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Abstract
Average distances are widely used in many fields for calculating the distances between two sets of elements. This paper
presents several new average distances by using the ordered weighted average, the probability and the weighted average.
First, the work presents the probabilistic ordered weighted averaging weighted average distance (POWAWAD) operator.
POWAWAD is a new aggregation operator that uses distance measures in a unified framework between the probability, the
weighted average and the ordered weighted average (OWA) operator that considers the degree of importance that each concept
has in the aggregation. The POWAWAD operator includes a wide range of particular cases including the maximum distance,
the minimum distance, the normalized Hamming distance, the weighted Hamming distance and the ordered weighted average
distance (OWAD). The article also presents further generalizations by using generalized and quasi-arithmetic means forming
the generalized probabilistic ordered weighted averaging weighted average distance (GPOWAWAD) operator and the quasi-
POWAWAD operator. The study ends analysing the applicability of this new approach in the calculation of the average fixed
assets. Particularly, the work focuses on measuring the average distances between the ideal percentage of fixed assets that
the companies of a specific country should have versus the real percentage of fixed assets they have. The illustrative example
focuses on the Asian market.
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1 Introduction

Aggregation operators (or functions) (Grabisch et al. 2011)
are highly useful techniques for collecting information by
providing summarized results (Beliakov et al. 2007, 2016;
Yu 2015). Several highly popular techniques in this frame-
work are the probability and the weighted average. These
techniques give importance to the variables according to
certain available subjective or objective findings. Another
popular aggregation operator is the orderedweighted average
(OWA) (Yager 1988; Yager et al. 2011). The OWA provides
a parameterized family of aggregation operators between the
minimum and the maximum, weighting the data according
to the attitudinal character of the decision-maker. A key issue
in the OWA operator is how to integrate it with certain other
key concepts, such as the probability and the weighted aver-
age. Several authors have suggested different approaches,
including the immediate probability (Engemann et al. 1996;
Merigó 2010; Yager et al. 1995) and the probabilistic OWA
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(POWA) operator (Merigó 2012). Torra (1997) introduced
the weighted OWA (WOWA) operator, Yager (1998) dis-
cussed the importance OWA, Xu and Da (2003) reported
the hybrid average and Merigó (2011) proposed the OWA
weighted average (OWAWA). Recently, Merigó et al. (2012)
have suggested a more general approach that integrates all
three concepts in the same formulation and considers the
degree of importance that each concept has in the formula-
tion. This aggregation operator is known as the probabilistic
OWA weighted average (POWAWA).

Other techniques that are useful for representing informa-
tion include the generalized aggregation operators. As the
name indicates, these aggregation operators use the general-
ized and the quasi-arithmetic means in the analysis (Merigó
andGil-Lafuente 2009). Thus, these operators contain awide
range of aggregation operators that include the arithmetic
mean, the geometric mean and the quadratic mean (Xian
and Sun 2014). In recent years, different authors have intro-
duced awide range of newdevelopments, including linguistic
generalized hybrid averages (Liu et al. 2016b), general-
ized ordered modular averaging operator (Liu et al. 2016a),
generalized compensative weighted averaging aggregation
operators (Aggarwal 2015), generalized ordered weighted
reference dependent utility (Gao and Liu 2017) and general-
ized moving averages (Merigó and Yager 2013).

Distance measures are used for measuring the differences
between two elements, sets or fuzzy sets (Gil-Aluja 1999;
Kaufmann 1975). Usually, when dealing with sets of ele-
ments, it is necessary to normalize the distances into an
average result, such as the normalized Hamming distance
(Hamming 1950) and the normalized Minkowski distance.
Recently, the use of the OWA operator has also been sug-
gested with distance measures (Merigó and Gil-Lafuente
2010; Xu and Chen 2008). In this context, it is possible to
develop a wide range of new distance measures (Scherger
et al. 2017) by using the available aggregation operators that
have been recently introduced in the literature, including the
induced OWA distance (IOWAD) (Merigó and Casanovas
2011a), the OWAWA distance (OWAWAD) (Merigó et al.
2017), the fuzzy generalized OWA distance (FGOWAD)
(Zeng et al. 2012), the induced linguistic generalized OWA
distance (ILGOWAD) (Zeng and Su 2012), the uncer-
tain probabilistic OWA distance (UPOWAD) (Zeng et al.
2013), the linguistic continuous OWA distance (LCOWAD)
(Zhou et al. 2014), the fuzzy linguistic induced Euclidean
and Minkowski OWA distance (Xian and Sun 2014; Xian
et al. 2016; Xue et al. 2017), the uncertain OWA dis-
tance (Zeng 2016), induced probabilistic OWA distance
(IPOWAD) (Casanovas et al. 2016), the intuitionistic fuzzy
induced OWA distance (IFIOWAD) (Zeng et al. 2017), the
Bonferroni OWA distance (Blanco-Mesa et al. 2016) and
cloud distances (Liu and Liu 2017).

The objective of this paper is to introduce new generaliza-
tions of the POWAWA operator by using distance measures
in the analysis. First, the work introduces the probabilis-
tic OWAWA distance (POWAWAD) operator. This operator
normalizes the Hamming distance (or other distances) with
the POWAWA operator. Thus, we are able to include the
probability, the weighted average and the OWA operator
in the same formulation with the Hamming distance and
consider the degree of importance that each concept has
in the analysis. Additionally, this approach can analyse the
distance measures in a probabilistic way either if they are
subjective or objective. The paper studies several of these
technique’s properties and certain particular cases, including
the arithmetic probabilistic Hamming distance, the prob-
abilistic distance, the double arithmetic OWAD operator,
the OWAD operator, the normalized Hamming distance, the
OWAWA distance (OWAWAD) and the probabilistic OWA
distance (POWAD). The main advantage of this framework
is the ability to consider a wide range of situations depending
on the available information. Thus, the POWAWAD operator
considers a general framework, but at the same time, it can
also be reduced to the specific case needed in the analysis.

The paper also introduces further extensions by using
the generalized and the quasi-arithmetic means, includ-
ing the generalized probabilistic OWA weighted averaging
distance (GPOWAWAD) operator and the quasi-arithmetic
POWAWAD (Quasi-POWAWAD) operator. This study pro-
vides distance measures in a unified framework between
the probability, the weighted average and the OWA oper-
ator. Moreover, the study uses the Minkowski and the
quasi-arithmetic distance that includes the Hamming and
the Euclidean distance as particular cases. Therefore, these
distance aggregation operators can represent a wider range
of aggregation operators as special cases and can address
many complex granularities in the information (Bargiela and
Pedrycz 2003; Kacprzyk and Pedrycz 2015; Zadeh 2005).

The article also studies the applicability of thePOWAWAD
operator, and we see that it is very broad because all of
the previous studies that use average distance measures
can be revised and extended with this new approach. The
paper focuses on the applicability in the average distances of
fixed assets. To this end, the work introduces the ordered
weighted average fixed asset (OWAFA). This averaging
aggregation operator provides an average of a set of fixed
assets between the minimum andmaximum fixed assets. The
study also introduces some additional extensions including
the weighted OWA fixed asset (WOWAFA) and the prob-
abilistic weighted OWA fixed asset (PWOWAFA). These
operators are very useful for calculating the average fixed
asset in a set of scenarios, companies or regions. The objec-
tive of this application is to see how OWA operators can
be implemented in real-world economic variables (Avilés-
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Ochoa et al. 2018; Laengle et al. 2017; León-Castro et al.
2018).

The work focuses on a supranational group decision-
making problem regarding the calculation of the average
fixed asset under different scenarios in an industry in dif-
ferent Asian countries. Particularly, the work analyses the
differences between the ideal percentage of fixed assets that
a company should have according to the characteristics of the
country where it is operating and the real percentage of fixed
assets the enterprise has. To this end, the study applies the
POWAWAD and GPOWAWAD operators to the fixed asset,
obtaining the POWAWAD fixed asset (FAPOWAWAD) and
the GPOWAWAD fixed asset (FAGPOWAWAD).

This paper is organized as follows: Section 2 briefly
reviews some basic distance measures and averaging aggre-
gation operators. Section 3 introduces the POWAWAD
operator, and Sect. 4 discusses the GPOWAWAD operator.
Section 5 studies the applicability of the POWAWAD oper-
ator in the calculation of the average fixed asset, and Sect. 6
develops an illustrative example. Section 7 briefly summa-
rizes the study’s primary results, findings and conclusions.

2 Preliminaries

This section briefly reviews distance measures, the OWA
operator and some of its extensions by using probabilities,
the generalized means and the quasi-arithmetic means.

2.1 Distancemeasures

The Hamming distance (Hamming 1950) is a very useful
technique for calculating the differences between two ele-
ments or two sets. Recall that any distance measure should
follow certain basic axioms in order to be a distance (Merigó
and Casanovas 2011a; Merigó et al. 2017). In fuzzy set the-
ory, the Hamming distance is useful for the calculation of
distances between fuzzy sets, interval-valued fuzzy sets, intu-
itionistic fuzzy sets or hesitant fuzzy sets (Liao et al. 2015).
The Hamming distance for two sets A and B is defined as
follows.

Definition 1 A normalized Hamming distance of dimension
n is a mapping dH : [0, 1]n × [0, 1]n → [0, 1] such that:

dH (A, B) =
(
1

n

n∑
i=1

|ai − bi |
)

(1)

where ai and bi are the i th arguments of the sets A and B,
respectively.

Occasionally, when normalizing the Hamming distance,
we prefer to give different weights to each individual dis-

tance. Thus, the distance is known as the weighted Hamming
distance (Merigó et al. 2017).

Note that it is possible to generalize this definition to all the
real numbers by using Rn × Rn → R. See Kaufmann (1975)
for further elaboration on the formulation used in fuzzy set
theory.

The OWAD (or Hamming OWAD) operator is an exten-
sionof the traditional normalizedHammingdistancebyusing
the OWA operator. The main difference is the reordering
of the arguments of the individual distances that is devel-
oped according to their numerical values from the highest to
the lowest or vice versa. Thus, it is possible to calculate the
distance between two elements, two sets or two fuzzy sets,
according to the interests of the decision-maker, as explained
in the following definition.

Definition 2 An OWAD operator of dimension n is a map-
ping OWAD: [0, 1]n×[0, 1]n → [0, 1] that has an associated
weighting vectorW , with

∑n
j=1 w j = 1 andw j ∈ [0, 1] such

that:

OWAD(〈μ1, μ
(k)
1 〉, . . ., 〈μn, μ

(k)
n 〉) =

n∑
j=1

w j D j (2)

where Dj represents the j th largest of the |μi − μ
(k)
i |, μi ∈

[0, 1] for the i th characteristic of the ideal P, μ
(k)
i ∈ [0, 1]

for the i th characteristic of the kth alternative Pk , and k =
1, 2, . . .,m.

Note that this definition can be generalized to all the real
numbers R by using OWAD: Rn × Rn → R. Note also that
it is possible to distinguish between ascending and descend-
ing orders. The weights of these operators are related by
w j = w∗

n− j+1, wherew j is the j th weight of the descending
OWAD (DOWAD) operator and w∗

n− j+1 the j th weight of
the ascending OWAD (AOWAD) operator.

By using the generalizedmeans (Merigó andGil-Lafuente
2009), the OWAD operator becomes the Minkowski OWA
distance (MOWAD) (Merigó and Casanovas 2011b) which
is defined as follows for two sets X = {x1, . . ., xn} and Y =
{y1, . . ., yn}.
Definition 3 A MOWAD operator is a mapping f : Rn ×
Rn → R that has an associated weighting vector W with
w j ∈ [0, 1] and

∑n
j=1 w j = 1, such that:

f (〈x1, y1〉, . . ., 〈xn, yn〉) =
⎛
⎝ n∑

j=1

w j b
λ
j

⎞
⎠

1/λ

(3)

where b j is the j th largest of the |xi − yi |, |xi − yi | is the argu-
ment variable represented in the form of individual distances,
and λ is a parameter such that λ ∈ (−∞,∞) − {0}.
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2.2 OWA and the probabilistic OWA operator

The OWA operator (Yager 1988) is an aggregation operator
that provides a parameterized family of aggregation opera-
tors that include the arithmetic mean, the maximum and the
minimum. The aggregation operator OWA can be defined as
follows.

Definition 4 An OWA operator of dimension n is a mapping
OWA: Rn → R that has an associated weighting vector W
of dimension n such that the sum of theweights is 1 andw j ∈
[0, 1], then:

OWA(a1, a2, . . ., an) =
n∑
j=1

w j b j (4)

where b j is the j th largest of the ai .

The OWA operator is commutative, monotonic, bounded
and idempotent. For further information on the OWA and
its applications, refer to Emrouznejad and Marra (2014), He
et al. (2017) and Yager et al. (2011).

By using probabilities, the OWA operator becomes the
probabilistic OWA (POWA) operator (Merigó 2012). It is
an aggregation operator that unifies the probability and the
OWA operator in the same formulation, considering the
degree of importance that each concept has in the analysis.
With this approach, we can underestimate or overestimate
the probabilities according to the attitudinal character of the
decision-maker. POWA is defined as follows.

Definition 5 A POWA operator of dimension n is a mapping
POWA: Rn → R that has an associated weighting vector
W of dimension n such that w j ∈ [0, 1] and

∑n
j=1 w j = 1,

according to the following formula:

POWA(a1, a2, . . ., an) =
n∑
j=1

v̂ j b j (5)

where b j is the j th largest of the ai , each argument ai has
an associated weight (probability) vi with

∑n
i=1 vi = 1 and

vi ∈ [0, 1], v̂ j = βw j + (1−β)v j with β ∈ [0, 1], and v j is
the weight (probability) vi ordered according to b j , that is,
according to the j th largest of the ai .

By choosing a different manifestation in the weighting
vector, we are able to obtain a wide range of particular types
of POWAoperators (Merigó 2012;Yager 1993). In particular,
when β = 0, we obtain the expected value, and if β = 1, the
OWA operator defined earlier is obtained. Other interesting
cases are found when w j = 1/n for all ai because POWA
becomes the arithmetic probability (AP), and if vi = 1/n
for all ai , it becomes the arithmetic OWA operator. Note

that inside the arithmetic OWA, we obtain such values as the
arithmeticmaximumand the arithmeticminimum.Aswe can
see, the use of the probability in the OWA creates new semi-
boundary conditions based on the combination between the
maximum and the minimum with the probability, obtaining
the probabilistic maximum and the probabilistic minimum.

A further extension is the probabilistic OWA weighted
average (POWAWA) operator (Merigó et al. 2012) that uses
probabilities, weighted averages and OWAs in the same for-
mulation. It unifies these three concepts by considering the
degree of importance that each concept has in the aggrega-
tion, depending on the situation considered. Note that this
operator can also be denoted as the probabilistic weighted
OWA (PWOWA) operator. Since the literature already uses
the weighted OWA (WOWA) for a different approach (Torra
1997), this article follows the names used in previous stud-
ies that follow this unification methodology (Merigó 2011).
The name connects both concepts by referring to the OWA
weighted average. Thus, in this case, instead of calling
this approach the PWOWA, the work uses POWAWA. The
POWAWAoperator is defined as follows (Merigó et al. 2012).

Definition 6 A POWAWA operator of dimension n is a map-
ping POWAWA: Rn → R that has an associated weighting
vectorW of dimension n withw j ∈ [0, 1] and

∑n
j=1 w j = 1,

such that:

POWAWA(a1, a2, . . ., an) =
n∑
j=1

v̂ j b j (6)

where b j is the j th largest of the ai , each argument ai has
an associated weight vi with

∑n
i=1 vi = 1 and vi ∈ [0,

1], a probability pi with
∑n

i=1 pi = 1 and pi ∈ [0, 1],
v̂ j = C1w j + C2v j + C3 p j , with C1,C2 and C3 ∈ [0, 1],
C1 +C2 +C3 = 1, and v j and p j are the weights vi and pi
ordered according to b j , that is to say, according to the j th
largest of the ai .

2.3 Generalized and quasi-arithmetic averaging
aggregation operators

Generalized averaging aggregation operators are those aver-
aging functions that use a general framework that include a
wide range of particular cases.Avery commonone is the gen-
eralized OWA (GOWA) operator (Yager 2004). The GOWA
operator generalizes a wide range of averaging aggregation
operators that include the OWA operator with its particular
cases, the ordered weighted geometric (OWG) operator and
the ordered weighted quadratic averaging (OWQA) operator.
It is defined as follows.
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Definition 7 AGOWAoperator of dimension n is a mapping
GOWA: Rn → R that has an associated weighting vector
W of dimension n with

∑n
j=1 w j = 1 and w j ∈ [0, 1], such

that:

GOWA(a1, a2, . . ., an) =
⎛
⎝ n∑

j=1

w j b
λ
j

⎞
⎠

1/λ

(7)

where b j is the j th largest of the ai , and λ is a parameter
such that λ ∈ (−∞,∞) − {0}.

TheGOWAoperator ismonotonic, bounded, commutative
and idempotent. This operator also has as special cases the
maximum, the minimum and the generalized mean (GM). If
we look to different values of the parameter λ, we can also
obtain other special cases, such as

• If λ = 1, the usual OWA operator.
• If λ → 0, the ordered weighted geometric average
(OWGA).

• If λ = 2, the ordered weighted quadratic average
(OWQA).

• If λ = −1, the ordered weighted harmonic average
(OWHA).

A further generalization of the GOWA operator is the quasi-
arithmetic OWA (Quasi-OWA) operator, which uses the
quasi-arithmetic means instead of the generalized means.
Therefore, it replaces the parameter λ by a strictly contin-
uous monotonic function g (Fodor et al. 1995; Merigó and
Gil-Lafuente 2009).

Definition 8 A Quasi-OWA operator of dimension n is a
mapping Quasi-OWA: Rn → R that has an associated
weighting vector W of dimension n with

∑n
j=1 w j = 1 and

w j ∈ [0, 1], then:

Quasi-OWA(a1, a2, . . ., an) = g−1

⎛
⎝ n∑

j=1

w j g
(
b( j)

)⎞⎠ (8)

where b j is the j th largest of the ai and g is a strictly con-
tinuous monotonic function.

3 Probabilistic ordered weighted averaging
weighted average distance operator

The probabilistic orderedweighted averagingweighted aver-
age distance (POWAWAD) operator is a distance measure
that uses the probability, the weighted average and the OWA
operator in the normalization process of the Hamming dis-
tance by using the POWAWA operator. Thus, the reordering

of the individual distances is developed according to the val-
ues of the individual distances formed by comparing two sets.
The POWAWAD operator can be defined as follows for two
sets X = {x1, x2, . . ., xn} and Y = {y1, y2, . . ., yn}.
Definition 9 A POWAWAD operator of dimension n is a
mapping POWAWAD: Rn × Rn → R that has an asso-
ciated weighting vector W such thatw j ∈ [0, 1] and∑n

j=1 w j = 1,according to the following formula:

POWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) =
n∑
j=1

v̂ j b j

(9)

where b j is the j th largest individual distance of the |xi − yi |,
each argument |xi − yi | has an associated weight vi with∑n

i=1 vi = 1 and vi ∈ [0, 1], a probability pi with∑n
i=1 pi = 1 and pi ∈ [0, 1], v̂ j = C1w j + C2v j + C3 p j ,

with C1,C2 and C3 ∈ [0, 1],C1 +C2 +C3 = 1, and v j and
p j are the weights vi and pi ordered according to b j , that is
to say, according to the j th largest of the |xi − yi |.

Note that it is also possible to formulate the POWAWAD
operator separating the part that strictly affects the OWAD
operator, the weighted Hamming distance (WHD) and the
part that affects the probabilistic distance. This represen-
tation is useful to see these models separated in the same
formulation.

Definition 10 A POWAWAD operator is a mapping
POWAWAD: Rn × Rn → R of dimension n, if it has an
associatedweighting vectorW , with

∑n
j=1 w j = 1 andw j ∈

[0, 1], a probabilistic vector P , with
∑n

i=1 pi = 1 and pi ∈
[0, 1], and a weighting vector V that affects the weighted
average, with

∑n
i=1 vi = 1 and vi ∈ [0, 1], such that:

POWAWAD(〈x1, y1〉, . . ., 〈xn, yn〉) = C1

n∑
j=1

w j b j

+C2

n∑
i=1

vi |xi − yi | + C3

n∑
i=1

pi |xi − yi | (10)

where b j is the j th largest of the arguments |xi − yi | and
C1,C2 and C3 ∈ [0, 1] with C1 + C2 + C3 = 1.

If D is a vector corresponding to the ordered arguments
b j , we shall call this ordered argument vector, and WT is
the transpose of the weighting vector; then, the POWAWAD
operator can be represented as follows:

POWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) = WTD (11)

Observe that it is possible to distinguish between descend-
ing (DPOWAWAD) and ascending (APOWAWAD) orders.
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Theweights of these operators are related byw j = w∗n− j+1,
wherew j is the j thweight of theDPOWAWADandw∗n− j+1

the j th weight of the APOWAWAD operator.
Note that if the weighting vector is not normalized, i.e.

V̂ = ∑n
j=1 v̂ j �= 1, then, the POWAWAD operator can be

expressed as

POWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)= 1

V̂

n∑
j=1

v̂ j b j

(12)

Also note that POWAWAD (〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn,
yn〉) = 0 if and only if xi = yi for all i ∈ [1, n]. Additionally,
POWAWAD (〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)=POWAWAD
(〈y1, x1〉, 〈y2, x2〉, . . ., 〈yn, xn〉).

The POWAWAD operator is commutative, monotonic,
bounded and idempotent. It is monotonic because if |xi −
yi | ≥ |si − ti |, for all |xi − yi |, then, POWAWAD
(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) ≥ POWAWAD(〈s1, t1〉,
〈s2, t2〉, . . ., 〈sn, tn〉). It is commutative because any permu-
tation of the arguments has the same evaluation. It is bounded
because the POWAWAD aggregation is delimited by the
minimum and the maximum. That is, Min{|xi − yi |} ≤
POWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) ≤ Max{|xi −
yi |}. It is idempotent because if |xi−yi | = |x−y|, for all |xi−
yi |, then, POWAWAD (〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) =
|x − y|.

Another interesting issue to consider is the attitudinal
character of the POWAWAD operator α(W ). Using a similar
methodology as used for the OWAoperator (Yager 1988) and
following Eq. (9), we can define a new measure as follows:

α(W ) =
n∑
j=1

v̂ j

(
n − j

n − 1

)
(13)

where n is the total number of arguments and j is the j th
argument of the POWAWAD aggregation.

In this case, we could also make a distinction between
descending and ascending orders. Additionally, it is also pos-
sible to use a measure that separates the OWA operator, the
weighted average and the probability following the method-
ology of Merigó (2011) as follows:

α(V̂ ) = C1

n∑
j=1

w j

(
n − j

n − 1

)
+ C2

n∑
j=1

v j

(
n − j

n − 1

)

+C3

n∑
j=1

p j

(
n − j

n − 1

)
(14)

As we can see, if C1 = 1, Eq. (14) becomes the classical
measure for the OWA operator (Yager 1988). Note that other

measures could be discussed, such as the entropy of disper-
sion (Shannon 1948; Yager 1988), the divergence of W or
the balance operator. The entropy of dispersion is defined as
follows:

H(W ) = −
n∑
j=1

v̂ j ln(v̂ j ) (15)

In this equation, it is also possible to separate the OWA
operator, the weighted average and the probability in the for-
mulation as follows:

H(V̂ ) = −
⎛
⎝C1

n∑
j=1

w j ln(w j ) + C2

n∑
i=1

vi ln(vi )

+C3

n∑
i=1

pi ln(pi )

)
(16)

Aswe can see, ifC1 = 1, we obtain the Yager entropy (Yager
1988), and if C2 = 1 or C3 = 1, the result is the Shannon
entropy (Shannon 1948). If C1 = 0, we obtain the entropy
of the PWA operator (Merigó et al. 2016), if C2 = 0, we
obtain the entropy of the POWA operator (Merigó 2012) and
if C3 = 0, we obtain the entropy of the OWAWA operator
(Merigó 2011).

For the balance operator (Yager 1996), we obtain:

BAL(W ) =
n∑
j=1

(
n + 1 − 2 j

n − 1

)
v̂ j (17)

And for the divergence of W (Yager 2002):

DIV(W ) =
n∑
j=1

v̂ j

(
n − j

n − 1
− α(V̂ )

)2

(18)

Another interesting issue to consider is the different fami-
lies of POWAWAD operators that are found in the weighting
vector V̂ and the coefficientsC1,C2 andC3. First, let us look
into some remarkable cases that form new semi-boundary
conditions for averaging aggregation operators with distance
measures. If w1 = 1 and w j = 0, for all j �= 1, the
POWAWAD operator becomes the maximum probabilistic
weighted average distance (Max-PWAD) which is formu-
lated as follows:

Max-PWAD = C1Max{b j } + C2

n∑
i=1

vi |xi − yi |

+C3

n∑
i=1

pi |xi − yi | (19)
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If wn = 1 and w j = 0, for all j �= n, the POWAWAD
becomes the minimum probabilistic weighted average dis-
tance (Min-PWAD),which is expressed in the followingway:

Min-PWAD = C1Min{b j } + C2

n∑
i=1

vi |xi − yi |

+C3

n∑
i=1

pi |xi − yi | (20)

Some other particular cases of the POWAWAD operator
worth noting are the following:

• The arithmetic PWAD (if w j = 1/n, for all j):

Arithmetic PWAD = C1

⎛
⎝1

n

n∑
j=1

b j

⎞
⎠

+C2

n∑
i=1

vi |xi − yi | + C3

n∑
i=1

pi |xi − yi | (21)

• The arithmetic POWAD operator (if vi = 1/n, for all i):

Arithmetic POWAD = C1

n∑
j=1

w j b j

+C2

(
1

n

n∑
i=1

|xi − yi |
)

+ C3

n∑
i=1

pi |xi − yi | (22)

• The arithmetic OWAWAD operator (if pi = 1/n, for all
i):

Arithmetic OWAWAD = C1

n∑
j=1

w j b j

+C2

n∑
i=1

vi |xi − yi | + C3

(
1

n

n∑
i=1

|xi − yi |
)

(23)

• The double arithmetic OWAD operator (if pi = 1/n, for
all i , and vi = 1/n, for all i):

DA-OWAD = C1

n∑
j=1

w j b j + C2

(
1

n

n∑
i=1

|xi − yi |
)

+C3

(
1

n

n∑
i=1

|xi − yi |
)

(24)

• The double arithmetic WHD (if pi = 1/n, for all i , and
w j = 1/n, for all j):

Table 1 Families of GPOWAWAD operators with the parameter λ, δ

and χ

λ, δ and χ GPOWAWAD

λ = 1, δ = 1, χ = 1 POWAWAD

w j = 1/n,∀ j Arithmetic PWAD

vi = 1/n,∀ i Arithmetic POWAD

pi = 1/n,∀ i Arithmetic OWAWAD

vi = 1/n and pi = 1/n,∀ i Double arithmetic OWAD

w j = 1/n and vi = 1/n,∀ i and j Double arithmetic PAD

w j = 1/n and pi = 1/n,∀ i and j Double arithmetic WAD

λ = −1, δ = −1, χ = −1 Harmonic POWAWAD

w j = 1/n,∀ j Harmonic mean PWAD

vi = 1/n,∀ i Harmonic mean POWAD

pi = 1/n,∀ i Harmonic mean OWAWAD

vi = 1/n and pi = 1/n,∀ i Double harmonic mean OWAD

w j = 1/n and vi = 1/n,∀ i and j Double harmonic mean PAD

w j = 1/n and pi = 1/n,∀ i and j Double harmonic mean WAD

λ = 2, δ = 2, χ = 2 Quadratic POWAWAD

w j = 1/n,∀ j Quadratic mean PWAD

vi = 1/n,∀ i Quadratic mean POWAD

pi = 1/n,∀ i Quadratic mean OWAWAD

vi = 1/n and pi = 1/n,∀ i Double quadratic mean OWAD

w j = 1/n and vi = 1/n,∀ i and j Double quadratic mean PAD

w j = 1/n and pi = 1/n,∀ i and j Double quadratic mean WAD

λ → 0, δ → 0,χ → 0 Geometric POWAWAD

w j = 1/n,∀ j Geometric mean PWAD

vi = 1/n,∀ i Geometric mean POWAD

pi = 1/n,∀ i Geometric mean OWAWAD

vi = 1/n and pi = 1/n,∀ i Double geometric mean OWAD

w j = 1/n and vi = 1/n,∀ i and j Double geometric mean PAD

w j = 1/n and pi = 1/n,∀ i and j Double geometric mean WAD

λ = 3, δ = 3, χ = 3 Cubic POWAWAD

w j = 1/n,∀ j Cubic mean PWAD

vi = 1/n,∀ i Cubic mean POWAD

pi = 1/n,∀ i Cubic mean OWAWAD

vi = 1/n and pi = 1/n,∀ i Double cubic mean OWAD

w j = 1/n and vi = 1/n,∀ i and j Double cubic mean PAD

w j = 1/n and pi = 1/n,∀ i and j Double cubic mean WAD

λ = −∞, δ = −∞, χ = −∞ Minimum distance

λ = ∞, δ = ∞, χ = ∞ Maximum distance

λ = 1, δ = 2, χ = 1 POWAD quadratic WAD

λ = 1, δ = 3, χ = 1 POWAD cubic WAD

λ = 2, δ = 1, χ = 1 PWAD quadratic OWAD

λ = 2, δ = 2, χ = 1 Probabilistic quadratic
OWAWAD

λ = 3, δ = 1, χ = 1 PWAD cubic OWAD

λ = 3, δ = 3, χ = 1 Probabilistic cubic OWAWAD
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DA-WHD = C1

⎛
⎝1

n

n∑
j=1

b j

⎞
⎠ + C2

n∑
i=1

vi |xi − yi |

+C3

(
1

n

n∑
i=1

|xi − yi |
)

(25)

• The double arithmetic PHD (if vi = 1/n, for all i , and
w j = 1/n, for all j):

DA-PHD = C1

⎛
⎝1

n

n∑
j=1

b j

⎞
⎠ + C2

(
1

n

n∑
i=1

|xi − yi |
)

+C3

n∑
i=1

pi |xi − yi | (26)

Many other particular cases can be studied by looking at
different expressions of the weighting vectors and the coef-
ficients C1,C2 and C3. For example:

• If C1 = 1, we obtain the OWAD operator.
• If C2 = 1, the weighted Hamming distance (WHD).
• If C3 = 1, the probabilistic Hamming distance (PHD).
• If C1 = 0, the probabilistic weighted averaging distance
(PWAD) (Merigó and Yager 2013).

• If C2 = 0, the probabilistic OWA distance (POWAD)
operator (Merigó and Yager 2013).

• If C3 = 0, the OWAWA distance (OWAWAD) operator
(Merigó et al. 2017).

• The POWAWA operator (if one of the sets X or Y is
empty).

• The normalized Hamming distance (NHD) (if vi = 1/n,
for all i, pi = 1/n, for all i , and w j = 1/n, for all j).

• The maximum arithmetic PHD (w1 = 1 and w j = 0, for
all j �= 1, and vi = 1/n, for all i).

• The maximum arithmetic WHD (w1 = 1 and w j = 0,
for all j �= 1, and pi = 1/n, for all i).

• The minimum arithmetic PHD (wn = 1 and w j = 0, for
all j �= n, and vi = 1/n, for all i).

• The minimum arithmetic WHD (wn = 1 and w j = 0,
for all j �= n, and pi = 1/n, for all i).

• The POWAWAD Hurwicz criteria (w1 = α,wn = 1− α

and w j = 0, for all j �= 1, n).
• The step-POWAWAD (wk = 1 and w j = 0, for all j �=

k).
• The olympic-POWAWAD operator (w1 = wn = 0, and

w j = 1/(n- 2) for all others).
• The general olympic-POWAWAD operator (w j = 0 for

j = 1, 2, . . ., k, n, n−1, . . ., n−k+1; and for all others
w j∗ = 1/(n − 2k), where k < n/2).

• The S-POWAWAD (w1 = (1/n)(1−(α+β))+α,wn =
(1/n)(1− (α + β) + β), and w j = (1/n)(1− (α + β))

for j = 2 to n − 1 where α, β ∈ [0, 1] and α + β ≤ 1).

• The centred-POWAWAD (if the weighting vector W is
symmetric, strongly decaying from the centre to themax-
imum and the minimum, and inclusive).

Note that other families of POWAWAD operators could
be used following a similar methodology, as in the devel-
opment of the OWA operator and its extensions (Merigó
and Gil-Lafuente 2009; Merigó 2012; Yager 1993). More-
over, it is also possible to extend this analysis by using
other types of distances, such as the Euclidean (or quadratic)
distance, the Minkowski (or generalized) distance and the
quasi-arithmetic distance.

4 Generalized POWAWAD operator

The GPOWAWAD operator is a distance aggregation opera-
tor that integrates the probability, the weighted average and
the OWA operator in the same formulation by considering
the degree of importance that each sub-aggregation has in
the problem. Moreover, this operator uses the generalized
means, providing a general framework that includes a wide
range of particular cases, including quadratic and harmonic
aggregations. By using the generalized means, this approach
is implicitly using a generalization of theMinkowski distance
(Merigó and Casanovas 2011b). This technique’s primary
advantage is that it can aggregate distance measures consid-
ering subjective and objective information and the attitudinal
character of the decision-maker. The GPOWAWAD operator
is defined as follows for two sets X = {x1, x2, . . ., xn} and
Y = {y1, y2, . . ., yn}.
Definition 11 A GPOWAWAD operator is a mapping
GPOWAWAD: Rn × Rn → R of dimension n, if it has
an associated weighting vector W , with

∑n
j=1 w j = 1 and

w j ∈ [0, 1], a probabilistic vector P , with
∑n

i=1 pi = 1
and pi ∈ [0, 1], and a weighting vector V that affects the
weighted average, with

∑n
i=1 vi = 1 and vi ∈ [0, 1], such

that:

GPOWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)

= C1

⎛
⎝ n∑

j=1

w j b
λ
j

⎞
⎠

1/λ

+ C2

(
n∑

i=1

vi |xi − yi |δ
)1/δ

+C3

(
n∑

i=1

pi |xi − yi |χ
)1/χ

(27)

where b j is the j th largest of the arguments |xi − yi |,C1,C2

and C3 ∈ [0, 1] with C1 + C2 + C3 = 1 and λ, δ and χ are
parameters such that λ, δ and χ ∈ {−∞,∞} − {0}.

Note that in fuzzy set theory it is very practical to simplify
the mapping to [0, 1]. That is, [0, 1]n × [0, 1]n → [0, 1].
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Table 2 Asian average fixed asset according to different scenarios—expert 1

Country Population Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Afghanistan 34,656,032 0.42 0.38 0.36 0.29 0.44 0.39 0.45 0.36 0.37 0.39

Armenia 2,924,816 0.37 0.42 0.29 0.34 0.39 0.31 0.40 0.42 0.30 0.27

Azerbaijan 9,725,376 0.39 0.42 0.43 0.37 0.41 0.34 0.42 0.26 0.44 0.19

Bahrain 1,425,171 0.26 0.38 0.25 0.48 0.28 0.41 0.29 0.38 0.26 0.37

Bangladesh 162,951,560 0.48 0.24 0.36 0.42 0.50 0.43 0.51 0.39 0.37 0.42

Bhutan 797,765 0.41 0.24 0.27 0.34 0.43 0.28 0.44 0.27 0.28 0.47

Brunei 423,196 0.27 0.47 0.23 0.48 0.29 0.21 0.30 0.31 0.24 0.38

Cambodia 15,762,370 0.42 0.37 0.41 0.31 0.44 0.40 0.45 0.47 0.42 0.31

China 1,403,500,365 0.36 0.29 0.39 0.32 0.38 0.26 0.39 0.39 0.40 0.49

Cyprus 1,170,125 0.34 0.36 0.48 0.38 0.36 0.27 0.37 0.29 0.49 0.50

East Timor 1,268,671 0.31 0.41 0.36 0.30 0.33 0.34 0.34 0.48 0.37 0.38

Egypt 95,688,681 0.28 0.32 0.38 0.40 0.30 0.27 0.31 0.29 0.39 0.42

Georgia 3,925,405 0.32 0.36 0.42 0.41 0.34 0.48 0.35 0.37 0.43 0.31

India 1,324,171,354 0.47 0.38 0.36 0.50 0.49 0.36 0.50 0.28 0.37 0.47

Indonesia 261,115,456 0.45 0.28 0.26 0.38 0.47 0.23 0.48 0.35 0.27 0.38

Iran 80,277,428 0.40 0.39 0.47 0.31 0.42 0.17 0.43 0.36 0.49 0.29

Iraq 37,202,572 0.46 0.26 0.37 0.28 0.48 0.48 0.49 0.35 0.39 0.38

Israel 8,191,828 0.24 0.31 0.51 0.29 0.26 0.37 0.27 0.26 0.53 0.35

Japan 127,748,513 0.21 0.30 0.35 0.24 0.23 0.36 0.24 0.24 0.37 0.31

Jordan 9,455,802 0.34 0.27 0.21 0.34 0.36 0.35 0.37 0.27 0.23 0.35

Kazakhstan 17,987,736 0.38 0.26 0.18 0.31 0.40 0.38 0.41 0.28 0.20 0.26

Kuwait 4,052,584 0.18 0.37 0.36 0.39 0.20 0.46 0.21 0.25 0.38 0.37

Kyrgyzstan 5,955,734 0.34 0.43 0.36 0.53 0.36 0.47 0.37 0.27 0.38 0.41

Laos 6,758,353 0.36 0.26 0.36 0.49 0.38 0.37 0.39 0.24 0.38 0.36

Lebanon 6,006,668 0.35 0.37 0.28 0.43 0.37 0.28 0.38 0.48 0.30 0.33

Malaysia 31,187,265 0.38 0.51 0.38 0.42 0.40 0.24 0.41 0.37 0.40 0.39

Maldives 427,756 0.23 0.37 0.37 0.36 0.25 0.31 0.26 0.36 0.39 0.28

Mongolia 3,027,398 0.30 0.28 0.27 0.49 0.32 0.43 0.33 0.27 0.29 0.38

Myanmar 52,885,223 0.29 0.31 0.36 0.32 0.31 0.37 0.32 0.38 0.38 0.26

Nepal 28,982,771 0.46 0.35 0.23 0.45 0.48 0.21 0.49 0.31 0.25 0.30

North Korea 25,368,620 0.41 0.32 0.41 0.38 0.43 0.37 0.44 0.38 0.43 0.22

Oman 4,424,762 0.43 0.38 0.35 0.44 0.45 0.39 0.46 0.28 0.37 0.37

Pakistan 193,203,476 0.48 0.30 0.27 0.42 0.50 0.24 0.51 0.37 0.29 0.34

Palestine 4,790,705 0.42 0.27 0.36 0.49 0.44 0.32 0.45 0.43 0.38 0.39

Philippines 103,320,222 0.40 0.21 0.39 0.18 0.42 0.42 0.43 0.52 0.41 0.43

Qatar 2,569,804 0.27 0.28 0.24 0.34 0.29 0.36 0.30 0.37 0.26 0.28

Russia 143,964,513 0.39 0.37 0.23 0.21 0.41 0.31 0.42 0.28 0.25 0.45

Saudi Arabia 32,275,687 0.22 0.41 0.21 0.39 0.24 0.40 0.25 0.40 0.23 0.31

Singapore 5,622,455 0.24 0.35 0.36 0.30 0.26 0.38 0.27 0.36 0.38 0.38

South Korea 50,791,919 0.24 0.32 0.32 0.35 0.26 0.39 0.27 0.27 0.34 0.36

Sri Lanka 20,798,492 0.25 0.28 0.36 0.31 0.27 0.32 0.28 0.25 0.38 0.38

Syria 18,430,453 0.43 0.25 0.27 0.49 0.45 0.36 0.46 0.21 0.29 0.29

Tajikistan 8,734,951 0.25 0.22 0.25 0.30 0.27 0.42 0.28 0.36 0.27 0.38

Thailand 68,863,514 0.19 0.33 0.39 0.47 0.21 0.27 0.22 0.34 0.41 0.31

Turkey 79,512,426 0.36 0.32 0.43 0.31 0.38 0.19 0.39 0.38 0.45 0.40
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Table 2 continued

Country Population Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Turkmenistan 5,662,544 0.41 0.39 0.32 0.37 0.43 0.39 0.44 0.51 0.34 0.38

United Arab Emirates 9,269,612 0.34 0.45 0.44 0.47 0.36 0.27 0.37 0.42 0.46 0.27

Uzbekistan 31,446,795 0.25 0.42 0.37 0.42 0.27 0.30 0.28 0.37 0.39 0.39

Vietnam 94,569,072 0.37 0.28 0.28 0.39 0.39 0.46 0.40 0.29 0.30 0.38

Yemen 27,584,213 0.45 0.35 0.30 0.31 0.47 0.27 0.48 0.35 0.32 0.41

Asian average 4,670,858,209 0.398 0.324 0.355 0.383 0.418 0.312 0.428 0.340 0.368 0.433

Note also that it is possible to distinguish between descending
GPOWAWAD and ascending GPOWAWAD operators. The
weights of these operators are related by w j = w∗n− j+1.

Observe that if some of the weighting vectors are not nor-
malized, i.e. W = ∑n

j=1 w j �= 1, V = ∑n
i=1 vi �= 1 and

P = ∑n
i=1 pi �= 1; then, we can express the GPOWAWAD

operator as

GPOWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) =

= C1

W

⎛
⎝ n∑

j=1

w j b
λ
j

⎞
⎠

1/λ

+ C2

V

(
n∑

i=1

vi |xi − yi |δ
)1/δ

+C3

P

(
n∑

i=1

pi |xi − yi |χ
)1/χ

(28)

The GPOWAWAD operator accomplishes reflexivity
when f (〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) = 0 if and only
if xi = yi for all i ∈ [1, n]. In addition, it has com-
mutativity when f (〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉) = f
(〈y1, x1〉, 〈y2, x2〉, . . ., 〈yn, xn〉). The GPOWAWAD opera-
tor is also monotonic, bounded and idempotent.

When analysing theweights, sometimes it becomes useful
to characterize them. A very common technique for doing so
is the entropy of dispersion, which can be defined as follows:

H(V̂ ) = −
⎛
⎝C1

n∑
j=1

w j ln(w j ) + C2

n∑
i=1

vi ln(vi ) + C3

n∑
i=1

pi ln(pi )

⎞
⎠

(29)

As we can see, if C1 = 1, we obtain the Yager entropy
(Yager 1988) and if C2 = 1 or C3 = 1, the Shannon entropy
(Shannon 1948). If C1 = 0, we obtain the entropy of the
PWA operator (Merigó et al. 2016), if C2 = 0, the entropy
of the POWA operator (Merigó 2012) and if C3 = 0, the
entropy of the OWA weighted average (Merigó 2011).

Additionally, we could also extend Eq. (14) by using the
generalized means, obtaining the following measure for the
degree of orness:

α(V̂ ) = C1

⎛
⎝ n∑

j=1

w j

(
n − j

n − 1

)λ
⎞
⎠

1/λ

+C2

⎛
⎝ n∑

j=1

v j

(
n − j

n − 1

)δ
⎞
⎠

1/δ

+C3

⎛
⎝ n∑

j=1

p j

(
n − j

n − 1

)χ
⎞
⎠

1/χ

(30)

As we can see, if λ = δ = χ = 1, Eq. (30) becomes Eq. (14).
In addition, if C1 = 1, Eq. (14) becomes the classical mea-
sure for the OWA operator (Yager 1988). Note that α(Ṽ ) ∈
[0, 1] and degree of andness = 1 – degree of orness.

The GPOWAWAD operator can be further generalized by
using the quasi-arithmetic means (Merigó and Gil-Lafuente
2009). Thus, we obtain the quasi-arithmetic POWAWAD
(Quasi-POWAWAD) operator. Its main strength is that it
provides a more general approach that includes more partic-
ular cases than the GPOWAWAD operator since it includes
it as a particular case. It is defined as follows for two sets
X = {x1, x2, . . ., xn} and Y = {y1, y2, . . ., yn}.
Definition 12 A Quasi-POWAWAD operator is a mapping
Quasi-POWAWAD: Rn × Rn → R of dimension n, that has
an associated weighting vector W , with

∑n
j=1 w j = 1 and

w j ∈ [0, 1], a probabilistic vector P , with
∑n

i=1 pi = 1
and pi ∈ [0, 1], and a weighting vector V that affects the
weighted average, with

∑n
i=1 vi = 1 and vi ∈ [0, 1], such

that:

Quasi-POWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)

= C1 f
−1

⎛
⎝ n∑

j=1

w j f (b j )

⎞
⎠

+C2g
−1

(
n∑

i=1

vi g (|xi − yi |)
)

+C3h
−1

(
n∑

i=1

pi h (|xi − yi |)
)

(31)
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Table 3 Asian average fixed asset according to different scenarios—expert 2

Country Abbreviations Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Afghanistan AFG 0.35 0.27 0.41 0.39 0.44 0.35 0.34 0.38 0.36 0.38

Armenia ARM 0.53 0.38 0.37 0.40 0.40 0.26 0.52 0.28 0.54 0.27

Azerbaijan AZE 0.48 0.24 0.28 0.52 0.31 0.25 0.47 0.18 0.49 0.36

Bahrain BAH 0.19 0.31 0.39 0.38 0.42 0.50 0.18 0.43 0.20 0.39

Bangladesh BAN 0.38 0.46 0.33 0.34 0.36 0.32 0.37 0.47 0.39 0.42

Bhutan BHU 0.33 0.27 0.31 0.27 0.34 0.42 0.32 0.37 0.34 0.33

Brunei BRU 0.37 0.36 0.27 0.35 0.30 0.46 0.36 0.46 0.38 0.39

Cambodia CAM 0.43 0.25 0.26 0.31 0.29 0.38 0.42 0.25 0.44 0.28

China CHN 0.34 0.21 0.23 0.43 0.26 0.29 0.33 0.26 0.35 0.40

Cyprus CYP 0.29 0.56 0.38 0.24 0.41 0.47 0.28 0.38 0.30 0.37

East Timor ET 0.40 0.34 0.42 0.37 0.45 0.26 0.39 0.31 0.41 0.32

Egypt EGY 0.45 0.25 0.33 0.36 0.36 0.36 0.44 0.37 0.46 0.35

Georgia GEO 0.22 0.26 0.28 0.35 0.31 0.31 0.21 0.49 0.23 0.40

India IND 0.39 0.34 0.36 0.19 0.39 0.46 0.38 0.27 0.40 0.32

Indonesia INO 0.33 0.27 0.39 0.28 0.42 0.37 0.32 0.37 0.34 0.36

Iran IRN 0.53 0.39 0.26 0.31 0.29 0.32 0.52 0.34 0.54 0.35

Iraq IRQ 0.38 0.42 0.30 0.42 0.33 0.39 0.37 0.32 0.39 0.41

Israel ISR 0.42 0.20 0.40 0.38 0.43 0.40 0.41 0.18 0.43 0.27

Japan JAP 0.28 0.38 0.32 0.31 0.35 0.27 0.27 0.39 0.29 0.39

Jordan JOR 0.26 0.37 0.36 0.27 0.39 0.30 0.25 0.44 0.27 0.35

Kazakhstan KAZ 0.40 0.25 0.31 0.38 0.34 0.35 0.39 0.32 0.41 0.40

Kuwait KUW 0.31 0.19 0.46 0.47 0.49 0.41 0.30 0.47 0.32 0.37

Kyrgyzstan KYR 0.32 0.34 0.32 0.26 0.35 0.34 0.31 0.50 0.33 0.28

Laos LAO 0.27 0.43 0.48 0.38 0.51 0.37 0.26 0.32 0.28 0.38

Lebanon LEB 0.43 0.46 0.31 0.40 0.34 0.36 0.42 0.37 0.44 0.27

Malaysia MLS 0.38 0.26 0.36 0.29 0.39 0.31 0.37 0.31 0.39 0.30

Maldives MLD 0.42 0.28 0.45 0.38 0.48 0.40 0.41 0.35 0.43 0.32

Mongolia MON 0.36 0.49 0.32 0.25 0.35 0.38 0.35 0.25 0.37 0.35

Myanmar MYN 0.25 0.25 0.36 0.36 0.39 0.41 0.24 0.38 0.26 0.38

Nepal NEP 0.28 0.37 0.35 0.42 0.38 0.38 0.27 0.32 0.29 0.27

North Korea NK 0.39 0.31 0.34 0.35 0.37 0.32 0.38 0.39 0.40 0.30

Oman OMA 0.43 0.42 0.41 0.39 0.44 0.37 0.42 0.42 0.44 0.25

Pakistan PAK 0.19 0.39 0.38 0.28 0.41 0.38 0.18 0.36 0.20 0.32

Palestine PAL 0.38 0.38 0.36 0.41 0.39 0.40 0.37 0.32 0.39 0.41

Philippines PHI 0.37 0.29 0.42 0.38 0.45 0.50 0.36 0.37 0.38 0.27

Qatar QAT 0.36 0.38 0.50 0.41 0.53 0.38 0.35 0.30 0.37 0.36

Russia RUS 0.33 0.36 0.48 0.32 0.51 0.37 0.32 0.42 0.34 0.35

Saudi Arabia SA 0.28 0.42 0.42 0.38 0.45 0.35 0.27 0.31 0.29 0.39

Singapore SGP 0.40 0.28 0.32 0.39 0.35 0.31 0.39 0.32 0.41 0.38

South Korea SK 0.22 0.31 0.44 0.40 0.47 0.39 0.21 0.38 0.23 0.40

Sri Lanka SL 0.39 0.38 0.25 0.52 0.28 0.42 0.38 0.37 0.40 0.32

Syria SYR 0.37 0.42 0.31 0.44 0.34 0.19 0.36 0.32 0.38 0.36

Tajikistan TAJ 0.37 0.38 0.56 0.24 0.59 0.40 0.36 0.42 0.38 0.37

Thailand THA 0.50 0.35 0.28 0.28 0.31 0.50 0.49 0.41 0.51 0.28

Turkey TRK 0.29 0.38 0.49 0.15 0.52 0.38 0.28 0.28 0.30 0.39
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Table 3 continued

Country Abbreviations Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Turkmenistan TRM 0.28 0.39 0.27 0.31 0.30 0.32 0.27 0.36 0.29 0.40

United Arab Emirates UAE 0.38 0.31 0.38 0.42 0.41 0.47 0.37 0.35 0.39 0.36

Uzbekistan UZB 0.43 0.34 0.18 0.36 0.21 0.28 0.42 0.40 0.44 0.32

Vietnam VIE 0.33 0.28 0.37 0.31 0.40 0.36 0.32 0.39 0.34 0.33

Yemen YEM 0.39 0.40 0.26 0.43 0.29 0.35 0.38 0.32 0.40 0.39

Asian average 0.354 0.302 0.324 0.318 0.354 0.370 0.344 0.310 0.364 0.357

where b j is the j th largest of the arguments |xi − yi |, C1,C2

and C3 ∈ [0, 1] with C1 + C2 + C3 = 1 and f , g and h are
strictly continuous monotonic functions.

Note that if f = bλ, g = |xi − yi |δ and h = |xi − yi |χ ,
the Quasi-POWAWAD becomes the GPOWAWAD operator.
If we analyse different values of the parameter λ, δ and χ

(or different functions f , g and h), we obtain a group of
particular cases of the GPOWAWAD and Quasi-POWAWAD
operators. For example, for the GPOWAWAD operator we
may obtain the following special cases.

Remark 1 When λ = δ = χ = 1, the GPOWAWAD
becomes the POWAWAD operator.

GPOWAWAD = C1

⎛
⎝ n∑

j=1

w j b j

⎞
⎠ + C2

(
n∑

i=1

vi |xi − yi |
)

+C3

(
n∑

i=1

pi |xi − yi |
)

(32)

Remark 2 If λ → 0, δ → 0, and χ → 0, we obtain the
geometric POWAWAD (GPOWAWAD) operator.

GPOWAWAD = C1

⎛
⎝ n∏

j=1

b
w j
j

⎞
⎠ + C2

(
n∏

i=1

|xi − yi |vi
)

+C3

(
n∏

i=1

|xi − yi |pi
)

(33)

Remark 3 If λ = δ = χ = −1, the harmonic POWAWAD
(HPOWAWAD) operator is obtained.

GPOWAWAD = C1
1∑n

j=1
w j
b j

+ C2
1∑n

i=1
vi|xi−yi |

+C3
1∑n

i=1
pi|xi−yi |

(34)

Remark 4 If λ = δ = χ = 2, the quadratic POWAWAD
(QPOWAWAD) operator is obtained.

GPOWAWAD = C1

⎛
⎝ n∑

j=1

w j b
2
j

⎞
⎠

1/2

+C2

(
n∑

i=1

vi |xi − yi |2
)1/2

+C3

(
n∑

i=1

pi |xi − yi |2
)1/2

(35)

Remark 5 If λ = δ = χ = 3, the cubic POWAWAD
(CPOWAWAD) operator is obtained.

GPOWAWAD = C1

⎛
⎝ n∑

j=1

w j b
3
j

⎞
⎠

1/3

+C2

(
n∑

i=1

vi |xi − yi |3
)1/3

+C3

(
n∑

i=1

pi |xi − yi |3
)1/3

(36)

Similar families can be developed for the Quasi-
POWAWAD operator. Following the previous equations
described in this section, Table 1 presents an overview of
some of the key special cases obtained by setting the param-
eter λ, δ and χ to specific values.

Note thatmanyother families canbe studiedbyusingother
values in the parameters λ, δ and χ and mixing different val-
ues of λ, δ and χ in the same aggregation. To this end, we
can consider a considerably wider range of aggregation oper-
ators. Additionally, the results of Table 1 can also be obtained
with the functions f , g and h of the Quasi-POWAWADoper-
ator.

Finally, let us look into a further generalization of the
GPOWAWAD and Quasi-POWAWAD by using the general-
ized and the quasi-arithmetic means in the coefficients C .
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Table 4 Asian average fixed asset according to different scenarios—expert 3

Country Weights Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Afghanistan 0.007420 0.36 0.36 0.35 0.37 0.34 0.38 0.40 0.38 0.37 0.35

Armenia 0.000626 0.27 0.32 0.28 0.39 0.27 0.27 0.31 0.32 0.30 0.39

Azerbaijan 0.002082 0.38 0.38 0.41 0.42 0.40 0.40 0.42 0.39 0.43 0.32

Bahrain 0.000305 0.30 0.27 0.33 0.35 0.32 0.32 0.34 0.40 0.35 0.36

Bangladesh 0.034887 0.21 0.36 0.39 0.32 0.38 0.31 0.25 0.38 0.41 0.42

Bhutan 0.000171 0.38 0.32 0.37 0.33 0.36 0.35 0.42 0.28 0.39 0.32

Brunei 0.000091 0.42 0.41 0.33 0.31 0.32 0.34 0.46 0.40 0.35 0.38

Cambodia 0.003375 0.39 0.27 0.32 0.40 0.31 0.37 0.43 0.35 0.34 0.37

China 0.300480 0.32 0.36 0.36 0.38 0.35 0.35 0.36 0.32 0.38 0.35

Cyprus 0.000251 0.35 0.40 0.40 0.35 0.39 0.39 0.39 0.40 0.42 0.31

East Timor 0.000272 0.37 0.32 0.30 0.32 0.29 0.40 0.41 0.38 0.32 0.28

Egypt 0.020486 0.32 0.38 0.27 0.39 0.26 0.43 0.36 0.32 0.29 0.38

Georgia 0.000840 0.37 0.42 0.41 0.40 0.40 0.27 0.41 0.39 0.43 0.37

India 0.283496 0.37 0.37 0.38 0.38 0.37 0.38 0.41 0.40 0.40 0.38

Indonesia 0.055903 0.43 0.35 0.36 0.40 0.35 0.42 0.47 0.32 0.38 0.42

Iran 0.017187 0.27 0.32 0.38 0.38 0.37 0.38 0.31 0.38 0.40 0.36

Iraq 0.007965 0.38 0.28 0.33 0.32 0.32 0.42 0.42 0.40 0.35 0.28

Israel 0.001754 0.31 0.40 0.34 0.36 0.33 0.27 0.35 0.36 0.36 0.25

Japan 0.027350 0.32 0.37 0.41 0.38 0.40 0.39 0.36 0.42 0.43 0.38

Jordan 0.002024 0.42 0.33 0.27 0.36 0.26 0.40 0.46 0.31 0.29 0.32

Kazakhstan 0.003851 0.37 0.32 0.33 0.39 0.32 0.36 0.41 0.38 0.35 0.26

Kuwait 0.000868 0.36 0.37 0.31 0.42 0.30 0.27 0.40 0.32 0.33 0.39

Kyrgyzstan 0.001275 0.39 0.35 0.44 0.27 0.43 0.38 0.43 0.40 0.46 0.27

Laos 0.001447 0.27 0.39 0.28 0.39 0.27 0.42 0.31 0.35 0.30 0.39

Lebanon 0.001286 0.36 0.29 0.39 0.42 0.38 0.36 0.40 0.32 0.41 0.19

Malaysia 0.006677 0.41 0.42 0.41 0.35 0.40 0.38 0.45 0.39 0.43 0.32

Maldives 0.000092 0.27 0.37 0.44 0.39 0.43 0.27 0.31 0.40 0.46 0.27

Mongolia 0.000648 0.36 0.35 0.28 0.34 0.27 0.39 0.40 0.42 0.30 0.25

Myanmar 0.011322 0.38 0.39 0.37 0.32 0.36 0.34 0.42 0.36 0.39 0.32

Nepal 0.006205 0.39 0.27 0.32 0.40 0.31 0.42 0.43 0.32 0.34 0.34

North Korea 0.005431 0.40 0.41 0.39 0.42 0.38 0.31 0.44 0.34 0.41 0.38

Oman 0.000947 0.42 0.29 0.47 0.35 0.46 0.27 0.46 0.33 0.49 0.42

Pakistan 0.041364 0.36 0.39 0.43 0.32 0.42 0.28 0.40 0.31 0.45 0.37

Palestine 0.001026 0.31 0.43 0.38 0.38 0.37 0.39 0.35 0.38 0.40 0.33

Philippines 0.022120 0.36 0.47 0.32 0.32 0.31 0.42 0.40 0.36 0.34 0.31

Qatar 0.000550 0.32 0.28 0.31 0.42 0.30 0.44 0.36 0.42 0.33 0.27

Russia 0.030822 0.35 0.39 0.48 0.36 0.47 0.36 0.39 0.27 0.50 0.38

Saudi Arabia 0.006910 0.39 0.40 0.33 0.34 0.32 0.38 0.43 0.29 0.35 0.29

Singapore 0.001204 0.40 0.32 0.36 0.31 0.35 0.42 0.44 0.24 0.38 0.36

South Korea 0.010874 0.50 0.51 0.39 0.39 0.38 0.38 0.54 0.30 0.41 0.38

Sri Lanka 0.004453 0.48 0.27 0.42 0.40 0.41 0.39 0.52 0.32 0.44 0.42

Syria 0.003946 0.42 0.36 0.39 0.28 0.38 0.34 0.46 0.36 0.41 0.41

Tajikistan 0.001870 0.32 0.40 0.37 0.36 0.36 0.32 0.36 0.27 0.39 0.38

Thailand 0.014743 0.27 0.38 0.33 0.34 0.32 0.28 0.31 0.29 0.35 0.28

Turkey 0.017023 0.38 0.35 0.40 0.42 0.39 0.40 0.42 0.22 0.42 0.36
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Table 4 continued

Country Weights Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Turkmenistan 0.001212 0.36 0.32 0.38 0.38 0.37 0.39 0.40 0.31 0.40 0.39

United Arab Emirates 0.001985 0.42 0.41 0.37 0.39 0.36 0.32 0.46 0.24 0.39 0.30

Uzbekistan 0.006733 0.32 0.38 0.41 0.40 0.40 0.40 0.36 0.31 0.43 0.32

Vietnam 0.020247 0.37 0.36 0.39 0.32 0.38 0.35 0.41 0.37 0.41 0.27

Yemen 0.005906 0.39 0.35 0.33 0.35 0.32 0.32 0.43 0.29 0.35 0.35

Asian average 1 0.349 0.368 0.374 0.372 0.364 0.365 0.389 0.349 0.394 0.363

Note that this is possible because the coefficients C can
be seen as a weighted average that can be generalized by
using theweighted generalizedmean and theweighted quasi-
arithmetic mean. Following Eq. (27), the formulation with
the weighted generalized mean is as follows:

GPOWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)

=
⎛
⎜⎝C1

⎛
⎜⎝

⎛
⎝ n∑

j=1

w j b
λ
j

⎞
⎠

1/λ
⎞
⎟⎠

ε

+C2

⎛
⎝

(
n∑

i=1

vi |xi − yi |δ
)1/δ

⎞
⎠

ε

+C3

⎛
⎝(

n∑
i=1

pi |xi − yi |χ
)1/χ

⎞
⎠

ε⎞
⎠

1/ε

(37)

where ε is a parameter such that ε ∈ {−∞,∞} − {0}.
With the quasi-arithmetic means, using a strictly continu-

ous monotonic function z yields:

Quasi-POWAWAD(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)

= z−1

⎛
⎝C1z

⎛
⎝ f −1

⎛
⎝ n∑

j=1

w j f (b j )

⎞
⎠

⎞
⎠

+C2z

(
g−1

(
n∑

i=1

vi g (|xi − yi |)
))

+C3z

(
h−1

(
n∑

i=1

pi h (|xi − yi |)
)))

(38)

where z is a strictly continuous monotonic function.
Observe that these generalizations can also be imple-

mented with the OWA operator, that is, by reordering the
final results of the OWAD, WHD and PHD in descending
or ascending order and using the coefficients C as the OWA
weights. The formulation would be as follows:

GPOWAWADOWA(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)

=
q∑

k=1

Ckmk (39)

where mk is the kth largest of
(∑n

j=1 w j bλ
j

)1/λ
,(∑n

i=1 vi |xi − yi |δ
)1/δ

and
(∑n

i=1 pi |xi − yi |χ
)1/χ .

In addition, with the generalized OWA:

GPOWAWADGOWA(〈x1, y1〉, 〈x2, y2〉, . . ., 〈xn, yn〉)

=
( q∑
k=1

Ckm
π
k

)1/π

(40)

whereπ is a parameter such thatπ ∈ (−∞,∞)−{0}, andmk

is the kth largest of
(∑n

j=1 w j bλ
j

)1/λ
,
(∑n

i=1 vi |xi −yi |δ
)1/δ

and
(∑n

i=1 pi |xi − yi |χ
)1/χ .

This formulation is also interesting because many times it
is not clear which of the three aggregations to use. Therefore,
a decision-maker may weight each of them according to the
results theyprovide following theOWAphilosophy.Note that
here it is also possible to use the OWAWA operator and the
POWAWA operator by, for example, mixing Eq. (27) with
Eq. (39). Additionally, following the aggregation operator
literature (Beliakov et al. 2007, 2016) it is possible to unify
the OWA, the weighted average and the probability with the
coefficientsC by usingmany other types of averages, such as
the Bonferroni mean (Blanco-Mesa et al. 2016), logarithmic
aggregations (Alfaro-García et al. 2018; Zhou et al. 2015)
and Choquet integrals (Belles-Sampera et al. 2014).

5 Applicability of the POWAWAD operator

This section analyses the applicability of the POWAWAD
operator and its extensions with a main focus on information
aggregation and decision-making. First, the work analyses
some ideas about multi-person aggregation. Next, the paper
presents an application in the calculation of the average
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Table 5 Asian average fixed asset according to different scenarios—collective results

Country Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Afghanistan 0.37 0.32 0.38 0.36 0.42 0.37 0.39 0.37 0.37 0.38

Armenia 0.43 0.38 0.33 0.38 0.37 0.28 0.44 0.33 0.42 0.29

Azerbaijan 0.43 0.32 0.35 0.46 0.36 0.31 0.45 0.25 0.46 0.30

Bahrain 0.23 0.32 0.34 0.40 0.36 0.44 0.25 0.41 0.25 0.38

Bangladesh 0.38 0.37 0.35 0.36 0.41 0.35 0.39 0.43 0.39 0.42

Bhutan 0.36 0.27 0.31 0.30 0.37 0.36 0.38 0.32 0.33 0.37

Brunei 0.35 0.40 0.27 0.38 0.30 0.36 0.36 0.40 0.33 0.39

Cambodia 0.42 0.29 0.32 0.33 0.34 0.38 0.43 0.34 0.41 0.31

China 0.34 0.26 0.30 0.39 0.31 0.29 0.35 0.31 0.37 0.42

Cyprus 0.32 0.47 0.41 0.30 0.39 0.39 0.33 0.36 0.38 0.40

East Timor 0.37 0.36 0.38 0.34 0.38 0.31 0.38 0.38 0.38 0.33

Egypt 0.37 0.30 0.33 0.38 0.32 0.35 0.39 0.34 0.41 0.38

Georgia 0.28 0.32 0.35 0.38 0.34 0.35 0.29 0.43 0.33 0.37

India 0.41 0.36 0.36 0.32 0.42 0.41 0.42 0.30 0.39 0.38

Indonesia 0.39 0.29 0.35 0.33 0.42 0.34 0.40 0.35 0.33 0.38

Iran 0.44 0.38 0.35 0.32 0.35 0.29 0.45 0.35 0.50 0.33

Iraq 0.40 0.34 0.33 0.36 0.37 0.42 0.42 0.35 0.38 0.38

Israel 0.34 0.27 0.42 0.35 0.36 0.37 0.36 0.24 0.45 0.29

Japan 0.27 0.35 0.35 0.30 0.32 0.32 0.28 0.35 0.34 0.36

Jordan 0.32 0.33 0.30 0.31 0.36 0.34 0.33 0.36 0.26 0.34

Kazakhstan 0.39 0.27 0.28 0.36 0.35 0.36 0.40 0.32 0.34 0.33

Kuwait 0.28 0.28 0.40 0.44 0.37 0.40 0.29 0.37 0.34 0.37

Kyrgyzstan 0.34 0.37 0.36 0.34 0.37 0.39 0.35 0.41 0.37 0.32

Laos 0.30 0.37 0.40 0.42 0.42 0.38 0.31 0.30 0.31 0.38

Lebanon 0.39 0.40 0.32 0.41 0.36 0.34 0.40 0.39 0.39 0.27

Malaysia 0.39 0.37 0.38 0.34 0.40 0.30 0.40 0.34 0.40 0.33

Maldives 0.33 0.33 0.42 0.38 0.40 0.35 0.35 0.36 0.42 0.30

Mongolia 0.34 0.40 0.30 0.34 0.33 0.40 0.35 0.29 0.33 0.34

Myanmar 0.29 0.30 0.36 0.34 0.36 0.38 0.30 0.38 0.32 0.33

Nepal 0.36 0.34 0.31 0.43 0.40 0.34 0.37 0.32 0.29 0.29

North Korea 0.40 0.33 0.37 0.37 0.39 0.33 0.41 0.38 0.41 0.29

Oman 0.43 0.38 0.40 0.40 0.45 0.36 0.44 0.36 0.43 0.32

Pakistan 0.31 0.36 0.36 0.33 0.44 0.32 0.32 0.35 0.28 0.34

Palestine 0.38 0.36 0.36 0.43 0.40 0.37 0.39 0.37 0.39 0.39

Philippines 0.38 0.30 0.39 0.31 0.41 0.46 0.39 0.41 0.38 0.33

Qatar 0.33 0.33 0.38 0.39 0.41 0.39 0.34 0.35 0.33 0.32

Russia 0.35 0.37 0.41 0.30 0.47 0.35 0.36 0.35 0.35 0.39

Saudi Arabia 0.28 0.41 0.34 0.38 0.36 0.37 0.30 0.33 0.28 0.35

Singapore 0.35 0.31 0.34 0.35 0.32 0.35 0.36 0.32 0.40 0.38

South Korea 0.28 0.35 0.39 0.38 0.39 0.39 0.29 0.33 0.30 0.38

Sri Lanka 0.37 0.33 0.32 0.43 0.30 0.38 0.38 0.32 0.40 0.36

Syria 0.40 0.36 0.31 0.42 0.38 0.27 0.41 0.30 0.36 0.35

Tajikistan 0.32 0.34 0.43 0.28 0.45 0.39 0.34 0.37 0.35 0.38

Thailand 0.36 0.35 0.32 0.35 0.28 0.39 0.37 0.37 0.45 0.29

Turkey 0.33 0.36 0.45 0.25 0.45 0.33 0.34 0.30 0.37 0.39
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Table 5 continued

Country Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

I R I R I R I R I R

Turkmenistan 0.34 0.38 0.31 0.34 0.35 0.36 0.35 0.40 0.33 0.39

United Arab Emirates 0.38 0.37 0.40 0.43 0.39 0.38 0.39 0.35 0.41 0.32

Uzbekistan 0.35 0.37 0.28 0.39 0.27 0.31 0.37 0.37 0.42 0.34

Vietnam 0.35 0.30 0.35 0.34 0.39 0.39 0.36 0.36 0.34 0.33

Yemen 0.41 0.38 0.29 0.38 0.35 0.32 0.42 0.32 0.37 0.39

Asian average 0.366 0.321 0.341 0.349 0.375 0.350 0.377 0.327 0.371 0.383

fixed assets. The section ends by analysing how to aggregate
information with this new framework in real-world problems
associated with asset management.

5.1 Introduction

The POWAWAD operator generalizes a wide range of dis-
tance aggregation operators. Moreover, if one of the sets X
and Y is empty, it becomes the POWAWA operator, which
also includes a wide range of averaging aggregation opera-
tors. Therefore, all of the previous studies that use average
distances, OWA operators, weighted averages or probabilis-
tic aggregations can be revised and extended with this new
approach. Note that in simple problems, the POWAWAD
operator can be reduced to some of its special cases. How-
ever, the main advantage of the POWAWAD is the ability
to better represent more complex frameworks that address
subjective and objective information and with the attitudinal
character of the decision-maker.

In group decision-making problems (Blanco-Mesa et al.
2017; Figueira et al. 2005; Kahraman et al. 2015), the
POWAWAD operator is useful as a technique to assess the
information. However, in this instance, it is necessary to
extend the POWAWAD to a multi-person framework. To
this end, following Merigó (2012), we can introduce the
multi-person POWAWAD (MP-POWAWAD) operator. This
approach uses an additional weighted average aggregation
process in the aggregation of the POWAWAD that sum-
marizes the information provided by different persons or
experts.

Definition 13 An MP-POWAWAD operator is a mapping
MP-POWAWAD: Rn × Rn → R that has a weighting vec-
tor Z of dimension t with

∑t
k=1 zk = 1 and zk ∈ [0, 1], a

weighting vector W , with
∑n

j=1 w j = 1 and w j ∈ [0, 1], a
probabilistic vector P , with

∑n
i=1 pi = 1 and pi ∈ [0, 1],

and a weighting vector V that affects the weighted average,
with

∑n
i=1 vi = 1 and vi ∈ [0, 1], such that:

MP-POWAWAD ({〈x1, y1〉1, . . ., 〈x1, y1〉t }, . . .,
{〈xn, yn〉1, . . ., 〈xn, yn〉t }) =

= C1

n∑
j=1

w j b j + C2

n∑
i=1

vi di + C3

n∑
i=1

pidi (41)

where b j is the j th largest of the di , di = ∑t
k=1 zkd

k
i , dki

is the individual distance |xi − yi |k between the sets X =
{x1, . . ., xn}k and Y = {y1, . . ., yn}k provided by the kth
person (or expert), and C1,C2 and C3 ∈ [0, 1] with C1 +
C2 + C3 = 1.

Note that following Eq. (41), we can also develop
similar formulations for all the definitions and formulas
presented in the previous sections, including the multi-
person GPOWAWAD and the multi-person quasi-arithmetic
POWAWAD. Additionally, observe that all the particular
cases mentioned in Sects. 3 and 4 are also available in Eq.
(41). By using Definition 13, we can build a group decision-
making process (Merigó 2012).

5.2 Calculation of the average fixed assets with OWA
operators

In this paper, let us focus on the calculation of the average
fixed asset. The average fixed asset addresses a set of fixed
assets providing a numerical value that summarizes the infor-
mation of the set. Usually, researchers and economists use
the arithmetic mean or the weighted average in the analy-
sis of the average fixed assets. However, it is also possible
to use many other averaging aggregation operators, includ-
ing the OWA and the WOWA operator. The use of the OWA
operator produces the ordered weighted average fixed asset
(OWAFA). The OWAFA operator is an aggregation operator
that analyses a set of fixed assets providing a parameter-
ized family of aggregation operators between the minimum
and maximum fixed assets. It is very useful to analyse the
information of a set of assets under complex and uncertain
environments, where it is possible to under- or overestimate
the data according to the attitudinal character of the decision-
maker. Following Eq. (5), the OWAFA operator is defined as
follows for a set of fixed assets A = {a1, a2, . . ., an}:
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Table 6 Individual distances
between the ideal percentage of
fixed assets and the actual ones

Country Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Afghanistan 0.052 0.027 0.052 0.011 0.012

Armenia 0.05 0.052 0.094 0.112 0.126

Azerbaijan 0.111 0.104 0.051 0.199 0.162

Bahrain 0.09 0.068 0.079 0.164 0.13

Bangladesh 0.002 0.009 0.055 0.04 0.032

Bhutan 0.093 0.007 0.007 0.054 0.038

Brunei 0.053 0.111 0.06 0.041 0.053

Cambodia 0.129 0.011 0.045 0.095 0.107

China 0.078 0.083 0.021 0.043 0.046

Cyprus 0.151 0.11 0.003 0.028 0.016

East Timor 0.01 0.039 0.07 0.004 0.05

Egypt 0.076 0.045 0.025 0.049 0.028

Georgia 0.042 0.03 0.016 0.142 0.037

India 0.052 0.043 0.002 0.123 0.014

Indonesia 0.097 0.011 0.083 0.044 0.051

Iran 0.063 0.023 0.058 0.097 0.163

Iraq 0.06 0.031 0.05 0.071 0.007

Israel 0.071 0.072 0.006 0.116 0.156

Japan 0.087 0.044 0.003 0.072 0.022

Jordan 0.016 0.012 0.02 0.035 0.082

Kazakhstan 0.121 0.086 0.007 0.08 0.005

Kuwait 0.001 0.036 0.032 0.081 0.034

Kyrgyzstan 0.029 0.013 0.018 0.059 0.054

Laos 0.074 0.011 0.043 0.007 0.062

Lebanon 0.007 0.096 0.021 0.011 0.12

Malaysia 0.019 0.035 0.092 0.054 0.07

Maldives 0.008 0.048 0.054 0.018 0.126

Mongolia 0.057 0.043 0.072 0.064 0.007

Myanmar 0.008 0.022 0.024 0.076 0.01

Nepal 0.012 0.117 0.059 0.051 0.005

North Korea 0.065 0.002 0.057 0.033 0.119

Oman 0.046 0.007 0.091 0.08 0.109

Pakistan 0.052 0.027 0.121 0.03 0.059

Palestine 0.021 0.064 0.027 0.025 0.001

Philippines 0.075 0.083 0.047 0.024 0.055

Qatar 0.005 0.007 0.026 0.008 0.011

Russia 0.017 0.11 0.122 0.016 0.041

Saudi Arabia 0.129 0.036 0.01 0.037 0.062

Singapore 0.043 0.007 0.03 0.048 0.019

South Korea 0,071 0,011 0,001 0,037 0,085

Sri Lanka 0,038 0,116 0,081 0,054 0,044

Syria 0,041 0,109 0,11 0,115 0,01

Tajikistan 0,012 0,147 0,058 0,036 0,026

Thailand 0,011 0,026 0,105 0,008 0,159

Turkey 0,027 0,202 0,125 0,043 0,018

Turkmenistan 0,041 0,035 0,002 0,048 0,065

United Arab Emirates 0,004 0,033 0,005 0,039 0,09
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Table 6 continued Country Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Uzbekistan 0,018 0,103 0,044 0,007 0,082

Vietnam 0,054 0,011 0,005 0,006 0,009

Yemen 0,033 0,092 0,03 0,097 0,022

Asian average 0,060 0,057 0,033 0,066 0,039

OWAFA(a1, a2, . . ., an) =
n∑
j=1

w j b j (42)

where b j is the j th largest of the ai .
Note that the OWAFA operator assumes that there is no

information regarding the importance of each of the fixed
assets. However, in real-world problems, it is common to
have some information concerning the importance of the
fixed assets in the whole set. Therefore, a better approach
for aggregating the information is by using a technique that
combines the OWAoperator with the weighted average, such
as theWOWA operator (Torra 1997), the hybrid average (Xu
and Da 2003), the importance OWA (Yager 1998) and the
OWAWA operator (Merigó 2011). In this work, let us use the
OWAWA operator. However, in order to produce a better ter-
minology, we will use the WOWA denomination. Therefore,
under this framework, we obtain the weighted OWA fixed
asset (WOWAFA), which is defined in the following way for
a set of fixed assets A = {a1, a2, . . ., an}:

WOWAFA(a1, a2, . . ., an)=β

n∑
j=1

w j b j +(1−β)

n∑
i=1

vi ai

(43)

where b j is the j th largest of the ai , β ∈ [0, 1], V is a weight-
ing vector with

∑n
i=1 vi = 1 and vi ∈ [0, 1] and W is a

weighting vector with
∑n

j=1 w j = 1 and w j ∈ [0, 1].
Another extension consists in using probabilities in the

analysis to address objective and subjective information and
the attitudinal character of the decision-maker. For doing so,
let us use the POWAWA operator. Following Eq. (6), we
would obtain the probabilistic ordered weighted averaging
weighted average fixed asset (POWAWAFA) as follows:

POWAWAFA(a1, a2, . . ., an) = C1

n∑
j=1

w j b j + C2

n∑
i=1

vi ai

+C3

n∑
i=1

piai (44)

where b j is the j th largest of the ai , vi is the i th weight of
the weighted average with

∑n
i=1 vi = 1 and vi ∈ [0, 1], pi

is the i th probability with
∑n

i=1 pi = 1 and pi ∈ [0, 1], w j

is the j th OWA weight with
∑n

j=1 w j = 1 and w j ∈ [0, 1],
C1,C2 and C3 ∈ [0, 1], and C1 + C2 + C3 = 1.

Equations (42)–(44) can be extended by using the gener-
alized and the quasi-arithmetic means. With the generalized
means, Eq. (44) would become the generalized POWAWAFA
(GPOWAWAFA) as follows:

GPOWAWAFA(a1, a2, . . ., an) = C1

⎛
⎝ n∑

j=1

w j b
λ
j

⎞
⎠

1/λ

+C2

(
n∑

i=1

vi a
δ
i

)1/δ

+ C3

(
n∑

i=1

pia
χ
i

)1/χ

(45)

where λ, δ and χ are parameters such that λ, δ and χ ∈
{−∞,∞} − {0}. Note that with the quasi-arithmetic means,
we should replace λ, δ and χ by strictly continuous mono-
tonic functions. Observe that if λ = δ = χ = 1, Eq. (45)
becomes the POWAWAFA operator. If λ = δ = χ = 2, we
obtain the quadratic POWAWAFAoperator. Similarly,we can
also analyse a wide range of other particular cases following
the results of Sect. 4.

To focus more specifically on the contributions of this
paper, let us implement the POWAWADoperator on the aver-
age fixed assets. In this instance, the assumption is that the
initial information is assessed with two sets of arguments
instead of one. To perform the aggregation, first there is a
comparative process between the two sets with a distance
measure. With the individual distances, the process is treated
in a similarway aswith one set, where the data are aggregated
with an average. As mentioned previously, it is common to
use the arithmetic mean and the weighted average, which in
this case would imply the use of the normalized Hamming
distance and the weighted Hamming distance. However, it is
also possible to use other formulations, such as the OWAD
and thePOWAWAD.Byusing theOWADoperator,weobtain
the OWAD fixed asset (OWADFA), which is formulated as
follows, with X = {x1, . . ., xn} and Y = {y1, . . ., yn}:

OWADFA(〈x1, y1〉, . . ., 〈xn, yn〉) =
n∑
j=1

w j b j (46)

where b j is the j th largest of the |xi − yi |, and w j is the
j th weight of a weighting vector W with w j ∈ [0, 1]
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Table 7 Asian average fixed asset—aggregated results 1

Country NHDFA WHDFA PHDFA OWADFA OWAWADFA POWAWADFA

Afghanistan 0,031 0,028 0,027 0,023 0,026 0,027

Armenia 0,087 0,084 0,093 0,073 0,080 0,085

Azerbaijan 0,125 0,127 0,134 0,105 0,118 0,125

Bahrain 0,106 0,102 0,114 0,092 0,098 0,104

Bangladesh 0,028 0,022 0,031 0,019 0,021 0,025

Bhutan 0,040 0,038 0,036 0,027 0,034 0,035

Brunei 0,064 0,070 0,062 0,056 0,064 0,064

Cambodia 0,077 0,075 0,074 0,059 0,069 0,072

China 0,054 0,061 0,051 0,045 0,054 0,053

Cyprus 0,062 0,071 0,049 0,037 0,058 0,056

East Timor 0,035 0,036 0,034 0,024 0,031 0,033

Egypt 0,045 0,045 0,042 0,037 0,042 0,042

Georgia 0,053 0,044 0,063 0,040 0,042 0,051

India 0,047 0,040 0,054 0,031 0,036 0,044

Indonesia 0,057 0,051 0,052 0,045 0,048 0,050

Iran 0,081 0,084 0,084 0,063 0,076 0,080

Iraq 0,044 0,036 0,045 0,035 0,035 0,039

Israel 0,084 0,095 0,089 0,065 0,083 0,086

Japan 0,046 0,045 0,044 0,032 0,040 0,042

Jordan 0,033 0,037 0,035 0,024 0,032 0,034

Kazakhstan 0,060 0,060 0,056 0,040 0,052 0,054

Kuwait 0,037 0,033 0,045 0,028 0,031 0,037

Kyrgyzstan 0,035 0,034 0,038 0,026 0,031 0,034

Laos 0,039 0,042 0,033 0,028 0,036 0,035

Lebanon 0,051 0,069 0,051 0,031 0,054 0,055

Malaysia 0,054 0,050 0,058 0,043 0,047 0,052

Maldives 0,051 0,061 0,052 0,035 0,051 0,052

Mongolia 0,049 0,040 0,049 0,040 0,040 0,044

Myanmar 0,028 0,021 0,035 0,020 0,021 0,026

Nepal 0,049 0,050 0,053 0,033 0,043 0,048

North Korea 0,055 0,058 0,052 0,040 0,051 0,052

Oman 0,067 0,061 0,070 0,052 0,057 0,063

Pakistan 0,058 0,051 0,056 0,046 0,049 0,052

Palestine 0,028 0,029 0,028 0,021 0,026 0,027

Philippines 0,057 0,064 0,052 0,048 0,057 0,056

Qatar 0,011 0,010 0,012 0,009 0,009 0,010

Russia 0,061 0,063 0,061 0,041 0,054 0,058

Saudi Arabia 0,055 0,060 0,046 0,040 0,052 0,050

Singapore 0,029 0,024 0,030 0,023 0,024 0,026

South Korea 0,041 0,047 0,038 0,027 0,039 0,039

Sri Lanka 0,067 0,069 0,068 0,055 0,064 0,066

Syria 0,077 0,066 0,084 0,060 0,064 0,072

Tajikistan 0,056 0,064 0,058 0,039 0,054 0,057

Thailand 0,062 0,069 0,062 0,037 0,056 0,060

Turkey 0,083 0,088 0,085 0,055 0,075 0,080

Turkmenistan 0,038 0,043 0,039 0,031 0,038 0,039
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Table 7 continued

Country NHDFA WHDFA PHDFA OWADFA OWAWADFA POWAWADFA

United Arab Emirates 0,034 0,042 0,038 0,022 0,034 0,036

Uzbekistan 0,051 0,064 0,050 0,035 0,052 0,053

Vietnam 0,017 0,018 0,012 0,012 0,015 0,014

Yemen 0,055 0,054 0,061 0,041 0,049 0,054

Asian average 0,051 0,051 0,052 0,038 0,046 0,049

and
∑n

j=1 w j = 1. Note that if w j = 1/n for all j , the
OWADFA becomes the normalized Hamming distance fixed
asset (NHDFA).

By using the POWAWAD operator under this framework,
wewouldobtain thePOWAWADfixedasset (POWAWADFA).
Note that the main advantage of this approach is the possi-
bility of using distance measures in the calculation of the
fixed assets in a unified framework between the probability,
the weighted average and the OWA operator. Following Eq.
(44), the POWAWADFA operator is defined as follows:

POWAWADFA(〈x1, y1〉, . . ., 〈xn, yn〉) = C1

n∑
j=1

w j b j

+C2

n∑
i=1

vi |xi − yi | + C3

n∑
i=1

pi |xi − yi | (47)

where b j is the j th largest of the arguments |xi − yi | and
C1,C2 and C3 ∈ [0, 1] with C1 + C2 + C3 = 1.

Finally, note that it is also possible to generalize the
POWAWADFA by using the generalized and the quasi-
arithmetic means, obtaining the generalized POWAWADFA
(GPOWAWADFA) and the Quasi-POWAWADFA operator.
Observe that the GPOWAWADFA uses parameters λ, δ and
χ such that λ, δ and χ ∈ {−∞,∞} − {0} and the Quasi-
POWAWADFAstrictly continuousmonotonic functions f , g
and h, as in Eq. (31). From this, it is straightforward to anal-
yse a wide range of particular cases in a similar way to the
development in Sect. 4.

5.3 Aggregation systems and asset management
with the POWAWADFA operator

To use these averaging aggregation operators in a real-world
problem, let us briefly explain the steps to follow in the
aggregation process. Note that here the work focuses on the
POWAWADFA andGPOWAWADFA, although it is straight-
forward to use any of the other cases mentioned in the paper.
Let us analyse the aggregation process at the country and
supranational levels. Observe that we implicitly assume a
previous aggregation step where the fixed assets of each of
the companies involved in the country are aggregated with

an averaging aggregation operator. To address distance mea-
sures, let us design a problem where the experts compare
the ideal percentage of fixed assets that the companies of a
country have versus the actual percentage of fixed assets that
they have. Note that each country may have a different ideal
percentage due to the specific characteristics of the country.

Step 1 The experts E = {e1, e2, . . ., et} of the problem
define their data regarding the ideal and actual percentage
of fixed assets of each country under different scenarios
that may occur in future S = {s1, s2, . . ., sn}, building
two sets of fixed assets, where the ideal percentage of
fixed assets is Xk = {xk1 , xk2 , . . ., xkn} and the actual
percentage is Yk = {yk1 , yk2 , . . ., ykn}. Note that the per-
centage is a real number between 0 and 1.
Step 2 Produce the collective results for the two sets
X = {x1, x2, . . ., xn} and Y = {y1, y2, . . ., yn} by aggre-
gating the data given by the group of experts using a
weighted average Z = (z1, z2, . . ., zt ). Observe that it is
also possible to use other averaging aggregation opera-
tors instead of the weighted average.
Step 3 Define all the weights of the POWAWADFA
(or the GPOWAWADFA) for producing the aggrega-
tion process. Accordingly, following Eq. (47), define the
weighting vector W , V and P .
Step 4Calculate the individual distances between the two
sets X andY formingone single set D = {d1, d2, . . ., dn}.
Step 5 Aggregate the individual distances of the collec-
tive results with the weighting vectors studied in Step
3. Consider the results with the POWAWADFA and the
GPOWAWADFA from the perspective of the different
particular cases mentioned in Sects. 3 and 4.
Step 6 Analyse the results to obtain some general con-
clusions concerning the available data. Verify whether
all the averaging aggregation operators provide similar
results that lead to the same decisions or not.

6 Numerical example

To understand numerically the applicability of the
POWAWADFA and GPOWAWADFA explained in the pre-
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Table 8 Asian average fixed
asset—Aggregated results 2

Rank NHDFA WHDFA PHDFA OWADFA OWAWADFA POWAWADFA

1 QAT QAT QAT QAT QAT QAT

2 VIE VIE VIE VIE VIE VIE

3 BAN MYN AFG BAN BAN BAN

4 MYN BAN PAL MYN MYN MYN

5 PAL SGP SGP PAL SGP SGP

6 SGP AFG BAN UAE AFG AFG

7 AFG PAL LAO AFG PAL PAL

8 JOR KUW ET SGP ET ET

9 UAE KYR JOR ET KUW JOR

10 ET ET MYN JOR KYR KYR

11 KYR IRQ BHU KYR JOR BHU

12 KUW JOR KYR BHU BHU LAO

13 TRM BHU SK SK UAE UAE

14 LAO IND UAE KUW IRQ KUW

15 BHU MON TRM LAO IND IRQ

16 SK LAO EGY IND LAO SK

17 IRQ UAE JAP LEB TRM TRM

18 EGY TRM IRQ TRM SK EGY

19 JAP GEO KUW JAP JAP JAP

20 IND EGY SA NEP MON IND

21 MON JAP CYP IRQ EGY MON

22 NEP SK MON MLD GEO NEP

23 LEB MLS UZB UZB NEP INO

24 MLD NEP CHN CYP MLS SA

25 UZB INO LEB EGY INO GEO

26 GEO PAK INO THA PAK MLS

27 CHN YEM MLD TAJ YEM MLD

28 MLS NK NK GEO MLD NK

29 NK KAZ PHI KAZ NK PAK

30 SA SA NEP MON KAZ CHN

31 YEM CHN IND NK SA UZB

32 TAJ MLD KAZ SA UZB KAZ

33 INO OMA PAK RUS CHN YEM

34 PHI RUS MLS YEM LEB LEB

35 PAK PHI TAJ MLS RUS CYP

36 KAZ TAJ RUS CHN TAJ PHI

37 RUS UZB YEM INO THA TAJ

38 CYP SYR BRU PAK OMA RUS

39 THA LEB THA PHI PHI THA

40 BRU SL GEO OMA CYP OMA

41 OMA THA SL SL BRU BRU

42 SL BRU OMA TRK SL SL

43 CAM CYP CAM BRU SYR CAM

44 SYR CAM IRN CAM CAM SYR

45 IRN ARM SYR SYR TRK IRN

46 TRK IRN TRK IRN IRN TRK
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Table 8 continued Rank NHDFA WHDFA PHDFA OWADFA OWAWADFA POWAWADFA

47 ISR TRK ISR ISR ARM ARM

48 ARM ISR ARM ARM ISR ISR

49 BAH BAH BAH BAH BAH BAH

50 AZE AZE AZE AZE AZE AZE

vious section, let us develop an illustrative example. This
study focuses on an application regarding the calculation
of the average distances between the ideal and the actual
percentage of fixed assets of companies in countries of the
Asian region. To assess the problem correctly, a group of
three experts analyses the information. The steps to follow
in the aggregation process can be described as follows.

Step 1 Assume three experts analyse the average fixed
assets of the companies of a specific industry of countries
in Asia. Consider that five possible scenarios may occur
in future depending on the evolution of the economic
environment in the region. Tables 2, 3 and 4 present the
results.
Step 2 With the information of Tables 2, 3 and 4, the
experts unify their opinions in order to build a collec-
tive result that considers all the information. To do so,
the experts reach an agreement assuming the follow-
ing degrees of importance for each of the three experts:
Z = (0.3, 0.5, 0.2). Table 5 presents the results.
Step 3 The experts define the weights to use in the
aggregation process. They assume that it is necessary
to consider subjective and objective information and an
attitudinal character that underestimates the results. The
weighting vectors are as follows:

• OWA: W = (0,1; 0,1; 0,2; 0,3; 0,3).
• Weighted average: V = (0,2; 0,3; 0,1; 0,1; 0,3).
• Probability: P = (0,1; 0,2; 0,2; 0,3; 0,2).
• OWAWA: β = 0,4.
• POWAWA: C1 = 0,2; C2 = 0,4; C3 = 0,4.

Step 4 Calculate the individual distances between the
ideal and actual percentage of fixed assets of each country
and for each scenario. Table 6 shows the results.
Step 5Aggregate the individual distances for each coun-
try by using the three weighting vectors explained in Step
3. Present the results of the average fixed assets for the
normalized Hamming distance (NHD), weighted Ham-
ming distance (WHD), probabilistic Hamming distance
(PHD), OWAD, OWAWAD and POWAWAD. Table 7
presents the aggregated results.
Step 6Analyse the results in order to draw some conclu-
sions. Rank the countries from the lowest to the highest
distance according to each method of Step 5. Table 8

presents the results with the abbreviated names of the
countries, which are available in Table 3. Additionally,
calculate the average distance results for all the countries
forming the Asian average distance between the ideal
and actual percentage of fixed assets. To this end, use a
weighted average that is formed according to the popu-
lation of each country and six decimals. Normalize the
weighting vector such that the sum of theweights is equal
to one. Thus, divide the population of each country by
the total population of Asia to define the weight of the
country. The data regarding the population of each coun-
try are shown in Table 2, and the weights are shown in
Table 4.

7 Conclusions

This work introduces new averaging aggregation operators
by using distance measures, probabilities, weighted aver-
ages, OWA operators, the generalized means and the quasi-
arithmetic means. First, the article analyses the POWAWAD
operator. This operator is an averaging aggregation oper-
ator that uses distance measures in a unified framework
between subjective and objective information and the atti-
tudinal character of the decision-maker. The POWAWAD
operator includes a wide range of distance aggregation
operators, including the normalized Hamming distance, the
weighted Hamming distance, the OWAD, the OWAWAD
and the POWAD operators. The main advantage of this
approach is that it provides a wider framework that includes
a wide range of classical average distances. Thus, the
model can represent a wide range of issues in the same
formulation and can adapt to the specific needs of the prob-
lem.

Next, the paper studies the GPOWAWAD and Quasi-
POWAWAD operators. They are averaging distance aggre-
gation operators that permit studying distance measures in
a more complete and flexible way because they can address
different sources of information in the analysis, including
the probability, the weighted average and the OWA opera-
tor. The use of the generalized means (Minkowski distance)
and the quasi-arithmetic means has shown the possibility of
including the Hamming and the Euclidean distance in the
same formulation. A number of other particular cases have
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also been considered, including generalizations in the unifi-
cation process of the probability, the weighted average and
the OWA operator.

Thepaper also analyses the applicability of thePOWAWAD
andGPOWAWADoperators, which is notably broad because
all the previous studies that use average distances can be
revised and extended with this new approach. The work
focuses on the calculation of the average fixed assets, intro-
ducing the ordered weighted average fixed asset (OWAFA)
and the weighted ordered weighted average fixed asset
(WOWAFA). Particularly, the article studies the use of
distance measures in the analysis of fixed assets by mea-
suring the distance between the ideal percentage of fixed
assets and the actual percentage of fixed assets that the
companies of a country have. The work also develops a
numerical example regarding the calculation of the aver-
age fixed assets in Asia by using a multi-person analysis
and distance measures with ideal and actual percentages
of fixed assets. This approach provides a general pic-
ture of different potential results that can occur according
to different events between the minimum and maximum
results.

Future research in this direction should consider fur-
ther extensions and generalizations by using a wide range
of methodologies, including induced aggregation operators,
moving averages, norms and other types of distances. Other
problems in the calculation of the average fixed asset can be
considered and in other supranational regions. Additionally,
it is possible to develop more complex aggregation struc-
tures where the average fixed asset is calculated not only at
the country and supranational level but also considering, for
example, the provincial level and all the different companies
that intervene in the analysis. Finally, note that many other
applications could be considered in a wide range of areas,
including business, economics and engineering (Maldonado
et al. 2018; Zadeh et al. 2014).
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