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h i g h l i g h t s

• Superstatistical temperature distributions cannot be recovered in general by any microscopically observable estimator.
• Energy and temperature are not in the same footing as thermodynamical quantities when superstatistics is considered.
• Superstatistics is best understood as Bayesian thermodynamics with a unique but uncertain temperature.
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a b s t r a c t

Superstatistics (Beck and Cohen, 2003) is a formalism that attempts to explain the presence
of distributions other than the Boltzmann–Gibbs distributions in Nature, typically power-
law behavior, for systems out of equilibrium such as fluids under turbulence, plasmas
and gravitational systems. Superstatistics postulates that those systems are found in a
superposition of canonical ensembles at different temperatures, and sometimes the phys-
ical interpretation is one of local thermal equilibrium in the sense of an inhomogeneous
temperature distribution in different regions of space or instants of time.

Here we show that, in order for superstatistics to be internally consistent, it is impossi-
ble to define a phase-space function or microscopic observable B(p, q) corresponding one-
to-one to the local value of β = 1/kBT . Thus, unlike energy which is defined by a phase-
space function H(p, q) (the Hamiltonian), temperature is not a microscopic observable.

An important consequence of our proof is that, in Superstatistics, the identification of
temperature with the kinetic energy is limited to the expectation of β and cannot be used
to measure the different temperatures in local thermal equilibrium or its fluctuations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Superstatistics [1,2] is a relatively new, but already widely used [3–6] formalism which attempts to explain the
appearance of non-Boltzmann distributions in Nature for non-equilibrium steady-state systems [7]. It postulates a weighted
superposition of canonical ensembles at different temperatures, thus allowing the existence of temperature fluctuations
around its average. In fact, in part due to the appeal of superstatistics, the long-held discussion about temperature
fluctuations in thermodynamics [8,9] has led to a resurgence of interest particularly for the statistical mechanics of small
systems [10–13] and also because fluctuations of β may be connected to the non-extensivity parameter q in Tsallis
statistics [1].
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Superstatistics has the advantage of not requiring a generalization of the entropy functional such as Tsallis’ entropy [14];
it is based solely on the canonical ensemble and the correct application of the laws of probability [15]. In principle,
superstatistics only deals with uncertain values of a parameter β . However there is a somewhat implicit assumption that
fluctuating temperatures are measurable (for instance, in atomistic computer simulation) if temperature is essentially the
kinetic energy per particle. It seems natural to associate the fluctuations of kinetic energy,

⟨
(δK )2

⟩
, to the fluctuations of

temperature,
⟨
(δT̂K )2

⟩
, where

TK (p) =
2K
3NkB

(1)

is the kinetic estimator of temperature for a systemwith HamiltonianH(r, p) = K (p)+Φ(r). But, as is discussed by Falcioni
et al. in Ref. [11], this identification is in fact incorrect for the fluctuations. In general, there are many possible definitions of
estimators of temperature. As shown by Rugh [16] and Rickayzen [17], the inverse temperature β = 1/kBT can be obtained
as the average of any quantity of the form

β̂(r, p) = ∇ ·

[ ω

ω · ∇H

]
, (2)

where ω = ω(r, p) is a differentiable vector function of positions and/or momenta, and the ∇ operator acts on both r and
p. This definition of β̂(r, p), known as dynamical temperature, was originally derived in the microcanonical ensemble but
is completely general, independent of the statistical ensemble [18]. It allows us to write the microscopically observable
temperature in terms of any combination of positions and/or momenta. For instance, a purely configurational inverse
temperature function can be obtained as

β̂C (r) = ∇ ·

[ ω

ω · ∇Φ

]
(3)

where ω = ω(r) is a function of position.
The question remains: if

⟨
(δT̂K )2

⟩
̸=

⟨
(δT )2

⟩
, is this a shortcoming of the kinetic estimator T̂K? Is there another estimator T̂

whose fluctuations agree with the ‘‘true’’ fluctuations of temperature? In current and future applications of Superstatistics
to computer simulation of steady-state systems this question gains evenmore importance, as the inverse temperature has a
full-fledged probability distribution P(β|S). Is it possible to interpret P(β|S) as a frequency distribution of a microscopically
observable inverse temperature β̂ , a function of the coordinates and momenta of the system? See for instance Fig.1 in
Ref. [19] in which a schematic of a superstatistical system is depicted, where different regions of space have different
inverse temperatures β1, β2 and so on. Through such a function β̂ one could in principle reveal the distribution of inverse
temperatures P(β|S) of a system by making a histogram.

In this work, we show that in general for superstatistics (outside the trivial case with zero fluctuations of β , where
superstatistics reduces to a thermodynamic limit ensemble such as the canonical) there is no microscopically observable
function B(r, p) such that the frequency distribution of Bmatches P(β|S). That is, not only the kinetic estimator temperature
TK of Eq. (1) fails in its role as a measure of local or instantaneous temperature in superstatistical systems but the problem
is deeper: the goal of finding a function T (r, p) with a one-to-one correspondence to the value of the ‘‘true’’ temperature T
(in the sense of the probability density of β) cannot be achieved.

The paper is organized as follows. In Section 2, a few elements of Statistical Mechanics are reviewed, mainly to establish
the notation. Then in Section 3 these ideas are extended to ensembles with arbitrary fluctuations of energy. Section 4
presents the problem of inferring the underlying ensemble from a set of measurements, and it is in this context that a
hypothetical phase-space function associated to temperature is postulated. Section 5 follows with the proof of impossibility
of that function. Finally, Section 6 closes with some conclusions.

2. The framework of statistical mechanics

Consider a system with degrees of freedom Γ = (r, p) and Hamiltonian H(Γ), whose values we will denote by E. This
Hamiltonian is bounded from below but not from above, i.e., E0 < H(Γ) < ∞. The minimum energy E0 can be set to zero
without loss of generality. If the system is perfectly isolated so that its energy is strictly fixed at a value E, the probability
distribution of the different microstates is given by the microcanonical ensemble [20],

P(Γ|E, V ,N) =
1

Ω(E; V ,N)
δ(H(Γ) − E), (4)

where

Ω(E; V ,N) =

∫
dΓδ(H(Γ) − E) (5)

is the density of states. If, on the other hand, the system is placed inside a heat bath at temperature T , the probability
distribution of the states is the canonical ensemble,

P(Γ|β) =
exp (−βH(Γ))

Z(β)
. (6)
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with β = 1/kBT and

Z(β) =

∫
dΓ exp (−βH(Γ))

=

∫
∞

0
dEΩ(E) exp(−βE) (7)

the partition function. In order for Z(β) to be well-defined, the temperature T (and therefore β) cannot be negative. This
temperature, in turn, can be connected with the density of states through the relation

1
T

=
∂S(E; V ,N)

∂E
(8)

with S(E; V ,N) = kB lnΩ(E; V ,N) the Boltzmann entropy.
We also know temperature is related to the average kinetic energy of the system through the equipartition theorem,⟨ N∑

i=1

p2i
2mi

⟩
β

=
3N
2

kBT , (9)

where
⟨
·
⟩
β
denotes an expectation taken over the canonical distribution with given β .

3. Non-canonical stationary states

Let us now assume we place the system in a macroscopic stationary state S , which is neither perfectly isolated nor in
equilibrium with a heat bath. In this case, energy will fluctuate with

⟨
(δE)2

⟩
S > 0 and following a probability distribution

P(E|S). We can always describe the new distribution of microstates P(Γ|S) as a superposition of microcanonical ensembles
weighted by P(E|S), that is,

P(Γ|S) =

∫
∞

0
dEP(E|S)P(Γ|E). (10)

Replacing the definition of the microcanonical ensemble (Eq. (4)), we obtain

P(Γ|S) =

∫
∞

0
dE

[
P(E|S)
Ω(E)

]
δ(H(Γ) − E) = ρ(H(Γ)), (11)

wherewehave defined, for simplicity of notation, the functionρ(E) such that P(E|S) = ρ(E)Ω(E).We see that the probability
distribution of the microstates is a function of the Hamiltonian only, as required by the stationary Liouville equation,{

P(Γ|S),H(Γ)
}

=
{
ρ(H(Γ)),H(Γ)

}
= 0. (12)

In this case, unlike the microcanonical and canonical ensembles, the ensemble cannot be described by a single number
such as E or β , instead it can only be described completely if we know the shape of the function ρ; In this sense we can say
that it is, in fact, a statistical model with an infinite number of parameters.

An alternative to the decomposition in Eq. (10) is superstatistics,where P(Γ|S) is expressed as a superposition of canonical
ensembles with different values of β , that is,

P(Γ|S) =

∫
∞

0
dβP(β|S)P(Γ|β). (13)

Replacing the definition of the canonical ensemble (Eq. (6)) and calling E = H(Γ) we have

ρ(E) =

∫
∞

0
dβ

[
P(β|S)
Z(β)

]
exp(−βE) (14)

from which we see that ρ(E) is the Laplace transform of a new function f (β) such that P(β|S) = f (β)Z(β). This means the
function f (β) also contains a full description of the macrostate S , and for this purpose a determination of f (β) is equivalent
to a determination of ρ(E). We will call these functions the ensemble functions.

It is important to emphasize here the fact that f (β) does not correspond to the probability of observing values of β , in the
same way that ρ(E) is not the probability of observing the energy E. This has somewhat led to confusion in the literature.
The connection between these ensemble functions f , ρ and the probability distributions P(β|S) and P(E|S) is given by the
partition function and density of states, respectively. A brief summary of this information is given in Table 1.

4. Can we deduce the stationary ensemble from phase-space measurements?

Suppose that we have access to measurements of energy for a particular system in a stationary state, and we wish to
determine the function ρ. We proceed to sample n values of energy E1, E2, . . . , En and construct an histogram h, as

hj =
1
n

n∑
i=1

δ(j, k(Ei)) (15)
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Table 1
Features of a superstatistical stationary state S. Note that our main result
finally shows that there is no suitable definition of the function B(Γ).

Property Observable Ensemble function Probability density

E H(Γ) ρ(E) ρ(E)Ω(E)
β B(Γ) f (β) f (β)Z(β)

where δ(j, k) is Kronecker’s delta, k(E) gives the integer position of the bin corresponding to the value of energy E, and
j = 1, 2, . . . ,m with m the total number of bins.

If n and m are sufficiently large, by the law of large numbers

hj →

⟨
δ(Ej − H(Γi))

⟩
S

= P(Ej|S) (16)

i.e., the histogram will converge to the energy probability distribution P(E|S), and so, in practice, we can obtain ρ(E) from a
large number of energy measurements if we know the density of states, as

hj

Ω(Ej)
≈ ρ(Ej). (17)

Ifwenumerically obtainρ(E) in thisway,we could apply the inverse Laplace transformand recover the ensemble function
f (β). But this is redundant because in that case we already would have ρ(E), which has all the information to describe the
system. We would like a more direct route to obtain f (β), and then the following question arises:

Is β the value of a phase-space function B(Γ) in the same way that E is the value of the Hamiltonian H(Γ)?
If such a quantity B exists, and we know the partition function, we can directly obtain f (β) without the intermediate step

of computing ρ(E), just by accumulating enough samples β1 = B(Γ1), β2 = B(Γ2), . . . , βn = B(Γn) and the relation
bj

Z(βj)
≈ f (βj), (18)

analogous to Eq. (17), where now bj is the histogram of values βi, for which the law of large numbers holds as

bj →

⟨
δ(B(Γi) − βj)

⟩
S

(19)

and that we can identify with the probability distribution of β by

P(β|S) =

⟨
δ(B(Γ) − β)

⟩
S
. (20)

This is equivalent to the strong requirement that, for any test function g(β),⟨
g(β)

⟩
S

=

⟨
g(B(Γ))

⟩
S
. (21)

5. Impossibility of an intrinsic phase-space function for β

In classical statistical mechanics, we expect that the microscopic observables O in our system are defined as phase-space
functions O(Γ) which are independent of the external conditions, being at most functionals of the Hamiltonian (which
contains all the information about the system and its dynamics). In particular, we expect that if we place the system in
a stationary ensemble S , the definition of the observable, O(Γ), will not change, despite the fact that its value

⟨
O
⟩
S most

probably will. That is, we expect that O is not dependent on the ensemble function ρ. This condition can be expressed as
δO(Γ)
δρ(E)

= 0. (22)

Wewill call the observables for which this is true, intrinsic observables. They can be defined ‘‘once and for all’’ if we know
the Hamiltonian of the system.

Our main result is that β does not fall into this category: there is no intrinsic observable B(Γ) which gives the
superstatistical β , as shown by the following theorem.

Theorem. In superstatistics, there is no phase-space function B(Γ) such that

P(β|S) =

⟨
δ(B(Γ) − β)

⟩
S
,

and
δB

δρ(E)
= 0.
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That is, B(Γ) is not an intrinsic observable of the system: evenworse, its definition is dependent on the external conditions
that maintain the stationary state, and thus cannot be used to infer the ensemble. In other words, every stationary ensemble
S would have its own microscopic definition of temperature.

Proof. Replacing Eq. (20) into Eq. (13), we see that

ρ(H(Γ)) =

∫
dΓ′ρ(H(Γ′))

exp
(
−B(Γ′)H(Γ)

)
Z(B(Γ′))

. (23)

We can always write the left hand side as

ρ(H(Γ)) =

∫
dΓ′ρ(H(Γ′))δ(Γ′

− Γ), (24)

so we have a functional of ρ which is identically zero,∫
dΓ′ρ(H(Γ′))

[
δ(Γ′

− Γ) −
exp

(
−B(Γ′)H(Γ)

)
Z(B(Γ′))

]
= 0. (25)

Nowwewill take the functional derivative with respect to ρ on both sides and assume that B is independent of ρ, that is,
δB/δρ(E) = 0. It follows that

exp
(
−B(Γ′)H(Γ)

)
Z(B(Γ′))

= δ(Γ′
− Γ). (26)

Integrating with respect to Γ′ we get∫
dΓ′ exp

(
−B(Γ′)H(Γ)

)
= Z(B(Γ)) (27)

therefore, B(Γ) depends on Γ only through H(Γ). Using this, we can write Eq. (23) as

ρ(E) =

∫
∞

0
dE ′Ω(E ′)ρ(E ′)

exp
(
−B(E ′)E

)
Z(B(E ′))

, (28)

which again, can be rewritten as∫
∞

0
dE ′ρ(E ′)

[
δ(E ′

− E) − Ω(E ′)
exp

(
−B(E ′)E

)
Z(B(E ′))

]
= 0. (29)

As this must be valid for any ρ, we take the functional derivative δ/δρ and assume B does not depend on ρ. It follows that

Ω(E ′)
exp

(
−B(E ′)E

)
Z(B(E ′))

= δ(E ′
− E), (30)

for any pair of values E and E ′. This, however, cannot be fulfilled by any function B(E), as we will show in what follows.
First, it may seem obvious by simple inspection that the left-hand side is in general a positive function of E and E ′, not

necessarily a delta function. However, note that as a function of E ′ it can still become as sharply-peaked as needed around
E if the density of states Ω grows fast enough and the exponential factor falls fast enough. To prove that this is not the case,
imagine fixing E ′

= E0 so that 0 < B(E0) < ∞. Let us call β0 = B(E0) and Q = Ω(E0)/Z(β0). Then we have

Q exp (−β0E) = δ(E0 − E), (31)

for all possible values of E. Now, choosing E = E0 ± ∆E with 0 < |∆E| < E0, we see from Eq. (31) that

exp(−β0∆E) = exp(β0∆E) = 0, (32)

which is a contradiction for finite values of β0 and |∆E|. This proves the theorem.

Despite this proof of impossibility we can provide a useful definition of inverse temperature, namely

βS :=

⟨
β

⟩
S
, (33)

as the expectation of the parameter β in the state S. This allows us to define the temperature as simply kBTS = 1/βS . The
inverse temperature βS can be computed from estimators β̂(r, p) and this is a value one can use to compare different states
or to approximate the ensemble to the nearest canonical ensemble.

In order to show the validity of temperature estimators in an ensemble P(Γ|S) such as the one in Eq. (10) (of which
superstatistics is a particular case), we make use of the conjugate variables theorem (CVT) [21] for the canonical ensemble
(a brief proof of which is given in the Appendix),⟨

∇ · v
⟩
β

= β

⟨
v · ∇H

⟩
β

(34)
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and marginalize over β , using the identity⟨
g(β,Γ)

⟩
S

=

∫
∞

0
dβP(β|S)

⟨
g(β,Γ)

⟩
β
. (35)

We see that for the state S the following form of the CVT holds,⟨
∇ · v

⟩
S

=

⟨
βv · ∇H

⟩
S
, (36)

in which β is taken as an additional degree of freedom, and the expectation is taken under the joint distribution P(Γ, β|S).
Choosing

v =
ω

ω · ∇H
(37)

as in Ref. [21], we find that

βS =

⟨
β̂

⟩
S

=

⟨
∇ ·

[ ω

ω · ∇H

]⟩
S
. (38)

for any ω = ω(r, p). It seems suggestive to associate β̂ with B but the point of our proof is that precisely, this choice (or any
other) cannot reproduce all the moments of P(β|S).

For the particular case of ω = p/m, we obtain a kinetic expression

βS =
1

kBTS
=

3N − 2
2

⟨
K−1

⟩
S

(39)

with K the kinetic energy of the system. Note that, because
⟨
K−1

⟩
>

⟨
K
⟩−1 by Jensen’s inequality [22],

TS <
2

(3N − 2)kB

⟨
K
⟩
S
. (40)

and so the intuitive generalization of Eq. (1) overestimates the temperature.

6. Conclusions

The theorem just proven rules out any intrinsic definition of temperature as a phase-space function in superstatistics. In
statistical terms,we can say that the probability distribution P(β|S) is not a sampling distribution, andβ has to be interpreted
as a parameter.

Our findings do not diminish the power of the superstatistical formalism or attempt to undermine its foundations. On
the contrary, we are led to the conclusion that the notion of instantaneous or local temperature is at fault and that it might
be separated from the idea of pure superstatistics, where β is kept as a parameter. There are already efforts to conceptually
reformulate superstatistics from a Bayesian point of view [15], in which one does not need actual variations (temporal or
spatial) of a physical quantity. Instead there are uncertainties in the well-defined and unique (but unknown) value of β .
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Appendix. Simple proof of the conjugate variables theorem (CVT)

For an arbitrary distribution of microstates P(Γ) let us construct the expectation of ∇ · ω(Γ), with ω an arbitrary but
differentiable vector field,⟨

∇ · ω
⟩
=

∫
V
dΓP(Γ)(∇ · ω). (41)

We consider the divergence theorem applied to a volume V with boundary Σ and v = ω(Γ)P(Γ),∫
V
dΓ(∇ · v) =

∫
Σ

dΣ · v. (42)

We obtain∫
V
dΓ

[
P(Γ)∇ · ω + ω · ∇P(Γ)

]
=

∫
Σ

dΣ · ω(Γ)P(Γ)

= 0, (43)
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if the probability P is zero on the boundary Σ . [23]
By replacing ∇P as P∇ ln P we can write both integrals in the left hand side as expectations over P , and finally obtain the

CVT in its general form,⟨
∇ · ω(Γ)

⟩
+

⟨
ω(Γ) · ∇ ln P(Γ)

⟩
= 0. (44)

Replacing P(Γ) by P(Γ|β) in Eq. (6) we get the canonical version of CVT, Eq. (34).
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