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This book was motivated by an increasing, 
strong need for the control of sex ratios and 
monosex production knowledge and technol-
ogy by the rapid growing global aquaculture 
industry. Currently, aquaculture – the fastest 
growing food‐producing sector – contributes 
about 50% of the world’s food fish, based 
on  the Food and Agriculture Organization 
(FAO) latest reports. Sex control in aquacul-
ture serves different purposes.

First and foremost, a wide spectrum of 
aquacultured species show sexual dimor-
phism in growth and ultimate size, whereby 
one sex grows faster than the other or attains 
a larger size. Thus, there are important ben-
efits in rearing only the fastest‐growing sex 
or  monosex production. Second, in some 
species, precocious maturation and uncon-
trolled reproduction need to be prevented. 
Third, some negative impacts of reproduc-
tion on product quality or disease resistance 
need to be prevented in some species. Fourth, 
in sex‐changing hermaphrodites, sex ratio 
control can benefit broodsrock management. 
Finally, there are some species where the 
gonads or gametes of females have special 
economic value, e.g., caviar.

Therefore, sex control for the production of 
monosex or sterile stocks is extremely impor-
tant for aquaculture professionals and indus-
tries to improve production or to increase 
revenue, reduce energy consumption for 
reproduction, and eliminate a series of prob-
lems caused by mixed‐sex rearing or sexual 
maturation. Incidentally, the same principles 
used for sex control in aquaculture can 
be  used in population control to eliminate 

undesired invasive species – an aspect that is 
also dealt with in this book.

The two volumes of “Sex Control in 
Aquaculture” together is composed of 11 
parts and a total of 41 chapters, which have 
been written by leading experts in the field. 
Volume I consists of Parts I to V (Chapters 
1–19), while the remaining Parts VI to XI 
(Chapters 20–41) make up Volume II.

With eight chapters, Part I is concerned 
with the theoretical and practical basis of sex 
determination/differentiation and sex con-
trol in aquaculture. These chapters provide 
the concepts and rationale for sex control 
in  aquaculture, and present our current 
knowledge on basic aspects of the genetic, 
endocrine, and environmental mechanisms 
for sex determination and sex differentia-
tion, including epigenetic regulation. Readers 
will find a detailed, most up‐to‐date descrip-
tion of the underlying mechanisms responsi-
ble for the establishment of the sexes and, 
hence, the sex ratios. Several chapters also 
provide information on chromosome set 
manipulation techniques, hybridization and 
new gene knockout, and the application of 
these different approaches to aquaculture. 
There is also a chapter on the application of 
sex ratio manipulation for population con-
trol (e.g., for the management of invasive 
species).

Parts II to XI, or Chapters 9 to 41, contain 
detailed protocols and key summarizing 
information for the sex control practice of 
35  major aquaculture species or groups 
with  sexual size dimorphism, monosex, or 
polyploidy culture advantages. These major 
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aquaculture species include Nile tilapia, blue 
tilapia, Mozambique tilapia, black‐chin tila-
pia, salmonids, European sea bass, bluegill, 
largemouth bass, crappies, yellow perch, 
Eurasian perch, channel catfish, yellow cat-
fish, southern catfish, half‐smooth tongue 
sole, turbot, southern flounder, summer 
flounder, Japanese flounder, Atlantic halibut, 
Pacific halibut, spotted halibut, sturgeon, 
shrimp, prawn, Atlantic cod, malabar grouper, 
honeycomb grouper, large yellow croaker, rice 
field eel, the Japanese eel, the European eel, 
the American eel, and common carp.

All chapters are arranged in the same 
structure and format for easier reading and 
the extraction of useful information, but each 
chapter has its own unique story. Therefore, 
the two volumes of the book can be read 
cover to cover, or you can pick any chapter, 
depending on your interests. However, we 
suggest that all readers start with Chapters 1 
through 8 (Part I), in order to get a compre-
hensive background before moving to a par-
ticular species or group of species.

In summary, the use of sex control in aqua-
culture is becoming one of the most impor-
tant topics for both aquaculture research and 
the aquaculture production industry. This 
book synthesizes relevant and recent infor-
mation on sexual development principles 
and sex control practice, and emphasizes 

their applications for use in the aquaculture 
industry. It bridges the gap between theory 
and practice in sex control of farmed species, 
including new developments and methodol-
ogies used in sex determination, differentia-
tion, monosex, and polyploidy production 
for aquaculture.

Thus, the book will appeal to a large audi-
ence: Scientists working directly in aqua-
culture research or food production will 
find  relevant information on the principle 
and  practical aspects of sex control in 
 aquaculture; and scientists working with basic 
aspects of fish/shrimp biology, repro ductive 
 endocrinology, genetics, and evolutionary 
biology will find abundant information 
regarding sex in related species. Likewise, 
biologists working in the farming industry, 
hatchery management, fisheries, as well as 
related administrators, will benefit from 
clear and practical information on how 
to  apply sex control in aquatic animals. 
Finally,  young researchers and graduate 
students will learn about a field – the estab-
lishment of sex in fish/crustaceans and 
its   control  –  with both basic and applied 
connotations.

May, 2018 Han‐Ping Wang,
Francesc Piferrer,

and Song‐Lin Chen
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12.1  Introduction

Most salmonid fish have an XY sex determi-
nation system, usually with no morphologi-
cally differentiated putative sex chromosomes 
[1] (see Box 12.1). Sockeye salmon (Oncorhyn-
chus nerka) is an exception, with an X1X2Y sex 
determination system, in which females have 
one more chromosome (2n = 58) than males 
(2n = 57) [1–3]. Accurate sexing of salmonids 
provides many commercial benefits, motivat-
ing research to identify sex‐linked markers for 
aquacultured fish. Sexual maturity affects 
growth, and increases male aggressive and 
competitive behaviors. Maturing fish may also 
stop feeding, show decreased vitality due to 
skin infections or other diseases, and produce 
lower quality meat (including fillets with 
altered color or flavor).

Due to the many maturity‐related changes 
relevant to commercial salmonid production, 
aquaculturists seek to limit pre‐harvest sexual 
maturation, producing sterile males and 
females by inducing triploidy (see Chapter 13), 
or monosex specimens, using gynogenesis or 
androgenesis (see Chapter 13). Given that the 
XY system is common to most salmonids, the 
research has focused on finding male‐specific 
sex‐linked molecular markers. Markers pre-
sent in the male (putatively in the Y chromo-
some, called Y‐inked markers) and absent in 

females (or the X chromosome) have been 
detected using various molecular techniques 
that have evolved from the 1980s to the 
 present day.

In the 1970s and 1980s, allozymes 
( biochemical markers) were used extensively 
to assess genetic variation in natural popula-
tions and were the first sex‐linked markers 
identified in salmonids. Given their historical 
importance, we will dedicate a few lines to 
allozymes, keeping in mind that the poly-
morphisms underlying these biochemical 
markers have a genetic basis in the coding 
sequence of the enzyme. These polymor-
phisms are expressed in the phenotype, and 
may have adaptive implications. In rainbow 
trout (Oncorhynchus mykiss), the allozymic 
loci bGLUA‐2* (formerly HEX‐2) and sSOD‐1* 
show linkage with the Y chromosome [14–16] 
and loci Ldh‐1*, Aat‐5*, and Gpi‐3* in the 
Salvelinus species [17]. Application of these 
markers for salmonid sexing has been very 
limited.

The development of polymerase chain 
reaction (PCR), molecular cloning, and 
 automated Sanger sequencing, have made it 
possible to perform amplifications from 
small quantities of genetic material. As a 
result, small DNA segments are sufficient for 
 performing genetic analyses, determining 
nucleotide sequences, and comparing 
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 findings with results from public databases 
to identify homologous sequences. Since the 
1990s, these techniques have been used to 
develop PCR‐based markers, such as RAPDs 
(random amplified polymorphic DNA 
[18, 19]), AFLPs (amplified fragment length 
 polymorphisms [20]), SCARs (sequence‐ 
characterized amplified regions [21]), and 
microsatellites [22], to amplify partial 
sequences of genes and pseudogenes, and to 
evaluate associations between these markers 
and phenotypic sex.

Development of next‐generation sequenc-
ing methods in the 2000s permitted massive 
sequencing of RNA from specific tissues (a 
technology called RNA sequencing). This 
technology was used to compare the genes 
transcribed in male and female gonadal tis-
sues, shedding light on a potential salmonid 
master determining sex gene. This section 
will review the development of male‐specific 
markers, through the 2012 discovery of the 
sdY gene and their applications, to 2017. The 
most relevant markers are described below, 
but various markers developed as an aca-
demic exercise with no practical utility are 
not listed. Only a few markers have been 

applied massively to salmonid sexing and, to 
our knowledge, even these markers are not 
used routinely in commercial fish farming. 
Probably, when all these technologies 
become more cost‐effective than echogra-
phy, they will be routinely used by the indus-
try – but now this is not the case.

12.2  Development of Sex‐Linked 
Markers in Salmonids

Biological samples are required to evaluate 
genomic DNA for the presence of any of the 
markers discussed in this chapter. In alevins, 
the entire adipose fin is often removed. 
Because the fin may be difficult to cut in 
adult fish, a small sample called a fin clip is 
often used instead. This technique requires 
removing a small piece of dorsal fin  –  no 
more than 0.5 cm2. Samples can be dried and 
then stored in paper or in a tube with 
95–100% ethanol until DNA extraction. 
There are many protocols for extracting 
DNA, including commercial kits (available 
from many biotech suppliers worldwide), 

Box 12.1 Sex determination systems in salmonids

Sex determination systems are diverse among 
vertebrates. Genetic and environmental fac-
tors guide the process of determining whether 
the primordial gonad in the embryo becomes 
an ovary or testicle. When the gonads begin to 
function, the respective male or female sexual 
phenotype emerges.

Fish exemplify the diversity of sex determi-
nation systems. Various species have XX/XY, 
ZZ/ZW, or multiple chromosome systems and, 
in some species, sex is determined, or strongly 
influenced, by the environment [4]. Salmonids 
have separate sexes, and the sex determina-
tion is under genetic control. Experimental sex 
reversal experiments have confirmed that the 
male is the heterogametic sex. Crossing an XY 
female (sex‐reversed male) with a normal male 
(XY) yields a 3 : 1 proportion of phenotypic 

males and females, and crossing an XX male 
(sex‐reversed female) with a normal female 
(XX) produces 100% phenotypic female prog-
eny [5–7].

In some salmonids, such as rainbow trout 
(Oncorhynchus mykiss) and various Salvelinus 
species, chromosomal sex (XX/XY) is distin-
guishable by morphology [8], while other sal-
monids do not exhibit marked sex‐linked 
morphology [1]. In the latter case, sex 
 chromosomes have been identified using 
chromosome‐banding techniques, such as 
fluorescence in situ hybridization (FISH), 
involving probes that carry sex‐linked 
 markers. Linkage studies and comparative 
analyses among species have characterized 
most of the sex chromosomes in this group of 
fishes [9–13].
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rapid protocols using Chelex resin [23], and 
elaborated protocols using phenol and chlo-
roform [24]. Regardless of the protocol, high‐
quality DNA is necessary for genotyping any 
molecular marker.

12.2.1 OtY1/OtY8

One of the first male‐specific salmonid 
 markers identified was the Y‐chromosomal 
DNA probe OtY1 in Chinook salmon 
(Oncorhynchus tshawytscha), by Devlin et al. 
[25]. This probe was initially developed using 
the subtractive hybridization method, to 
produce an enriched fraction of male‐spe-
cific sequences for cloning. Eighteen clones 
were subjected to southern blotting, using a 
radioactive probe. A single 250 bp probe 
hybridized with an 8 kb fragment in all 30 
males, but none of the 29 females were ana-
lyzed [25]. Segregation analysis of one family 
showed OtY1 was inherited by male progeny 
from the sire. Because the blotting method 
was time‐consuming and difficult to apply in 
commercial aquaculture, a rapid PCR‐based 
test for OtY1 was developed, producing a 
male‐specific 209 bp amplicon [26].

The OtY1 marker was explored in other 
salmonids, but found to be male‐specific in 
the Chinook only. In rainbow trout, OtY1 
was not Y‐linked, nor did it map in the link-
age group bearing the sex determining locus 
[27, 28]. Furthermore, the above studies 
detected no recombination between the 
OtY1 marker and the sex determining locus 
[25, 29]. Females positive for OtY1 have 
been detected in some wild and hatchery 
populations (ranging from 4–84% of the 
female population), indicating a possible 
recombination event; however, this pattern 
may be attributable to environmental sex 
reversion mediated by temperature or 
estrogen pollution [30, 31].

In a subsequent analysis, the 8 kb fragment 
detected with the OtY1 probe was cloned and 
subjected to southern blotting and PCR anal-
yses, to characterize the genomic organiza-
tion of the new marker, OtY8. As with 
OtY1,  this clone was found to be Y‐linked, 

 segregating from the male parent to male 
progeny [32]. Studies in eight other 
Oncorhynchus species (O. keta, O. nerka, O. 
gorbuscha, O.  kisutch, O. mykiss, O. masou, 
and O. clarki) and Atlantic salmon revealed 
that OtY8 is Y‐linked only in Chinook salmon 
[28, 32].

12.2.2 GH‐Ψ/GH‐2 Genes

Growth hormones (GH) play an important 
role in fish growth. Because the growth rate 
of captive fish has been (and still is) a primary 
target in fish breeding, there are ongoing 
efforts to clone, sequence, and characterize 
the genes associated with this process in 
 salmonids [33, 34]. Salmonids have two 
expressed growth hormone genes (GH‐1 and 
GH‐2), one of which has been identified as a 
sex‐linked marker in Pacific salmon [35]. For 
example, in coho (Oncorhynchus kisutch) and 
Chinook salmon, two alleles (a and b) were 
identified in intron C of the GH‐2 gene. These 
alleles differ in size (434 and 455 bp, respec-
tively) and HinfI enzyme restriction sites [36]. 
In both species, segregation analyses have 
shown that allele b is male‐specific and 
located in the Y‐chromosome, while allele a is 
located in the X‐chromosome. Therefore, all 
males are heterozygous for this allele (geno-
type ab), and females are homozygous for the 
a allele. This type of segregation is absent in 
rainbow trout, in which the GH‐2 gene does 
not show a sex‐linked pattern [36].

In addition to the sex‐linked polymor-
phism in the GH‐2 gene, a non‐functional 
Y‐linked growth hormone pseudogene 
(GH‐Ψ) has been described in five Pacific 
salmon species: Chinook, coho, masu 
(O. masou), chum (O. keta), and pink salmon 
(O. gorbuscha) [29, 33, 35, 37]. In all male 
Chinook and coho salmon, a 290 bp fragment 
from GH‐Ψ is amplified by PCR primers 
GH5/6, designed for intron E [33, 34]. In 
chum and pink salmon, the Y‐linked specific 
fragments are amplified by primers GH28/
GH30, designed for intron C, resulting in 
160 bp and 175 bp amplicons [29]. In masu 
salmon, the male‐specific fragment is 280 bp.
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The inheritance pattern indicates some 
degree of recombination between Y and X 
chromosomes, and 97.5% and 24.3% of the 
male fragment is present in phenotypic males 
and females, respectively [35, 38]. It is likely 
that some recombination also occurs in 
Chinook salmon [29], as the estimated 
 distance between GH‐Ψ and the sex deter-
mining gene is approximately 10 centimor-
gan (cM) in this species. However, no study 
to date has detected a recombination event 
with the sex determining locus.

12.2.3 OmyP9

In rainbow trout, the first male‐specific 
marker was identified by Iturra et  al. [39] 
with bulked segregant analysis (BSA) and 
RAPD (random amplified polymorphic 
DNA) screening. These researchers used 
pooled samples from 12 males and 12 females 
from the Mount Lassen strain. An RAPD 
assay with 900 primers identified two sex‐
associated RAPD fragments (650 and 390 bp), 
amplified by the primers OP‐A11 and OP‐P9, 
respectively. The 390 bp fragment amplified 
by RAPD primer OP‐P9 was present in all 
12 males, and absent in all 12 females. When 
this polymorphism was tested in the Scottish 
strain, it amplified in all males, but also in 
38% of females. The 650 bp fragment ampli-
fied by RAPD primer OP‐A11 always ampli-
fied in a percentage of males, but never in 
females. Finally, only the fragment amplified 
by primer OP‐P9 was converted to a SCAR 
(sequence‐characterized amplified region) 
marker, designated OmyP9, enlarging the 
RAPD fragment to 899 bp [40].

A more detailed analysis of OmyP9 identi-
fied three size polymorphisms (899, 894, and 
840 bp) and one restriction polymorphism 
when digested with the RsaI enzyme. 
Combinations of size and restriction poly-
morphisms produced three OmyP9 variants: 
variant A (894 bp, with two RsaI restriction 
sites), which generated three fragments (441, 
114, and 339 bp); variant B (899 bp, with one 
RsaI site), which generated two fragments 
(555 and 344 bp); and variant C (840 bp, with 

one RsaI restriction site), which generated 
two restriction fragments (501 and 339 bp). 
Segregation analyses, in 93 males and 93 
females from six different strains of rainbow 
trout, showed that males are never homozy-
gous for the C variant. However, none of the 
three variants are strictly associated with 
male or female phenotypes, indicating that 
OmyP9 is not a fully Y‐linked locus, and that 
some recombination between X and Y chro-
mosomes can occur in the region bearing 
this marker.

In crosses with known parental genotypes, 
determining the progeny’s sex is straightfor-
ward. For example, in ten experimental 
crosses, the male parent always passed his 
variant A to male progeny and never to 
female progeny [40]. A similar pattern was 
observed by Lopez and Araneda [41] in 
crosses used to evaluate the performance of 
OmyP9 in identifying the sex of rainbow 
trout.

12.2.4 Omy‐163

This marker was also developed in rainbow 
trout to identify the Y‐chromosome, using 
amplified fragment length polymorphism 
(AFLP) screening in pooled samples 
obtained from crosses between outbred 
females and F1 males, derived from crosses 
between XX individuals from the OSU 
(Oregon State University) female clonal line, 
with YY individuals from four different male 
clonal lines (SW, Swanson; ARL, Arlee; 
CW,  Clearwater; and HC, Hot Creek) [42]. 
AFLP screening was performed with 486 
primer combinations and three pairs of 
restriction enzymes (EcoRI/MseI, PstI/MseI 
and BamHI/MseI), resulting in 4374 poly-
morphic fragments. Fifteen sex‐linked AFLP 
markers were converted to SCAR markers, 
but only the Omy‐163 marker produced dis-
tinctive male vs. female fragment patterns in 
the trout – that is, a sex‐linked amplification 
pattern [41, 43].

Omy‐163 has been tested for genotyping 
in  several strains of rainbow trout, but 
has  not  always shown a Y‐chromosome 

0003451501.INDD   284 06/04/2018   7:52:55 AM



12.2 Development of Sex‐Linked Markers in Salmonids 285

 association [43]. In cases where a Y‐linked 
pattern was identified, some recombination 
between the putative SEX determining locus 
and the SCAR was observed. For example, in 
the global analysis performed by Felip et al. 
[42], 29 of 380 males were negative for the 
male pattern, and nine of 396 females were 
positive for the male pattern. In Lopez and 
Araneda [41], 16 of 47 males were negative 
for the male pattern, and 8 of 84 females were 
positive for the male pattern. Linkage studies 
show that Omy‐163 is located near the SEX 
locus, separated by a distance ranging from 
0.0 to 42.2 cM (average 7.2 cM), making 
recombination plausible [42, 43].

12.2.5 OtY2/OtY3/OmyY1

OtY2‐WSU is another marker with a  
Y‐linked inheritance pattern, developed for 
Chinook salmon and later detected in coho, 
chum, and sockeye salmon [44]. OtY2‐WSU 
shows autosomal inheritance in rainbow 
trout. A small number of coho (n = 48) and 
chum (n = 30) salmon were also screened; in 
sockeye salmon, the segregation pattern 
detected in 119 samples was not fully Y‐
linked, as 12 phenotypic males were negative 
and three phenotypic females were positive 
for the marker. OtY2‐WSU was detected 
using AFLP screening for sex‐specific frag-
ments in pools of androgenetic diploid 
Chinook salmon (males and females). It is 
thought that these androgenetic individuals 
typically carry two copies of the paternal  
X‐chromosome (in females) or Y‐chromosome 
(in males), facilitating the identification of  
Y‐specific markers [44]. OtY2‐WSU geno-
typing was performed using trio PCR, with 
two pairs of male‐specific primers and a 
primer for the glyceraldehyde‐3‐phosphate 
dehydrogenase gene (gapdh) as an internal 
control [44].

OtY2‐WSU was the basis for developing two 
other Y‐linked molecular markers, one for 
Chinook salmon (OtY3) and the other for rain-
bow trout (OmyY1) [45]. Both markers were 
studied using PCR screening in 12.5 kb and 
21 kb genomic regions flanking OtY2‐WSU in 

Chinook salmon and rainbow trout, respec-
tively. Approximately 10 kb of the sequences 
were found to be similar between the species. 
Extensive characterization of these genomic 
regions indicated that, in Chinook salmon, 
this region contains an inactive retrotranspo-
son and a minisatellite. These were used 
to  develop a PCR assay to amplify the fully  
Y‐linked marker OtY3, which shows two male‐
specific alleles (725 and 500 bp) [45].

In rainbow trout, the marker contains a 
region that shows sequence homology with 
18S ribosomal RNA and internal transcribed 
spacer 1 (ITS), the major histocompatibility 
complex (MHC) class IB intronic region, a 
LINE‐1 type reverse transcriptase, and the 
OmyY1 Y‐linked marker (in the genomic 
region homologous with Chinook salmon). 
However, the retrotransposable element 
detected in Chinook salmon is absent in 
rainbow trout. The Y‐specific marker OmyY1 
amplifies a 792 bp fragment at a high fre-
quency in males (96.5%) and a low frequency 
in females (3.7%). This finding may indicate 
either some degree of recombination with 
the sex determining region (note that some 
evidence of mobile elements has been 
 provided for this region) or, as has been 
argued for other Y‐linked markers, may be 
attributable to environmental sex reversion 
of some individuals [45].

Several single‐nucleotide polymorphism 
(SNPs) have been identified in a 1058 bp 
region, including the OmyY1 Y‐specific 
marker in various male lineages [45]. This 
male‐specific region is not believed to 
undergo recombination. A Y‐haplotype phy-
logeographic analysis of 333 male rainbow 
trout obtained from 57 locations in western 
North America and Russia was recently per-
formed, but no information regarding the 
inconsistencies between phenotypic sex and 
OmyY1 was reported [46].

12.2.6 Microsatellite Markers

With the development of salmonid genetic 
maps that include phenotypic sex, a number 
of microsatellite markers have been mapped 
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near the putative sex determining locus (SEX) 
in a named sex‐ or Y chromosome‐linked 
group. The first comparative analysis of the 
SEX locus was performed for Arctic char, 
brown trout (Salmo trutta), Atlantic salmon 
(Salmo salar), and rainbow trout, indicating 
that the microsatellites linked to the SEX 
locus are different in every species [47].

The first microsatellite map for rainbow 
trout identified the locus OmyFGT19TUF, 
located 1.15 cM from the putatively sex 
determining locus in males [48]. Advances in 
rainbow trout genetic maps have confirmed 
this finding. Other microsatellites detected 
in this sex‐linked group (RT‐1) and used 
to  assign sex in rainbow trout include 
Ots517NWFSC, OMM1026, and OMM1372 
[27, 42, 43, 47, 49–52]. Finally, the RT‐1 
 linkage group was identified as the sex 
 chromosome (OmySex) in later genetic maps 
for this species [9].

In Atlantic salmon (Salmo salar), the first 
sex‐linked microsatellite reported was 
Ssa202DU, followed by other markers in the 
linkage group AS1 [47, 53]. This finding was 
confirmed when the physical map was inte-
grated with the genetic map, anchoring the 
SEX locus between Ssa202DU and a large 
heterochromatin region [55] in the Ssa02 
chromosome. Interestingly, the SEX locus in 
this species has also been mapped in two 
other chromosomes, Ssa06 and Ssa03, 
depending on mapping families [56].

There are obstacles to using microsatel-
lite loci for sexing salmonids. For one, 
microsatellite loci are not the sex determin-
ing loci. For another, some degree of recom-
bination between the microsatellites and 
the SEX locus is always possible. For exam-
ple, in Tasmanian Atlantic salmon, the pre-
diction of a phenotypic male, based on a 
Y‐specific haplotype for seven microsatel-
lites inherited from grandsire to sire, fails 
about 11.4% of the time, probably due to 
recombination among these markers and 
the SEX locus [56]. Another drawback of 
microsatellites is that it is necessary to 
know the paternal and maternal haplotypes 
to genotype the progeny.

12.2.7 sdY Gene

2012 marked the discovery of the sdY gene 
(sexually dimorphic on the Y chromosome), 
the master sex determining gene in rainbow 
trout by Yano et al. [57]. This gene was dis-
covered by comparing the gonadal transcrip-
tomics of true males and females at the onset 
of molecular sexual differentiation. The pres-
ence of sdY was evaluated in 425 trout, and 
all 218 males were positive for the gene, while 
all 207 females were negative [57]. sdY 
encodes for a putative protein of 192 amino 
acids, has four exons, and shares homology 
with the rainbow trout sex‐specific marker 
OmyY1 [45] and interferon regulatory factor 
9 (Irf9). The rainbow trout linkage map con-
taining sdY confirmed full linkage with the 
SEX locus in the chromosome OmySex 
(RT‐01 linkage group).

After this revolutionary discovery, screening 
for the sdY gene was performed in other salmo-
nid species, yielding generally similar results to 
those found in rainbow trout. Species evalu-
ated included graylings (Thymallus thymallus), 
masu salmon, Chinook salmon, Dolly Varden 
trout (Salvelinus malma malma), Arctic charr, 
brook trout, lake char (Salvelinus namaycush), 
Atlantic salmon, brown trout (S. trutta), 
huchen (Hucho hucho), and sakhalin taimen 
(Parahucho perryi) [58]. In all of these species, 
sdY is present in males and absent in females, 
with few deviations from this pattern.

However, another study carried out in 
Asian populations from five species of 
Oncorhychus genus showed high rate of 
incongruences between presence/absence 
of sdY and phenotypic sex: Chinook salmon 
(41.2%), chum salmon (18%), sockeye salmon 
(44%), masu salmon (31%). Only pink 
salmon  presented a 4% on incongruences 
[59]. These high rates of females positive to 
sdY, and males negative to sdY, indicate a 
possible instability of this sex determining 
locus in Pacific salmon [59].

More extensive screening for sdY has been 
performed in cultivated Atlantic and wild 
Chinook salmon. In Chinook salmon, sdY 
is  likely the sex determining gene, but 
some   discrepancies have been found 
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between phenotypic sex and the presence of 
sdY. For example, Yano et al. [58] found one 
female positive for sdY among 41 females 
tested from a wild Alaskan population 
(USA). Cavileer et al. [60] found 13 pheno-
typic females positive for sdY among 
107  females tested. In this latter work, four 
sdY coding regions were examined in the sdY 
positive females. Seven females were nega-
tive for the sdY promoter region and exon 1, 
but the  other six seemed to have the com-
plete coding region, despite a female pheno-
type. The most probable explanation for 
females bearing the whole sdY gene is that 
expression was somehow disabled, possibly 
due to environmental factors (temperature 
or estrogen contamination), during early 
development [60].

In Tasmanian Atlantic salmon, there is 
strong evidence for association among 
regions bearing the sdY gene and phenotypic 
sex, but there are also some discrepancies 
[56]. For example, six individuals, evaluated 
using two sets of sdY‐specific primers (exon 
2 and exon 4), were positive for this gene but 
phenotypically female, and two phenotypic 
males were also negative for sdY [56].

Similarly, our laboratory tested for the sdY 
gene in Atlantic salmon (mowi strain) 
 breeders from the Huililco aquaculture 
 reproduction program in southern Chile 
(Figure  12.1). Two phenotypic females 
were  found to be  positive for sdY among 
45  females, and  one phenotypic male 

was  negative for  sdY among 45 males. 
Our   laboratory used  a set of   primers pub-
lished by Yano  et  al.  [58] for  exon 2 (sdY‐
E2S1:  CCCAGCACTGTTTTCTTGTCTC 
and sdY‐E2AS2: CTGTTGAAGAGCATCA 
CAGGGTC). Interestingly, in Tasmanian 
Atlantic salmon, sdY was found in three dif-
ferent chromosomes, depending on the male 
lineage of the family. For example, in 58.6% of 
the 58 families analyzed, this gene was in 
chromosome Ssa02, but mapped to chromo-
somes Ssa06 and Ssa03 in 37.9% and 3.5% of 
families, respectively [56]. Therefore, in this 
species, the sdY‐bearing chromosome region 
and SEX locus can suffer recombination with 
other chromosomes.

Current evidence supports a strong con-
sensus that the sdY gene is likely the master 
sex determining gene in rainbow trout, 
Chinook salmon, and Atlantic salmon, and 
probably other salmonid species. The incon-
sistencies between female phenotypic sex 
and the presence of the complete sdY 
gene  (excluding genotyping or phenotype 
assignment error) in Chinook and Atlantic 
salmon may be attributable to temperature‐ 
dependent sex reversal [56], contamination 
with estrogens during early development 
[60], or an as yet undiscovered factor that 
must  interact with sdY gene to produce sex 
differentiation.

Due to its high rate of success in identify-
ing phenotypic sex, several tests have been 
developed using the sdY gene. For example, a 

Figure 12.1 Agarose gel electrophoresis, showing the PCR amplification of sdY gene (exon 2) in eight males 
(M1 to M8) and eight females (F45 to F52) from Atlantic salmon. Males shown an amplicon of ≈ 350 bp, which is 
absent in females.
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rapid test, based on high resolution melting 
analysis (HRM), simultaneously discrimi-
nates the sex and species of Atlantic salmon, 
brown trout, and their hybrids [61], using the 
two primer pairs published for co‐amplific-
ation of sdY and 18S ribosomal RNA by Yano 
et al. [57]. The test has not been applied in 
many samples to date. However, it is an inter-
esting, cost‐effective, and quick method for 
sexing, as well as for species and hybrid iden-
tification, with potential applications in con-
servation biology and the food industry.

In the genus Salmo, a second assay, based 
on the amplification of a small section of 
200 bp of the sdY gene, was developed to be 
multiplexed with microsatellite markers [62]. 
The method was tested on 65 marine trout 
(Salmo trutta), with a mismatch of 3.2% [62]. 
Unfortunately, the authors did not provide 
raw data for a quantitative evaluation of their 
results using diagnostic tests.

A third quick method for sexing Atlantic 
salmon with sdY gene uses a TaqMan assay, 
based in the amplification of a fragment of 
93 bp from the 4th exon of the gene [63]. This 
method was tested on 2583 individuals, detect-
ing only one female among the 1257 salmons 
positive to sdY (false positive rate = 0.08%), 
however the false negative rate (males negative 
to sdY) was not evaluated [64].

12.3  Evaluation of Sex Marker 
Applications in Salmonids

As described above, many sex‐linked markers 
have been identified in salmonids, but only a 
few have been used extensively. To evaluate 
potential applicability to salmonid sexing, the 
approach described by Lopez and Araneda 
[41] is used here to estimate diagnostic statis-
tics for each molecular assay: sensitivity, 
specificity, positive predictive value (PPV), 
negative predictive value (NPV), likelihood 
ratio of a positive test result (LR+), accuracy 
(ACC), and diagnostic odds ratio (DOR). A 
basic description of all of these diagnostic 
tests can be found in Glas et al. [64]. Successful 

performance was defined as correct identifi-
cation of the male fish (XY individual), given 
that all of the molecular assays tested detect 
Y‐chromosome gene or markers. In this type 
of analysis, individuals are classified in a 2 × 2 
contingency table (Table 12.1), as follows:

TP, FP, FN, and TN denote the number of 
true positive, false positive, false negative, 
and true negative results, respectively. PM 
and PF are phenotypic males and females, 
respectively, identified through direct obser-
vation of gamete emission or gonads, and 
GM and GF are genotypic males and females, 
respectively, identified through genotyping 
with the molecular assay (Table 12.2).

The computational formulae for the tests 
are as follows:

Sensitivity (true positive rate) is the pro-
portion of true (phenotypic) males correctly 
identified by the molecular assay.

Sensitivity P PM GM
P PM

TP
TP FN

Specificity (true negative rate) is the propor-
tion of true females correctly identified by 
the assay.

Specificity P PF GF
P PF

TN
TN FP

To evaluate the probability that these molec-
ular assays provide the correct gender identi-
fication, positive predictive value (PPV, i.e., 
the proportion of males with positive test 
results correctly sexed as male) and negative 

Table 12.1 Contingency table for sex phenotyping 
and classification using a molecular assay.

Genotype (Molecular Assay)

Positive 
(Male)

Negative 
(Female) Total

Phenotype Male TP FN PM
Female FP TN PF
Total GM GF

0003451501.INDD   288 06/04/2018   7:52:57 AM



Chapter No.: 1 Title Name: <TITLENAME> 0003451501.INDD
Comp. by: <USER> Date: 04 Jun 2018 Time: 07:52:55 AM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 289

Ta
bl

e 
12

.2
 P

er
fo

rm
an

ce
 o

f v
ar

io
us

 m
ol

ec
ul

ar
 a

ss
ay

s d
ev

el
op

ed
 fo

r s
al

m
on

id
 se

xi
ng

.

M
ar

ke
r p

os
iti

ve
 fi

sh

G
en

/M
ar

ke
r

As
sa

y
M

al
e

Fe
m

al
e

Se
ns
ib
ili
ty

Sp
ec
ifi
ci
ty

PP
V

N
PV

LR
+

D
O
R

AC
C

At
lan

tic
 sa

lm
on

:
sd

Y 1
PC

R
54

2/
55

5
4/

38
4

0.9
76

6
0.9

89
6

0.9
89

4
0.9

76
9

93
.75

39
61

0.9
81

9
sd

Y 2
PC

R
64

/6
5

2/
65

0.9
84

6
0.9

69
2

0.9
69

7
0.9

84
4

32
.00

20
16

0.9
76

9

Ch
in

oo
k s

alm
on

:
sd

Y  
3

Ta
qM

an
®

45
/4

5
13

/1
57

1.0
00

0
0.9

17
2

0.9
23

5
1.0

00
0

12
.08

97
4†

0.9
35

6
Ot

Y1
4

PC
R

39
6/

39
6

88
/5

30
1.0

00
0

0.8
34

0
0.8

57
6

1.0
00

0
6.0

2
39

65
†

0.9
05

0
GH

‐Ψ
 5

PC
R

91
/9

1
0/

89
1.0

00
0

1.0
00

0
1.0

00
0

1.0
00

0
17

9.0
2†

32
75

7†
1.0

00
0

Ot
Y3

6
PC

R
14

3/
14

3
0/

12
7

1.0
00

0
1.0

00
0

1.0
00

0
1.0

00
0

25
5.1

1†
73

18
5†

1.0
00

0

Ra
in

bo
w 

tro
ut

:
sd

Y 7
PC

R
21

8/
21

8
0/

20
7

1.0
00

0
1.0

00
0

1.0
00

0
1.0

00
0

41
5.0

5†
18

13
55

†
1.0

00
0

Om
y‐

16
3 8

PC
R

38
6/

42
7

21
/4

80
0.9

04
0

0.9
56

3
0.9

53
8

0.9
08

8
20

.66
20

6
0.9

31
3

Om
yP

9 9
PC

R
35

/4
7

12
/8

4
0.7

44
7

0.8
57

1
0.8

39
0

0.7
70

5
5.2

1
18

0.8
16

8
Ot

Y2
‐W

SU
 10

tri
o‐

PC
R

94
/9

4
0/

10
4

1.0
00

0
1.0

00
0

1.0
00

0
1.0

00
0

20
8.8

9†
39

50
1†

1.0
00

0
Om

yY
16

PC
R

13
9/

14
4

5/
13

4
0.9

65
3

0.9
62

7
0.9

62
8

0.9
65

2
25

.87
71

7
0.9

64
0

Br
ow

n 
tro

ut
:

sd
Y 7

PC
R

73
/7

3
76

/7
6

1.0
00

0
1.0

00
0

1.0
00

0
1.0

00
0

15
2.9

6†
22

49
1†

1.0
00

0

(C
on

tin
ue

d )

0003451501.INDD   289 06/04/2018   7:52:57 AM



Chapter No.: 1 Title Name: <TITLENAME> 0003451501.INDD
Comp. by: <USER> Date: 04 Jun 2018 Time: 07:52:55 AM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 290

M
ar

ke
r p

os
iti

ve
 fi

sh

G
en

/M
ar

ke
r

As
sa

y
M

al
e

Fe
m

al
e

Se
ns
ib
ili
ty

Sp
ec
ifi
ci
ty

PP
V

N
PV

LR
+

D
O
R

AC
C

Co
ho

 sa
lm

on
:

GH
‐2

11
PC

R
41

/4
1

0/
47

1.0
00

0
1.0

00
0

1.0
00

0
1.0

00
0

94
.86

†
78

85
†

1.0
00

0

M
as

u 
sa

lm
on

:
GH

‐Ψ
12

PC
R

63
/7

0
2/

61
0.9

00
0

0.9
67

2
0.9

64
9

0.9
06

3
27

.45
26

6
0.9

31
3

So
ck

ey
e s

alm
on

:
Ot

Y2
‐W

SU
10

Tr
io

 P
CR

®
49

/6
1

3/
58

0.8
03

3
0.9

48
3

0.9
39

5
0.8

28
2

15
.53

75
0.8

73
9

1  Ei
sb

re
nn

er
 et

 al
. [

56
].

2  C
om

bi
ne

d 
da

ta
 fr

om
 Y

an
o e

t a
l. [

58
] a

nd
 A

ra
ne

da
 (u

np
ub

lis
he

d)
.

3  C
av

ile
er

 et
 al

. [
60

].
4  C

om
bi

ne
d 

da
ta

 fr
om

 D
ev

lin
 et

 al
. [

25
, 2

9]
, N

ag
ler

 et
 al

. [
30

] a
nd

 W
ill

iam
so

n 
an

d 
M

ay
 [3

1]
.

5  C
om

bi
ne

d 
da

ta
 fr

om
 D

u 
et 

al
. [

33
] a

nd
 D

ev
lin

 et
 al

. [
29

].
6  Br

un
ell

i e
t a

l. [
45

].
7  Ya

no
 et

 al
. [

57
].

8  C
om

bi
ne

d 
da

ta
 fr

om
 Fe

lip
 et

 al
. [

42
] a

nd
 L

óp
ez

 an
d 

Ar
an

ed
a [

41
].

9  Ló
pe

z a
nd

 A
ra

ne
da

 [4
1]

.
10

 Br
un

ell
i a

nd
 T

ho
rg

aa
rd

 [4
4]

.
11

 Fo
rb

es
 et

 al
. [

36
].

12
 Z

ha
ng

 et
 al

. [
35

] a
nd

 Y
am

am
ot

o a
nd

 K
ita

ni
sh

i [
38

].
† Es

tim
ate

d 
ad

di
ng

 0.
5 t

o a
ll c

ou
nt

s d
ue

 to
 L

R+
, a

nd
 D

OR
 ar

e u
nd

efi
ne

d 
if 

th
e 2

 × 
2 c

on
tin

ge
nc

e t
ab

le 
co

nt
ain

s z
er

oe
s.

Ta
bl

e 
12

.2
 (

Co
nt

in
ue

d)

0003451501.INDD   290 06/04/2018   7:52:57 AM



12.3 Evaluation of Sex Marker Applications in Salmonids 291

predictive value (NPV, i.e., the proportion of 
females with negative results correctly sexed 
as female) were estimated with the equation 
from Altman and Bland [65]. In the next two 
equations, Prevalence was assumed to be 0.5, 
as this is the expected proportion of males in 
a normal population [41].

PPV Sensitivity Prevalence
Sensitivity Prevalence Specif(1 iicity Prevalence) ( )1

NPV Sensitivity Prevalence
Sensitivity Prevalence S

( )
( )

1
1 ppecificity Prevalence( )1

The likelihood ratio of a positive test result 
(LR+) was estimated to evaluate the useful-
ness of molecular assays in identification of 
males. This statistic is the ratio of a positive 
“male” test result among phenotypic males to 
the same positive result among phenotypic 
females. Larger values of LR+ indicate better 
performance.

LR Sensitivity
Specificity1

Accuracy (ACC), that is, the proportion of 
correctly‐identified subjects, was estimated 
as follows:

ACC TP TN
TP TN FP FN

Finally, the diagnostic odds ratio (DOR) of a 
test is the ratio of the odds of a positive result 
among phenotypic males relative to the odds 
a positive result among phenotypic females.

DOR

TP
FP
FN
TN

Sensitivity
Sensitivity1

1
1
1Specificity

Specificity

PPV
PPV
NPV

NPVV

Higher values of DOR indicate better dis-
criminatory test performance, and values 
close to 1 indicate that the genetic test does 
not discriminate between the sexes. The DOR 
is highest when sensitivity and specificity are 
close to 1.0 [64].

The genotypic and phenotypic sex data 
published for each assay in each salmonid 
species were used for these estimations. 

The  only restriction was that the analyzed 
samples must include at least more than 
40 individuals per sex (Table 12.2).

In general, nearly all of the markers devel-
oped for sexing salmonids showed high sensi-
tivity and specificity for detecting a true male 
individual, with a DOR value above one 
(Table  12.2). The performance of various 
assays developed for different species shows 
that, in general, markers developed for the sdY 
gene performed better than other markers 
when enough data were available for analysis.

For Atlantic salmon, the assay developed 
by Eisbrenner et al. [56] showed the best per-
formance. In Chinook salmon, an assay based 
on the OtY3 marker [45] showed the best 
performance among four markers evaluated. 
In rainbow trout, a comparison of five differ-
ent markers indicated that the best sexing 
test was based on the sdY gene developed by 
Yano et al. [57]. For brown trout, coho, masu, 
and sockeye salmon, only one marker was 
evaluated in each species, based on the sdY 
gene [58], GH‐2 gene [36], GH‐Ψ [35], and 
OtY2‐WSU [44], respectively.

On the other hand, Podlesnykh et al. [59] have 
shown congruence in genotyping between the 
sdY gene and other Y‐linked molecular markers 
in some Pacific salmon. For example, in Chinook 
salmon and sockeye salmon, sexing performance 
was similar, with sdY and with OtY2‐WSU 
marker. Similarly, in masu salmon, sexing perfor-
mance was also similar between sdY and GH‐Ψ 
marker. These findings indicate that it is possible 
to use sdY instead of other Y‐linked molecular 
markers in these species. However, considering 
the small samples used by species (29–50), these 
results should be considered preliminary.

It is highly probable that the application of 
the primer sets developed by Yano et al. [58], 
Eysturskarð et al. [63] or Quéméré et al. [62] 
in more individuals of other salmonid species 
would reveal that sdY‐based tests show the 
best performance for salmonid sexing if sdY 
is truly the sex determining master gene for 
all salmonids. However, molecular assay for 
salmonid sexing must be more cost effective, 
faster, and validated with international 
 standards such ISO 17025, before they will 
be extended to the industry.
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