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Abstract. Using the Green function technique, we calculate the transition probability 
amplitude for one atom interacting with a one-mode electromagnetic field, without 
assuming the rotating-wave approximation (RWA). The effects of the RWA are studied in 
the time and frequency domains. In the time domain, the periodicity of the typical RWA 
results is broken; in the frequency domain, the Bloch-Siegert shift is obtained. 

1. Introduction 

The problem of one atom interacting with an electromagnetic field was solved a long 
time ago (Jaynes and Cummings 1963, Allen and Eberly 1975) using the rotating-wave 
approximation (RWA). This approximation leads directly to a periodic solution for the 
probability amplitude of emission of a photon. There is a periodic transfer of energy 
from the atom to the field, and vice versa. 

In the present work, the effects of the counter-rotating terms in the Hamiltonian 
(Ramirez and Orszag 1982) are considered, with the following results: 

(i) The periodic behaviour, typical of the RWA, is destroyed. 
(ii) A frequency shift is obtained. This shift is the well known Bloch-Siegert shift. 
Analytical expressions for the Bloch-Siegert shift have been obtained by several 

authors (Shirley 1965, Swain 1973a, 1974, Hannaford et a1 1973, Stenholm 1973, 
Ahamad and Bullough 1974, Cohen-Tannoudji et a1 1973). 

Swain (1973b) calculated the eigensolutions of Dicke’s Hamiltonian, arriving at 
continued-fraction expressions for the eigenstates and eigenvalues. From there, he was 
able to obtain the time behaviour of the system. Walls (1972), using the resolvant 
technique, found the second-order perturbation approximation for the emission prob- 
ability and the shift. Here, eigenvalue and eigenfunction calculations are avoided. 
Instead, the direct application of the Green function technique allow us to determine, in 
a compact and straightforward calculation, the time behaviour and Bloch-Siegert shift 
of Dicke’s model, to any order, and compare these results with the RWA results. 

At the end, a short comparison of this work with that of Shirley (1965) and Swain 
(1973a) is given. 

2. The method 

Consider the Hamiltonian of an atom interacting via an electromagnetic field: 

N = wu+ + wos, + K ( a  + a +)(S+ + s-) = HO + K ( a  + a +)(S+ + s-). (1) 
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This Hamiltonian operates on a Hilbert space {la) 0 In)}, where la) = I&) represents 
the atomic state vector. The atomic Hamiltonian is woSr, obeying the equation 

w 0 S z / 4 )  = *;w,/.;>. (2) 
The state In) = [(a')"/(n !)"2]10) represents the state of n photons. Let la, n )  = la) 0 In) 
be the eigenstates of Ho, and Iv) the eigenstates of H, with eigenvalue R,. Then we can 
expand Iv) as a linear superposition of la, n) .  

The time evolution operator can be written as 

exp(-itH) = exp(-in,t)lv)(vl. (3) 
" 

Let l i )  and I f )  be two eigenstates of the system. The probability amplitude of the 
transition li) + I f )  is given by 

ufi(t) = (flexp(-itH)li) = exp(-in,t)(flv)(vli), (4) 
and its Fourier transform is 

0 

a f i ( n )  = dt afi(i(t) exp[it(R-RR, -iq)]+ d t a f i ( t )  exp[it(R-RV +iq)], (5  ) 
-m jam 

where q is a small parameter to ensure the convergence of afi(R).  The limit q -* 0' will 
be taken later on. 

Defining the Green function as 

we can write 

afi (R) = i-'[ Gfi (R - iq ) - Gfi (R + iq )I, (7) 
where Gfi = (flGli). 

(Zubarev 1960): 
We can now write the probability amplitude af i ( t )  in terms of the Green function 

m 

afi ( t )  = -k d n  exp(-itR)[Gfi(R - iq) - Gfi (R + iq)] 
27rl -m 

1 
2 ~ i  (8) 

where the closed integral is taken in the positive sense and enclosing the real axis, as 
shown in figure 1. Obviously, this integral is zero everywhere except at the poles of 
G(R). These poles correspond to the eigenstates of H (equation (6)). 

= - f dR exp(-itn)Gfi(R), 

We can write ufi(t) in terms of the residues of Gfi as 

Figure 1. Path taken for the integral appearing in equation (8). The dots correspond to the 
poles of G(oo). 
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3. Calculation of the Green function 

Consider the identity (Roessler et a1 1980) 

(R-H)G(fl)= 1. (10) 

Taking the matrix elements of equation (lo), between the states (mi and la'n'), 
inserting Z, ITm)(Tm( = 1 and using the matrix elements of our Hamiltonian, 

(11) 

QE -XE - K2n/XiZ1 = 6-8 &n~/Gun,m. 

Taking (a'n') = (an), we have 

G(un)(m)(fi) = l / ( Q E  -XE - K2n/Xi-"1 ). 

X %  = Q$ - K2m/Xk'T1 

From equation (1 5 )  we readily obtain 

(m < n )  
or 

X $  = K Z ( m  + l ) / ( Q Z l  - X Z I  (m  > n).  

Iterating equations (17) and (18), we obtain equations (19) ani 

K2n K2n 

K"(n - 2) 
Kz(n  - 3 )  QE-2 - 

Qi03- 
Qn-4  -. . . 

X:: = 
K2(n + 1) 

K2(n +2) Q-" - 
n + l  KL(n +3) 

K2(n +4) Qz+2 - 
ai,", - 

QE+4 - 

1355 

(20) respective.]: 

Introducing equations (19) and (20) into (16), we get an explicit expression for G,,,,,. 
Making use of equation (141, once Gun,m is known, we can calculate G(-un+l)cufl), 

G(un+2)(,m), . . .. For example 

G(-un+~)(un) = ( X E / K m ) G ( u n ) ( u n ) *  (21) 

Since XE and G(un)(un) are known, equation (21) allow us to calculate G(-m+l)(mn). 
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4. Approximate results in the (K&/wo) + 0 limit 

We will study the transition li) = If, n> -* If) = I - f ,  n + 1). 
In the case K = 0, the poles of G correspond to 

.RI, = w ( n  + 21 +$)*A, 1=0,*1,*2 * .  . , ( 2 2 )  

If the interaction is turned on (K # 0), the poles will still come in pairs, but will be 

With the use of equations (16), (19), (20) and (21), we can estimate the location of 

where A = (WO - w ) / 2 .  

shifted with respect to the undisturbed value (equation (22 ) ) .  

the poles up to K 2 .  The lth pole is located approximately at 
2 -20K2* Rn+2i6 

+ w ( n  +21+$), o2 + 2K2(n + 21 + 1) a,* = 

where 
19 = 2w + A ,  

4w2K4+2K2A2(n + 1) K4 1/2 

e2 

The residues for 1 = 0 and 1 = 1 are given approximately by 

A simple quantum mechanical argument shows that in general 

5. Numerical results 

Equation (9) can be rewritten in the form 
CO 

af i ( t )  = - exp(-i&t)(C, cos + is, sin ~ t t ) ,  (27) 
l=[n/2] 

where [ n / 2 ]  is the integer part of 4 2 ,  f = (-, n + l), i = (+, n )  and 
0 -1 

E1 = t(n,+ - 0,-1, I - 2(nI+ +%I,  
(28 )  

SI = R(n/+) - Rs(fL), C1= -Rs(&+) -Rs(fh-)- 
The most important contribution to the summation given in equation (27) is the 

term -iso sin(sot); basically, up to a correction of the order of K2(n + l)/& lSOl2 
represents the maximum value of the transition probability P(t ) .  

If we now take the limit n +.CO, K m +  0, then 

s, = S-r cr = -C-r sz,=(n +$+21)w El  = E O  (29) 
and +(t)  can be written approximately as 

(30) 
m 

S o s i n ~ O t + 2  C (S, c o s 2 1 w t s i n ~ ~ t - C ~ s i n 2 1 w t c o s ~ ~ t )  
1=1 
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. 5? 0 1  

We have computed P( t )  = lafi(i(t)lz, E ~ ( O / W O )  and So(w/w0) for K2(n + l)/& = 0.01 and 
0.1. 

In figure 2(a)  we show eo as a function of w / w o  for K2(n + l ) /w; = 0.01, and in 
figure 2(b)  we plot So as a function of w/wo for the same coupling constant. These 
graphs are practically unchanged when n varies from zero to CO, keeping K2(n + l)/& 
fixed. When the curves are compared with the results using the RWA, the deviation from 
the RWA is of the order of KZ(n + l)/& -0.01. 

Figure 3 shows .so and So versus w/wo for K2(n + l)/& = 0.1. The dependence on n 
is again small (n taking the values 0 and 00 for fixed K&/wo), but now the deviation 
from the RWA is appreciable, of the order of KZ(n + l)/& - 0.1. Notice also that the 

---- 1 0 -  -- 
t 

/ 

\ 
\ 

G? ' 05 '. 
zo2:: '. t ;A 

0 - 6 ,  I I I I , , V I .  O t , , . .  li 

0.3- 

.3" 0.2- . 
0 

w 

0.1- 

Figure 2. (a) ao/wo and ( b )  So versus o/oo for K Z ( n  +l)/& =0.01. The broken curves 
correspond to the RWA. The full curves are the exact curves for both n = 0 and n = lo4 
(their difference is of the order of 

( 6 )  . (a1 

t 

1.0- T - z < T  

0 

m -  

0 5- 

O ~ , , , , , , , , , , , , , ;  0 - , , , , , ,  , 

Figure 3. ( a )  a0/oO and ( 6 )  So versus o/oo for K2(n  + l)/oi = 0.1. The full curves are the 
exact curves, and the broken curves correspond to the RWA. Notice that the maximum So is 
at w / o 0  = 1.11, while the minimum aO/o0 is at o/oo = 1.084 (see the arrows). 
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maximum of So is shifted with respect to oo. This maximum is located at w/wo = 1.11 
for n = 0 and at w / w o  = 1.107 for n = M. This is the Bloch-Siegert shift. 

Shirley’s (1965) semiclassical calculation of the shift gives o / w o  = 1.1025, and 
Swain’s (1973a) result gives @ / W O =  1.1137 for n +a. 

Notice also that the maximum value of So does not coincide with the minimum of the 
frequency of the first harmonic. This minimum corresponds to w / o o  = 1.084. 

Some numerical values of the amplitudes and frequencies of the various harmonics 
have been tabulated (table 1). For this table the value oo = 1 was taken. 

In figure 4(a) we have plotted P ( t )  = lap(t)12 against wot for K2(n  + l)/& = 0.1 and 
w / w o  = 0.8. There is a noticeable difference between the RWA and the two exact curves 
for n = 0 and n = M. The small difference between these last two curves shows that 
there is only a weak dependence on n, for K2(n + l ) / w i  fixed. 

In figure 4(b) we again show P( t )  against wot for K Z ( n  + l)/& = 0.1, but with the 
value of w / w o  that gives the maximum So. In this case it corresponds to o / w o  = 1.1 for 
n = lo4 and w/wo = 1.11 for n = 0. These curves are compared with the one using the 
RWA for w/wo = 1. 

.-._ .-., 

n 2n 3n 4n 5n 
WO + 

Figure 4. ( a )  P ( t )  versus mot for K2(n + 1)/& = 0.1 and a detuning o/oo = 0.8. The 
broken curve corresponds to the RWA, the dotted curve is the exact curve for n = a, and the 
full curve is the exact curve for n = 0. (b )  P ( t )  versus oot for K 2 ( n  +I)/& = 0.1 and 
o/oo = {maximum So}. The broken curve corresponds to the RWA and o/oo = 1, the full 
curve to the exact curve for n = 0 and o/oo = 1.1 1, and the dotted curve to the exact curve 
for n = lo4 and o/oo= 1.1. 
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