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Abstract. In this article I discuss the misfits problem, a practical issue that arises
in random treatment assignment whenever observations can’t be neatly distributed
among treatments. I also introduce the randtreat command, which performs
random assignment of unequal treatment fractions and provides several methods
to deal with misfits.
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1 Introduction

Random treatment assignment is presented as a simple exercise in theory, but prac-
titioners know that more often than not there are several subtleties to deal with. In
particular, when the number of observations in a given stratum is not a multiple of
the number of treatments to be assigned, then one has to deal with with the remainder
observations —the misfits— while trying to maintain treatment allocation balance both
within and across strata.

If dealing with unequal treatment fractions, the misfits problem arises whenever
the number of observations in a given stratum is not a multiple of the least common
multiple of those fractions’ denominators. This generalizes the issue as discussed by
Bruhn and McKenzie (2011).

While the misfits problem may seem trivial, it can become significantly large when
misfits are added up across strata. If not taken into account, a researcher may observe
covariate imbalance even in variables for which he has stratified. Additionally, misfits
may be systematically assigned to one particular treatment, leading to a deviation from
the intended treatment proportions.

I present a simple command, randtreat, that performs random treatment assign-
ment. It can handle multiple treatments and unequal treatment fractions, both of which
are usually encountered in randomized control trials. Stratified randomization can be
achieved by optionally specifying a variable list that defines multiple strata. The com-
mand performs all these tasks in a way that marks misfit observations and provides
several methods to deal with those observations.

c© yyyy StataCorp LP st0001



2 Dealing with misfits in random treatment assignment

The rest of this article is structured as follows. Section 2 explains the misfits problem
and characterizes in which ways and to what extent it can harm treatment allocation
balance. Section 3 details how the command deals with misfits conceptually, while
section 4 presents the command itself.

2 Problems with treatment assignment

The practical problem I discuss can be conceptually divided in two: the basic misfits
problem and the unequal treatment fractions problem. Both are related and I show
that, in fact, the latter only generalizes the former. It is worth observing that the
random part of treatment assignment is irrelevant to these issues, so I omit it from the
discussion in the beginning.

2.1 Misfits

The basic misfits problem arises whenever the size of the sample (or a given stratum) is
not a multiple of the number of treatments to be allocated.1 Whenever this happens,
there will be some remaining observations for which there is no obvious way to assign
to any of the available treatments.

The described situation can happen quite often in practice and is a common issue
among researchers that conduct randomized control trials (RCTs). As RCTs are being
increasingly utilized in a wide variety of fields, the need to rigorously and transparently
deal with this problem also increases. However, to the best of my knowledge few re-
searchers have dealt with misfits explicitly. David McKenzie’s World Bank blog post,
written jointly with Miriam Bruhn (Bruhn and McKenzie 2011), is the most systematic
analysis of the issue I’ve found, and the usage of the word “misfit” is due to them.2

It helps to have a concrete example in order to understand the issue. Consider
allocating three treatments in a sample of 20 observations. Of course, it is not possible
to assign three treatments evenly across 20 observations, but the usual algorithms for
treatment assignment don’t deal with this situation. For instance, consider using egen’s
cut() function:

. set obs 20

. gen id = _n

. egen treatment = cut(id), group(3)

In this toy example we know that only up to 18 observations can be evenly allocated
in a way that preserves treatment allocation fractions, namely, one third for each treat-
ment. However, this method of treatment assignment —or others similar to it— don’t

1. Throughout this article I adhere to the convention of referring as “treatment” to any value of
the treatment variable, because whether that value actually means treatment or control in the
context of an experimental study is irrelevant. That being said, the treatment variable generated
by randtreat takes nonnegative integer values and 0 is usually assumed to mark the control group.

2. When formalizing the concept I coined a woefully politically incorrect term for it, so I preferred
using Bruhn and McKenzie’s.
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deal with this issue because they divide the whole sample (or strata) crudely, using the
floor() or ceil() functions either implicitly (as in this example) or explicitly. Since
only up to 18 observations can be evenly allocated, we will have 2 misfit observations
regardless of whether they are explicitely accounted for or not. In the latter case, this
may produce problems in our assignment, as will be discussed in section 2.3.

Even though this is an overly simple example, it helps to understand the fundamental
problem. While having one sample with 20 observations can be rare, it can be common
to have multiple strata of that size. As each stratum is subject to an independent
treatment assignment, the misfits problem applies to all stratum, thus multiplying the
potential number of misfits in the whole sample. Section 2.4 explores this point further.

2.2 Unequal treatment fractions

A common requirement in real-world randomized control trials is that treatment arms
be of unequal proportions, that is, different fractions of the sample should be assigned
to each treatment. In this case, whenever the least common multiple (LCM) of those
fractions’ denominators is not a divisor of the number of observations in any given
stratum, we are going to have misfits in that stratum.

For example, consider a sample of 21 observations where half of them are to be
assigned to control and then three different treatments are to be assigned in equal
proportions among the other half of the observations. The näıve way of doing this
would be to simply divide the sample in half, assigning the first half to control and then
one sixth to each treatment. A simple method for achieving that would be:

. set obs 21

. generate treatment = .

. replace treatment = 0 if _n <= _N/2

. replace treatment = 1 if _n > _N/2 & _n <= _N*2/3

. replace treatment = 2 if _n > _N*2/3 & _n <= _N*5/6

. replace treatment = 3 if _n > _N*5/6

It is evident that it is not possible to exactly assign these treatments in the desired
proportions. Different ways of handling the rounding of observations may be done, but
again, the fact is that if the number of observations is not a multiple of the LCM of
the treatment fractions’ denominators, there are going to be misfit observations. In the
above example the corresponding LCM is 6, so up to 18 observations can be neatly
allocated, while 3 misfit observations will have to be dealt with.

2.3 Why misfits are a problem

Up until now one can wonder why should we take special care in dealing with misfits.
After all, even though the method of crudely cutting the sample (or strata) and rounding
up doesn’t account for misfits, their allocation to treatments is still random, because
the sorting of observations is random. As long as our chosen method assigns every
observation to a treatment , we should be fine, right?
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Well, not always. One problem we may encounter is that an algorithm which doesn’t
account for misfits may systematically assign them to one particular treatment in every
stratum, thus unbalancing the desired treatment proportions. This is the most direct
problem that arises when using code that seems correct, but inadvertently assigns misfits
without taking them into account.

To be more concrete, lets consider the bpwide.dta system dataset, which has fic-
tional blood-pressure data for 120 patients. Suppose we want to randomly allocate three
treatments, stratifying by sex and age group. This setup has 6 strata, each with exactly
20 observations:

. sysuse bpwide

. egen stratum = group(sex agegrp)

We know in advance that this configuration will produce 2 misfits per stratum, for a
total of 12 misfit observations. We could then proceed to perform a random treatment
assignment with the following code:

. set seed 1102

. generate rannum = uniform()

. bysort stratum: egen rank = rank(rannum)

. generate treatment = .

. bysort stratum: replace treatment = 0 if rank <= _N/3

. bysort stratum: replace treatment = 1 if rank > _N/3 & rank <= 2*_N/3

. bysort stratum: replace treatment = 2 if rank > 2*_N/3

Tabulating treatment shows that even though we specified that each treatment
had to have one third of the observations, the control group (treatment==0) is actu-
ally underrepresented. This happened because in each stratum the two misfits were
systematically assigned to treatment==1 and treatment==2.

This deviation from the intended treatment fractions may prove to be a problem
in several ways. First of all, it can negatively affect the experiments statistical power,
since the groups are not balanced. Also, it may be that the treatment distribution is
unfeasible, because treatments are usually more expensive than controls and the number
of treatments available is restricted. Or there may be political or ethical constrains that
don’t permit any unbalance in the treatment distribution.

Moreover, by not accounting for the misfits we could inadvertently assign them
in a way that harms the balance of our original stratification. For example, if we
have stratified by sex and age group, our algorithm could assign all misfit women to
control and all misfit men to treatment. This systematic misallocation of misfits may
significantly unbalance any stratified assignment, defeating its purpose.

It is clear that the misfits problem could be negligible in some simple experimental
setups. However, in experiments with multiple treatments, unequal treatment fractions
and various strata, the number of misfits and the problems associated with them may
escalate very quickly. Since the number of misfits is crucial for assessing the severity of
the problem they may cause, we now take a closer look at this matter.
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2.4 Characterizing the number of misfits

I have described simple treatment assignments which produce a certain number of misfit
observations and analyzed in which ways those misfits could be a problem. It should
be evident by now that whether misfits are going to be a problem in any treatment
assignment —and to what extent— depends on their relative number, so it is interesting
to analyze in further detail exactly how many misfits can any given assignment yield.

I first consider the case with equal treatment fractions discussed in 2.1. It is easy
to see that for any number T of treatments we want to assign, we need the sample size
to be divisible by T to not have misfits. If that is not the case, then the number of
misfits will be equal to the remainder of the division of the sample size over T . For
example, when assigning 3 treatments in a sample with 9 observations we will have no
misfits. If the sample size was 10, we would get one misfit; if the sample size was 11,
we would have two misfits. However, if the sample size was 12 then again we would
have no misfits. This situation holds true for each stratum in which the assignment is
carried out.

The intuitive reasoning explained above can be formalized as follows. Let the strata
of a sample be indexed by s, with s = 1, . . . , S. In an assignment with multiple treat-
ments of equal proportions, we will have that

m′

s = T mod vs ∀s,

where m′

s is the number of misfits in stratum s, vs is the number of observations (or
“size”) of stratum s and T is the number of treatments. So it follows that

0 ≤ m′

s ≤ T − 1 ∀s.

Therefore, with equal treatment fractions the total number of misfit observations in
a sample with S strata is simply the sum of m′

s over s:

0 ≤
S
∑

s=1

m′

s ≤ S(T − 1), (1)

which means that, with equal treatment fractions, the total number of misfits in a
sample has an upper bound of (T − 1) times the number of strata.

To put this result in perspective, in a sample with two treatments and no strata
this upper bound is 1, which will almost always be negligible. On the other hand, in
a sample with 6 strata and 4 treatments the upper bound is 18, which may well be an
issue in some experimental setups.

These calculations can be generalized to allow for unequal treatment fractions, as
discussed in 2.2. This case is very common in real-world randomized control trials and,
as we will see, the number of misfits produced in these setups can be substantially large.

Again, let T be the total number of treatments, with each treatment indexed by
t = 1, . . . , T . Denote treatment t’s allocation fraction as at/bt. Let J be equal to the
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least common multiple of the treatment fractions’ denominators, that is,

J = lcm(b1, . . . , bT ).

Now let ms be the number of misfits with unequal treatment fractions in any given
stratum s. We have that

ms = J mod vs ∀s,

where vs is the number of observations in stratum s. This means that the number
of misfits in each stratum is equal to the remainder resulting from the division of the
number of observations in that stratum and the least common denominator of the
treatment allocation fractions. For instance, in the example presented in 2.2 we have
that J = lcm(2, 6, 6, 6), so m1 = 6 mod 21 = 3.

To see that the case with unequal treatment fractions is a generalization of the case
with equal fractions we must consider that by defining T equal treatments we implicitly
defined treatment fractions’ denominators b1, . . . , bT = T ∀t. In that case, the LCM
of those denominators is also T , so J = T . From number theory we know that this
particular case also represents the lower bound for J , that is, J ≥ T .

So in this general case we have that the number of misfits in any particular stratum
has an upper bound of J − 1, that is,

0 ≤ ms ≤ J − 1 ∀s.

Given this result and recalling that m′

s ≤ J − 1 ∀s and that J ≥ T , it is easy to see that

m′

s ≤ ms ∀s,

meaning that the number of misfits in the generalized case of unequal treatment fractions
is at least as big as the number of treatments when dealing with the particular case of
equal treatment fractions.

Finally, the total number of misfits is equal to the sum of ms over s, so we have that

0 ≤
S
∑

s=1

ms ≤ S(J − 1), (2)

which means that the total number of misfits in any given sample has an upper bound
equal to the number of strata, times the least common denominator of the treatments
allocation fractions minus one. This result generalizes the analogue one obtained in (1)
for equal treatment fractions.

Again, it is good to put this result in perspective. If we consider a sample with
120 observations and a treatment allocation with 5 strata and treatment fractions
1/2, 1/3, 1/6, we have that the total number of misfits may be up to 25, which is a
considerable percentage of the total amount of observations.

More extreme cases are certainly possible. With large enough treatment allocation
fractions’ denominators, for example, 2/5, 1/3, 3/20, 3/20, we have J = 60. This means
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that if after stratifying for some variables a stratum has fewer than 60 observations,
then actually all those observations are going to be misfits. In these situations dealing
with misfits is not only an additional precaution, but an important necessity.

3 Dealing with misfits

Now that we know when does the misfits problem arise and to what extent it represents
a threat to a treatment assignment, we must consider methods of dealing with it. Since
misfits are inherent to the characteristics of a particular sample and treatment allocation
design, the problem cannot be completely overcome. Nevertheless, once misfits are
accounted for, we can think various methods to handle them, each one with different
(and somewhat symmetrical) advantages and disadvantages.

However, before exploring methods to deal with misfits, I introduce a device —the
randpack— which is fundamental to understanding how randtreat handles treatment
assignment in a way that accounts for misfits.

3.1 The randpack

Since we have established that the misfits problem’s most general case arises when
unequal treatment fractions are specified, any method to deal with misfits has to be
conceived in a way that handles these types of treatment allocations.

I now introduce the basic device randtreat employs to perform random treatment
assignment, which I’ve called the randpack3. The randpack is my invention and ex-
ists only to conceptualize in a different way how a random treatment assignment is
performed, both theoretically and practically, and how can it account for misfits.

In order to understand what the randpack is, consider a simple treatment assignment
where half of a sample with 9 observations must be assigned to treatment and the other
half to control. The usual way of thinking about this assignment is as if it was a
partitioning of the whole sample in half, assigning each half of the observations to a
treatment status and letting some kind of rounding take care of the misfit.

However, we can also carry out that treatment assignment in a repeating pattern.
We start by marking the first observation as control and the second one as treated.
Then we repeat this pattern for the third and forth observations, and so forth. After
the eighth observation has been marked as treated, we will not be able to repeat the
full pattern (i.e. one control and one treated), and so we mark the last observation as
a misfit.

In a dataset, the repeating pattern just described can be thought of as a repeating
sequence of integers. If we adhere to the convention of assigning a 0 to control observa-

3. After coming up with this (rather unimaginative) name, an anonymous referee pointed out that
there is also an R package called “randPack”. However, there’s no relationship between that R
package and this Stata program.
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tions and a 1 to treated ones, we have that the pattern just described is equivalent to
the sequence (0, 1). The treatment variable will repeat this sequence until all observa-
tions have a value assigned to them, very much like egen’s fill() function. However,
if the sequence cannot be fully repeated (i.e. the number of integers in the sequence is
greater than the number of unassigned observations), then all remaining observations
are marked as misfits.

Both approaches to treatment assignment are represented below. Treatment assign-
ment by simple partition is represented in column A, while treatment assignment by
repeating a sequence of integers is represented in column B.

n A B
1 0 0
2 0 1
3 0 0
4 0 1
5 ? 0
6 1 1
7 1 0
8 1 1
9 1 . <-- misfit

The repeating sequence of integers used to assign treatment statuses in column B

(i.e. the sequence (0,1)) is what I refer to as the randpack. Notice that in column A the
fifth observation has a question mark, indicating it could be assigned either a 0 or a 1,
depending on the rounding method. Conversely, one advantage of using a randpack is
that it marks misfit observations mechanically.

Notice how the number of integers in the randpack is directly linked to the number of
misfits that a given treatment allocation can give rise to. In what follows I will formalize
this intuition, detailing how to construct a randpack for various different assignment
setups and establishing the relationship between that randpack and the number of
misfits we will have to deal with.

How to construct the randpack

When assigning treatments of equal proportions, it should be immediately obvious that
the number of integers in the randpack must be equal to the number of treatments
to be assigned. For example, to assign 4 treatments in equal proportions we can use
the randpack (0, 1, 2, 3). Notice that each treatment’s code appears only once in the
randpack, since they must be equally represented.

The randpack’s structure is more interesting if we analyze assignments with unequal
treatment fractions, as discussed in 2.2. For instance, consider a setup where two thirds
of the observations are controls and one third is treated. There are only two treatment
statuses, so we know the randpack will only contain integers 0 and 1. However, in
order to be able to preserve the specified fractions (i.e. 2/3 and 1/3), the number of
integers in the randpack must be equal to the least common multiple of the fractions’
denominators, which is 3. In order to construct the randpack, each treatment code must
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be repeated in a way that satisfies the desired treatment fractions, so the randpack has
to have two thirds of controls and one third of treated, which is (0, 0, 1).

In other words, the number of times each treatment code is contained in the randpack
is given by the product of the code’s corresponding allocation fraction with the total
number of elements of the randpack. In the example above, code 0 (control) is contained
2/3 · 3 = 2 times and code 1 is contained 1/3 · 3 = 1 time.

More generally, the randpack is the smallest sequence (or vector) of treatment codes
that maintains the desired treatment allocation fractions. The total number of treat-
ment codes contained in the randpack is equal to the least common multiple (LCM) of
those fractions’ denominators, and each treatment code must appear in the randpack a
number of times which is equal to the product of its allocation fraction times the LCM
of all the fractions’ denominators. This means that in a treatment assignment where one
third of the observations are controls and two thirds are treated, this sequence would be
(0, 1, 1). An assignment where half of the observations are controls and the other half
is to be divided evenly among three treatments will have a sequence like (0, 0, 0, 1, 2, 3),
and so forth.

A formal construction of the randpack in matrix notation is presented in the ap-
pendix.

3.2 How is the randpack related to misfits?

The randpack has the virtue of connecting the characteristics of a treatment assignment
to the number of misfit observations that assignment can yield. To see this, consider an
allocation of three treatments with the following distribution: treatment==0 (control)
to 1/2 of the observations, treatment==1 to 1/3 of the observations and treatment==2

to 1/6 of them.

First, the number of elements in the randpack is key, because it indicates how many
misfit observations per stratum the assignment can yield. In particular, the number of
misfits in each stratum is strictly less than the number of elements in the randpack.
As we have seen, the number of elements in the randpack is equal to the LCM of the
treatment assignment fractions’ denominators. So in the setup just described, the LCM
of the fractions —hence, the number of elements of the randpack— is 6, which means
that these treatment allocation fractions can produce as much as 5 misfits per stratum.

Once the randpack is defined, it is used to assign a treatment status to observations.
Since these observations are already randomly sorted, the elements inside the randpack
don’t need to be.4 The program’s algorithm fills out the strata sequentially with the
elements of the randpack, but if a whole randpack cannot fit in the remaining obser-
vations of a given stratum, then those observations’ treatment status remains missing.
This marks the misfits.

4. Of course, random assignment could also be achieved by randomizing the elements inside the
randpack and not the observations.
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3.3 Methods for dealing with misfits

When choosing a method to deal with misfits, it must always be kept in mind that it is
not possible to completely avoid them, since their existence is inherent to the sample and
the parameters of the desired treatment allocation. What must be done is understand
the trade-offs of each method of dealing with them and apply the one that better suits
our research requirements and constrains.

In stratified treatment assignment, the first question that arises is whether to deal
with misfits by stratum or globally. That is, should we go into each stratum and
deal with misfits locally or should we pool all misfits across strata and deal with them
globally?

One approach could be to randomly allocate the misfits within each stratum. This
method ensures that the difference in the number of misfits allocated to the treatments
is not greater than one. While this ensures balance within strata, it may be lead to treat-
ment unbalance at the coarser levels. This method corresponds to the misfits(strata)
option in the program.

The opposite approach is to group all misfits in a new “stratum” of their own and
then randomly allocate treatments within it. The advantage of this method is that it
preserves treatment fractions globally in the sample, because the final number of unbal-
ancing misfits (the misfits of the misfits, so to speak) can’t be larger than the number of
elements in the randpack. The downside is that this method doesn’t guarantee balance
within strata. This method corresponds to the misfits(global) option in the program.

Both approaches can be generalized to take into account unequal treatment fractions.
The main idea behind this is to assign misfits, either by stratum or globally, in a way
that takes into account the probability of being assigned to any treatment, based on
the specified fractions. This is achieved by shuffling the elements of the randpack and
using it to sequentially fill out the misfit observations. Evidently, these variants make
no difference if the specified treatment fractions are equal.

If done by stratum, this approach doesn’t prevent treatments being allocated more
than once within the stratum’s misfits, but misfits are assigned to treatments with
a weighted probability based on the treatment fractions. While this may lead to
unbalanced treatments within strata, it can result in better global balance of treat-
ments when dealing with unequal allocation fractions. This method corresponds to the
misfits(wstrata) option in the program. It is important to note that randtreat shuf-
fles the randpack for each stratum with misfits in order to avoid that the initial shuffle
unbalances the weighted allocation of misfits.

Finally, if misfits are assigned globally and unequal treatment fractions are specified,
a weighted option is usually preferable. This will assign all misfits globally to treatments
in accordance to the distribution dictated by the treatment fractions. Again, randtreat
will shuffle the elements of the randpack and use it to assign treatments to all pooled
misfits sequentially. This method can be used with the misfits(wglobal) option.
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4 The randtreat command

4.1 Syntax

The randtreat command has been developed under Stata 11. Its syntax is:

randtreat
[

if
] [

, strata(varlist) multiple(#) unequal(fractions)

misfits(missing | strata | wstrata | global | wglobal) setseed(#) replace
]

4.2 Description

randtreat’s purpose is twofold: to easily randomize multiple, unequal treatments across
strata and to provide methods to deal with misfits. The program presumes that the
current dataset corresponds to units (e.g. individuals, firms, etc.) to be randomly
allocated to treatment statuses.

When run, it creates a new treatment variable whose values indicate the random
treatment assignment allocation. Although the command defaults to two treatments,
more equally proportioned treatments can be specified with the multiple() option.
Alternatively, multiple treatments of unequal proportions can be specified with the
unequal() option. A stratified assignment can be performed using the strata() option.

Whenever the number of observations in a given stratum is not a multiple of the
number of treatments or the least common multiple of the treatment fractions, then that
stratum is going to have “misfits”, that is, observations that can’t be neatly distributed
among the treatments. Misfits are automatically marked with missing values in the
treatment variable, but randtreat provides several methods to deal with them. The
method can be specified with the misfits() option.

4.3 Options

strata(varlist) is used to perform a stratified allocation on the variables in varlist .
If specified, the random assignment will be carried out in each stratum identified
by the unique combination of the varlist variables’ values. Notice that this option
is almost identical to using by, except that the command is not independently run
for the specified variables, because global existence of misfits across strata must be
accounted for.

multiple(#) specifies the number of treatments to be assigned. The default (and min-
imum) is multiple(2): one control group and one treatment group. All treatments
will be allocated in equal fractions. For example, specifying multiple(5) means
each treatment will be assigned to 20% of the observations.

unequal(fractions) specifies unequal fractions for treatments. Each fraction must be
of the form a/b and they must be separated by spaces. Each fraction must belong in
(0, 1) and their sum must be equal to 1. For example, specifying unequal(1/2 1/4
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1/4) will randomly assign half of the observations to the control group and then
divide evenly the rest of the observations amongst two treatment groups.

Notice that this option implicitly defines the number of treatments. For example,
in the aforementioned specification we implicitly defined 3 treatments. So when
unequal is specified, multiple(#) is redundant and should be avoided.

misfits(missing | strata | wstrata | global | wglobal) specifies a method to deal with
observations that can’t be neatly distributed among treatments, as discussed in
section 2. The methods are:

missing, which leaves misfit observation without assigning them to any treatment
(i.e. their treatment value is missing). This is the default method if misfits() is
not specified.

strata randomly allocates misfits independently across all strata. It does so by ran-
domly shuffling the treatment values and then filling in the misfits in each stratum.
The shuffling is done for each stratum with misfits as to ensure that the first shuffle
does not determine the misfit allocation across all strata. This method optimizes
balance of treatments within each stratum, ensuring they don’t differ by more than
one. However, it doesn’t assign misfits according to treatment fractions and so if
the proportion of misfits is large, it can unbalance the specified fractions.

wstrata randomly allocates misfits independently across all strata. It does so by
randomly shuffling the elements of the randpack and then filling in the misfits in
each stratum. The shuffling is done for each stratum with misfits in order to en-
sure that the first shuffle does not determine the misfit allocation across all strata.
This weighted shuffling ensures that the fractions specified in unequal() affect the
within-distribution of treatments among misfits, so overall balance of unequal treat-
ment fractions should be (almost) attained. However, this method doesn’t optimize
balance of treatments within each stratum (they could differ by more than 1).

global treats all misfit observations as one stratum, allocating treatments globally
for all misfits. It does so by randomly shuffling the treatment values and then filling
in the misfits. This ensures that the treatment allocation of misfits doesn’t differ by
more than one, but can unbalance the specified treatment fractions.

wglobal treats all misfit observations as one stratum, allocating treatments globally
for all misfits. It does so by randomly shuffling the elements of the randpack and
then filling in the misfits. This optimizes the achievement of specified treatment
fractions, but may result in treatment allocation within misfits to differ by more
than one.

Note that if all treatments have equal fractions, then the weighted variants of the
methods are equivalent to the unweighted ones. Additionally, when the assignment
is not stratified global and local methods are equivalent.

setseed(#) specifies the initial value of the random-number seed used to assign treat-
ments. It can be set so that the random treatment assignment can be replicated.
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replace is specified to replace the current treatment variable with new values. This is
useful to perform variations of randtreat without having to drop the variable each
time. A warning will be issued if specified.

4.4 Output

The command preserves the active dataset and the current sorting of its observations.
It creates a variable named treatment with randomly assigned treatment values, which
range from 0 to T − 1, where T is the specified number of treatments (see the multiple
option) or the number of treatment fractions (see the unequal option).

Without regard of the method chosen to deal with misfits (see the misfits op-
tion), the command always displays the number of misfits that the specified treatment
allocation produces.
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Appendix

Formal statement of the randpack

Given that the randpack is the central object employed by randtreat to perform a
treatment assignment, it is useful to understand exactly how it is constructed. All
the methods for dealing with misfits implemented within the command are, in a way,
manipulations of the randpack. This appendix defines it in a more rigorous fashion.

Let T be the total number of treatments to be assigned, with each treatment indexed
by t = 1, . . . , T . Denote treatment t’s assignment fraction as at/bt. Now let J be equal
to the least common multiple of the fractions’ denominators, that is,

J = lcm(b1, . . . , bT ),

which corresponds to what we have called the randpack’s size.

The randpack is constructed as the product of two matrices, A and B. First, let A
be a J × T matrix such that

A =











A11 A12 · · · A1T

A21 A22 · · · A2T

...
...

. . .
...

AJ1 AJ2 · · · AJT











,

where Ajt is either 1 or 0, with the number of “1”s appearing in column t indicating
how many times treatment t’s code number features in the randpack. Additionally, let
B be a T -dimensional vector such that

B =











B1

B2

...
BT











,

where Bt = t− 1, which means B is a vector containing each treatments’ code number.

While B is a simple vector, some effort is needed to construct A, which is a (0-1)-
matrix indicating the number of times each treatment’s code number is repeated in the
randpack. This is truly the key part of constructing the randpack.

In order to define a matrix like A I consider a simplified version of Ryser’s algorithm
as described by Brualdi (2006). First, let the row sum vector R = (r1, r2, . . . , rJ ) and
the column sum vector S = (s1, s2, . . . , sT ) be positive integral vectors that satisfy

r1 + r2 + . . .+ rJ = s1 + s2 + . . .+ sT .

Let A(R,S) denote the class of all logical matrices for which the row sum vector
equals R and the column sum vector equals S. Let A(R;T ) denote the perfectly nested
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J × T logical matrices with row sum vector R with the property that the 1’s in each
row occur in the initial positions. The Gale–Ryser theorem implies that all the matrices
in A(R,S) can be obtained from A(R;T ) by shifting 1’s in rows in ways that satisfy
column sum vector S, which is what interests us.

It is assumed now that R is constant and rj = 1 ∀j, so the above restriction can be
rewritten as

T
∑

t=1

st = J,

which means that R is an all-ones J-dimensional vector.

Now let S be defined as

S = J S̃,

where S̃ is the T -dimensional vector of treatment fractions, that is,

S̃ =











a1/b1
a2/b2

...
aT /bT











.

Ryser’s is a recursive algorithm that begins with A(R;T ) and shifts 1’s to the right
in order to achieve the desired column sums sT , sT−1, . . . , s1 in the following order:

1. Shift a 1 in sT rows of A(R;T ) to column T , starting from the lower rows.

2. The matrix left in columns 1, . . . , T − 1 of A(R;T ) is a matrix A(R′;T − 1) with
row sum vector determined by R and the 1’s shifted. Now step 1 must be repeated
but beginning with A(R′;T − 1) and using sT−1 instead of sT .

Using this algorithm we can construct our matrix A. Having already defined B, we
can now formally define the randpack, denoted as x, as the matrix product AB:

x =











(AB)11
(AB)12

...
(AB)1J











.

Example

In order to help clarify how x is constructed, consider the recurring example in which
the treatment fractions are 1/2, 1/3 and 1/6. We can immediately define

J = lcm(2, 3, 6) = 6,
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so

S = 6





1/2
1/3
1/6



 =





3
2
1



 .

Now, in order to construct A using that R = (1, 1, 1, 1, 1, 1) and S = (3, 2, 1) we
start with A(R;T ) and use Ryser’s algorithm:

















1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

















→

















1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1

















→

















1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

















.

So we finally have that x = AB is

x =

















1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1





















0
1
2



 =

















0
0
0
1
1
2

















.
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