of XP Expert Opinion. ACM Trans. Softw.
Eng. Methodol., 20(1):2:1–2:30, July 2010.

[31] Krzysztof Czarnecki and Ulrich W Eisenecker. Generative programming. Edited by G.
Goos, J. Hartmanis, and J. van Leeuwen, page 15, 2000.

[32] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in
the Context of the Model Driven Architecture, volume 45, pages 1–17, Seattle, USA,
2003.

[33] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621–646, 2006.

[34] Marcos Didonet Del Fabro and Jean Bézivin. Generic model management: from theory

184



to practice. In First Intl. Workshop on Towers of Models, 2007.

[35] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Model-driven tool
interoperability: An application in bug tracking. In On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, pages 863–881. Springer, 2006.

[36] Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Weaving Models with
the Eclipse AMW plugin. In Eclipse Modeling Symposium, volume 2006. Citeseer, 2006.

[37] Hüseyin Ergin. Design Patterns for Model Transformations. PhD thesis, The University
of Alabama, 2014.
http : //hergin.students.cs.ua.edu/research/proposal.pdf .

[38] Jean Rémy Falleri, Marianne Huchard, and Clémentine Nebut. Towards a traceability
framework for model transformations in kermeta. In Proceedings ECMDA Traceability
Workshop (ECMDA-TW’06), pages 31–40, Bilbao, Spain, 2006.

[39] Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Camus, David Sciamma,
Pierre Michel, Xavier Crégut, and Marc Pantel. The TOPCASED project: a toolkit
in open source for critical aeronautic systems design. Embedded Real Time Software
(ERTS), 781:54–59, 2006.

[40] Peter H Feiler and Watts S Humphrey. Software process development and enactment:
Concepts and definitions. In Software Process, 1993. Continuous Software Process
Improvement, Second International Conference on the, pages 28–40. IEEE, 1993.

[41] Matthias Felleisen. On the Expressive Power of Programming Languages. In Science
of Computer Programming, pages 134–151. Springer-Verlag, 1990.

[42] Anthony Finkelstein, Jeff Kramer, and Bashar Nuseibeh. Software process modelling
and technology. John Wiley & Sons, Inc., 1994.

[43] International Organization for Standardization and the International Electrotechni-
cal Commission. ISO/IEC 9126-1. Software engineering – Product quality. ISO/IEC,
2001.

[44] Martin Fowler. Domain-Specific Languages. Addison Wesley, 2010.

[45] Robert France and Bernhard Rumpe. Model-driven development of complex software:
A research roadmap. In 2007 Future of Software Engineering, pages 37–54. IEEE
Computer Society, 2007.

[46] Alfonso Fuggetta and Elisabetta Di Nitto. Software process. In Proceedings of the on
Future of Software Engineering, pages 1–12. ACM, 2014.

[47] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Adaptation of Models
to Evolving Metamodels. Research Report RR-6723, INRIA, 2008.

[48] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. A domain specific lan-

185



guage for expressing model matching. In Proceedings of the 5ère Journée sur l’Ingénierie
Dirigée par les Modèles (IDM09), pages 33–48, 2009.

[49] Jokin García, Maider Azanza, Arantza Irastorza, and Oscar Díaz. Testing mofscript
transformations with handymof. In ICMT, pages 42–56. Springer, 2014.

[50] Roxana Giandini, Gabriela Pérez, and Claudia Pons. Un lenguaje de Transformación
específico para Modelos de Proceso del Negocio. In XXXVI Conferencia Latinoameri-
cana de Informática (CLEI 2010), volume 18, 2010.
http : //www.lif ia.info.unlp.edu.ar/eclipse/BPMTL/.

[51] Bas Graaf and Arie Van Deursen. Using mde for generic comparison of views. Technical
report, Delft University of Technology, Software Engineering Research Group, 2007.
http : //www.eclipse.org/atl/atlT ransformations/#KM32CONFATL.

[52] Jeff Gray, Yuehua Lin, and Jing Zhang. Automating change evolution in model-driven
engineering. Computer, 39(2):51–58, 2006.

[53] Jack Greenfield and Keith Short. Software factories: assembling applications with
patterns, models, frameworks and tools. In Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applica-
tions, pages 16–27. ACM, 2003.

[54] Object Management Group. Semantics of Business Vocabulary and Business Rules
(SBVR) Version 1.0. Technical Report 2008-04-01, Object Management Group, 2008.
http://www.omg.org/spec/SBVR/1.0/.

[55] Object Management Group. Software & Systems Process Engineering Metamodel
Specification (SPEM) Version 2.0. Technical Report 2008-04-01, Object Manage-
ment Group, 2008. http://www.omg.org/spec/SPEM/2.0/PDF/.

[56] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification. Technical report, Object Management Group, January 2011.
http://www.omg.org/spec/QVT/1.1/PDF/.

[57] Regina Hebig, Holger Giese, Florian Stallmann, and Andreas Seibel. On the complex
nature of mde evolution. In International Conference on Model Driven Engineering
Languages and Systems, pages 436–453. Springer, 2013.

[58] Wolfgang Heider, Rick Rabiser, Deepak Dhungana, and Paul Grünbacher. Tracking
evolution in model-based product lines. In Proceedings 1st Int’l Workshop on Model-
driven Approaches in Software Product Line Engineering (MAPLE 2009), collocated
with the 13th Int’l Software Product Line Conference (SPLC 2009), San Francisco,
CA, USA, August 24, 2009.

[59] Guillaume Hillairet, Frédéric Bertrand, and Jean-Yves Lafaye. MDE for publishing data
on the Semantic Web. Transformation and Weaving Ontologies in MDE, 395:32–46,
2008.

186



[60] Watts S Humphrey. Managing the software process (hardcover). Addison-Wesley Pro-
fessional. Humphrey, WS, & Curtis, B.(1991). Comments ona critical look’[software
capability evaluations]. Software, IEEE, 8(4):42–46, 1989.

[61] Watts S Humphrey. The software engineering process: definition and scope. ACM
SIGSOFT Software Engineering Notes, 14(4):82–83, 1989.

[62] Julio Ariel Hurtado. A meta-process for defining adaptable software processes. PhD
thesis, University of Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile,
5 2012. http://www.repositorio.uchile.cl/handle/2250/111945.

[63] Julio Ariel Hurtado, María Cecilia Bastarrica, Sergio F Ochoa, and Jocelyn Simmonds.
Mde software process lines in small companies. Journal of Systems and Software, 2012.

[64] Julio Ariel Hurtado, María Cecilia Bastarrica, Alcides Quispe, and Sergio Ochoa. MDE-
Based Process Tailoring Strategy. Journal of Software: Evolution and Process, 2013.

[65] Julio Ariel Hurtado, María Cecilia Bastarrica, Alcides Quispe, and Sergio F. Ochoa.
An MDE approach to software process tailoring. In David Raffo, Dietmar Pfahl, and
Li Zhang, editors, ICSSP, pages 43–52, Honolulu, HI, USA, 2011. ACM.

[66] Julio Ariel Hurtado, María Cecilia Bastarrica, Alcides Quispe, and Sergio F. Ochoa.
MDE-based process tailoring strategy. Journal of Software: Evolution and Process,
26(4):386–403, 2014.

[67] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering prac-
tices in industry: Social, organizational and managerial factors that lead to success or
failure. Science of Computer Programming, 89:144–161, 2014.

[68] Tuomas Ihme, Minna Pikkarainen, Susanna Teppola, Jukka Kääriäinen, and Olivier
Biot. Challenges and industry practices for managing software variability in small and
medium sized enterprises. Empirical Software Engineering, 19(4):1144–1168, 2014.

[69] Jerónimo Irazábal, Claudia Pons, and Carlos Neil. Model transformation as a mech-
anism for the implementation of domain specific transformation languages. SADIO
Electronic Journal of Informatics and Operations Research, 9(1), 2010.

[70] Xiaoping Jia, Hongming Liu, Lizhang Qin, and Adam Steele. Metamodel based Model
Transformation Framework. In Hamid R. Arabnia and Hassan Reza, editors, Software
Engineering Research and Practice, pages 496–502, Las Vegas, Nevada, USA, 2008.
CSREA Press.

[71] Timo Jokela, Netta Iivari, Juha Matero, and Minna Karukka. The standard of user-
centered design and the standard definition of usability: analyzing ISO 13407 against
ISO 9241-11. In Proceedings of the Latin American conference on Human-computer
interaction, pages 53–60. ACM, 2003.

[72] Albin Jossic, Marcos Didonet Del Fabro, Jean-Philippe Lerat, Jean Bézivin, and
Frédéric Jouault. Model integration with model weaving: a case study in system

187



architecture. In Systems Engineering and Modeling, 2007. ICSEM’07. International
Conference on, pages 79–84. IEEE, 2007.

[73] Frédéric Jouault. QVT to ATLVM.
http : //www.eclipse.org/atl/usecases/QV T2ATLVM/.

[74] Frédéric Jouault. Loosely coupled traceability for atl. In ECMDA Traceability Workshop
(ECMDA-TW), pages 29–37. Citeseer, 2005.
http : //www.eclipse.org/atl/atlT ransformations/#ATL2Tracer.

[75] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the specification of
textual concrete syntaxes in model engineering. In Proceedings of the 5th international
conference on Generative programming and component engineering, pages 249–254.
ACM, 2006.

[76] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Heidelberg
Berlin, editor, Proceedings of the 2005 International Conference on Satellite Events
at the MoDELS, volume 3844 of Lecture Notes in Computer Science, pages 128–138,
Montego Bay, Jamaica, 2006. Springer-Verlag.

[77] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation Language
MOLA. In Uwe Aßmann, Mehmet Aksit, and Arend Rensink, editors, MDAFA, volume
3599 of Lecture Notes in Computer Science, pages 62–76, Twente, The Netherlands,
2004. Springer.

[78] Pallavi Kalyanasundaram and Sunita P Ugale. Model Transformation: Concept, Cur-
rent Trends and Challenges. International Journal of Computer Applications, 119(14),
2015.

[79] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design guidelines for domain specific languages. arXiv preprint
arXiv:1409.2378, 2014.

[80] Amogh Kavimandan, Reinhard Klemm, and Aniruddha Gokhale. Automated Context-
Sensitive dialog synthesis for enterprise workflows using templatized model transforma-
tions. In Enterprise Distributed Object Computing Conference, 2008. EDOC’08. 12th
International IEEE, pages 159–168. IEEE, 2008.

[81] Steven Kelly and Risto Pohjonen. Domain-specific modelling for cross-platform product
families. In International Conference on Conceptual Modeling, pages 182–194. Springer,
2002.

[82] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008.

[83] Stuart Kent. Model Driven Engineering. In Proceedings of the Third International
Conference on Integrated Formal Methods (IFM’02), volume 2335 of Lecture Notes in
Computer Science, pages 286–298, London, UK, 2002. Springer-Verlag.

188



[84] Benjamin Klatt. Xpand: A closer look at the model2text transformation language.
Language, 10(16):2008, 2007.

[85] Anneke Kleppe. Software language engineering: creating domain-specific languages
using metamodels. Pearson Education, 2008.

[86] Anneke G Kleppe, Jos Warmer, Wim Bast, and MDA Explained. The model driven
architecture: practice and promise, 2003.

[87] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for gram-
marware. ACM Transactions on Software Engineering and Methodology (TOSEM),
14(3):331–380, 2005.

[88] Philippe Kruchten. The rational unified process: an introduction. Addison-Wesley
Professional, 2004.

[89] Marco Kuhrmann. You Can’T Tailor What You Haven’T Modeled. In Proceedings of
the 2014 International Conference on Software and System Process, ICSSP 2014, pages
189–190, New York, NY, USA, 2014. ACM.

[90] Marco Kuhrmann, Daniel Méndez Fernández, and Ragna Steenweg. Systematic soft-
ware process development: Where do we stand today? In Proceedings of the 2013
International Conference on Software and System Process, ICSSP 2013, pages 166–
170, New York, NY, USA, 2013. ACM.

[91] Ivan Kurtev, Jean Bézivin, and Mehmet Akşit. Technological Spaces: An Initial Ap-
praisal. In International Conference on Cooperative Information Systems (CoopIS),
DOA’2002 Federated Conferences, Industrial Track, Irvine, USA, pages 1–6, October
2002.

[92] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. Model-based DSL
frameworks. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 602–616. ACM, 2006.

[93] Thomas K Landauer. The trouble with computers: Usefulness, usability, and produc-
tivity, volume 21. Taylor & Francis, 1995.

[94] Michael Lawley and Jim Steel. Practical Declarative Model Transformation with Tefkat.
In Jean-Michel Bruel, editor, MoDELS Satellite Events, volume 3844 of Lecture Notes
in Computer Science, pages 139–150, Montego Bay, Jamaica, 2005. Springer.

[95] Jacques Lonchamp. A Structured Conceptual and Terminological Framework for Soft-
ware Process Engineering. In In Proceedings of the Second International Conference
on the Software Process, pages 41–53. IEEE Computer Society Press, 1993.

[96] Miles Macleod, Rosemary Bowden, Nigel Bevan, and Ian Curson. The MUSiC perfor-
mance measurement method. Behaviour & Information Technology, 16(4-5):279–293,
1997.

189



[97] Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, and Damien Andrew Tamburri.
Providing architectural languages and tools interoperability through model transforma-
tion technologies. Software Engineering, IEEE Transactions on, 36(1):119–140, 2010.

[98] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electr. Notes
Theor. Comput. Sci., 152:125–142, 2006.

[99] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys (CSUR), 37(4):316–344, 2005.

[100] ModelPlex Project. Deliverable D2.1.a: “Global Model Management Principles”,
March 2008. http : //docatlanmod.emn.fr/AM3/Documentation/D2 − 1 −
aGlobalModelManagementP rinciplesv1− 1.pdf, LastvisitedDecember2016.

[101] Parastoo Mohagheghi, Vegard Dehlen, and Tor Neple. Definitions and approaches to
model quality in model-based software development–A review of literature. Information
and Software Technology, 51(12):1646–1669, 2009.

[102] Parastoo Mohagheghi, Miguel A Fernandez, Juan A Martell, Mathias Fritzsche, and
Wasif Gilani. Mde adoption in industry: challenges and success criteria. In Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 54–59.
Springer, 2008.

[103] Fernando Molina and Ambrosio Toval. Integrating usability requirements that can be
evaluated in design time into Model Driven Engineering of Web Information Systems.
Advances in Engineering Software, 40(12):1306–1317, 2009.

[104] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and Pamela
Zave. Matching and merging of statecharts specifications. In Software Engineering,
2007. ICSE 2007. 29th International Conference on, pages 54–64. IEEE, 2007.

[105] Oscar Nierstrasz, Jon Whittle, and David Harel, editors. Model Driven Engineering
Languages and Systems, 9th International Conference, MoDELS 2006, Genova, Italy,
October 1-6, 2006, Proceedings, volume 4199 of Lecture Notes in Computer Science.
Springer, 2006.

[106] Alexis Ocampo, Fabio Bella, and Jürgen Münch. Software process commonality anal-
ysis. Software Process: Improvement and Practice, 10(3):273–285, 2005.

[107] Jon Oldevik and Oystein Haugen. Higher-order transformations for product lines. In
null, pages 243–254. IEEE, 2007.

[108] Jon Oldevik, Tor Neple, Roy Grønmo, Jan Aagedal, and Arne-J Berre. Toward stan-
dardised model-to-text transformations. In Model Driven Architecture–Foundations
and Applications, pages 239–253. Springer, 2005.

[109] Nuno Oliveira, Maria Joao Varanda Pereira, Pedro R. Henriques, and Daniela da Cruz.
Domain-specific languages: A theoretical survey. In Proceedings of the 3rd Compilers,
Programming Languages, Related Technologies and Applications (CoRTA’2009), pages

190



35–46, Lisbon, Portugal, 2009. Faculdade de Ciências da Universidade de Lisboa.

[110] Daniel Ortega, Luis Silvestre, María Cecilia Bastarrica, and Sergio F Ochoa. A tool
for modeling software development contexts in small software organizations. In SCCC
2012, Proceedings of the XXXI International Conference of the Chilean Computer Sci-
ence Society, Valparaiso, Chile, November 2012, pages 29–35. IEEE, 2012.

[111] Leon Osterweil. Software Processes Are Software Too. In Proceedings of the 9th In-
ternational Conference on Software Engineering, ICSE ’87, pages 2–13, Los Alamitos,
CA, USA, 1987. IEEE Computer Society Press.

[112] Harkirat Padda. QUIM: A Model for Usability/Quality in Use Measurement. LAP
Lambert Academic Publishing, Germany, 2009.

[113] Richard F. Paige, Jonathan S. Ostroff, and Phillip J Brooke. Principles for modeling
language design. Information and Software Technology, 42(10):665–675, 2000.

[114] Mikael Peltier. MTrans, a DSL for model transformation. In Enterprise Distributed
Object Computing Conference, 2002. EDOC’02. Proceedings. Sixth International, pages
190–199. IEEE, 2002.

[115] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[116] Aleksandar Popovic, Ivan Lukovic, Vladimir Dimitrieski, and Verislav Djukic. A DSL
for modeling application-specific functionalities of business applications. Computer
Languages, Systems & Structures, 43:69–95, 2015.

[117] ADAPTE Fondef Project. Adaptable Domain and Process Technology Engineering,
grant D09I1171. Fondef, Conicyt, Gobierno de Chile. http://www.adapte.cl, Last vis-
ited October 2016.

[118] AMW project. AMW Traceability.
http : //www.eclipse.org/gmt/amw/usecases/traceability/.

[119] ATL project. ATL to Binding Debugger.
http : //www.eclipse.org/atl/atlT ransformations/#ATL2BindingDebugger.

[120] ATL project. ATL to BindingDebugger.
http : //www.eclipse.org/atl/atlT ransformations/#ModelMeasurement.

[121] ATL project. ATL to Problem.
http : //www.eclipse.org/atl/atlT ransformations/#ATL2Problem.

[122] ATL project. KM3 to ATL Copier.
http : //www.eclipse.org/atl/atlT ransformations/#KM32ATLCopier.

[123] AWM project. AMW to ATL and XSLT.

191



http : //www.eclipse.org/gmt/amw/examples/#AMW2ATLXSLT .

[124] AWM project. Translating KM3 into SQL DDL using AMW and ATL.
https : //eclipse.org/gmt/amw/examples/#AMWKM32SQL.

[125] Alcides Quispe, Maira Marques, Luis Silvestre, Sergio F. Ochoa, and Romain Robbes.
Requirements engineering practices in very small software enterprises: A diagnostic
study. In Sergio F. Ochoa, Federico Meza, Domingo Mery, and Claudio Cubillos,
editors, SCCC 2010, Proceedings of the XXIX International Conference of the Chilean
Computer Science Society, Antofagasta, Chile, November 2010, pages 81–87. IEEE
Computer Society, 2010.

[126] Jolita Ralyté, Rébecca Deneckère, and Colette Rolland. Towards a generic model for
situational method engineering. In Proceedings of the 15th International Conference
on Advanced Information Systems Engineering, CAiSE’03, pages 95–110, Berlin, Hei-
delberg, 2003. Springer-Verlag.

[127] Colin Robson and Kieran McCartan. Real world research. Wiley, 2016.

[128] Colette Rolland and Selmin Nurcan. Business Process Lines to deal with the Variability.
In System Sciences (HICSS), 2010 43rd Hawaii International Conference on, pages 1–
10. IEEE, 2010.

[129] Dieter Rombach. Integrated software process and product lines. In Unifying the Soft-
ware Process Spectrum, pages 83–90. Springer, 2005.

[130] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. The
epsilon generation language. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 1–16. Springer, 2008.

[131] Winston W Royce. Managing the development of large software systems. In proceedings
of IEEE WESCON, volume 26, pages 1–9. Los Angeles, 1970.

[132] Bernhard Rumpe and Ingo Weisemöller. A Domain Specific Transformation Language.
In: ME 2011 - Models And Evolution, Welington, New Zealand, October 2011.

[133] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

[134] Jesús Sánchez-Cuadrado and Jesús García Molina. A Plugin-Based Language to Ex-
periment with Model Transformation. In Nierstrasz et al. [105], pages 336–350.

[135] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[136] Ken Schwaber. Scrum development process. In Business Object Design and Implemen-
tation, pages 117–134. Springer, 1997.

[137] Richard W Selby. Software engineering: Barry W. Boehm’s lifetime contributions to

192



software development, management, and research, volume 69. John Wiley & Sons,
2007.

[138] Bran Selic. The pragmatics of model-driven development. IEEE software, 20(5):19,
2003.

[139] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart and Soul
of Model-Driven Software Development. IEEE Software, 20(5):42–45, 2003.

[140] Marten Sijtema. Introducing Variability Rules in ATL for Managing Variability in
MDE-based Product Lines. volume 10, pages 39–49. Citeseer, 2010.

[141] Luis Silvestre. Automatic generation of transformations for software process tailor-
ing. In Mira Balaban and Martin Gogolla, editors, Proceedings of the ACM Student
Research Competition at MODELS 2015 co-located with the ACM/IEEE 18th Interna-
tional Conference MODELS 2015, Ottawa, Canada, September 29, 2015., volume 1503
of CEUR Workshop Proceedings, pages 46–51. CEUR-WS.org, 2015.

[142] Luis Silvestre, María Cecilia Bastarrica, and Sergio F. Ochoa. HOTs for Generating
Transformations with Two Input Models. In SCCC 2013, Proceedings of the XXXII
International Conference of the Chilean Computer Science Society, Temuco, Chile,
November 2013, pages 26–29, 2013.

[143] Luis Silvestre, María Cecilia Bastarrica, and Sergio F. Ochoa. A Model-based Tool for
Generating Software Process Model Tailoring Transformations. In Luís Ferreira Pires,
Slimane Hammoudi, and Joaquim Filipe, editors, MODELSWARD, pages 533–540.
SciTePress, 2014.

[144] Luis Silvestre, María Cecilia Bastarrica, and Sergio F. Ochoa. A usable mde-based tool
for software process tailoring. In Vinay Kulkarni and Omar Badreddin, editors, Pro-
ceedings of the MoDELS 2015 Demo and Poster Session co-located with ACM/IEEE
18th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2015), Ottawa, Canada, September 27, 2015., volume 1554 of CEUR Work-
shop Proceedings, pages 36–39. CEUR-WS.org, 2015.

[145] Borislava I Simidchieva, Lori A Clarke, and Leon J Osterweil. Representing process
variation with a process family. In International Conference on Software Process, pages
109–120. Springer, 2007.

[146] Jocelyn Simmonds, Daniel Perovich, María Cecilia Bastarrica, and Luis Silvestre. A
megamodel for Software Process Line modeling and evolution. In Timothy Lethbridge,
Jordi Cabot, and Alexander Egyed, editors, 18th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, September 30 - October 2, 2015, pages 406–415. IEEE, 2015.

[147] Dag IK Sjøberg, Jo E Hannay, Ove Hansen, Vigdis By Kampenes, Amela Kara-
hasanovic, Nils-Kristian Liborg, and Anette C Rekdal. A survey of controlled experi-
ments in software engineering. Software Engineering, IEEE Transactions on, 31(9):733–
753, 2005.

193



[148] Ian Sommerville. Software engineering. international computer science series. ed: Ad-
dison Wesley, 2004.

[149] Jean-Sébastien Sottet, Vincent Ganneau, Gaëlle Calvary, Joëlle Coutaz, Alexandre
Demeure, Jean-Marie Favre, and Rachel Demumieux. Model-driven adaptation for
plastic user interfaces. In Human-Computer Interaction–INTERACT 2007, pages 397–
410. Springer, 2007.

[150] Indian Standard. Systems and software engineering–software life cycle processes. ISO
Standard, 12207:2008, 2008.

[151] Yu Sun, Jules White, and Jeff Gray. Model Transformation by Demonstration. In Andy
Schürr and Bran Selic, editors, MoDELS, volume 5795 of Lecture Notes in Computer
Science, pages 712–726, Denver, CO, USA„ 2009. Springer.

[152] Eugene Syriani, Jörg Kienzle, and Hans Vangheluwe. Exceptional transformations.
In International Conference on Theory and Practice of Model Transformations, pages
199–214. Springer, 2010.

[153] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Hüseyin Ergin. AToMPM: A Web-based Modeling Environment. In
Demos/Posters/StudentResearch@ MoDELS, pages 21–25. Citeseer, 2013.

[154] CMMI Product Team. CMMI for Development, Version 1.3. Technical Report
CMU/SEI-2010-TR-033, Software Engineering Institute, 2010.

[155] Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Improving Higher-Order Trans-
formations Support in ATL. In Laurence Tratt and Martin Gogolla, editors, ICMT,
volume 6142 of Lecture Notes in Computer Science, pages 215–229, Malaga, Spain,
2010. Springer.

[156] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin. On
the Use of Higher-Order Model Transformations. In Richard F. Paige, Alan Hartman,
and Arend Rensink, editors, ECMDA-FA, volume 5562 of Lecture Notes in Computer
Science, pages 18–33, Enschede, The Netherlands, 2009. Springer.

[157] Claudia Valtierra, Mirna Muñoz, and Jezreel Mejia. Characterization of software pro-
cesses improvement needs in SMEs. In Mechatronics, Electronics and Automotive En-
gineering (ICMEAE), 2013 International Conference on, pages 223–228. IEEE, 2013.

[158] Marcel F. van Amstel, Christian F.J. Lange, and Mark G.J. van den Brand. Using
metrics for assessing the quality of ASF+ SDF model transformations. In International
Conference on Theory and Practice of Model Transformations, pages 239–248. Springer,
2009.

[159] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An An-
notated Bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[160] Simon Van Mierlo. Higher-Order Transformations in AToMPM. Technical Report

194



MSDL-HOTS, Modelling, Simulation and Design Lab, 2012.
http : //msdl.cs.mcgill.ca/people/simonvm/f iles/hots.

[161] Dániel Varró and András Pataricza. Generic and meta-transformations for model trans-
formation engineering. In «UML» 2004—The Unified Modeling Language. Modeling
Languages and Applications, pages 290–304. Springer, 2004.

[162] Dániel Varró, Gergely Varró, and András Pataricza. Designing the automatic transfor-
mation of visual languages. Science of Computer Programming, 44(2):205–227, 2002.

[163] Dániel Varró. Model Transformation by Example. In Oscar Nierstrasz, Jon Whittle,
David Harel, and Gianna Reggio, editors, Model Driven Engineering Languages and
Systems, volume 4199 of Lecture Notes in Computer Science, pages 410–424. Springer
Berlin Heidelberg, 2006.

[164] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart CL Kats, Eelco Visser, and Guido Wachsmuth. DSL engineering: Designing,
implementing and using domain-specific languages. dslbook. org, 2013.

[165] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen. Model-
driven software development: technology, engineering, management. John Wiley &
Sons, 2013.

[166] Dennis Wagelaar. Composition techniques for rule-based model transformation lan-
guages. In Theory and Practice of Model Transformations, pages 152–167. Springer,
2008.

[167] Hironori Washizaki. Building software process line architectures from bottom up. In
International Conference on Product Focused Software Process Improvement, pages
415–421. Springer, 2006.

[168] WebRatio. WebRatio Web Platform.
http : //www.webratio.com/site/content/en/web− application− development.

[169] David Weiss, J.J. Li, H. Slye, T. Dinh-Trong, and Sun Hongyu. Decision-Model-Based
Code Generation for SPLE. In SPLC, pages 129–138, Sept 2008.

[170] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-
driven engineering. Software, IEEE, 31(3):79–85, 2014.

[171] Manuel Wimmer and Gerhard Kramler. Bridging grammarware and modelware. In
Satellite Events at the MoDELS 2005 Conference, pages 159–168. Springer, 2005.

[172] Andrés Yie, Rubby Casallas, Dirk Deridder, and Dennis Wagelaar. Realizing model
transformation chain interoperability. Software & Systems Modeling, 11(1):55–75, 2012.

[173] Robert K. Yin. Case study research: design and methods. Sage Publications, Newbury
Park, CA, third edition, 2002.

195



[174] Sami Zahran. Software process improvement: practical guidelines for business susccess.
Addison-Wesley Longman Ltd., 1998.

196



Annex A

Listings of the Higher-order
Transformation

A.1 HOT code for generating the header

Listing A.1: Excerpt of the HOT for Generating the Header
1 module VDM2ATL;
2 c r ea t e OUT : ATLMeta from IN : VDMM;
3
4 ru l e Module {
5 from
6 vdm : VDMM! Decis ionModel
7 to
8 a t l : ATLMeta !Module (
9 i sRe f i n i n g <− false ,
10 name <− ’ Ta i lo r ingTrans format ion ’ ,
11 outModels <− outputModels_spem ,
12 inModels <− inputModels_spem ,
13 inModels <− inputModels_spcm
14 ) ,
15 outputModels_spem :ATLMeta ! OclModel (
16 name <− ’OUT’ ,
17 metamodel<− outputMetamodel_spem
18 ) ,
19 outputMetamodel_spem :ATLMeta ! OclModel (
20 name <− ’MM2’
21 ) ,
22 inputModels_spem : ATLMeta ! OclModel (
23 name <− ’ IN ’ ,
24 metamodel <−inputMetamodel_spem
25 ) ,
26 inputMetamodel_spem :ATLMeta ! OclModel (
27 name <− ’MM’
28 ) ,
29 inputModels_spcm : ATLMeta ! OclModel (
30 name <− ’ IN1 ’ ,
31 metamodel <−inputMetamodel_spcm
32 ) ,
33 inputMetamodel_spcm :ATLMeta ! OclModel (
34 name <− ’MM1’
35 )
36 do{
37 thisModule . he lpe rge tContextAtt r ibuteCon f i gura t i on (vdm) ;
38 thisModule . h e lpe rge tTaskDe f in i t i on (vdm) ;
39 thisModule . he lperOpt iona lRules (vdm) ;
40 thisModule . createMethodLibrary (vdm) ;
41 thisModule . createMethodPlugin (vdm) ;
42 }
43 }

197



A.2 HOT code for generating the matched rules

Listing A.2: Excerpt of the HOT for Generating Matched Rules
1 ru l e createMethodPlugin (vdm : VDM! Decis ionModel ) {
2 to
3 −− InPattern y outPattern
4 methodPluginRule : ATLMeta ! MatchedRule (
5 name <− ’ methodPlugin ’ ,
6 i sAbs t r a c t <− false ,
7 i sRe f i n i n g <− false ,
8 module <− thisModule . resolveTemp (vdm, ’ a t l ’ ) ,
9 inPattern <− methodPluginInPattern ,
10 outPattern <− methodPluginOutPattern
11 ) ,
12 −− From Sect ion
13 methodPluginInPattern : ATLMeta ! InPattern (
14 elements <− Set {methodPluginInElement}
15 ) ,
16 methodPluginInElement : ATLMeta ! SimpleInPatternElement (
17 varName <− ’mp ’ ,
18 type <− inOclType
19 ) ,
20 inOclType : ATLMeta ! OclModelElement (
21 name <− ’ MethodPlugin ’ ,
22 model <− thisModule . resolveTemp (vdm, ’ inputMetamodel_spem ’ )
23 ) ,
24 −− To Sect ion
25 methodPluginOutPattern : ATLMeta ! OutPattern (
26 elements <− Set {methodPluginOutElement}
27 ) ,
28 methodPluginOutElement : ATLMeta ! SimpleOutPatternElement (
29 varName <− ’mpp ’ ,
30 type <− outOclType ,
31 bind ings <− bindingsMethodPluginOutElement_name ,
32 bind ings <− bindingsMethodPluginOutElemen_description ,
33 bind ings <− bindingsMethodPluginOutElemen_ownedProcessPackage ,
34 bind ings <− bindingsMethodPluginOutElemen_ownedMethodContentPackage
35 ) ,
36 outOclType : ATLMeta ! OclModelElement (
37 name <− ’ MethodPlugin ’ ,
38 model <− thisModule . resolveTemp (vdm, ’ outputMetamodel_spem ’ )
39 ) ,
40 bindingsMethodPluginOutElement_name :ATLMeta ! Binding (
41 propertyName <− ’name ’ ,
42 value <−bindingsMethodPluginOutElement_nameValue
43 ) ,
44 bindingsMethodPluginOutElement_nameValue :ATLMeta ! Navigat ionOrAttr ibuteCal lExp (
45 name <− ’name ’ ,
46 source<−variableExp_bindingsMethodPluginOutElement_nameValueSource
47 ) ,
48 variableExp_bindingsMethodPluginOutElement_nameValueSource :ATLMeta ! VariableExp (
49 r e f e r r edVar i ab l e<−methodPluginInElement
50 ) ,
51
52 bindingsMethodPluginOutElemen_description :ATLMeta ! Binding (
53 propertyName <− ’ d e s c r i p t i o n ’ ,
54 value <−bindingsMethodPluginOutElemen_descriptionValue
55 ) ,
56 bindingsMethodPluginOutElemen_descriptionValue :ATLMeta ! Navigat ionOrAttr ibuteCal lExp (
57 name <− ’ d e s c r i p t i o n ’ ,
58 source<−bindingsMethodPluginOutElemen_descriptionValueSource
59 ) ,
60 bindingsMethodPluginOutElemen_descriptionValueSource :ATLMeta ! VariableExp (
61 r e f e r r edVar i ab l e<−methodPluginInElement
62 ) ,
63
64 bindingsMethodPluginOutElemen_ownedProcessPackage :ATLMeta ! Binding (
65 propertyName <− ’ ownedProcessPackage ’ ,
66 value <−bindingsMethodPluginOutElemen_ownedProcessPackageValue
67 ) ,
68 bindingsMethodPluginOutElemen_ownedProcessPackageValue :ATLMeta ! Navigat ionOrAttr ibuteCal lExp (
69 name <− ’ ownedProcessPackage ’ ,
70 source<−bindingsMethodPluginOutElemen_ownedProcessPackageValueSource
71 ) ,
72 bindingsMethodPluginOutElemen_ownedProcessPackageValueSource :ATLMeta ! VariableExp (
73 r e f e r r edVar i ab l e<−methodPluginInElement
74 ) ,
75
76 bindingsMethodPluginOutElemen_ownedMethodContentPackage :ATLMeta ! Binding (
77 propertyName <− ’ ownedMethodContentPackage ’ ,
78 value <−bindingsMethodPluginOutElemen_ownedMethodContentPackageValue
79 ) ,
80 bindingsMethodPluginOutElemen_ownedMethodContentPackageValue :ATLMeta ! Navigat ionOrAttr ibuteCal lExp (
81 name <− ’ ownedMethodContentPackage ’ ,
82 source<−bindingsMethodPluginOutElemen_ownedMethodContentPackageValueSource
83 ) ,
84 bindingsMethodPluginOutElemen_ownedMethodContentPackageValueSource :ATLMeta ! VariableExp (
85 r e f e r r edVar i ab l e<−methodPluginInElement
86 ) }

198



A.3 HOT code for generating the helpers

Listing A.3: Excerpt of the HOT for Generating Helpers
1 ru l e he lpe rge tContextAtt r ibuteCon f i gurat i on (vdm : VDMM! Decis ionModel ) {
2 to
3 getContextAttr ibuteHelper : ATLMeta ! Helper (
4 module <− thisModule . resolveTemp (vdm, ’ a t l ’ ) ,
5 d e f i n i t i o n <−d e f i n i t i o nHe l p e r
6 ) ,
7 d e f i n i t i o nHe l p e r :ATLMeta ! Oc lFeatureDe f in i t i on (
8 f e a tu r e <− f e a tu r eOc lFea tu r eDe f i n i t i on
9
10 ) ,
11
12 f e a tu r eOc lFea tu r eDe f i n i t i on : ATLMeta ! Operation (
13 name <− ’ ge tContextAttr ibuteConf igurat ion ’ ,
14 parameters<−parameterOperation ,
15 returnType<−returnTypeOperation ,
16 body<−bodyOperation
17 ) ,
18
19 parameterOperation : ATLMeta ! Parameter (
20 varName <− ’ nameAttribute ’ ,
21 type<−typeParameter
22 ) ,
23
24 returnTypeOperation :ATLMeta ! OclModelElement (
25 name<− ’ ContextAttr ibuteConf igurat ion ’ ,
26 model<−thisModule . resolveTemp (vdm, ’ inputMetamodel_spcm ’ )
27 ) ,
28
29 typeParameter :ATLMeta ! StringType (
30 ) ,
31
32 bodyOperation :ATLMeta ! Col l ect ionOperat ionCal lExp (
33 operationName <− ’ f i r s t ’ ,
34 source<−sourceCo l l e c t i onOpera t i on
35 ) ,
36
37 sourceCo l l e c t i onOpera t i on :ATLMeta ! I te ratorExp (
38 name<− ’ s e l e c t ’ ,
39 source<−source I te ratorExp ,
40 body<−bodyCol lect ionOperat ionCal l ,
41 i t e r a t o r s <−i t e r a t o r s I t e r a t o r
42 ) ,
43
44 i t e r a t o r s I t e r a t o r :ATLMeta ! I t e r a t o r (
45 varName<− ’ a ’ ,
46 variableExp<−sourceVariableExp
47 ) ,
48
49 source I t e ra to rExp :ATLMeta ! Col l ect ionOperat ionCal lExp (
50 operationName<− ’ asSequence ’ ,
51 source<−s ou r c eCo l l e c t i onOpera t i onCa l l
52 ) ,
53
54 sourc eCo l l e c t i onOpera t i onCa l l :ATLMeta ! OperationCallExp (
55 operationName<− ’ a l l I n s t a n c e s ’ ,
56 source<−sourceOperat ionCal lEx
57 ) ,
58
59 sourceOperat ionCal lEx :ATLMeta ! OclModelElement (
60 name<− ’ ContextAttr ibuteConf igurat ion ’ ,
61 model<−thisModule . resolveTemp (vdm, ’ inputMetamodel_spcm ’ )
62 ) ,
63
64 bodyCol l ec t ionOperat ionCal l :ATLMeta ! OperatorCallExp (
65 operationName<− ’= ’ ,
66 source<−sourceNavigat ionOrAttr ibuteCal lExp ,
67 arguments<−argumentsVariableExp
68 ) ,
69
70 sourceNavigat ionOrAttr ibuteCal lExp :ATLMeta ! Navigat ionOrAttr ibuteCal lExp (
71 name<− ’name ’ ,
72 source<−sourceNavigat ionOrAttr ibuteCal lExp2
73 ) ,
74 sourceNavigat ionOrAttr ibuteCal lExp2 :ATLMeta ! Navigat ionOrAttr ibuteCal lExp (
75 name<− ’ myContextElement ’ ,
76 source<−sourceVariableExp
77 ) ,
78 sourceVariableExp :ATLMeta ! VariableExp (
79 r e f e r r edVar i ab l e<−i t e r a t o r s I t e r a t o r
80 ) ,
81 argumentsVariableExp :ATLMeta ! VariableExp (
82 r e f e r r edVar i ab l e<−parameterOperation
83 )
84 }

199



A.4 Tailoring transformation generated by the HOT and
the ATL extractor

Listing A.4: Tailoring transformation in ATL that is generated by the HOT and the ATL
extractor

1 module Ta i l o r i ng ;
2
3 c r ea t e OUT : MM2 from IN : MM, IN1 : MM1;
4
5 he lpe r de f : ge tContextAttr ibuteConf igurat ion ( nameAttribute : S t r ing ) :
6 MM1! ContextAttr ibuteConf igurat ion = MM1! ContextAttr ibuteConf igurat ion . a l l I n s t a n c e s ( )−>asSequence ( )−>s e l e c t (

a | a . myContextElement .name =nameAttribute )−>f i r s t ( ) ;
7 he lpe r de f : getValue ( nameAttribute : S t r ing ) :
8 St r ing = thisModule . ge tContextAttr ibuteConf igurat ion ( nameAttribute ) . myContextAttributeValue . va lue ;
9
10 he lpe r de f : g e tTaskDe f in i t i on ( taskDef init ionName : St r ing ) : MM! TaskDef in i t i on =
11 MM! TaskDef in i t i on . a l l I n s t a n c e s ( )−>asSequence ( )−>s e l e c t ( t | t .name = taskDef init ionName )−>f i r s t ( ) ;
12
13
14 he lpe r de f : nextElement ( a :MM!WorkBreakDownElement ) : MM!WorkBreakDownElement = MM!WorkBreakDownElement .

a l l I n s t a n c e s ( )−>s e l e c t ( t | t=a . next )−>f i r s t ( ) ;
15 he lpe r de f : next ( a :MM!WorkBreakDownElement ) : MM!WorkBreakDownElement = i f ( thisModule . opt iona lRule ( thisModule

. nextElement ( a ) .name ) ) then a e l s e thisModule . next ( thisModule . nextElement ( a ) ) end i f ;
16
17 he lpe r de f : opt iona lRule (name : S t r ing ) : Boolean =
18 i f ( Sequence{ ’ Requirements ’ , ’ Design ’ ) then (
19 i f ( ’ Design ’= name ) then
20 thisModule . ruleOpt2 ( )
21 e l s e (
22 i f ( ’ Requirements ’= name ) then
23 thisModule . ruleOpt1 ( )
24 e l s e true
25 end i f
26 ) end i f
27 ) e l s e true end i f ;
28
29 he lpe r de f : a l t e rna t i v eRu l e ( tu :MM! TaskUse ) : MM! TaskDef in i t ion =
30 i f ( Sequence{ ’ Spec i f y Requirements ’ , ’ E s tab l i sh Requirements Base l ine ’ } . i n c l ude s ( tu .name ) ) then (
31 i f ( ’ E s tab l i sh Requirements Base l ine ’= tu .name ) then
32 thisModule . ru l eA l t2 ( tu )
33 e l s e (
34 i f ( ’ Spec i f y Requirements ’= tu .name ) then
35 thisModule . ru l eA l t1 ( tu )
36 e l s e tu . l inkTask
37 end i f
38 ) end i f
39 ) e l s e tu . l inkTask end i f ;
40
41 he lpe r de f : ruleOpt1 ( ) : Boolean=i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−adaptat ion ’ and

thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’ Small ’ ) then false
42 e l s e true
43 end i f ;
44
45 he lpe r de f : ruleOpt2 ( ) : Boolean=i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−c o r r e c t i o n ’ and

thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’ Small ’ ) then false
46 e l s e true
47 end i f ;
48
49 he lpe r de f : ru l eA l t1 ( tu :MM! TaskUse ) : MM! TaskDef in i t i on=i f ( ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’ In c i d en t s ’

or thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’Maintenance−enhancement ’ ) and thisModule . getValue ( ’ Bus iness
Knowledge ’ ) = ’Known ’ ) then thisModule . ge tTaskDe f in i t i on ( ’ Spec i f y Requirements in p l a in text ’ )

50 e l s e thisModule . ge tTaskDe f in i t i on ( tu .name )
51 end i f ;
52
53 he lpe r de f : ru l eA l t2 ( tu :MM! TaskUse ) : MM! TaskDef in i t i on=i f ( thisModule . getValue ( ’ Pro j ec t Type ’ ) = ’New

development ’ and thisModule . getValue ( ’ Pro j ec t Duration ’ ) = ’Medium ’ and thisModule . getValue ( ’ Bus iness
Knowledge ’ ) = ’Unknown ’ ) then thisModule . ge tTaskDe f in i t i on ( ’ Es tab l i sh Requirements Base l ine and Test
Cases ’ )

54 e l s e thisModule . ge tTaskDe f in i t i on ( tu .name )
55 end i f ;
56
57 ru l e main{
58 from ml :MM! MethodLibrary
59 to mll :MM2! MethodLibrary (
60 name <− ml .name ,
61 de s c r i p t i on <− ml . de s c r ip t i on ,
62 ownedMethodPlugin<− ml . ownedMethodPlugin ,
63 prede f inedConf igurat ion<−ml . prede f inedCon f i gura t i on
64 )
65 }
66 ru l e methodplugin{
67 from mp:MM! MethodPlugin
68 to mpp:MM2! MethodPlugin (
69 name<− mp.name ,
70 de s c r i p t i on <− mp. de s c r ip t i on ,
71 ownedProcessPackage<− mp. ownedProcessPackage ,
72 ownedMethodContentPackage <− mp. ownedMethodContentPackage
73 )

200



74 }
75 ru l e methodconf igurat ion {
76 from c :MM! MethodConfiguration
77 to cc :MM2! MethodConfiguration (
78 name <−c .name ,
79 de s c r i p t i on <− c . de s c r ip t i on ,
80 baseConf igurat ion<−c . baseConf igurat ion ,
81 methodPluginSelect ion<−c . methodPluginSelect ion ,
82 defaultView<−c . defaultView ,
83 processView<−c . processView ,
84 proces sPackageSe l ec t ion<−c . proces sPackageSe l ec t ion ,
85 myProcessPackage<−c . myProcessPackage ,
86 contentSe l e c t i on<−c . c on t en tSe l e c t i on
87 )
88 }
89 ru l e ProcessPackage {
90 from pp :MM! ProcessPackage
91 to ppp :MM2! ProcessPackage
92 (
93 name <− pp .name ,
94 processElements <− pp . processElements ,
95 processPackages <− pp . processPackages
96 )
97 }
98 ru l e Act iv i ty {
99 from a :MM! Act iv i ty (
100 thisModule . opt iona lRule ( a .name )
101 )
102 to aa :MM2! Act iv i ty (
103 name <− a .name ,
104 nestedElements <− a . nestedElements ,
105 processPer former <− a . processPer former ,
106 processParameter <− a . processParameter ,
107 usedAct iv i ty <− a . usedAct iv i ty ,
108 useKind <− a . useKind ,
109 next <− a . next ,
110 ownedParemeter <− a . ownedParemeter ,
111 de s c r i p t i on <− a . de s c r ip t i on ,
112 va r i ab i l i t yType <− a . var i ab i l i tyType ,
113 var iabi l i tyBasedOnElement <− a . var iabi l i tyBasedOnElement )
114 }
115 ru l e TaskUse{
116 from tu :MM! TaskUse ( thisModule . opt iona lRule ( tu .name ) )
117
118 us ing {
119 task :MM! TaskDef in i t ion = thisModule . a l t e rna t i v eRu l e ( tu ) ;
120 }
121
122 to tuu :MM2! TaskUse (
123 name <− tu .name ,
124 l inkTask<− task ,
125 next <− tu . next ,
126 ownedParemeter <− tu . ownedParemeter ,
127 de s c r i p t i on <− tu . de s c r i p t i on )
128 }
129 ru l e RoleUse{
130 from ru :MM! RoleUse
131 to ruu :MM2! RoleUse (
132 name <− ru .name ,
133 l inkRole<−ru . l inkRole ,
134 myPerformer <− ru . myPerformer ,
135 ownedParemeter <− ru . ownedParemeter ,
136 de s c r i p t i on <− ru . de s c r i p t i on
137 )
138 }
139 ru l e WorkProductUse{
140 from wpu :MM!WorkProductUse
141 to wpuu :MM2!WorkProductUse (
142 name <− wpu .name ,
143 linkWorkProduct<−wpu . linkWorkProduct ,
144 l inkedProcessElement <− wpu . l inkedProcessElement ,
145 ownedParemeter <− wpu . ownedParemeter ,
146 de s c r i p t i on <− wpu . de s c r i p t i o n
147 )
148 }
149 ru l e MethodContentPackage{
150 from pp :MM! MethodContentPackage
151 to ppp :MM2! MethodContentPackage (
152 name <− pp .name ,
153 methodContentElement <− pp . methodContentElement ,
154 methodPackages <− pp . methodPackages ,
155 c a t e g o r i e s <− pp . c a t e g o r i e s
156 )
157 }
158 ru l e Category{
159 from c :MM! Category
160 to cc :MM2! Category (
161 name<−c .name ,
162 de s c r i p t i on <− c . de s c r ip t i on ,
163 subCategory<− c . subCategory ,
164 subCategor ies<− c . subCategor ies ,
165 categor izedElement <− c . categor izedElement )
166 }
167 ru l e TaskDef in i t i on {
168 from tu :MM! TaskDef in i t i on
169 to tuu :MM2! TaskDef in i t i on (

201



170 name <− tu .name ,
171 de s c r i p t i on <− tu . de s c r ip t i on ,
172 performer<−tu . performer ,
173 par t i c ipant<−tu . pa r t i c ipant ,
174 inputs<−tu . inputs ,
175 outputs<−tu . outputs ,
176 opt i ona l Input s <− tu . opt iona l Inputs ,
177 variabi l i tyBasedOnElement<−tu . var iabi l i tyBasedOnElement ,
178 var iab i l i tyType<−tu . va r i ab i l i t yType )
179 }
180 ru l e Ro l eDe f i n i t i on {
181 from ru :MM! Ro l eDe f i n i t i on
182 to ruu :MM2! Ro l eDe f i n i t i on (
183 de s c r i p t i on <− ru . de s c r ip t i on ,
184 name <− ru .name ,
185 va r i ab i l i t yType <− ru . var i ab i l i tyType ,
186 var iabi l i tyBasedOnElement <− ru . var iabi l i tyBasedOnElement )
187 }
188 ru l e WorkProductDefinit ion {
189 from wpu :MM! WorkProductDefinit ion
190 to wpuu :MM2! WorkProductDefinit ion (
191 de s c r i p t i on <− wpu . de s c r ip t i on ,
192 name <− wpu .name ,
193 va r i ab i l i t yType <− wpu . var i ab i l i tyType ,
194 var iabi l i tyBasedOnElement <− wpu . var iabi l i tyBasedOnElement )
195 }

202



Annex B

Evaluation Forms for validating
ATAGeTT

B.1 Evaluation of organizational context definition

B.1.1 Usability Evaluation

Navigability

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The navigation clearly shows the main frame of the

navigation tool
� � � � �

The graphical interface contains links that facilitate

the navigation tool.
� � � � �

Familiarity

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The organizational context elements are understand-

able.
� � � � �

203



The domain concepts have known meaning. � � � � �

The icons have known meaning. � � � � �

Flexibility

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The tool-specific features are easy access. � � � � �

The tool allows users to create an organizational con-

text definition (name, description, dimensions, at-
tributes, values).

� � � � �

The tool allows users to modify an organizational

context definition (name, description, dimensions,
attributes, values).

� � � � �

The tool allows users to remove an organizational

context definition.
� � � � �

The tool supports other languages as English and

Spanish.
� � � � �

Simplicity

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The information displayed in the tool is relevant for

defining an organizational context .
� � � � �

The information of the tool is sufficient for under-

standing the domain concepts.
� � � � �

The tool content is classified. � � � � �

204



The tool content is correctly organized. � � � � �

The graphical interface is well distributed on the

tool.
� � � � �

Usefulness

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The procedure to define organizational contexts is

understandable.
� � � � �

The procedure to define organizational contexts is

clear.
� � � � �

The interface of the tool is intuitive. � � � � �

The tool is appropriate to define organizational con-

texts.
� � � � �

The tool is useful for defining organizational con-

texts.
� � � � �

The tool is easy to use. � � � � �

B.1.2 Operability Evaluation

Organizational context definition

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The process of the organizational context definition

is clear.
� � � � �

The process of the organizational context definition

is flexible.
� � � � �

205



The process of the organizational context definition

is simple.
� � � � �

The process of the organizational context definition

is familiar.
� � � � �

B.1.3 Software Quality Factors Evaluation

Organizational context definition

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The domain concepts for defining the organizational

context are simple to understand.
� � � � �

The tool allows to build a required organizational

context.
� � � � �

The tool requires little training time to be used. � � � � �

The functions of the tool are well defined (edit, save). � � � � �

B.1.4 Questions

Do you consider that the tool is useful for your software company?

What would you suggest to improve the user experience when using the tool?

206



B.2 Evaluation of tailoring rules definition

B.2.1 Usability Evaluation

Navigability

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The graphical interface clearly shows the main frame

of the navigation tool.
� � � � �

The graphical interface contains links that facilitate

the navigation tool.
� � � � �

Familiarity

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The tailoring rules elements are understandable. � � � � �

The domain concepts have known meaning. � � � � �

The icons have known meaning. � � � � �

Consistency

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The link name and action name are consistent. � � � � �

The title name and graphical content are consistent. � � � � �

The procedure to define tailoring rules is systematic. � � � � �

207



The tool fulfills its purpose, i.e. tailoring rules defi-

nition.
� � � � �

Flexibility

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The tool-specific features are easy access. � � � � �

The tool allows users to create a tailoring rule defini-

tion (variable element of process, condition, logical
operator, conclusion).

� � � � �

The tool allows users to modify a tailoring rule def-

inition (context attribute and its respective value).
� � � � �

The tool supports other languages as English and

Spanish.
� � � � �

Simplicity

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The messages displayed in the tool are relevant for

preventing possible errors.
� � � � �

The information of the tool allows users to prevent

possible errors.
� � � � �

The tool does not induce to make mistakes. � � � � �

208



Facility

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The information displayed in the tool is easy to un-

derstand.
� � � � �

The information displayed in the tool is easy to iden-

tify.
� � � � �

The tool content is correctly classified . � � � � �

The tool content is correctly organized. � � � � �

The tool content is well distributed. � � � � �

Usefulness

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The procedure to define tailoring rules is under-

standable.
� � � � �

The procedure to define tailoring rules is clear. � � � � �

The interface of the tool is intuitive. � � � � �

The tool is appropriate for defining rules. � � � � �

The tool is useful for defining rules. � � � � �

The tool is easy to use. � � � � �

The tool requires little user training time. � � � � �

209



Expressiveness

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The tool allows users to generate the expected rules. � � � � �

The rules can be defined using the tool. � � � � �

The rules can be defined using conditions and con-

clusions.
� � � � �

The rules can be in a correct manner. � � � � �

The tool allow user to define rules using an ideal

mechanism.
� � � � �

Support and documentation

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The tool has help icons that guiding particular ac-

tions.
� � � � �

The tool has specific help descriptions. � � � � �

The tool has help resources that are affordable. � � � � �

B.2.2 Expressiveness Evaluation

Tailoring Rules definition

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

Visibility of the tool. � � � � �

Understability of the domain concepts. � � � � �

210



Compatibility of the language. � � � � �

Orthogonality of the language. � � � � �

Orthogonality of the language. � � � � �

Robustness of the tool. � � � � �

Simplicity of the tool. � � � � �

Usefulness of the language. � � � � �

Suitability of the language. � � � � �

Support of the tool. � � � � �

B.2.3 Software Quality Factors Evaluation

Tailoring rules definition

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The process of the tailoring rules definition is clear. � � � � �

The process of the tailoring rules definition is flexi-

ble.
� � � � �

The process of the tailoring rules definition is simple. � � � � �

The process of the tailoring rules definition is famil-

iar.
� � � � �

B.2.4 Questions

Do you consider the tool useful for supporting the tailoring rules definition?

What would you suggest for improving the user experience while using the tool for tailoring
rules definition?

211



B.3 Evaluation of project context definition

B.3.1 Usability Evaluation

Navigability

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The graphical interface clearly shows the main frame

of the navigation tool.
� � � � �

The graphical interface contains links that facilitate

the navigation tool.
� � � � �

Familiarity

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The project context elements are understandable. � � � � �

The domain concepts have known meaning. � � � � �

The icons have known meaning. � � � � �

Consistency

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The link name and action name are consistent. � � � � �

The title name and graphical content are consistent. � � � � �

212



The procedure to define project contexts is system-

atic.
� � � � �

The tool fulfills its purpose, i.e. software process

tailoring.
� � � � �

Flexibility

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The tool-specific features are easy access. � � � � �

The tool allows users to create a project context

definition (name, description, context, context at-
tributes).

� � � � �

The tool allows users to modify a project context

definition (name, description, context, context at-
tributes).

� � � � �

The tool supports other languages and it is easy to

switch between them.
� � � � �

Simplicity

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The information displayed in the tool is relevant for

defining a project context.
� � � � �

The information of the tool is sufficient for under-

standing the domain concepts.
� � � � �

The tool content is classified. � � � � �

The tool content is correctly organized. � � � � �

213



The graphical interface content is well distributed on

the tool.
� � � � �

Usefulness

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The procedure to define project contexts is under-

standable.
� � � � �

The procedure to define project contexts is clear. � � � � �

The interface of the tool is intuitive. � � � � �

The tool is appropriate to define project contexts. � � � � �

The tool is easy to use. � � � � �

B.3.2 Operability Evaluation

Project context definition

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The process of the software process tailoring is flex-

ible.
� � � � �

The process of the software process tailoring is use-

ful.
� � � � �

The process of the software process tailoring is cor-

rect.
� � � � �

The process of the software process tailoring is sim-

ple.
� � � � �

214



B.3.3 Software Quality Factors Evaluation

Project context definition

strongly
dis-
agree

disagree

neither
agree
nor dis-
agree

agree strongly
agree

The concepts for defining the project context are

simple to understand.
� � � � �

The tool allows to build a required project context. � � � � �

The tool requires little training time to be used. � � � � �

The functions of the tool are well defined (edit, save). � � � � �

B.3.4 Questions

Do you consider the tool useful for supporting the project context definition?

Are you willing to adopt the automatic software process tailoring based on project context
and tailoring rules? Why?

215


	Introduction
	Motivation
	Problem Statement
	Research Question and Hypotheses
	General research question
	Hypotheses

	Research Goals
	Research Methodology
	Contributions
	List of Publications
	Outline of the Thesis

	Basic Concepts
	Software Process
	Software process modeling
	Software process lines

	Model-driven Engineering
	Technical spaces
	Models and metamodels
	Model transformations
	Higher-order transformations
	Domain-specific languages and MDE


	Supporting the Development of Tailoring Transformations
	Running Example
	The Hurtado Proposal
	Organizational software process model
	Context model

	Software Context Modeling Tool
	Organizational context model definition
	Project context model configuration

	Transformations between Software Process and Software Process Model
	Projectors
	Projectors implementation

	Tailoring Transformation
	Related Work
	Summary and Discussion

	Tailoring Rules Specification
	Motivation
	An Overview of Domain-specific Languages
	Decision Language for Defining Tailoring Rules
	Conceptualizing the process tailoring rules
	Developing the decision language

	Using the Decision Language
	Identifying the domain concepts
	Defining a VDM using the DL

	Graphical Environment for Defining Tailoring Rules
	Related Work
	Summary and Discussion

	Tailoring Transformation Generation
	Motivation
	An Overview of Higher-Order Transformation
	Higher-Order Transformation for Generating Transformation Models
	Implementation
	Benefits and drawbacks of the HOT

	ATL Extractor for Generating Transformation Code
	Using the Tailoring Transformation Generation
	Generating a transformation model using the HOT
	Generating a tailoring transformation using the ATL code extractor

	Graphical Environment for Generating Tailoring Transformations
	Related Work
	Summary and Discussion

	A Tool-set for Automatically Generating Tailoring Transformations - ATAGeTT
	Motivation
	An Overview of Megamodeling
	Integrated Tool-set for Automatically Generating Tailoring Transformations and Executing Software Process Tailoring
	User interfaces
	Megamodel

	Building Adapted Software Process with ATAGeTT
	The process engineer user interface
	The project manager user interface


	Exploratory Case Study
	Motivation
	Case Study Design
	Description of approaches
	Evaluation strategy for comparing the approaches
	Description of characteristics
	Research question
	Description of the cases

	Case Study Preparation
	Rhiscom
	Mobius

	Case Study Execution
	Review of the organizational software processes
	Identification of tailoring decisions
	Defining the project contexts
	Applying both tailoring strategies

	Data Collection and Analysis
	Results and Observations
	Lessons Learned

	ATAGeTT Validation
	Motivation
	Case Study Design
	Brief description of ATAGeTT
	Description of characteristics to be evaluated
	Research questions definition
	Description of the case study
	Units of analysis

	Case Study Preparation
	Case Study Execution
	Review of the organizational software process
	Review of the organizational context
	Review of the tailoring decisions
	Apply ATAGeTT for software process tailoring

	Data Collection and Analysis
	Data collection
	Description of evaluation artifacts
	Data analysis

	Discussion
	Threats to Validity
	Construct validity
	Reliability
	Internal validity
	External validity


	Conclusions, Contributions, Limitations and Future Work
	Summary of the Thesis Work
	Conclusions
	Contributions
	Scope of the Proposed Solution
	Future Work

	Bibliography
	ANNEXES
	Listings of the Higher-order Transformation
	HOT code for generating the header
	HOT code for generating the matched rules
	HOT code for generating the helpers
	Tailoring transformation generated by the HOT and the ATL extractor

	Evaluation Forms for validating ATAGeTT
	Evaluation of organizational context definition
	Usability Evaluation
	Operability Evaluation
	Software Quality Factors Evaluation
	Questions

	Evaluation of tailoring rules definition
	Usability Evaluation
	Expressiveness Evaluation
	Software Quality Factors Evaluation
	Questions

	Evaluation of project context definition
	Usability Evaluation
	Operability Evaluation
	Software Quality Factors Evaluation
	Questions



