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§ 1. Introduction

Let F be a field of characteristic 2. For any integer n=1 let g.(n) be the
minimum of all r, such that any sum of squares of n-ary F-linear forms is a
sum of r squares of n-ary F-linear forms. This number was first introduced by
Mordell in [M] for F=Q, but the general definition was first given in
[CDLR]. Mordell proved g,(n)=n+3 for all n=1. We extend this result in
(3.1), (3.2) to local and global fields. With the aid of a new invariant I(F) we
can extend our investigations of gp(n) to many other fields. We define the
length of F to be I(F)=Min{r|any totally positive quadratic form over F of
dimension r represents 1} =Min{r|any totally positive quadratic form of di-
mension r represents all totally positive elements of F}.

Let us recall that an element a€eF is totally positive if it is positive in every
ordering of F, ie. ae) F*=set of all sums of squares of F. A quadratic form
¢={a,,...,a,> is totally positive if all g; are totally positive. If F is non real, i.e.
—1€) F?, then I(F) is the usual u-invariant u(F)=Max{dim ¢|¢ an anisotropic
quadratic form over F}=Min{r|all forms ¢ over F of dimension r represent
all elements of F*=F\{0}}. In the formally real case it is interesting to relate
I(F) to the generalized u-invariant introduced by Elman and Lam in [E-L], ie.
u(F)=Max {dim¢|¢ an anisotropic torsion quadratic form over F}. In Sect. 2
we relate the g-invariant to the l-invariant. The main result (2.15) states that if
I(F)<oo, then gg(n)=n+I(F)—1 for all n=Il(F)—1. We have only weaker
estimates for gp(n) when n<I(F)—1. The result above implies that gp(n) grows
asymptotically as n when I(F)<oo. Conversely, if for some n>m we have
gr(m)<n+m, then [(F)<1+m, so that gp(n)~n. In general we do not know the
asymptotic behaviour of gp(n) when I(F)=co. We shall briefly discuss this
problem in Sect. 5. In Sect. 4 we shall give some estimates for /(F) in terms of
u(F) and other invariants of F.

To finish this introduction we shall recall some notations and definitions
about quadratic forms. For further details the reader may consult [L]. If
a,,...,a,eF* we denote by <a,,...,a,> the quadratic form a, X?+...+a,X2. If
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¢ is a quadratic form over F, let Dg(¢p)={o(x,...,x,)|X;, ..., x,€F, not all 0}
be the set of values of ¢. The form ¢ is called isotropic if 0eD(¢), anisotropic
otherwise. For any r= 1, aeF* let r x {(a) be the form {a,...,a) of dimension r.
We denote by W(F) the Witt ring of equivalence classes of quadratic forms
over F and by I(F) the maximal ideal of even dimensional forms. The ideal
I(F) is additively generated by the forms (1,a), acF*, and I"(F) is generated
by the n-fold Pfister forms {1,a4,>®...®<{1,a,>, a,,...,a,eF*. Let h(F)=2¢ be
the height of F, ie. the smallest power of 2 with 2¢W (F),=0. If F is formally
real, then h(F)=2? is the smallest power of two with 2¢>p(F), the usual
Pythagoras number ([L], [CDLR]). If F is non real and s(F)=Min{r| —1=a?
+...+a? a,eF} is the level of F, then h(F)=2s(F).

We thank D.B. Shapiro for his many useful suggestions during the prepara-
tion of this work.

§2. The Case I(F)<

Let F be any field with 2+0. Our purpose in this section is to compare the
following two invariants of F

. any sum of squares of n-ary F-linear forms
gr(n)=Min<{r|. .
is a sum of r squares of n-ary F-linear forms
(n=1)
any totally positive quadratic form over F of dimen-}

sion r represents all totally positive elements of F

un=Mm%

The following fact will enable us to translate the definition of g.(n) in the
language of quadratic forms.

(2.1) Proposition. Let ¢ be a quadratic form over F of dimension n. Then ¢ is a
sum of r squares of linear forms over F if and only if ¢ Lp=rx{1> for some

form p.
Proof. Let ¢(X,,...,X,) be such that ¢ = ) L%, where

i=1
n

L(X,...X)=Ya,X

;X aeF, 1<isr, 15j<n

j=1

Diagonalizing ¢, we can assume
¢p=a, X{+..+a,X?=Y (a,;X,+...4+a,X,)%
i=1

with some a,...,a,eF*. ’ v

Comparing coefficients we obtain a;=y aj, Z aj;a,;=0 for all 1<i<n,
j=1 =1
1=I#s=<n. This means that r x {1)> represents the elements a,...,a, ortho-

gonally, i.e. ¢ L pxrx<1) for some form p. Conversely if ¢ L p=rx<{1)> and ¢
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={ay,...,a,>, then we may reverse the above argument and we get ¢= Y L,
n j=1
where Li(X,,....X,)= ) a,;X;, ISj<r.
1=1
(2.3) Notation. We say that ¢ is a subform of y, in symbols ¢ Sy, if ¢ L p=y
for some form p.

(2.4) Corollary. For any field F, gg(n)=Min{r|every n-dimensional totally posi-
tive quadratic form over F is a subform of r x{1)}.

Using this description of gg(n) we deduce easily the following properties

2.5) g/(1)=p(F), the Pythagoras number of F
(2.6) gp(m)<gp(m) if m<n

2.7 gp(m)—msgpn)—n if m=n

(2.8) gr()+n—1=gp(n)<ngy(l) forall n=1

(29) gp(n)=nfor some n=1 iff gz(n)=nfor all n=1 iff F is Pythagorean.
(2.10) Proposition. If [=I(F)< o0, then for any n=1
grim)Sn+1-1.

Proof. We proceed by induction on n. For n=1 we have gg(1)=p(F)<I. Let us
assume the proposition for all m<n. Let ¢ be a totally positive quadratic form
over F of dimension n. We write ¢ = {a) Ly, where ac F* and ¥ has dimension
n—1. Since gy(n—1)Sn+1-2, we get from (24) y <(n+1-2)x {1}, ie. Yy Llp
~(n+1-2)x (1), where dimp=I1—1. Therefore Yy Lp L{1)=(n+I-1)x<1).
But dim(p L{1))=1 implies aeDp(p L<1)), and hence p L{1)=<a) Lt with
some form 7. Putting the previous all together we get

Ly Ldad Limy LpLlddyx(n+l-1)x<1)
so that gp(n)<n+1—1 by (2.4).

(2.11) Proposition. i) If gy(n)<n+m for some n,m, then g(s)<s+m for all
sEn. In particular, p(F)=gp(1)S1+m.

ii) If ge(m)=m+t for some m,t, then gp(n)Zn+t for all nzm.
Proof. Both results follow immediately from (2.7)
(2.12) Proposition. Let F be a field with gp(n)<n-+m for some n,m with n>m.
Then I(F)Sm+1.

Proof. Because of (2.11), (i), we have gp(m+1)<2m+1. Then for any totally
positive quadratic form ¢ of dimension m+1 we have P=(2m+1)x (1), ie.
¢ Lp=(2m+1)x (1>, where dimy=m. Since gg(m)<2m (s. (2.11)), we have
yLlp=2mx{ly with some form p. Therefore ¢Ly=C2m+1)x1)
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={1)Ly Lp. Cancelling y we get ¢=<{1)>Lp, ie. 1eDg(¢). This proves
I(F)sm+1.

Combining (2.12) with (2.10) we deduce

(2.13) Corollary. For any field F, gp(n)<2n for some n if and only if I(F)<n.
In particular I(F)= oo implies gp(n)=2n for alln=1.

(2.14) Corollary. If 1 <l=I(F)< o0, then
gr(l—1)=21-2

Proof. From (2.10) we have gp(I—1)<2(I-1). If g(I—1)<2]-2, we get from
(2.13) 1=1-1, a contradiction. This proves g (I—1)=2[-2.

Now we deduce immediately the main result of this section.

(2.15) Theorem. Let F be a field with [(F)< . Then

gr(m)=n+I(F)—1
for all n= I(F)—1.

Proof. From (2.14) and (2.7) we get gg(n)=n+1—1 for all n=1—1. Now (2.10)
implies the equality.

(2.16) Corollary. Let K/F be a finite extension of degree n=[K:P]. Then if

I(F)< o0,
pK)Sn+I(F)-1.

Proof. 1t is well known that p(K)<gr(n) ((CDLR]). Thus the result follows
from (2.15).

The natural question which arises from (2.15) is what values may gp(n) take
for n<I—1. For example if p(F)=I(F)< oo, then it follows from (2.10) and (2.8)
that gp(n)=n+1—1 for all n=1. This remark applies to F=Q or Q((x)) (see
Sect. 3). But in general it is not easy to determine the behaviour of gg(n) for
n<l—1. We now give an example in this direction.

(2.17) Proposition. If p(F)=2, I(F)< co, then gp(n)=2n for all n<I(F)—1. (See
Sect. 5 for the case I(F)=00.)

This result follows immediatelly from (2.14) and the following (take p=2, n,
=[-1).

(2.18) Proposition. Let F be a field with gp(n,)=p(F)n, for some no=1. Then
gr(n)=p(F)n for all n<n,.

Proof. We know gp(n)<p(F)n for all n21. Suppose gg(n)<p(F)n for some
n<n,. Then from (2.4) we see that gp(n,)<gp(n)+gp(n,—n)<p(F)n+p(F)(n,
—n)=p(F)n,y, which is a contradiction. This shows g(n)=p(F)n, n<n,.

For example let us consider F=C((t,))((t,))((t;)). It is well known that p(F)
=2, [(F)=8, so that gg(n)=2n for all n<7 and g (n)=n+7 for all n>7. Next,
we shall determine completely g.(n) for fields with [(F)=4. To this end, let us
first show the following.
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(2.19) Proposition. Let F be a field with p(F)<2". If gp(n)<2"k for some n,k,
then gp(n+1)<2"k. In particular, if gp(n)<2', then gp(n+1)<2".

Proof. Let ¢ be a totally positive quadratic form over F of dimension n+1. We
set ¢=<Cad Ly, with aeF*, y totally positive, dimyy=n. We want to show
$=2"k x<{1). We may assume a=1, because if <adp=2"kx 1), then ¢p<2"k
x {a). But a is a sum of p(F)<2" squares, and since 2" x (1) is round (s. [L]),
it follows ¢ <27k x {1). Hence let us assume ¢=<1> L. Since dimy =n and
gr(M=2"k—1, we have yy <(2"k—1) x {1>. Therefore ¢ =2"k x (1). This proves
the proposition.

(2.20) Corollary. Let F be a field with (F)=4. Then gp(n)=n+3 for all n23
d
“ g:2)=4 if p(F)=2,3
g-2)=5 if p(F)=4.

Proof. Let us assume p(F)=4. From (2.14) we know g.(3)=6, so that according
to (2.6), (2.8) we get 1+p(F)=5=g;(2)<g(3)=6, ie. gx(2)=5. If p(F)=3, then
g-(2)=4 ((2.6)). But on the other hand g.(1)=p(F)<2? implies because of
(2.19), gp(2)<22%. This shows gp(2)=4. If p(F)=2, then we use (2.17) to deduce

gr(2)=4.

§3. Some Examples

i) Let F be a finite field. Then I(F)=u(F)=2 ([L]), and we get gp(n)=n+1 for
alln=>1.

ii) The p-adic local and global fields of number theory have length 4. This
follows in the local case from /=u and the well known fact that u(F)=4 ([L]).

In the global case, since I(F,)<4 for all completions of F, we obtain from
the Hasse-Minkowski theorem, that I(F)<4. Using the approximation theorem,
we can construct a totally positive quadratic form over F of dimension 3 which
does not represent 1, and this implies I(F)=4. Combining this result with (3.20)
we obtain

(3.1) Proposition. Let F be a p-adic field. Then gp(n)=n+3 for all n23. If
S(F)<2, then gp(2)=4, and if s(F)=4, then gg(2)=>5.

(3.2) Proposition. Let F be a global field. Then for all n23, gpg(n)=n+3. If
p(F)=2 or 3, then gz(2)=4, and if p(F)=4, then g(2)=>5.

iii) Let us consider the field R(X), which also satisfies a local-global prin-
ciple ([K]). Let p be a prime spot of R(X). Then R(X),=R((X)) or C(X ))- But
IR((X))), UTC(X)) =2, so that I(R(X))=2.

From (2.15) we conclude gg ,(n)=n+1 for all n21 ([P-O)).

iv) Proposition. For any formally real field F
WF)=I(F(@)).
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Proof. 1t is obvious that [(F)ZI(F((¢))). Let ¢ be a totally positive quadratic
form over F((t)) of dimension n, ¢ ={f,,...,f,>, fieF[t]. Since f; is a sum of
squares, we can alter each f; by a square to assume that f,=a,+tg;, g,eF[t],
a,cy) FA\{0}. But fi=a(l+a;'tg)=ah? for some heF[t], so that ¢
~<ay,...,a,y. Therefore I(F)=I(F((t))), and this proves the proposition. In
particular we get I(F)=I(F((t,))(t,)...)-

v) Let us apply examples iii), iv) to compute [(R((X,Y))) where R((X,Y))
=Quot(R[X, Y]). Let ¢ be a two dimensional totally positive form over
R((X,Y)), ¢ =<a,b), where a,be) R[X,Y]? without restriction. It [CDLR],
Sect. 5, it has been shown that Y R((X,Y))*=) R(X)[Y]*(mod R((X, Y))?) so
that without restriction a,be) R(X)[Y]>

But by v), iii), (R(X)[Y])=I(R(X))=2, so that ¢ represents all totally
positive elements of R((X, Y)). This shows /[(R((X, Y)))<2. But p(R((X,Y)))=2
([CDLR]), so that I(IR((X,Y)))=2. This fact has been also noticed indepen-
dently by E. Hornix.

vi) It is natural to ask what values of I(F) can occur. This seems to be a
very difficult question. If F is non real it is well known that /(F)=u(F) may
take as value any power of two. If F is formally real, then it is also true that
any power of two can be realized as I(F) for some formally real field F. This
follows from a construction of Prestel [Pr]. Let #i(F)=Min{n|every totally
indefinite quadratic form over F of dimension n+1 is isotropic}. Then
I(F)<ua(F) because if ¢ is totally positive of dimension i, then ¢ L{—1) is
totally indefinite of dimension >, and hence it is isotropic. Thus ¢ represents
1, ie. IL@i. Now in [Pr], Sect. 3, a chain of fields {K,},. is constructed with
K, uniquely ordered, p(K,)=2 and #(K,)=2". Moreover, there is an n-fold

Pfister form p, defined over K,, totally positive, anisotropic over K,(}/ —1).
This implies, that p,, where p,=(1)>Lp,, can not represent 1 over K,, and
hence I(K,)>2"—1. But I(K,)<#(K,)=2", so that I(K,)=2".

§4. Some Estimates for I(F)

Our main purpose in this section is to compare I(F) with u(F) and other
invariants of F. We shall assume throughout that F is formally real, because
for a non real field F, I(F)=u(F). When convenient, we let h=h(F), u=u(F), |
=I(F). The following fact will be used frequently, so we state it separately in
the next lemma.

(4.1) Lemma. If <a,,...,a,,) is a totally positive quadratic form with 2n>u(F),
then {ay,...,a,,y=2x{ay1<{by,...,b,,_,> for some a,b,,...,b,, ,eF* totally
positive.

Proof. The quadratic form {a,,...,a,, —a,,,,..., —a,,y has total signature 0,
so that it is a torsion form ([L]). Since 2n>u, it is isotropic, i.e. we have u}a,
+..uta,+ul, a4, —...—u},a,,=0 with some u,,...,u,,eF, not all 0. Setting
a=uia,+...+ula, we get aeD(ay,...,a,))nD(Ka,,,..-,a,,). This proves

@.1)
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(42) Lemma. Let anFZ. Suppose for a given integer m=1, every totally
positive quadratic form ¢ over F of dimension >m contains a subform (b>{1,a}
for some beY F2. Let ¢ be a totally positive quadratic form over F. If
dim¢=m2—1)+1, t=1, then ¢ contains a subform (dy{1,a)'={dy2""*
x {1,ay for some de F>.

Proof. The proof is by induction on t. The case t=1 is obvious. Now assume
t=2. Let dim ¢ =m(2'—1)+ 1. Using the hypothesis repeatedly, we can write ¢
as ¢=<1,a>y L p, where dimy=m(2~*—1)+1, dim p=m—1. By induction, ¥
contains {d>{1,ad*~! as a subform, and therefore ¢ contains {d){l,a)' as a
subform, where de) F>.

(4.3) Remark. Assuming the hypothesis of (4.2), we deduce from (4.2) that if ¢
is a totally positive quadratic form of dimension Zm(2'—1)+2°+1, t=1, then
¢ contains a subform

{1,adXb><{1, ey =21 x{1,ap<bd{1,cy for some b,ce) F2.

Lemma (4.2) enables us to quickly obtain several estimates relating I(F) and
u(F).

(4.4) Proposition. Let F be a formally real field and assume u(F)<oo. Then
(F)(h(F)—1)u(F)+1.

Proof. If h=1, then p(F)=1 and therefore /=1. Now assume h=2. Because of
(4.1), we can apply (4.2) which m=u+1, a=1. Let h=2, t21. If ¢ is a totally
positive quadratic form with dim¢=(u+1)(h—1)+1, then ¢ contains a sub-
form <{d>{1,1>'=hx{1>. If ¢ is a totally positive quadratic form with
dim ¢=(h—1)u+1, then ¢ L(h—1)x (1) contains hx{1) as a subform and
therefore 1€ D (¢) by cancellation. This shows I(F)Su(h—1)+1.

(4.5) Corollary. If u(F)< oo, then l(F)< 0.
Proof. Use (4.4) and the fact h=<u.

The converse of (4.5) is not true. Example iv) of Sect. 3 shows I(F)
=I(F((t,))((t;))...) when F is formally real. Taking K=0Q((t,)((;))..., we see
I(K)=1(Q)=4, but it is well known that u(K)= co.

(4.6) Proposition. Let F be a formally real field and suppose I"*Y(F),=0 for
some n=0. Then [(F)=1if n=0 and [(F)<2" ' +1+Q2" " '=Du(F) if n=1.

Proof. This is clear for n=0 since F is Pythagorean in this case. Let ¢ be a
totally positive form of dimension 2°~!'+1+(2"~' —1)(u+1), n=1. Because of
(4.1) we may apply (4.3) with m=u+1, t=n—1, a=1. Then ¢ contains
(1, 15" 1¢bY (1, ed>=2"1 x(bd{1,c) as a subform for some b,cey F?. But
271 x (b1, > =21 x (1,c) since I"*!(F),=0. Therefore if ¢ is totally posi-
tive of dimension 2"~ '+1+(2"~'—1)u, then ¢ L(2"~'—1)x{1) contains a
subform 2"~! x {1, c}. Cancellation shows 1eD(¢) and the result is proved.

(47) Corollary. If 2"Su(F)<2"*! then (F)<2"~'+1+(2"~ ' —1)u(F). In par-
2

ticular lg% —%4— 1.
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Proof. Since u(F)<2"*!, the theorem of Arason-Pfister ([E-L]) implies that

I"(F),=0, and hence by (4.6) I(F)<2"~'+1+(2"~!—1)u. Since 2"‘1§B, we
u® u 2

btain I <——=+1.

obtain =5 2+

(4.8) Corollary. Let F be a formally real field with 2h(F)>u(F). Then l§g+l

h
+ ('é‘ - 1) u.
Proof. Let 2"<u<2"*'. Then u<2h implies 2"** <2h. The result now follows
from (4.7).

Finally let us relate I(F) with the values of the u-invariant of quadratic
extensions of F.

(4.9) Proposition. Let F be a formally real field and let ac F>.
i) If w(F()/ —a))<2", n20, then (F)<1+(2"—1)?
it) If w(F(y —a)) =<4, then I(F)<6.

Proof. i) If n=0, u(F(}/ —a))=1. This implies F is Euclidean ([Be]) and I(F)=1.
Now assume n= 1. Because of (3.7), Chap. 7 in [L], we can apply Lemma (4.2)
with m=2" t=n. Let ¢ be a totally positive quadratic form of dimension 1
+(2"—1)% Then ¢'=¢p L(2"" 1 —1) x{1> L 2" ' x{a> has dimension (2"—1)2"
+ 1. Therefore (4.2) implies ¢’ contains a subform <{d>2"~!x(1,ay=2""!
x{1,a), since u(F()/ —a)<2" implies I"*'(F),=0 ([E]). Cancellation yields
that ¢ contains (1) as a subform. This shows {(F)<1+4(2"—1)%

ii) The assumption u(F (ﬁ))§4 implies I3(F),=0, and hence every form
in I*F represents all totally positive elements. Let us first consider a totally
positive quadratic form ¢ with dim¢=7. Since ¢QF (]/ —a) contains two
hyperbolic planes, it follows ¢ ~(b,c><{1,a) L @,, so that by the above remark,
{1,bcy<1,ay={b,c)<{l,a) is a subform of ¢. Therefore, every totally positive
form of dimension 7 contains {1,a) as a subform. Now let ¢ be any totally
positive form with dim¢=6. Then ¢ L<{a) contains {1,a> as a subform and
cancellation shows 1e€D,(¢). This proves ii).

(4.10) Corollary. Let R be a real closed field and F/R a formally real extension
with tr(F/R)=n. Then I(F)£1+(2"—1)% If n=2, then l(F)<6 and moreover I(F)
+5.

Proof. By the theorem of Tsen-Lang we know u(F (]/—-‘1))§2" (LG]). Therefore
I(F)S1+(2"—1)% If n=2, we have from (4.9), ii) that I(F)<6. Since in this case
I3(F),=0, we deduce I(F)+5 from the following result (4.11), which we state
separately.

(4.11) Lemma. Let F be a field satisfying 13(F),=0. If 1<I(F)<oo, then
I(F)£1 (mod4).

Proof. Assume I=1+4k, k=1, and let ¢ be a totally positive form of dimen-
sion 4k. Since d=det(¢) is totally positive, ¢ L<{d>={1> Ly, with dimy =4k,
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det(y)=1. Then yel?*(F), since d(y)=1. But I>=0 implies y represents all
totally positive elements, and so we have Y =<{d) L p. This implies ¢ ={1> L p,
and this shows [(F) <4k, a contradiction.

§5. The Case I(F) =0

When I(F) < oo, the behaviour of gp(n) as a function of n is fairly well described
by Theorem (2.15). If I(F)=oc, we saw in (2.8) and (2.13) that
2n<gp(n)<gp()n for all n=1. Therefore, (F)<oo if and only if gp(n)~n.
When I(F)= oo we treat below the case p(F)=2 and the non real case.

(5.1) Proposition. If p(F)=2 and I(F)= o0, then gp(n)=2n for alln=1.
Proof. This follows from (2.13) and (2.8).

(5.2) Proposition. Let F be a field with I(F)= oo and level s =s(F)<oo. For any
n let re{0,1,...,s—1} be determined by n+r=0 (mods). Then 2n<g (M) <2n+r
and these bounds are best possible. In particular gp(n)~2n.

Proof. Let ¢ be a n-dimensional quadratic form over F. Assume first
n=0 (mod s). Therefore nx {1, —1>=nx{1,1>=2nx{1), and hence ¢ L —¢
=nx{l, —1>=2nx (1) implies gp(n)<2n. How from (2.13) we obtain gp(n)
=2n. Let us now assume nz%0 (mods) and take re{0,1,...,s—1} with
n+r=0 (mods). We see from above that ¢ Lrx (1> =2(n+r)x 1), and cancel
ling we get ¢ <2n+r)x<{1), ie. gg(n)<2n+r. Together with (2.13) we have
2n<gp(n)<2n+r. The following example shows that these bounds can be
realized. Let k be a field of level s< oo, and define F=k((t,))((t,)).... It is clear
that s(F)=s, I(F)=o0. Hence 2n<gp(n)<2n+n with r as above. We shall
prove gp(n)=2n+r. From the proof above we may assume n=%0 (mods). Let
us consider the quadratic form ¢,=<t,,...,t,>. We have ¢,<2n+r)x{1). If
¢, Z2n+r—1)x<1), then ¢, Lly=2n+r—1)x<1) with dimyy=n+r—1.
Therefore ¢, Ly L(r+1)x{1)=2(n+r)x (1>=(n+r)x1, —1), because s|n
+r. But (n+r)x{l, —1>=1, —1>Ly L —, so that cancelling y, we get
¢, L(r—1)x{1>=<1, =1>L —y. Therefore ¢,L(r+1)x 1) is isotropic over
F. Since r<s, it is easy to see, that this is impossible. Therefore gp(n)=2n+r.
Also (5.1) shows that the lower bound can be realized.

(5.3) Remark. For all examples calculated in the case I(F)= o0, gz(n)~2n. We
know no example when this fails.
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